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Energy Dissipation and Non-Potential Effects in Wave Breaking

Anatoliy Khait, Zhihua Ma, Ling Qian, Wei Bai and Zaibin Lin
Centre for Mathematical Modelling and Flow Analysis, Department of Computing and Mathematics,

Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom

ABSTRACT

This paper presents a comparative numerical study of the energy dis-
sipation process in the breaking of focused waves by using a potential
flow model and a coupled potential/viscous flow model. An empirical
eddy viscosity term is introduced to the fully-nonlinear potential (FNP)
flow model to account for the breaking wave energy dissipation. The
FNP model is further coupled with an incompressible two-phase Navier-
Stokes (NS) flow solver through a one-way linkage to generate and prop-
agate focused waves in the domain. Numerical absorbing regions are
placed in front of the outlet boundaries to dampen wave reflection. The
standalone FNP model and the coupled FNP+NS model are applied to
deal with each scenario comparatively. This enables the accurate quan-
tification and comparison of the energy loss of breaking waves calcu-
lated by the two numerical models. The velocity field is decomposed
into potential component, which is reconstructed from the correspond-
ing free surface elevation computed in the coupled model by using the
weakly-nonlinear wave theory, and non-potential rotational component.
Detailed analysis of the numerical results shows that: (1) energy loss is
closely related to wave steepness, (2) mild rotational motion produced
by a non-breaking wave is local in time with a short life-span, (3) strong
non-potential motion triggered by wave breaking is not local in time but
persists in the flow for dozens of or even many more wave periods.

KEY WORDS: physical oceanography; white capping, eddy viscosity;
boundary element method; computational fluid dynamics.

INTRODUCTION

Wave breaking (white capping) is a transient phenomenon occurring
frequently in the propagation of surface gravity water waves in open
seas and coastal surf zones. It is of significant importance in coastal and
marine engineering due to its capability to produce extreme loadings
that can severely damage or completely destroy coastal defence, offshore
structure and marine vessel. It also plays an important role in the
atmosphere-ocean system by facilitating and enhancing the physical,
chemical and biological interactions across the air-sea interface.
Breaking is considered as the main sink of the kinematic energy received
by ocean waves from winds through complex interactions. It has been
shown that wave breaking is also responsible for the momentum, mass

and energy exchange between the ocean and the atmosphere (Veron,
2015): it leads to the intensive release of spray into the air, as well as the
strong mixing and turbulisation of the upper ocean boundary layer. A
recent work of McAllister et al. (2019) shows the significant role played
by wave breaking in the formation of rogue waves, which pose a great
danger to maritime activities. These aforementioned works demonstrate
the importance in the fundamental understanding of wave breaking
phenomena.

Investigating the long-term evolution of surface waves in oceans requires
the use of large-scale mathematical models that involve a number of
assumptions. The most critical assumption is in the flow potentiality
of ocean waves, which allows us to deal with the problem either in the
physical or in the Fourier space. However, the potential flow assumption
fails in the prediction of evolution of highly-nonlinear breaking waves
because the flow, in this case, is not irrotational any more. This leads to
the need of empirical closures for balancing the energy fluxes. One of
the most promising empirical wave breaking closure based on the eddy
viscosity approximation was developed recently by Tian et al. (2010,
2012). Although it has been proved to be adequate in the prediction
of the integral energy fluxes, there is significant deviation in the free
surface profiles produced by this model compared to experimental
measurements (Seiffert and Ducrozet, 2018).

Instead using the geometric statistical parameters proposed in the eddy
viscosity model of Tian et al. (2010, 2012), recent findings of Derakhti et
al. (2018) show that the breaking strength might be properly determined
from the kinematic characteristics of the wave crest at the inception
of breaking. The incorporation of the more advanced kinematic
parametrization of the breaking crest may significantly improve the
accuracy of the eddy viscosity model. Moreover, the wavelet analysis
performed by Derakhti and Kirby (2016) showed that wave breaking
causes nonlinear changes in the complex amplitude components, which
is neglected in all the existing approaches. Obviously, the lack in
fundamental knowledge is considered to be the main reason not allowing
improvement of the large-scale ocean models.

This paper aims to improve our fundamental understanding of the non-
potential fluid flows generated by wave breaking. It is expected that
a detailed investigation of the evolution and dissipation of the non-



potential velocity fields will allow us to formulate more accurate semi-
empirical eddy viscosity approximations for the energy dissipation ap-
plicable within the large-scale potential models.

NUMERICAL MODELS

The problem under investigation requires quantitative comparison of the
solution obtained by the fully-nonlinear potential flow model with the
results produced by an incompressible two-phase Navier-Stokes flow
solver. Taking this into consideration, a boundary element method
(BEM) based potential model was coupled with a volume-of-fluid
method based incompressible two-phase viscous flow model. In the
present paper, the acronym BEM is used to indicate the boundary element
method based fully-nonlinear potential flow model, and CFD to represent
the incompressible two-phase Navier-Stokes flow model. Schematics of
the BEM and CFD domains and their coupling are shown in Fig. 1. The
present study is focused on the two-dimensional wave breaking prob-
lems.

Fig. 1 Schematic of the numerical models coupling

Fully-nonlinear potential model
Within potential approximation, fluid flow in the interior of the compu-
tational domain is explicitly determined by the solution at the domain
boundaries by the Greens second identity. This property is used in the
BEM method to transform 2D problem into the semi-1D problem de-
fined by the following governing equation:

αϕ(rs) =

∮
Γ

(
∂ϕ

∂n
(r)ψ(r, rs) − ϕ(r)

∂ψ

∂n
(r, rs)

)
dΓ (1)

This equation provides values of the flow potential ϕ at the domain
boundaries, while the fluid velocity is U = −∇ϕ. In the equation, ψ
determines the potential flow at point r due to a source located at rs, r is
a radius-vector, α is a constant, n is the direction normal to the domain
boundary. No-penetration condition ∂ϕ/∂n = 0 is applied at the bot-
tom and right boundaries of the domain. The kinematic and the dynamic
boundary conditions applied at the free surface are given by:

Dr
Dt

= −∇ϕ (2)

Dϕ
Dt

= gz −
1
2
|∇ϕ|2 − pd

√
gh
∂ϕ

∂n
b f (x)︸              ︷︷              ︸

absorbing region

+ 2νeddy
∂2ϕ

∂s2︸      ︷︷      ︸
wave breaking

(3)

Here g is the gravitational acceleration, h is the water depth, pd is the
dimensionless constant defining the strength of the wave absorption
in the numerical absorbing region (see Fig. 1), b f (x) is the gradually
growing with x function defining location of the absorbing region, s
is the direction tangential to the domain boundary. Left boundary of
the domain replicates motion of the flap-type wavemaker with a hinge
located at the domain bottom.

The breaking of waves generates quite significant rotational flows and,
consequently, causes the failure of the potential approximation. More-
over, every breaking event is followed by the loss of continuity of the
free surface boundary unallowable in BEM. It was shown by Tian et al.
(2010, 2012) that energy dissipation due to wave breaking may be taken
into account in the fully-nonlinear potential model by a relatively simple
empirical eddy viscosity approximation. The value of the eddy viscos-
ity in (3) was related to the characteristic time- and length-scales (both
horizontal and vertical) of the breaking wave: Tbr, Lbr and Hbr.

νeddy = χ
HbrLbr

Tbr
(4)

The proportionality dimensionless constant was found to be χ ≈ 0.02.
Values of Tbr, Lbr and Hbr are empirically related to geometric charac-
teristics of the wave shape at the breaking inception.

Domain boundaries were discretized using the 3rd-order MII method.
Several grids having resolution in the range 16-42 nodes per characteris-
tic wave length (λ0) were considered to find the parameters ensuring the
grid independent solution. It was found that the resolution 32 nodes per
λ0 or higher resulted in almost identical results. Integration time step was
taken to satisfy the numerical stability criterion defined by the Courant
number CFL ≤ 0.1. Details on the numerical grid and the geometry
of the domain are summarized in Table 1. Complete description of the
numerical schemes is presented in (Khait and Shemer, 2018).

Table 1 Parameters of the BEM computational domain

Length 20 m
Length of the numerical absorbing region 5 m
Still water depth h 0.6 m
Number of free surface nodes 836
Number of nodes at the bottom boundary 522
Number of nodes at the side boundaries 26

Two-phase CFD model
The OpenFOAM R© toolset with a modified interFoam solver was used to
perform viscous flow simulations. The Volume-of-Fluid (VOF) method
was used to describe the transport of the two-phase mixture of air and
water with a relatively sharp interface at the free surface. The govern-
ing equations represent momentum and mass conservation laws supple-
mented with the transport equation for the volumetric fraction of water:

∂ρU
∂t

+ ∇ · (ρUU) = ∇ · (µ∇U) + σκ∇α − g · r∇ρ − pd (5)

∇ · U = 0 (6)
∂α

∂t
+ ∇ · (αU) = 0 (7)

Density of the mixture ρ is determined by the water volumetric fraction
α as follows: ρ = αρw + (1 − α)ρa, where ρw and ρa are densities of
water and air respectively. Similar expression is used to determine the
dynamic viscosity of the mixture µ. Equation (5) involves the dynamic
pressure pd = p − ρg · r. Surface tension force is taken into account by
the coefficient σ and the local interface curvature κ. Because of large
difference between ρw and ρa, VOF method is to be complement by the
artificial compression of α near the regions of its high gradients in order
to maintain sharp air-water interface. Variation of pressure pd in time is
computed iteratively using the implicit PISO method.

The pseudo-2D domain was discretized by rectangular cuboid mesh
cells, with a one layer of mesh cell in y direction only (see Fig. 1). The



Reynolds number in this case can be estimated as:

Re =
ρwg1/2λ3/2

µw
≈ 2 × 105 (8)

Even for a two-dimensional problem, numerical simulation of flows at
such high Re would require enormous computational effort to resolve
all scales appearing as a result of the wave breaking. However, the
dominant flow contribution is introduced by the underlying surface
water wave, which is assumed to be potential and laminar. Therefore,
it is expected to have the grid convergence in terms of the free surface
elevation. Several meshes having different grid resolution were
considered to examine the grid independence of the numerical solution.
It was established that the mesh having 256 cells per characteristic
wave length (λ0) provides the converging solution while balancing
the computational efficiency and the resolving of the small scale flow
features. The total number of cells used in the present CFD simulation
is N ≈ 1.9 × 106. Waves reflected from the far-end boundary of the
domain are dampened in the numerical absorbing region utilizing the
effective viscosity to dissipate the flow velocities. According to the
recommendations for the interFoam solver, the computational stability
is achieved when CFL ≤ 0.5 (Larsen et al., 2019). Thus the integra-
tion time step was selected to be adaptive maintaining this stability
criterion. Time integration was performed using the implicit Euler
scheme. Details on the domain configuration are summarized in Table 2.

Table 2 Parameters of the CFD computational domain

Coordinate of the left boundary 3.0 m
Length 16.8 m
Length of the numerical absorbing region 1.5 m
Still water depth 0.6 m
Total height of the domain 1.2 m
Number of grid cell in the horizontal direction 4608
Number of grid cell in the vertical direction 400

Coupling of the models
For the purpose of the present study a one-way coupling was considered
when the solution obtained in the BEM model is transferred to the CFD
model. The coupling of BEM and CFD models is achieved by definition
of the corresponding initial and boundary conditions. Coordinates of the
cell centres of the CFD mesh were used in the BEM model to calculate
the interior velocity field U at the instant of the CFD model initialization.
In turn, the needed velocity field U ≡ {u, v,w} = −∇ϕ should be esti-
mated numerically from the field of the flow potential ϕ available in the
BEM model. Several techniques were examined in terms of the accuracy
and the computational efficiency. It was found that the simple central
differencing scheme provides a reasonable accuracy, while keeping the
process computationally efficient:

u = −
ϕ(x + ∆x, z) − ϕ(x − ∆x, z)

2∆x
(9)

w = −
ϕ(x, z + ∆z) − ϕ(x, z − ∆z)

2∆z
(10)

Here the resolution of the scheme ∆x = ∆z was taken equal to 1/10 of
the size of the CFD mesh cell (also 1/6 and 1/16 values were examined).
The values of the potentials ϕ(x, z) in (9) and (10) were calculated in
the BEM solver by selecting the location of the source rs = (x, z) at the
given cell centre coordinates (x, z) and performing integration of (1).

Similar procedure was done in the BEM model to extract the variation
with time of the fluid velocities U at the location corresponding to the

position of the left boundary of the CFD domain in order to determine the
corresponding boundary condition. Since active wave breaking resulted
in the deviation of the wave shapes in BEM and CFD models, as will be
shown consequently, coupling of the models at the right boundary is not
considered in the present work.

Wave generation
Post-processing of the BEM and CFD simulation results is performed
involving the spatial Fourier transform. Avoiding side effects due to im-
perfect spatial periodicity suggests utilization of the broad-banded focus-
ing wave train. The most active wave breaking appears at the focusing
location near the centre of the domain, when waves are almost absent at
the sides of the domain leading to spatial periodicity of the surface ele-
vation. The wave train having Gaussian-shaped envelope at the focusing
location is:

η(t)x f = ζ0exp

−
(

t
mT0

)2
 cos(ω0t), (11)

where parameter m = 0.6 for broad-banded wave train, T0 = 0.7 s
and ω0 = 2π/T0 are the central wave period and angular frequency.
According to the linear dispersion relation ω2

0 = gk0tanh(k0h), the
central wave length and wave number are λ0 = 0.765 m and k0 = 2π/λ0.
Dimensionless water depth corresponds to deep water condition
k0h = 4.93 > π (Dean and Dalrymple, 1991). The location of the linear
focus of the wave train relative to the wave generating boundary in the
BEM domain (x = 0) was selected as x f = 8.5 m.

To generate the wave train, a simple linear theory was applied to recal-
culate the surface elevation given at x f to the motion of the flap-type
wavemaker. The wave shape given by Eq. (11) was decomposed into the
discrete harmonic components:

η(t, x) = Re

∑
j

a jexp
[
i
(
k j x − k j x f − ω jt

)] (12)

Thus according to Eq. (12), surface elevation at the wavemaker location
is η(t, x = 0). Linear transfer function (Dean and Dalrymple, 1991) was
further applied to recalculate of the surface elevation into the motion of
the wavemaker.

Wave breaking intensity was regulated by the constant ζ0 in Eq. (11).
Six cases were investigated: k0ζ0 = 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0.
It is known that waves break when their steepness satisfy the condition
k0ζ0 > 0.3 − 0.4. Increase of the wave steepness of the linearly focused
wave train beyond these values leads to the single or multiple breaking
events of different intensity in both BEM and CFD models.

RESULTS AND DISCUSSION

Surface elevation
Spatial and temporal variation of surface elevation was recorded in
both BEM and CFD models. In contrast to the BEM model where
the surface elevation is explicitly given by the shape of the upper
boundary, in CFD model determination of the free surface shape is not
straightforward because of the diffused interface between water and air
phases. In this paper it is assumed that the free surface corresponds
to α = 0.5 and may be found using iterative interpolation technique.
Application of the discrete Fourier transform imposes requirements to
the spatial and temporal resolution of the surface elevation records.
Temporal resolution was chosen to be equal to the integration time step.
Distribution of the surface elevation in space was recorded within the
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Fig. 2 Surface elevation records at several locations in BEM and CFD domains

interval x = 3.1 − 15.34 m having length equal to 16λ0. Records were
obtained at 2048 equidistantly distributed points.

Fig. 2 shows surface elevation probed at six locations for wave trains
having different target steepness k0ζ0. Moderately steep wave train, panel
(a), demonstrates a perfect match between the results of BEM and CFD
simulations providing evidence of the models validity. The shape of the
surface elevation at the focus location (x = 8.5 m) is not ideally sym-
metric because of its deviation from the linear solution appearing during
the nonlinear wave train evolution. The increase of k0ζ0 leads to weak
spilling wave breaking when k0ζ0 = 0.3 and multiple stronger plunging
breakers for k0ζ0 = 1.0. It is clearly seen from Fig. 2 (b-f) that inten-
sification of the wave breaking results in the growth of the deviation of
the fully-nonlinear potential model results from the CFD results. Obvi-
ously, the reason for the given deviation in the surface elevation lies in
the insufficient accuracy of the empirical eddy viscosity model used in
equation (3). It should be noted that similar deviation of the wave train
shape from the experimental measurements was reported in (Tian et al.,
2012; Seiffert and Ducrozet, 2018).

Energy dissipation due to wave breaking
The energy dissipation process during the wave breaking can be
investigated by consideration of the energy transferred by the wave train
through the different cross sections of the domains. Taking into account
that the wave breaking is strongly localized phenomenon, the energy
losses are associated with a particular location and can be seen as a
reduction of the wave train energy before and after the breaking location.

Nonlinear energy flux at a particular location in the domain is

FNL(x, t) =

∫ η(x,t)

−h

{
1
2
ρ |U|2 + ρgz + p

}
uαdz, (13)

where U = (u, v,w). Measurement of the nonlinear flux (13) is not feasi-
ble in experiments, thus linearisation is usually applied (Tian et al., 2010,
2012; Seiffert and Ducrozet, 2018). For potential linear waves it can be
shown that

FL(x, t) ≈ ρgCgsη
2(x, t), (14)

Cgs =

∑
j Cg, ja2

j∑
j a2

j

(15)
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Fig. 3 Integral energy fluxes as a function of the distance from the wavemaker

where Cgs is the spectral-weighted group velocity, a j is the amplitude of
the jth harmonic in the Fourier series (12) (Tian et al., 2010). Integra-
tion of flux (13) or (14) with time gives the total amount of the energy
transferred by the wave train through the particular cross section:

E(x) =

∫ ∞

−∞

F(x, t)dt (16)

The advantage of the developed coupled BEM and CFD model was
exploited to investigate the applicability of the linear approximation for
the energy flux (14). To this end, four different expressions were used
to calculate E(x) from the results of BEM and CFD simulations, see
Fig. 3. BEM results for moderate steep wave train, EBEM

L in Fig. 3(a),
demonstrate conservation of energy along the computational domain
except for the region close to the absorbing region. Near the focusing
location (x f = 8.5m) the waves have the highest steepness, thus the
nonlinear effects are the most pronounced. This explains the oscillations
of the linear approximation for the energy flux EBEM

L near x f . Slight
decay of the energy with x for the CFD simulations is explained by
the viscous dissipation not presented in the irrotational BEM model.
A certain contribution to the energy decay in the CFD simulation can
be caused by the numerical dissipation of the two-phase flow solver

interFoam. This is minimised in the present study by using a relatively
fine mesh with 1.9 million cells, providing adequate numerical accuracy
and affordable CPU time cost.

Increase of k0ζ0 (b-f) leads to the appearance of the wave breaking
as was discussed above, Fig. 2. It is seen that in all plots the linear
approximations for the integral energy flux, i.e. EL

BEM , EL
CFD and

EL
CFDp, are very close to each other. This highlights that eddy viscosity

empirical model for the wave breaking (4) provides a very good
prediction for the integral energy dissipation, in agreement with (Tian
et al., 2010, 2012; Seiffert and Ducrozet, 2018). On the other hand,
the exact nonlinear expression for the energy flux (13) gives higher
values of ENL

CFD as compared to all liner approximations. This can be
explained by the fact that the kinetic energy of the water wave is not
dissipated immediately after the breaking, but just transformed into
the energy of the rotational fluid flow not carried by the wave train.
Such rotational motion contributes to the energy flux, but only near the
breaking location, where it is actually present. Since the vortical motion
generated by the breaking is not carried by the wave (Melville et al.,
2002), all four estimations for the integral energy flux coincide at the
far-end of the computational domains for all considered cases.



Fig. 4 Total energy loss due to wave breaking of different strength

The normalized total energy loss within the region of the wave break-
ing can be estimated as ∆Eloss/ENL

CFD(x = 0), where ∆Eloss =

ENL
CFD(x = 15.3 m) − ENL

CFD(x = 3.1 m). It was found that this value
is approximately linearly dependant on the maximum steepness
of the wave train expected according to the linear theory, i.e.
∆Eloss/ENL

CFD(x = 0) ∼ k0ζ0, see Fig. 4.

Potential and non-potential components of the flow
During wave breaking, the energy of the potential flow associated with
the surface water waves is partially transformed into the rotational non-
potential flow and usually referred as the energy loss. Quantitative anal-
ysis of this process may be achieved by distinguishing the potential Up
and non-potential Unp components of the velocity field obtained in the
CFD simulations:

UCFD = Up + Unp (17)

The value of Unp can be computed by extraction of the results of the
BEM simulation from the corresponding results of CFD simulation.
However, the significant deviation of the surface elevation shown in
Fig. 2 will lead to the physically incorrect results. Therefore, the
weakly-nonlinear theory of water waves was used to reconstruct the
potential velocity field corresponding to the spatial surface elevation
obtained in the CFD simulations.

At the first step, the fully-nonlinear wave number spectrum of the sur-
face elevation (12) was decomposed into the free and the bound waves
using the iterative technique based on Zakharov model (Khait and She-
mer, 2019):

η(x) = η(1) + η(2) + O(ε3), (18)

where ε is the measure of the nonlinearity equal to the wave steepness;
η(1) and η(2) is the surface elevation due to free and bound waves respec-
tively. At the second step, surface elevation (18) was recalculated into

the velocity fields associated with both free and bound waves:

up(x, z) = Re

 N∑
n

Λ(1)
n cosh

(
k(1)

n (h + z)
)
η(1)

n (x)

+

M∑
m

Λ(2)
m cosh

(
k(2)

m (h + z)
)
η(2)

m (x)

 + O(ε3) (19)

wp(x, z) = Re

−i
N∑
n

Λ(1)
n sinh

(
k(1)

n (h + z)
)
η(1)

n (x)

−i
M∑
m

Λ(2)
m sinh

(
k(2)

m (h + z)
)
η(2)

m (x)

 + O(ε3) (20)

Here up and wp are the x and z components of the vector Up incorporating
contributions from both free and bound waves; N and M are the number
for the harmonic components in the spectrum defining free and bound
waves respectively; k(1) and k(2) are the wave numbers of the free and
bound waves; Λ(1) and Λ(2) are constants. For details see (Khait and
Shemer, 2019). Subtraction of of the potential velocity field Up from the
results of the CFD computations determines the non-potential part of the
flow: Unp = UCFD − Up.

Fig. 5 Decomposition of the surface elevation obtained in the
CFD simulations into the free and the bound waves

To verify the correctness of the decomposition (18), the spatial variation
of the surface elevation corresponding to both free and bound waves is
examined in Fig. 5. Wave trains of different steepness are plotted at the
instant of linear focusing t = 35 s. It is seen that the increase of the
parameter k0ζ0 leads to the stronger wave nonlinearity, as well as to the
intensification of the breaking, finally resulting in the deviation of the
shape of the wave train from the expected focused wave.

Generation and evolution of non-potential energy
To investigate the non-potential effects appearing as a result of the wave
breaking, the time-space evolution of the depth-integrated kinetic energy
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Fig. 6 Space-time diagrams of the depth-integrated non-potential kinetic energy. Black dashed lines depict the regions of the energy dissipation
due to the wave breaking approximated by the the eddy viscosity model (4)

associated with the non-potential flow Unp (17) was considered:

Enp(t, x) =

∫ ∞

−∞

dy
∫ h

−h

1
2
ρ
∣∣∣Unp

∣∣∣2 αdz (21)

Ep(t, x) =

∫ ∞

−∞

dy
∫ h

−h

1
2
ρ
∣∣∣Up

∣∣∣2 αdz (22)

Space-time diagrams of the normalized values of the non-potential
energy Enp/max(Ep) are presented in Fig. 6.

In the case of the weakly steep waves with k0ζ0 = 0.2 when no breaking
appears, the distribution of Enp is localized only in the focusing region
where the steepest waves are observed. Appearance of Enp is caused
by the small deviation of the velocity field near the tip of the steep
wave calculated using the weakly-nonlinear approach (19, 20) from
the results of the viscous two-phase CFD model. At later stages, Enp

disappears immediately. The increase of the wave steepness, shown
in Fig. 6(b), leads to appearance of several traces of the non-potential
energy originating near the focusing location and conserving up to the
end of the computation. Note that the positions of the visually observed
breaking events coincide with the high values of Enp. Interestingly, the
non-potential energy generated as a result of the wave breaking is not
smoothly distributed in space, but is concentrated in a discrete number

of traces (approximately four traces when k0ζ0 = 0.3), each of them
represent the stable vortical structure. It can also be seen that the given
non-potential structures are slowly moving in the direction of the wave
train propagation even when the waves are completely absorbed by the
numerical absorbing region at a later time. This indicates that such
motion of the vortical structures is not caused by Stokes drift. Moreover,
it can be seen that several traces propagate upstream in the domain,
opposite to the wave train direction.

Intensification of the wave breaking, see Figs. 6(c-d), is seen as a
growth of the number of traces, as well as increase of the value of
Enp. Trajectories of the traces become more complicated, deviate from
the linear shape and demonstrate the varying with time curvature. It
is well accepted that the energy dissipation due to the wave breaking
may last during several characteristic wave periods. In our approach,
the given energy dissipation is the process of transformation of the
potential energy Ep into the non-potential one Enp, which may constitute
Enp/max(Ep) > 5 %. It is critical to note that generated non-potential
energy Enp does not disappear immediately but can be conserved for
several tens or hundreds of characteristic wave periods. Presence of
such non-potential motion in the fluid may significantly influence the
nonlinear evolution of waves passing the area where the preceding



breaking was observed.

Black dashed lines in Figs. 6 depict the wave breaking locations where
the value of the eddy viscosity νeddy > 0 was applied according to the the
empirical model (4) in the BEM computations. The energy dissipation
areas prescribed by the eddy viscosity are strongly localized in both time
and space. Taking into account that the total energy loss by the wave
train is accurately predicted in Fig. 3, the transformation of Ep into Enp

is actually a very fast process. In cases of moderate wave steepness, the
eddy viscosity regions coincide with the location of non-potential energy
production in CFD model. However, when the wave steepness increases,
the eddy viscosity model detects the wave breaking at the locations where
CFD model shows absence of the non-potential energy production. This
can be explained by the gradual deviation of the wave train shape com-
puted by BEM model from the CFD results. In long-term computation,
such inaccuracies may lead to high errors even in the energy losses value.

CONCLUSIONS

Wave breaking is a two-phase flow phenomenon of significant impor-
tance in coastal and marine engineering, and physical oceanography.
It causes strong mixing of air and water, and generates turbulence
extremely fast. Such a phenomenon needs to be accurately simulated
by high-fidelity Navier-Stokes equations based CFD methods. But
the numerical solution of two-phase Navier-Stokes equations is highly
demanding on the computational resources, which limits its applicability
to small-scale problems only. The assumption of flow potentiality
simplifies the problem substantially, allowing consideration of the
surface water waves evolution at larger scales. It can be complemented,
by applying empirical approximations, to take into account the energy
dissipation caused by wave breaking. But the application of empirical
closures, which ignores underlying important physics, may result in
numerical results deviant from high-fidelity CFD calculations and actual
physical solutions.

In this paper a coupled potential and two-phase numerical model is
proposed to investigate the energy dissipation and non-potential effects
in wave breaking. The velocity field obtained by the two-phase model
was decomposed into potential and non-potential rotational contribu-
tions using the weakly-nonlinear expressions for reconstruction of the
velocity field corresponding to the certain shape of the free surface.
This approach provides a new insight into the energy evolution process
in wave breaking. The process actually involves an energy cascade
from the main potential flow to local non-potential rotational flow. The
loss of wave energy during breaking is a result of the transformation of
potential flow into non-potential one. Detailed analysis of the potential
and two-phase numerical results shows that: (1) energy loss is closely
related to wave steepness, (2) mild rotational motion produced by a
non-breaking wave is local in time with a short life-span, (3) strong
non-potential motion triggered by wave breaking is not local in time but
persists in the flow for dozens of or even many more wave periods.

It is also found that the eddy viscosity wave breaking approximation ap-
plied within the fully-nonlinear potential model allows accurate quantifi-
cation of the wave energy loss during the breaking events. But it causes
the distortion of wave profiles as compared with high-fidelity two-phase
computations. The release of the non-potential energy within the eddy
viscosity approximation is considered as an immediate loss. On the con-
trary, two-phase simulations show that the energy of the non-potential
flow may significantly contribute to the overall velocity field and can be
conserved for dozens (or even hundreds) of characteristic wave periods.
This shows that an improvement of the eddy viscosity wave breaking ap-

proximation is much needed to take into account the transient character-
istics of the non-potential energy released during the breaking events. It
may then improve the accuracy of the fully-nonlinear potential solutions.
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