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Abstract

A Rankine source method is developed adopting continuous free surface and
seabed source panel distributions to solve numerically wave-body interaction
problems involving various seabed conditions. The free surface and seabed sur-
face profiles are represented by continuous panels rather than a discretization
by isolated points. These panels are positioned exactly on the fluid boundary
surfaces and the proposed method does not require a desingularization tech-
nique. For a two-dimensional forced oscillatory body problem, the influences
of a flat, concave or convex/hump shaped seabed at different water depths are
investigated. Both heave and sway motions are examined and the accuracy
and efficiency of the numerical solutions are validated by comparison with pub-
lished numerical predictions and, where possible, experimental data. Through
these simulated findings, the influences of uneven seabeds on the hydrodynamic
characteristics associated with wave-body interaction problems are discussed.

Keywords: Rankine source method, continuous source panel, finite water
depth, uneven seabeds

1. Introduction

In offshore engineering, when the draft of a floating body is not small com-
pared to the water depth, the hydrodynamic influence of finite water depth is
important(Van Oortmerssen, 1976) as typified by the evaluation and design of
ships and offshore structures operating in near shore and coastal waters (Faltin-
sen, 1993). However the ocean bottom is usually treated as a flat, solid boundary
through which no fluid penetrates.
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For a flat seabed at uniform water depth, Yu and Ursell (1961) developed a
multipole expansion method to examine the behavior of a semi-circular cylinder
excited in an oscillatory heave motion. The amplitude of the generated wave
showed good agreement with experimental data (Yu and Ursell, 1961). Kim
(1969, 1975) extended the multipole expansion method to include oscillatory
heave, sway and roll motions of the cylinder in water of finite depth. Bai (1977)
divided the fluid domain into inner and outer regions. The former is described
by finite elements and in the outer region the radiation potential is presented by
a set of eigenfunctions with unknown coefficients. These unknown coefficients
are determined by matching the boundary condition on the interface of the
two regions and by satisfying finite water depth conditions. Hydrodynamic
coefficients associated with two-dimensional circular and rectangular cylinders
were derived over a wide frequency range with focus on their behaviour at
zero frequency. Yeung (1981) further extended this method to investigate a
three-dimensional vertical cylinder. Though this method gives a comprehensive
theoretical understanding of the finite water depth problem, its capability is
restricted to the analysis of simple, symmetric body shapes.

Andersen and He (1985) followed the approach of Bai (1977) but replaced
the finite element method with a simple Green function method. This panel
method is able to analyse arbitrary shaped bodies and is more numerically effi-
cient than the finite element method. The free surface Green function method
associated with deep water can be modified to describe finite water depth, fluid-
structure interaction problems. For example, commercial software package,
WAMIT, was developed for wave-body interaction problems assuming a flat
seabed (Lee, 1995).

A sloped seabed bottom is a more realistic description of a coastal seabed.
In this situation, the analysis of floating body motions is more complex than for
a flat seabed. The previous described numerical approaches can not be directly
applied to changing bottom contours. In the mathematical models developed by
Buchner (2006); De Hauteclocque et al. (2009); Ferreira and Newman (2009) a
second body is introduced to represent the sloping seabed. The model requires
the selection of a specific second body in terms of size and shape which is
replicated from case to case, and therefore, it cannot supply a general solution
to the problem. To reduce reflections from the sloping seabed, Newman (2012)
adopted a matching boundary approach to divide the fluid domain into an
interior domain of variable water depth and an exterior domain with constant
depth. This curtails the application of the methods to an arbitrary bottom
topography.

The Rankine source method coupled to other numerical techniques provides
a flexible approach to deal with various boundary condition problems. In general
terms the method distributes Rankine sources along free surfaces as well as other
fluid domain surfaces to satisfy boundary conditions.

By placing isolated points on the free surface to act as control points and
source points away from these control points, the method avoids singularity
integrals and only the lnr (for the two-dimensional case) or 1/r (for the three-
dimensional case) term needs inclusion in the integral kernel. Through devel-
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opments this method has become a robust numerical tool to solve various wave
and wave-body interaction problems (Cao et al., 1991a; Huang, 1997; Scorpio,
1997; Finn, 2003; Zhang et al., 2010; Bandyk and Beck, 2011).

The adoption of isolated source points to replace the profile of a continuous
free surface may cause large numerical discrepancies if they are not properly
distributed. Traditionally, the free surface is divided into inner and outer do-
mains (Lee, 1992). A chosen number of source points are evenly positioned in
the first 3 wavelength inner domain and exponentially distributed in the outer
domain. The number of source points associated to each wavelength is care-
fully selected to determines the numerical accuracy and efficiency of the chosen
numerical scheme of study. The exponential distribution in the outer domain al-
lows a large area of free surface to be covered and therefore long time numerical
simulations can be executed without surface wave reflections. This distribution
method is discussed extensively in the literature for various wave-body interac-
tion problems (Cao, 1991; Beck et al., 1994; Kring, 1994; Finn, 2003; Lee, 2003;
Zhang et al., 2007; Zhang and Beck, 2007; Bandyk, 2009; Zhang et al., 2010)

Previous studies (Schultz et al., 1990; Cao et al., 1991b; Cao, 1991; Lee,
1992; Beck and Scorpio, 1995; Lee, 2003; Zhang and Beck, 2007, 2008; Bandyk,
2009; Zhang et al., 2010; Bandyk and Beck, 2011) show that the discretisation of
a continuous free surface profile by isolated control points generates numerical
error. Further, the free surface boundary condition is not exactly satisfied on
the free surface but only at the source points which are placed above the free
surface in the desingularized method causing numerical errors to occur during
the numerical simulation.

Recently Feng et al. (2015a, 2014, 2015b) developed a source point distri-
bution method with increasing spaces between points to replace the even space
method. This method places a higher density of source points near the float-
ing body and at increasing distance form the body the density of distribution
decreases. Through this means, the number of source points is reduced and
therefore the computational effort is significantly reduced with numerical accu-
racy retained or increased. The source points closer to the floating body are of
increased strength and of greater numerical influence compared to those located
further away. This new source distribution method is further developed as the
basis of this study.

The continuous panel method with desingularized technique has been applied
to wave-body interaction problems in the deep water condition (Feng et al.,
2015a). In that paper numerical comparisons showed better numerical accuracy
compared with results obtained by the isolated source point method for both
linear and nonlinear problems. Here the free surface and seabed profiles are
approximated by a continuous distribution of Rankine source panels, and a
numerical method developed in a similar framework to a singularized method.
The integral of the Rankine source term lnr on the panel becomes integrable
when Rankine source points and control points are located at the same position
on a panel. The value of this integral can be derived from a mathematical
derivation described by Chen (2012), thus avoiding the desingularized technique.

Both Neumann and Dirichlet boundary conditions are required to be satisfied
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at the intersection point since singularities may arise if not treated properly.
In the present method, continuous panels are distributed on both sides of the
intersection point. The boundary conditions are satisfied respectively at the
centre points of the panels which are positioned separately to the intersection
points. By this method, free surface and body boundary conditions are satisfied
respectively on neighbouring panels.

In this study, a linear free surface condition is assumed and a third order
Adams-Bashforth scheme is adopted in the free surface time stepping itera-
tion process. Section 1 gives background information and literature review for
finite depth, wave-body interaction problem. Following this section the bound-
ary integral equation, numerical simulation process and panel distribution are
demonstrated in Section 2. In Subsection 3.1 numerical convergence is tested for
wave-body interaction problem involving a flat seabed. Extensive comparisons
are further provided between derived numerical predictions and other avail-
able data to provide a measure of validation of the proposed method for this
problem. Numerical simulation is further extended to uneven seabed: concave
shaped seabed in Subsection 3.2 and convex or humped shaped seabed in Sub-
section 3.3. A general discussion is provided for seabed shape and water depth
effects on the hydrodynamic characteristics of wave-body interaction problems
in Subsection 3.4 before the conclusion part in Section 4.

2. Problem formulation

2.1. Fluid motion equations

Figure 1 shows a coordinate frame of reference Oxz with origin O at the
centre of a two dimensional body floating in a fluid domain of finite water
depth. The fluid domain Ω is bounded by a free surface Sf , body surface Sb,
seabed surface S0 and an enclosing surface at infinity, S∞. The body undergoes
forced oscillatory heave or sway motion in the direction of the Oz or Ox axis.
For heave motion, the body moves in the Z axis direction while for sway motion
the body moves in the X axis direction. At time t, its position is given by the
displacement function

x0 = (0, a sinωt) or x0 = (a sinωt, 0) (1)

for an amplitude a and frequency ω, with instantaneous velocity:

vb = (0, aω cosωt) or vb = (aω cosωt, 0). (2)

The fluid flow is assumed irrotational and its descriptive velocity potential
φ is subject to the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0 in the fluid domain Ω. (3)

The associated kinematic body boundary condition is given by

∂φ

∂nb
= vb · nb on Sb, (4)
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where nb is the unit normal vector on the body surface pointing into the fluid
domain.

The linear kinematic and dynamic free surface boundary conditions are given
respectively by

∂η

∂t
− ∂φ

∂z
= 0 on Sf , (5)

and

∂φ

∂t
+ gη = 0 on Sf , (6)

where η denotes the wave elevation and g is the gravitational acceleration.
The boundary condition applied on the far field boundary at infinity requires

that the disturbance vanishes such that:

∇φ→ 0 on S∞. (7)

It is assumed that no flow penetrates the solid seabed boundary and therefore

∂φ

∂n0
= 0 on S0, (8)

where n0 is the unit normal vector on the seabed surface pointing into the fluid
domain.
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Figure 1: Illustrative sketch of body-fluid interaction problem and definition of coordinate
system.

By utilizing the Gauss divergence theorem, Laplace equation (3) and the
application of the Dirichlet boundary value problem to the exterior domain of
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the fluid field, Lamb (1945) expresses the velocity potential φ as a boundary
integral of Rankine sources continuously distributed on the fluid boundary S =
Sb ∪ Sf ∪ S0 in the form

φ(x′, t) =

∫
Sb

σb ln|x′−x|dsx+

∫
Sf

σf ln|x′−x|dsx+

∫
S0

σ0 ln|x′−x|dsx. (9)

Here we denote control point x′ = (x′, z′) which is located on the middle point
of a continuous panel, source point x = (x, z), the body source strength σb =
σ(x′, t), free surface source strength σf = σ(x′, t), seabed source strength σ0 =
σ(x′, t) and variable of integration dsx.

2.2. Numerical simulation process

In the current simulation, the fluid domain surface S is discretized by panel
Rankine sources rather than isolated Rankine source points. These panel sources
are located exactly on the fluid domain surface S and therefore no desingularized
technique is applied. Let the integral surfaces Sb, Sf and S0 be approximated as

sums of panels Nb, Nf and N0 respectively such as Sb = ∪Nb
i=1S

b
i , Sf = ∪Nf

j=1S
f
j

and S0 = ∪N0

k=1S
0
k.

Therefore, the discretization of equation (9) is given by

φ(x′, t) =

Nb∑
i=1

σbi

∫
Sb
i

ln|x′ − xi|dsx

+

Nf∑
j=1

σfj

∫
Sf
j

ln|x′ − xj |dsx +

N0∑
k=1

σ0
k

∫
S0
k

ln|x′ − xk|dsx.

(10)

Let x′
b
i ∈ Sb, x′

f
j ∈ Sf and x′

0
k ∈ S0 be control points for i = 1, ..., N b,

j = 1, ..., Nf and k = 1, ..., N0. The time iteration scheme starts from the
initial conditions applied to the body surface, the free surface and at the seabed,
respectively at time t = 0 given by

vb(x′
b
i , t)

∣∣∣
t=0

= (0, aω) or (aω, 0) (11)

φ(x′
f
j , t)

∣∣∣
t=0

= 0 and η(x′
f
j , t)

∣∣∣
t=0

= 0, (12)

v0(x′
0
k, t)

∣∣∣
t=0

= 0. (13)

With the use of the body and seabed boundary conditions (4) and (8) re-
spectively and the boundary integral equation (10) with its normal derivative,
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we solve the source strengths σbi , σ
f
j and σ0

k on Sbi , S
f
j , S0

k from the following
equations

φ(x′
f
j , t) =

Nb∑
i=1

σbi

∫
Sb
i

ln|x′fj − xi|dsx

+

Nf∑
j=1

σfj

∫
Sf
j

ln|x′fj − xj |dsx +

N0∑
k=1

σ0
k

∫
S0
k

ln|x′fj − xk|dsx,

vbn(x′
b
i , t) =

Nb∑
i=1

σbi
∂

∂nib

∫
Sb
i

ln|x′bi − xi|dsx

+

Nf∑
j=1

σfj
∂

∂nib

∫
Sf
j

ln|x′bi −xj |dsx +

N0∑
k=1

σ0
k

∂

∂nib

∫
S0
k

ln|x′bi −xk|dsx

0 =

Nb∑
i=1

σbi
∂

∂nk0

∫
Sb
i

ln|x′0k − xi|dsx

+

Nf∑
j=1

σfj
∂

∂nk0

∫
Sf
j

ln|x′0k − xj |dsx +

N0∑
k=1

σ0
k

∂

∂nk0

∫
S0
k

ln|x′0k − xk|dsx.

(14)

Here vbn(x′
b
i , t) = nib ·vb(x′

b
i , t) represents the normal velocity on the panels on

the body surface Sbi . nib and nk0 denote the unit normal vectors on the panels
Sbi and S0

k respectively.
Equation (14) can be formulated in the following convenient format:CNfNf

CNfNb
CNfN0

CNbNf
CNbNb

CNbN0

CN0Nf
CN0Nb

CN0N0

σfσb
σ0

 =

φ(x′
f
j , t)
vbn
0

 , (15)

where Cmn(m = Nf , Nb, N0 and n = Nf , Nb, N0) are influence coefficient blocks.
They reflect the influence of a source panel n on the control point of panel m.

The substitution of the source strength values σbi , σ
f
j and σ0

k at time t ob-
tained from the set of equations (14) produces calculation of the normal velocity

vfz(x
′f
j , t) =

∂φ(x′f
j ,t)

∂z on the free surface as

vfz(x
′f
j , t) =

Nb∑
i=1

σbi
∂

∂z

∫
Sb
i

ln|x′fj − xi|dsx

+

Nf∑
j=1

σfj
∂

∂z

∫
Sb
j

ln|x′fj − xj |dsx +

N0∑
k=1

σ0
k

∂

∂z

∫
S0
k

ln|x′fj − xk|dsx.

(16)
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At any time t during the numerical simulation, the body and seabed bound-
ary conditions are described by equations (4) and (8). The free surface con-
ditions are updated according to equations (5) and (6) by a 3rd-order Adams-
Bashforth scheme, starting from t = 0, through expressions

η(∆t) = vfz(0)∆t, (17)

φ(∆t) = −gη(∆t)∆t, (18)

and in a 2nd-order Adam-Bashforth scheme, we have

η(2∆t) = η(∆t) +
∆t

2
[3(vfz(∆t)− vfz(0)], (19)

φ(2∆t) = φ(∆t) +
∆t

2
[−3gη(∆t) + gη(0)], (20)

When the 3rd-order Adam-Bashforth scheme is adopted, we have

η(t+ ∆t) = η(t) +
∆t

12
[23vfz(t)− 16vfz(t−∆t) + 5vfz(t− 2∆t)], (21)

φ(t+ ∆t) = φ(t) +
∆t

12
[−23gη(t) + 16gη(t−∆t)− 5gη(t− 2∆t)]. (22)

With strengths σbi , σ
f
j and σ0

k determined, the velocity potentials on the body
surface Sb are derived from equation (9) in the form:

(23)

φ(x′
b
i , t) =

Nb∑
i=1

σbj

∫
Sb
i

ln|x′bi

−xi|dsx +

Nf∑
j=1

σfj

∫
Sf
j

ln|x′bi −xj |dsx +

N0∑
k=1

σ0
k

∫
S0
k

ln|x′bi −xk|dsx.

The dynamic pressure on the body surface, p = p(x′
b
i , t), is evaluated from

Bernoulli’s equation expressed as

p(t)

ρ
= −∂φ

∂t
, (24)

where ρ denotes the fluid density. The temporal derivative of the potential
is calculated by a finite difference method using the the values of the velocity
potential at two consecutive time steps.

The dynamic force F (t) applied to the body surface is calculated by inte-
grating the dynamic pressure over the body surface as given by

F(t)=
∫
Sb
p(t)nbds. (25)
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By adopting Fourier transforms, the added mass Akk(ω) (k = 2, for sway motion
and k = 3 for heave motion) and damping coefficient Bkk(ω) can be obtained
as:

Akk(ω) =
2

aω2T0

∫ T0

0

Fkk(t) sin(ωt)dt, (26)

Bkk(ω) = − 2

aωT0

∫ T0

0

Fkk(t) cos(ωt)dt, (27)

where T0 denotes the period of the body’s motion.

2.3. Fluid domain panel distribution

The fluid domain surface is composed of a body surface Sb, free surface Sf
and seabed surface S0. These surfaces are approximated by continuous panels
instead of isolated source points. The integral of the Rankine source term
lnr is analytically calculated over the whole panel rather than the algebraic
approximation used in traditional isolated source point methods. This change
improves numerical accuracy and because it is an analytical integration and
carried out over the whole panel, we define this procedure paper as using a
continuous Rankine source panel. Figure 2 shows the surface panel distribution
associated with an oscillating body in water depth H with a fixed, solid seabed.
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Figure 2: Illustration of panel distribution for oscillating body in finite water depth above a
solid seabed.

In the developed mathematical model the body surface is approximated by
40 panels evenly distributed as discussed by Feng et al. (2015a). The free surface
is divided into inner and outer domains. To approximate the free surface in the
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inner domain, the source panel distribution method discussed by Feng et al.
(2015a, 2014) is adopted. For vertical body motions, the wave-body problem is
treated symmetrically with the left hand side free surface sources, arranged as
a mirror image of the right hand side. For horizontal body motions, both right
and left hand free surface source descriptions are needed. The general theory
developed herein only requires minor modifications to treat either vertical or
horizontal body motions. For example, the right hand side of Sf is divided

into inner and outer domains distributed with source grid points x′
f
j . The

horizontal distances between neighbouring free surface control (source) points
are expressed in the form:

|x′fj − x′
f
j−1|=

Lbαj
ω2

in the inner domain (28)

|x′fj − x′
f
j−1|=

Lbαj
ω2

1.05j(j−1)/2 in the outer domain, (29)

where Lb is the length of the body surface panel covering the intersection point
of the body and free surface. The parameters αj define the separation distances
and are decided according to the method discussed by Feng (2014) which for
this reason, is omitted herein. In this distribution scheme, from the intersection
points outwards, the importance of the source panel points decreases as the dis-
tance increases contrasting with the traditional even distribution method. The
first source value is of largest magnitude with the remaining source strengths
decaying to zero around the 20th point as discussed by Feng et al. (2015a, 2014).

In the outer domain as indicated by equation (29), the distances between
the centres of neighbouring source panels are displaced in an exponentially in-
creasing manner. This allows the encompassment of a very large free surface
and therefore the generated wave can move towards the far field of this enlarged
computational domain without experiencing wave reflections. By this simple
and efficient numerical technique, the radiation condition is well satisfied with-
out the introduction of artificial damping.

The seabed surface is also divided into inner and outer domains. The inner
domain is approximated by similar sized panels which simplifies the formulation
relating to an uneven seabed surface. The outer domain is arranged similarly
to the free surface.

3. Numerical results

Numerical simulations are performed using a circular cylinder with a radius
(R) to draft (T ), ratio R/T = 1 and a rectangular cylinder with a beam (B) to
draft (T ), ratio B/T = 2. In both cases, the amplitude of the oscillating body
is a = 0.1T . The free surface boundary condition is satisfied on the calm water
surface and the body boundary condition is satisfied on the mean wetted body
surface because of the chosen small amplitude oscillatory motion. At t = 0, the
gravity and buoyancy forces equate. The floating body is disturbed either by a
vertical upward velocity to excite heave motion or a horizontal velocity to excite
sway motion.
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Table 1: Numerical convergence of sway damping coefficient B22 with different panel numbers
on one side of the free surface.

Panel no. Damping coefficient Relative error
20 0.5123 16.5%
30 0.5746 6.34%
40 0.6011 2.02%
50 0.6050 1.39%
60 0.6078 0.93%
70 0.6078 0.93%

Experimental data of Vugts (1968) 0.6135 0%
Numerical data of Zhang and Beck (2007) 0.5862 4.45%

3.1. Wave-body interaction problem involving a flat seabed

In this section, the wave-body interaction problem in constant finite water
depth H = c is investigated. The flat seabed condition is approximated by a
distribution of continuous panels as shown in the illustration depicted in Figure
2.

In order to demonstrate the numerical convergence of the proposed method,
Numerical simulations were performed for a circular cylinder experiencing forced
sway motion in deep water condition. Table 1 shows the numerical convergence
of the sway damping coefficient B22 at frequency ω2B/2g = 0.5 with different
panel numbers distributed on one side of the free surface. Adopting the ex-
perimental data of (Vugts, 1968) as a baseline, a comparison between different
predicted data set shows that the relative errors of the current method using
40− 70 panels are much smaller than the predictions derived from a numerical
method adopting desingularized isolated source points and much finer meshes
as described by (Zhang and Beck, 2007).

Fluid structure interaction studies were performed for a circular cylinder
forced into heave motion in infinite water depth. As the seabed influence be-
haves in an exponential manner, the seabed produced littel to no effect on the
hydrodynamic characteristics in water depth H ≥ 5R. For this reason, in this
paper, a water depth H = 5R is deemed as an infinite water depth. Figure 3
shows predicted heave added mass A33 and damping coefficient B33 evaluated
by the proposed method compared with the experimental results of Vugts (1968)
and numerical results of Frank (1967) adopting a free surface Green function
model. The results of the current method show favorable agreement with these
sets of published data. For water depths H = 2.0R and H = 1.5R, the seabed
imposes a significant influence on the wave-body interaction problem. Figure
4 for H = 2.0R, and Figure 5 for H = 1.5R show comparisons of predictions
of heave added mass A33 and damping coefficient B33 by the proposed method
with the numerical results of Bai (1977) and Andersen and He (1985). All
the predictions show good agreement with one another, even though different
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numerical schemes of study are used.
To validate and illustrate the range of the proposed method, this cylinder is

forced into sway motion. Figure 6 presents numerical predictions of sway added
mass coefficient A22 and sway damping coefficient B22. These are compared with
the experimental data measured by Vugts (1968) and the numerical findings
of Frank (1967) for water depth H=∞. Although the numerical predictions
show good agreement, discrepancies are observed between these data sets. It is
noted that in the experiments of Vugts (1968) that measurement inaccuracies
occurred in the force sensor and there existed a lack of structural stiffness in
the experimental instrument package.

Calculated hydrodynamic coefficients and numerical results derived by An-
dersen and He (1985) for water depth H = 2.0R are shown in Figure 7. This
comparison shows very favourable agreement.

Numerical simulations are executed for the rectangular cylinder undergoing
forced heave motion to demonstrate the applicability of the proposed algorithm.
Figure 8 presents a comparison of heave coefficient A33 and B33 between current
numerical predictions, the experimental data of Vugts (1968), and the numerical
results of Zhang and Beck (2007) for a deep water condition. Zhang and Beck
(2007) adopted a desingularized Rankine source method with an even distribu-
tion of isolated source points on the free surface.

For finite water depth, H = 2.0R above a flat seabed, these two hydrody-
namic coefficients are shown in Figure 9 and compared with results from other
numerical methods presented by Bai (1977),Yeung (1973) and Rhee (1977). For
water depth H = 1.5R, Figure 10 presents a comparison of data for these two hy-
drodynamic coefficients determined by the current method and from the mathe-
matical model developed by Bai (1977). All these comparisons demonstrate the
accuracy and range of applicability of the proposed method when dealing with
wave-body interaction problems with infinite and finite water depths. These
extensive comparisons show good agreement with published data and provide a
measure of validation of the proposed method.

3.2. Wave-body interaction problem in finite water depth above a concave shaped
seabed

In this section, a floating body undergoing forced oscillatory motion above
an uneven seabed is numerically investigated based on the proposed method.
Concave and convex shaped undulations are two basic seabed topographies (Su
et al., 2008) which widely exist in the marine environment. For example, the
sediment scour or the buried pipeline can significantly change the seabed to-
pography. When the marine structure is located above an undulating seabed
surface, the hydrodynamic characteristics associated with the structure can be
affected. In the present paper, concave semi-ellipse and convex semi-ellipse
shaped seabed topographies are used to represent uneven seabed and their in-
fluence on hydrodynamic characteristics and free surface disturbances are now
discussed.

Figure 11 illustrates a concave semi-ellipse shaped seabed beneath the float-
ing body. The major and minor axes of the semi-ellipse are Lmaj = 2.0R and
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Current method results (H=∞)
Vugts(1968) experimental data
Frank(1967) numerical results

(a) Heave added mass coefficient A33
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Current method results (H=∞)
Vugts(1968) experimental data
Frank(1967) numerical results

(b) Heave damping coefficient B33

Figure 3: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method, the experimental data of Vugts (1968) and
numerical results of Frank (1967) for a circular cylinder oscillating in heave motion in infinite
water depth H = ∞.
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Current method results(H=2.0R)

Bai(1977) numerical results

Andersen and He(1985) numerical results

(a) Heave added mass coefficient A33
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Current method results(H=2.0R)
Bai(1977) numerical results
Andersen and He(1985) numerical results

(b) Heave damping coefficient B33

Figure 4: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method, the numerical results of Andersen and He
(1985) and Bai (1977) for a circular cylinder oscillating in heave motion in water depth H =
2.0R.

Lmin = 0.1R,Lmin = 0.2R and Lmin = 0.3R respectively, each denoted as
seabed configuration (a), (b) and (c). For simplicity, the uneven shape retains
a measure of symmetry with maximum and mean water depth beneath the
floating body increasing from (a) to (c).

Figures 12 and 13 show a comparison of added mass and damping coefficients
A33 and B33 for the circular cylinder experiencing forced heave oscillatory mo-
tion above a flat seabed at water depth, H = 1.5R, and the uneven surfaces
(a), (b) and (c). It is observed that both the added mass coefficient A33 and

13
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Current method results (H=1.5R)

Bai(1977) numerical results

(a) Heave added mass coefficient A33
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Current method results(H=0.15R)
Bai(1977) numerical results

(b) Heave damping coefficient B33

Figure 5: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method and the numerical results of Bai (1977) for
circular a cylinder oscillating in heave motion in water depth H = 1.5R.
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Current method results (H=∞)
Vugts(1968) experimental data
Frank(1967) numerical results

(a) Sway added mass coefficient A22
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Current method results (H=∞)
Vugts(1968) experimental data
Frank(1967) numerical results

(b) Sway damping coefficient B22

Figure 6: Comparison of the predicted sway added mass coefficient A22 (a) and damping
coefficient B22 (b) between the current method, the experimental data of Vugts (1968) and
numerical results of Frank (1967) for a circular cylinder oscillating in sway motion in water
depth H = ∞.

damping coefficient B33 decrease with increasing value of minor axis. These
hydrodynamic coefficients are largest for the shallowest flat seabed condition.
The added mass coefficient A33 exhibits increasing values with similar trends
observed over all frequencies examined whereas the damping coefficient B33 con-
verges to similar values as the frequency increases to ω2B/2g = 4.0 for different
seabed conditions. Figure 14 presents the time record of vertical force F (t) ex-
cited on this cylinder when frequency ω2B/2g = 1.0. The amplitudes of force
F (t) decrease as the value of minor axis increases. This is consistent with the
frequency domain results as shown in Figures 12 and 13. There is no phase shift
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Current method results(H=0.2R)

Andersen and He(1985) numerical results

(a) Sway added mass coefficient A22
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Current method results(H=2.0R)

Andersen and He(1985) numerical results

(b) Sway damping coefficient B22

Figure 7: Comparison of the predicted sway added mass coefficient A22 (a) and damping
coefficient B22 (b) between the current method and numerical results of Andersen and He
(1985) for a circular cylinder oscillating in sway motion in water depth H = 2R.
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Current method results (H=∞)
Vugts(1968) experimental data
Zhang(2007) numerical results

(a) Heave added mass coefficient A33
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Current method results (H=∞)
Vugts(1968) experimental data
Zhang(2007) numerical results

(b) Heave damping coefficient B33

Figure 8: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method the experimental data of Vugts (1968) and
numerical results of Zhang and Beck (2007) for an oscillating rectangular cylinder in water
depth H=∞.

observed in the force profile between a flat seabed and uneven conditions.
For this cylinder experiencing forced oscillatory sway motion above the differ-

ent shaped seabeds, the hydrodynamic coefficients A22 and B22 are presented
in Figures 15 and 16. Similar to the heave motion results, the sway motion
added mass coefficients A22 and damping coefficients B22 increase with increas-
ing value of minor axis. However the hydrodynamic effects are much smaller for
sway motion than for heave motion and this is especially true when frequency
ω2B/2g is larger than 1.5 indicating the bottom topography has little influence.
This implies that the various chosen shaped seabeds have little hydrodynamic
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Current method results(H=2.0R)
Bai(1977) numerical results
Yeung(1973) numerical results
Rhee(1977)numerical results

(a) Heave added mass coefficient A33
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Current method results(H=2.0R)
Bai(1977) numerical results
Yeung(1973) numerical results
Rhee(1977)numerical results

(b) Heave damping coefficient B33

Figure 9: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method, the numerical results of Bai (1977), and the
numerical predictions of Yeung (1973) and Rhee (1977) for an oscillating rectangular cylinder
in water depth H = 2R.

0.5 1 1.5 2 2.5 3 3.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

ω2B/2g

A
dd

ed
 m

as
s 

A
33

/ρ
 A

 

 

 

Current method results(H=1.5R)

Bai(1977) numerical results

(a) Heave added mass coefficient A33
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Current method results(H=1.5R)

Bai(1977) numerical results

(b) Heave damping coefficient B33

Figure 10: Comparison of the predicted heave added mass coefficient A33 (a) and damping
coefficient B33 (b) between the current method and numerical predictions of Bai (1977) for
an oscillating rectangular cylinder in water depth H = 1.5R.

influence on the wave-body interaction problems for sway motions when forced
oscillatory frequency is larger than 1.5.

Figure 17 presents the time record of horizontal force F (t) when frequency
ω2B/2g = 1.0. It is observed that the amplitude of F (t) marginally increases
as the values of the minor axis decrease. This can be explained by the fact that
the fluid flow has a larger normal velocity near the seabed for heave motion
than for sway motion and the velocity is reduced to zero at the seabed because
of its presence. Therefore in the concave seabed cases the flow velocity changes
more significantly for heave motion than for sway motion.
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Figure 11: Sketches of wave-body interaction problem with three different seabed topographies
of semi-elliptical concave shapes (a), (b) and (c).
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Flat seabed condition H=1.5R
Seabed condition (a)
Seabed condition (b)
Seabed condition (c)

Figure 12: Comparison of heave added mass coefficient A33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed in water depth H = 1.5R, and uneven
seabed shapes (a), (b) and (c) as shown in Figure 11.
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Flat seabed condition H=1.5R
seabed condition (a)
Seabed condition (b)
Seabed condition (c)

Figure 13: Comparison of heave damping coefficient B33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed in water depth H = 1.5R, and uneven
seabed shapes (a), (b) and (c) as shown in Figure 11.
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Flat seabed condition H=1.5R
Seabed condition (a)
Seabed condition (b)
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Figure 14: Time record of vertical force F (t) for a circular cylinder experiencing forced oscil-
latory heave motion above a flat seabed in water depth H = 1.5R, and uneven seabed shapes
(a), (b) and (c) as shown in Figure 11.
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Flat seabed condition H=1.5R
Seabed condition (a)
Seabed condition (b)
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Figure 15: Comparison of sway added mass coefficient A22 for a circular cylinder experiencing
forced oscillatory sway motion above a flat seabed in water depth H = 1.5R, and uneven
seabed shapes (a), (b) and (c) as shown in Figure 11.
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Flat seabed condition H=1.5R
Seabed condition (a)
Seabed condition (b)
Seabed condition (c)

Figure 16: Comparison of sway damping coefficient B22 for a circular cylinder experiencing
forced oscillatory sway motion above a flat seabed in water depth H = 1.5R, and uneven
seabed shapes (a), (b) and (c) as shown in Figure 11.

3.3. Wave-body interaction problem involving a convex or humped shaped seabed

The numerical simulation is further extended to a seabed at water depth
H = 1.5R exhibiting a concave bump of semi-elliptical shape over which the
body oscillates as shown in Figure 18. The major axis Lmaj = 2.0R and the
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Flat seabed condition H=1.5R
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Figure 17: Time record of horizontal force F (t) for a circular cylinder experiencing forced
oscillatory sway motion above a flat seabed at water depth H = 1.5R, and uneven seabed
shapes (a), (b) and (c) as shown in Figure 11.

minor axis Lmin = 0.1R or Lmin = 0.3R respectively indicated as (d) and (e)
in Figure 18.

Figures 19 and 20 show comparisons of added mass coefficient A33 and B33

for this circular cylinder experiencing forced oscillatory heave motion above a
flat seabed H = 1.5R and uneven seabed topographies (d) and (e) as shown in
Figure 18 . The added mass coefficient A33 significantly increases in value over
the frequency range with increasing value of minor axis. A similar phenomenon
is observed for damping coefficient B33. Figure 21 shows the time record of
vertical force F (t) excited on this cylinder when frequency ω2B/2g = 1.0. This
cylinder experiences the largest vertical force for the shallowest water depth
seabed shape (e) and smallest for the deeper flat seabed. This further demon-
strates that the water depth beneath the floating body has a significant effect
on wave-body interaction problems.

For this cylinder experiencing forced oscillatory sway motion above different
seabed topographies, the hydrodynamic coefficients A22 and B22 are presented
in Figures 22 and 23. Both these hydrodynamic coefficients increase with in-
creasing value of minor axis. Figure 24 shows the time record of horizontal
force F (t) excited on this cylinder when frequency ω2B/2g = 1.0. The cylinder
experiences larger force amplitudes with increasing value of minor axis causing
the water depth to decrease. Both these two hydrodynamic coefficients change
in values more significantly for convex shaped seabeds than observed for con-
cave seabed conditions, further emphasizing the role of water depth. This is
because in the former shaped scenarios the average water depth is less than the
latter cases, again indicating that there is an increased change of hydrodynamic

20



characteristics as the water depths decrease. In a similar finding to the concave
topographies, a seabed of convex shape has less influence on the hydrodynamic
properties associated with sway than on heave motion. The reasoning is sim-
ilar to the explanation given in the previous section for the concave seabed
topographies.
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Figure 18: Sketches of wave-body interaction problem above a semi-elliptical bump or convex
shaped seabed in different mean water depths when (d) Lmaj = 2.0R, Lmin = 0.1R and (e)
Lmaj = 2.0R, Lmin = 0.3R.
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Flat seabed condition H=1.5R
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Seabed condition (e)

Figure 19: Comparison of heave added mass coefficient A33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed condition H = 1.5R, and uneven seabed
shapes (d) and (e) as shown in Figure 18.

3.4. General discussion of seabed shape and water depth

In this discussion, we examine the influence of water depth and modification
of seabed surface profiles on hydrodynamic properties. This is achieved through
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Flat seabed condition H=1.5R

Seabed condition (d)

Seabed condition (e)

Figure 20: Comparison of heave damping coefficient B33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed H = 1.5R, and uneven seabed shapes (d)
and (e) as shown in Figure 18.

an illustrative comparison of hydrodynamic characteristics associated with the
circular cylinder in oscillatory heave motion above a flat seabed at depths H =
1.2R, H = 1.5R and H = 1.8R as well as the semi-elliptical shapes shown in
Figures 11 and 18 for, mainly, Lmin = 0.3R. Similarly, the interim flat seabeds
at H = 1.4R and H = 1.6R are the asymptotic topographies for water depth
H = 1.5R, Lmaj = ∞ value, and Lmin = 0.1R. By varying the value of
Lmaj allows a measure of verification of the mathematical model and numerical
scheme of study because the findings for these interim states must lie between the
asymptotic predictions of the flat seabed cases. Furthermore, for a fixed semi-
minor axis value, predictions of the hydrodynamic coefficients provide a measure
of the influence of the size of the seabed obstacle or indentation through changing
the length of the semi-major axis. Under these circumstances the maximum
water depth remains constant, but changes to the value of the semi-major axis
implies the mean water depth below the floating body alter influencing the
values of the hydrodynamic coefficients.

Figures 25 and 26 compare the heave added mass coefficient A33 and damp-
ing coefficient B33 for the circular cylinder experiencing forced oscillatory heave
motion above flat seabed conditions H = 1.8R, H = 1.4R, H = 1.2R and un-
even seabed conditions (c), (d) and (e) defined when H = 1.5R. Flat seabed
condition H = 1.8R is at the deepest point of case (c) and flat seabed conditions
H = 1.4R and H = 1.2R are corresponding to the shallowest point of case (d)
and (e) respectively. The influence of uneven seabed shape on hydrodynamic
characteristics becomes more obvious when the values of water depth decrease.

Figures 27 and 28 further compare the hydrodynamic coefficients for the

22



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/T
0

F
(t

)/
ρπ

gR
2 a 

 

 

Flat seabed condition H=1.5R

Seabed condition (d)

Seabed condition (e)

Figure 21: Time record of vertical force F (t) for a circular cylinder experiencing forced oscil-
latory heave motion above a flat seabed H = 1.5R, and uneven seabed shapes (d) and (e) as
shown in Figure 18.

circular cylinder experiencing forced heave oscillatory motion above flat seabeds
at H = 1.2R and H = 1.5R and uneven seabed conditions (e) at H = 1.5R with
varying Lmaj = 1.0R, 2.0R, 4.0R, 8.0R or 16.0R. It is noted that in all these
cases, the minimum water depth below the floating body remains constant,
H = 1.2R, but with increasing value of the semi-major axis Lmaj the mean
water depth reduces which is reflected in the comparative change of values of
hydrodynamic coefficients between each value of Lmaj . The average water depth
for seabed condition (e) with Lmaj = 1.0 is nearest to the flat seabed condition
H = 1.5R amongst the uneven cases. The results for seabed condition (e) for
H = 1.5R with Lmaj = 16.0R and Lmin = 0.3R closely approach the predictions
for those associated with the flat seabed at H = 1.2R, as would be expected.

In the course of this investigation, the sensitivity of the mathematical model
and convergence of solution were examined through computations involving dif-
ferent discretisation schemes. The stability of the numerical scheme was found
robust producing solutions behaving in the expected appropriate manner as
shown in this section. The consistent sets of predictions shown demonstrate
that with minor modifications to the mathematical model and discretisation
process, the approach described herein is capable of investigating body fluid in-
teraction problems involving finite water depths and sloping or irregular shaped
seabed profiles.
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Flat seabed condition H=1.5R

Seabed condition (d))

Seabed condition (e)

Figure 22: Comparison of sway added mass coefficient B22 for a circular cylinder experiencing
forced oscillatory sway motion above a flat seabed H = 1.5R, and uneven seabed shapes (d)
and (e) as shown in Figure 18.

Naturally, this idealized mathematical model needs re-examination when
forward speed of the body is introduced especially in the shallowest depths
when the oscillating body experiences sinkage and trim and the free surface
disturbance may be of a more complex form. Furthermore, the seabed is treated
as a solid but, in reality, sedimentation occurs and the mathematical model
requires a description of this changing environment.
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Flat seabed condition H=1.5R

Seabed condition (d)

Seabed condition (e)

Figure 23: Comparison of sway damping coefficient B22 for a circular cylinder experiencing
forced oscillatory sway motion above a flat seabed H = 1.5R, and uneven seabed shapes (d)
and (e) as shown in Figure 18.
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Flat seabed condition H=1.5R
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Figure 24: Time record of horizontal force F (t) for a circular cylinder experiencing forced
oscillatory sway motion above a flat seabed H = 1.5R, and uneven seabed shapes (d) and (e)
as shown in Figure 18.
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Flat seabed condition H=1.8R
seabed condition (c)
Flat seabed condition h=1.4R
Seabed condition (d)
Flat seabed condition H=1.2R
Seabed condition (e)

Figure 25: Comparison of heave added mass coefficient A33 for a circular cylinder experiencing
forced oscillatory heave motion above flat seabed H = 1.8R, H = 1.4R, H = 1.2R and uneven
seabed shape (c) as shown in Figure 11, and (d) and (e) as shown in Figure 18 at H = 1.5R.
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Figure 26: Comparison of heave damping coefficient B33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed H = 1.8R, H = 1.4R, H=1.2R and uneven
seabed shape (c) as shown in Figure 11 and (d) and (e) as shown in Figure 18 at H = 1.5R.
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Figure 27: Comparison of heave added mass coefficient A33 for a circular cylinder experiencing
forced oscillatory heave motion above a flat seabed H = 1.2R and H = 1.5R and uneven seabed
shape (e) as shown in Figure 18 at H = 1.5R with Lmaj = 1.0R, 2.0R, 4.0R, 8.0R, 16.0R .
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Figure 28: Comparison of heave damping coefficient B33 for a circular cylinder experiencing
forced oscillatory heave motion above flat seabed H = 1.2R and H = 1.5R and uneven seabed
shape (e) as shown in Figure 18 at H = 1.5R with Lmaj = 1.0R, 2.0R, 4.0R, 8.0R, 16.0R .
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4. Conclusions

A continuous Rankine source panel method is adopted to study a two-
dimensional body experiencing forced oscillatory heave or sway motion above
various seabed seabed topographies. The source panels are placed exactly on
the free and seabed surfaces. No desingularized technique is required and there-
fore numerical errors arising from this approximation technique are excluded.
The space increment source distribution method developed in our previous re-
search for deep water, wave-body interaction problems is extended to arbitrary
depth situations. Both these types of problems can be investigated within one
mathematical model framework without the necessity to introduce new numeri-
cal techniques. The developed numerical model accommodates flat and various
uneven seabed topographies and this demonstrates the wide applicability of this
method for different boundary condition problems.

Numerical simulations are performed extensively for circular and rectangu-
lar cylinders experiencing both heave and sway motions. The proposed method
demonstrates favourable agreement with published data when the body oscil-
lates in deep or finite water depths above a flat seabed. Numerical simulations
show that a seabed displaying concave or bump/convex, semi-elliptical shapes
have a larger influence on the hydrodynamic properties associated with heave
motion than sway motion. For example, with increasing size of the minor axis
of the semi-elliptic shape the predicted added mass and damping coefficients
significantly change in magnitudes when the body undergoes forced oscillatory
heave motion because of the changes to the mean water depth. This study con-
firms that the form of the shape of the seabed directly affects the water depth
or, more crudely, its mean value below the floating body. It is this parameter
which significantly influences the hydrodynamic characteristics of the floating
body.

In this study, it is assumed that the forced amplitude of oscillatory motion
is small compared to the bodys dimensions with the linearized free surface and
body boundary conditions satisfied on the mean wetted surfaces. In our previ-
ous study the continuous Rankine source method coupled to an Euler-Lagrange
algorithm was developed successfully to solve nonlinear body boundary prob-
lems in deep water. However, the mathematical approach developed in that
study adopted a desingularized method whereas the current investigation im-
proves and extends the continuous Rankine source concept within the family
of singularized methods. In principle, a similar Euler- Lagrange algorithm can
be integrated into the discussed numerical method described herein to study
non-linear wave problems, which will be the focus of future studies.
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