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 2 

Abstract 24 

Little is known about the dietary richness and variation of generalist insectivorous 25 

species, including birds, due primarily to difficulties in prey identification. Using 26 

faecal metabarcoding we provide the most comprehensive analysis of a passerine’s 27 

diet to date, identifying the relative magnitudes of biogeographic, habitat and temporal 28 

trends in the richness and turnover in diet of Cyanistes caeruleus (blue tit) along a 39-29 

site, 2° latitudinal transect in Scotland. Faecal samples were collected in 2014-15 from 30 

adult birds roosting in nestboxes prior to nest building. DNA was extracted from 793 31 

samples and we amplified COI and 16S minibarcodes. We identified 432 molecular 32 

operational taxonomic units (MOTUs) that correspond to putative dietary items. Most 33 

dietary items were rare, with Lepidoptera being the most abundant and taxon-rich prey 34 

order. We present a statistical approach for estimation of gradients and inter-sample 35 

variation in taxonomic richness and turnover using a generalised linear mixed model. 36 

We discuss the merits of this approach over existing tools and present methods for 37 

model-based estimation of repeatability, taxon richness and Jaccard indices. We find 38 

that dietary richness increases significantly as spring advances, but changes little with 39 

elevation, latitude or local tree composition. In comparison, dietary composition 40 

exhibits significant turnover along temporal and spatial gradients and among sites. Our 41 

study shows the promise of faecal metabarcoding for inferring the macroecology of 42 

food webs, but we also highlight the challenge posed by contamination and make 43 

recommendations of laboratory and statistical practices to minimise its impact on 44 

inference. 45 

 46 

 47 
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 52 

Introduction 53 

 54 

Insectivorous passerine birds in temperate environments tend to be dietary generalists 55 

feeding on a broad range of invertebrate taxa (Betts, 1955; Cholewa & Wesołowski, 56 

2011). There is potential for the diet of such generalists to vary over geographic 57 

gradients, among habitats and seasonally within a year. Such dietary variability within 58 

generalist species is poorly understood and could have profound ecological 59 

consequences. Spatial variation in resource availability has implications for 60 

geographic patterns in population density, breeding productivity and the degree to 61 

which local adaptation in resource use may evolve. Seasonal variation in resource 62 

consumption has implications for the optimal scheduling of life history events, such 63 

as reproduction (Charmantier et al., 2008; Durant et al., 2005) and seasonal movements 64 

(Thorup et al., 2017).  65 

 66 

Spatiotemporal trends in diet will arise from a combination of underlying trends in 67 

invertebrate resource availability and the prey preferences of the consumer. Species 68 

richness – or α-diversity – of temperate invertebrate taxa generally decreases with 69 

increasing latitude (Baselga, 2008) and peaks at mid-elevations (Beck et al., 2017) in 70 

the summer months (Thomsen et al., 2016). Within forests, invertebrate richness can 71 
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vary among tree taxa by more than an order of magnitude, and in the UK has been 72 

found to be highest on Salix, Quercus and Betula (Kennedy & Southwood, 1984; Shutt, 73 

Burgess, & Phillimore, 2019). In addition to changes in species richness, species 74 

composition may change from one community to the next, which is quantified as β-75 

diversity (Baselga, 2010; Whittaker, 1972). While there is evidence that forest 76 

invertebrate communities show turnover over biogeographic gradients (Novotny & 77 

Weiblen, 2005) and among host tree taxa (Murakami, Ichie, & Hirao, 2008), the 78 

relative magnitude of turnover along different gradients has received scant attention 79 

(Novotny & Weiblen, 2005). Whether diet mirrors these gradients in resource 80 

availability will largely depend on how much prey selection by the consumer departs 81 

from random.  82 

 83 

Forest-dwelling hole-nesting insectivorous birds, such as blue tits (Cyanistes 84 

caeruleus), have been subject to decades of intensive study (C. M. Perrins, 1979). 85 

While the diet of nestlings has proven relatively straightforward to quantify, either via 86 

videos/cameras at the nest (Samplonius, Kappers, Brands, & Both, 2016), or neck 87 

collars on nestlings (Burger et al., 2012), much less is known about the diet of adults 88 

(but see Cholewa & Wesołowski, 2011; J. A. Gibb, 1954). The paucity of information 89 

about adult diet arises because these birds often forage high in trees on small prey 90 

items. To date most of our taxonomic information on adult tit diet has been derived 91 

from dissections of the gizzard and gut contents of euthanised birds (Betts, 1955), a 92 

method that precludes the identification of soft-bodied dietary items, has relatively 93 

poor taxonomic resolution (e.g. order or family level) and is destructive. These studies 94 

reveal that tits consume various insects (including Lepidoptera, Hemiptera, Diptera, 95 
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Coleoptera, Hymenoptera) and spiders, as well as some plant matter in winter (Betts, 96 

1955; Cholewa & Wesołowski, 2011; Cramp & Perrins, 1993).  97 

 98 

The advent of next-generation sequencing and faecal DNA metabarcoding now 99 

provides a non-destructive means of obtaining diet information at a fine taxonomic 100 

resolution (Pompanon et al., 2012; Symondson, 2002; Taberlet, Coissac, Pompanon, 101 

Brochmann, & Willerslev, 2012). Where invertebrates comprise a large proportion of 102 

the diet, DNA barcodes from the rapidly evolving cytochrome oxidase I (COI) 103 

mitochondrial gene have become the standard and allow identification to species-level 104 

in many cases (Kress, García-Robledo, Uriarte, & Erickson, 2015). To date, most 105 

published faecal metabarcoding studies have examined variation in mammalian diet 106 

(Bohmann et al., 2011; Clare, Symondson, Broders, et al., 2014; Clare, Symondson, 107 

& Fenton, 2014; Razgour et al., 2011). In comparison to mammals in general, and bats 108 

in particular, application of faecal metabarcoding for inference of the diet of avian 109 

insectivores is a small but rapidly growing field. Progress has been hampered by the 110 

challenge of extracting and successfully amplifying dietary DNA from avian faeces 111 

(Jedlicka, Sharma, & Almeida, 2013; Vo & Jedlicka, 2014). As such, avian faecal 112 

metabarcoding studies have sampled small numbers of individuals and/or locations 113 

(Table 1) and the latter limitation has precluded detailed analysis of the drivers of 114 

spatial or temporal variation in the diet of avian insectivores (for an exception see 115 

Sullins et al., 2018).  116 

 117 

To date the statistical tools employed by the nascent metabarcoding field have largely 118 

borrowed from community ecology. In some studies the objective has been to describe 119 
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the diet composition of a taxon such that statistical analysis may be unnecessary (De 120 

Barba et al., 2014). Metabarcoding studies that focus on patterns in taxon richness 121 

commonly apply a two-step analysis, first using rarefaction to quantify diversity at a 122 

focal sampling level and then using a statistical model to examine variation in taxon 123 

richness among samples (Quéméré et al., 2013). Studies interested in how taxonomic 124 

composition varies among samples have tended to rely on pairwise metrics, such as 125 

the Jaccard index, and non-parametric methods, such as PERMANOVA and the 126 

Mantel test (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Mata et al., 2019; 127 

Trevelline, Nuttle, Hoenig, et al., 2018). Generalised linear mixed models (GLMMs) 128 

and their extensions provide a method for including structure in the data collection and 129 

multiple predictors into an analysis (Warton et al., 2015), but few studies have utilised 130 

them in diet metabarcoding to date (for exceptions see Mata et al., 2019; Nichols, 131 

Åkesson, & Kjellander, 2016). 132 

 133 

Here we employ faecal metabarcoding using COI minibarcodes to infer the diet of an 134 

insectivorous woodland passerine, the blue tit, in early spring along a 220 km transect 135 

in Scotland (Appendix 1 Fig. S1). We have three main aims: (i) to quantify dietary 136 

taxon richness and composition at the molecular operational taxonomic unit (MOTU) 137 

level; (ii) to quantify the magnitude of changes in both measures along gradients of 138 

time (day of year), latitude, elevation and tree taxon composition; and (iii) to quantify 139 

gradients in the contributions that six key invertebrate orders (Araneae, Coleoptera, 140 

Diptera, Hemiptera, Hymenoptera, Lepidoptera) make to diet. We show that by 141 

applying a GLMM to presence/absence data it is possible to estimate changes in taxon 142 

richness and turnover among points and along gradients. We also demonstrate how 143 
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this mixed model approach can be used to estimate repeatability and control for some 144 

types of systematic contamination. 145 

 146 

 147 

Material and Methods 148 

 149 

Field data collection 150 

Fieldwork was conducted during the springs of 2014 and 2015 at 39 predominantly 151 

deciduous woodland sites that together comprise a 220km latitudinal transect in 152 

Scotland (Shutt, Bolton, Benedicto Cabello, Burgess, & Phillimore, 2018). At each 153 

site there were six Schwegler 1B 26mm-hole nestboxes distributed at approximately 154 

40m intervals. From mid-March the base of each nestbox was lined with greaseproof 155 

paper – with the aim of slowing DNA degradation (Oehm, Juen, Nagiller, Neuhauser, 156 

& Traugott, 2011) – which was replaced when damaged or heavily soiled, and 157 

removed at the onset of nest building or once a bird had attempted removal. Each 158 

nestbox was inspected on alternate days and faeces on the greaseproof paper were 159 

removed with sterilised tweezers (after use they were wiped with lab tissue and 160 

flamed), with up to a maximum of three faeces collected in a 2mL Eppendorf tube 161 

containing pure ethanol. The total number of faeces in a nestbox was recorded 162 

(excluding 129 samples from early 2014). Samples were stored at -18°C within a day 163 

of collection and transferred to a -20°C freezer at the end of each spring. Faecal 164 

samples were collected from 35 of the 39 sites from 19 March in 2014 and 18 March 165 

in 2015 until nest building, giving a median sampling range of 20 days per site in 2014 166 

and 24 days in 2015 (Appendix 1 Table S1). 167 
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 168 

Latitude (site range 55.98 – 57.88°N) and elevation (10 – 433m) were obtained for 169 

each nestbox (Shutt et al., 2018). Site-level habitat metrics were derived from surveys 170 

of numbers of trees of different genera belonging to three size classes (based on girth 171 

at breast height) within 15m radius of each nestbox, as described in Shutt et al. (2018). 172 

The site-level habitat variables we considered were total foliage, tree diversity 173 

(Simpson’s index), the amount of oak foliage and the amount of birch foliage (Shutt 174 

et al., 2018). 175 

 176 

Molecular protocol 177 

We balanced sampling across nestboxes and dates as far as possible by imposing an 178 

upper limit of 10 samples per nestbox per year and where this maximum was exceeded 179 

we subsampled such that we maximised the range of dates per nestbox. If multiple 180 

faeces (n = 2 – 3) were present within a sample tube, part of each individual scat was 181 

used for the DNA extraction with the aim of sampling a broader range of diet. This 182 

protocol resulted in processing of 793 of a total of 959 faecal samples. 183 

 184 

Thirty samples were processed in duplicate to allow us to estimate technical 185 

repeatability. The selected samples were evenly distributed throughout the sampling 186 

period, including samples from multiple sampling locations in both 2014 and 2015. 187 

The faeces for each of the 30 duplicated samples were evenly divided into two and 188 

DNA extractions were performed on each subsample; although each subsample 189 

contained sections from along the entire length of the original faeces, the faeces was 190 

not completely homogenised before subsampling. Each duplicate extraction was 191 
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subsequently treated as an independent sample for all downstream processes. All 192 

aspects of the laboratory protocol (DNA extraction, PCR amplifications, PCR clean-193 

up, sequencing on a MiSeq run) were performed at different times using different 194 

aliquots of reagents for each replicate within a pair of subsamples. In addition we 195 

included 24 controls (including extraction negatives, PCR negatives and Dryocosmus 196 

israeli as a non-native invertebrate PCR positive). 197 

 198 

DNA was extracted from faecal samples using the QIAamp DNA Stool Mini kit, 199 

following the protocol for pathogen detection with a few custom modifications 200 

designed to improve DNA yields (see online protocol for details; 201 

dx.doi.org/10.17504/protocols.io.ve6e3he). Three loci were targeted for amplification 202 

through PCR - the standard animal barcoding gene (COI), a secondary barcoding gene 203 

to detect invertebrate prey DNA and confirm the faecal sample originated from a blue 204 

tit and no other hole-roosting or -nesting passerine (16S rRNA), and a standard plant 205 

barcoding gene (rbcL) (see online protocol for further details; 206 

dx.doi.org/10.17504/protocols.io.2jdgci6). Given that DNA from dietary items is 207 

expected to be very degraded, the primers used amplified a small ‘minibarcode’ region 208 

of each gene (184-220 base pairs). Invertebrate primer sets were validated to ensure 209 

that they would amplify DNA from the expected range of invertebrate taxa (two orders 210 

of arachnids, isopods, nine insect orders).  211 

 212 

We followed a two-stage PCR process, firstly to amplify the target regions, then 213 

secondly to add indexed Illumina adaptors to the amplicons from each sample. 214 

Amplicons were multiplexed into three pools, each containing between 273 and 276 215 
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samples (inclusive of 30 replicate samples) and 8 controls (3x PCR positives, 3x PCR 216 

negatives and 2x extraction negatives; a total of 24 controls across the whole 217 

experiment). Each pool was sequenced on an Illumina MiSeq, using 150 bp paired-218 

end reads. 219 

 220 

Bioinformatics processing  221 

Sequencing reads were initially de-multiplexed into sets corresponding to individual 222 

faecal samples using the index combinations present within the adaptor sequences 223 

using bcl2fastq (version v2.17.1.14). Reads were then de-multiplexed using fastq-224 

multx from ea-utils (version1.1.2-537) with parameter ‘-m 2’ into sets corresponding 225 

to each locus using the locus-specific primer sequences present at the beginning of 226 

each read. Adaptor sequences, primer sequences and poor quality base calls were then 227 

removed using cutadapt (version 1.8.3) with parameters: ‘ -m 50’ , ‘-q 30’, ‘-f fastq’, 228 

leaving only sequence corresponding to the targeted gene regions. Subsequent 229 

processing of the sequences applied the UPARSE pipeline (initially developed for 16S 230 

metabarcoding of bacteria, (Edgar, 2013)) to data for each locus separately. 231 

 232 

The first step in the bioinformatics pipeline was to merge the paired reads derived from 233 

either end of the sequenced fragment. This process was successful for all COI and rbcL 234 

reads and many 16S reads; 16S reads derived from avian DNA did not overlap, but 235 

comparison with known blue tit 16S sequences indicated that these reads could be 236 

combined by adding four “N”s between the forward and reverse reads to produce a 237 

composite sequence of the correct length (hereafter referred to as fused reads). Reads 238 

were then filtered to ensure that within a locus they were all of the same length; this 239 
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process removed possible pseudogenes incorporating insertions/deletions from the 240 

coding COI and rbcL data. The rbcL data were not used for subsequent analyses in this 241 

study, and 16S data were only used to confirm the faeces were derived from blue tits. 242 

The set of filtered COI sequences was then used for two purposes. Firstly, the set of 243 

unique sequences present within the full data set derived from all samples was 244 

determined, with counts made of their frequencies. Unique sequences represented by 245 

only a single read were removed as they most likely represent sequencing errors. The 246 

unique sequences were then clustered into molecular operational taxonomic units 247 

(MOTUs), grouping sequences together that had an identity of 98% or more. The most 248 

frequently occurring sequence within each MOTU was designated as the reference 249 

sequence for that MOTU. The second use of the filtered reads involved mapping them 250 

back to this reference set of MOTU sequences on a sample by sample basis, allowing 251 

a mismatch of up to 2% between filtered reads and a reference sequence, to provide a 252 

more accurate assessment of the frequency of each MOTU within each faecal sample. 253 

The taxonomic identity of MOTUs was determined using a BLAST search of the 254 

reference set of MOTU sequences against public databases (GenBank and BOLD).  255 

 256 

Quality control and MOTU refinement 257 

Our analysis plan from this point on was pre-registered (osf.io/xgvm8). Some aspects 258 

of our methods deviate from what was outlined in the pre-registration (see table S2 in 259 

appendix 1 for an explanation of the motivation for these departures). We tested 260 

whether samples were from blue tits by verifying the presence of blue tit fused 16S 261 

sequences. The highest number of blue tit 16S reads from the 24 control samples was 262 

58 and as a precaution all faecal samples that yielded fewer than 100 blue tit 16S 263 
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reads were excluded from further analyses as they were not conclusively confirmed 264 

to be blue tit faeces (n = 9). Of the remaining avian faecal samples, blue tit was the 265 

commonest of the fused 16S MOTU in all but one sample, but this sample still had 266 

sufficient (n = 1465) blue tit reads to confirm its identity. No other avian DNA was 267 

present in any sample. 268 

 269 

COI reads were checked from control samples to confirm the presence of positive 270 

control species and provide a baseline for background contamination. All nine PCR 271 

positive control samples contained MOTUs attributable to Dryocosmus israeli (range 272 

of reads = 7796 - 19115) and no more than 16 reads of any other MOTU identified as 273 

belonging to the Metazoan kingdom. Eight out of nine PCR negative controls 274 

contained no more than 19 reads of any MOTU. The ninth was highly contaminated 275 

and contained 6798 reads arising from more than 20 MOTUs. Therefore, we checked 276 

for contamination along rows or columns within plates by estimating Spearman’s 277 

correlations in the number of MOTU reads between samples in neighbouring cells in 278 

the same PCR column or row. The row containing the contaminated negative sample 279 

was found to have a substantially higher mean level of within row correlation (r = 0.37) 280 

than other row and column correlations (mean r = 0.04). This was considered to be 281 

most likely a systematic contamination event and this row (n = 11 focal samples + 1 282 

negative control) was excluded from all analyses. In addition, closer inspection of the 283 

contaminated plate revealed two wells (both faecal samples) in the neighbouring row 284 

to the contamination event containing very similar MOTUs with the contaminated row 285 

and these were also removed from further analysis. Of the six extraction negative 286 

controls, four contained no MOTU at a higher read frequency than 3. The remaining 287 
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two contained contamination (maximum reads = 10037 and 1611) but on further 288 

inspection there was no evidence for this being systematic. As there were few cases 289 

where a control (positive or negative) had > 20 reads for any non-target MOTU, we 290 

adopted 20 reads as the cut-off for identifying MOTU presence. 291 

 292 

The above steps reduced the number of samples from 847 to 824 (772 focal) containing 293 

2524 MOTUs. All MOTUs with fewer than 20 reads in any single sample were 294 

removed as possible false positives (remaining n = 1432 MOTUs). All MOTUs 295 

without any BLAST match, or identified as environmental contamination, were 296 

removed (remaining n = 1323). Then, a full taxonomy was obtained for each remaining 297 

MOTU and taxonomic reduction of the dataset began to eliminate non-prey items. 298 

Firstly, only MOTUs belonging to the Metazoan kingdom were considered possible 299 

prey items (remaining n = 1078). Then, all MOTUs not belonging to the phyla 300 

Annelida, Arthropoda and Mollusca were discarded (remaining n = 1005). Finally, all 301 

mites in the dataset of orders Astigmata (11), Mesostigmata (56), Oribatida (1), 302 

Siphonoptera (2) and Trombidiformes (24) were removed, as they were likely to be 303 

ectoparasites rather than actively foraged prey (remaining n = 911). For the MOTU 304 

identification we required that the percentage match was at least 90% (remaining n = 305 

785). Taxa identified to an identification match of 90% or more are considered correct 306 

to a minimum of order level, and this is the level that is important to the analyses in 307 

this study. Several MOTUs identified as ‘Arachnida sp’ were removed on finding that 308 

these MOTUs were most closely matched to fungi (remaining n = 778). All 309 

Dryocosmus (positive control) and waxworm (Galleria mellonella – from a feeding 310 

experiment in 2014 that provided 10 waxworms in a plastic cup adjacent to two 311 
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nestboxes per site) MOTUs were removed (remaining n = 757). Then, all remaining 312 

MOTUs belonging to the same best-hit taxon were merged (remaining n = 432). 313 

Finally, due to the importance of Lepidoptera to tit diet we assessed the biological 314 

plausibility of Lepidoptera identifications, which was possible due to comprehensive 315 

UK occurrence data for this order (Sterling & Parsons, 2012; Waring & Townsend, 316 

2017). Nineteen of 131 Lepidopteran MOTUs assigned species names were reassigned 317 

to a British species when this species was within a 1% match of a geographically 318 

implausible top hit. We assigned species status to taxa with a 99% or greater identity 319 

match with the BLAST hit and a histogram of identity matches is provided (Fig S2). 320 

 321 

Statistical analyses 322 

Analyses focussed on the presence/absence of MOTUs in a sample, as read numbers 323 

are not considered a reliable measure of the amount of a MOTU in a sample due to 324 

biases in primer binding and amplification (Clare, 2014; Yu et al., 2012). Control 325 

samples were excluded from analyses. DNA within a sample was often derived from 326 

multiple faeces, and the effect of this on MOTU presence was controlled for by 327 

including number of faeces as a four-level categorical fixed effect (1, 2, 3, unknown). 328 

 329 

To examine geographic, habitat and temporal variation in blue tit diet (Shutt, Nicholls, 330 

et al., 2019), we included the presence or absence of each MOTU in each sample as 331 

the response variable in a Bayesian generalized linear mixed model (GLMM) with a 332 

probit error structure (Hadfield, 2010). This analysis excluded the replicate samples 333 

(for reasons discussed in Appendix 2). The effects of year and number of faeces in the 334 

sample (treated as categorical) and the effects of ordinal date, latitude, elevation, total 335 
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foliage, birch foliage, oak foliage and tree diversity (treated as continuous) were 336 

treated as fixed. These fixed effects quantify trends in dietary richness. After 337 

accounting for these trends, variation in richness amongst sites, nest-boxes, days 338 

within year (categorical) and faecal samples were modelled by fitting each term as 339 

random. MOTU effects were fitted as random in order to capture differences amongst 340 

MOTUs in their overall prevalence. Variation in the prevalence of individual MOTUs 341 

amongst sites, nest-boxes, days within years (categorical) and faecal samples was 342 

modelled by interacting each term with MOTU. In the core model we also allowed the 343 

prevalence of individual MOTUs to vary with ordinal date, latitude and elevation 344 

effects, again by interacting each term with MOTU to form random regressions. The 345 

three slope terms were allowed to covary with each other and the main MOTU effect 346 

(the intercept). We also include plate by MOTU random interaction term to control for 347 

any plate-wide contamination by particular MOTUs present. To estimate and correct 348 

for any tendency for contamination of rows or columns within a plate we ran an 349 

additional model with row (within plate) and column (within plate) interacted with 350 

MOTU as random terms and this is the main model that we present in the results.  351 

 352 

In addition to the core model, we also ran four additional models, each of which 353 

allowed the prevalence of individual MOTUs to vary across one of the four habitat 354 

variables. The additional random slope terms were allowed to covary with the original 355 

three slope terms and the intercept. However, because of the length of time that the 356 

core model took to run (three months) we excluded the day within year term and its 357 

interaction with MOTU. The importance of these effects are minor relative to other 358 

terms in the model (day in year variance = 0.003, day in year:MOTU variance = 0.036, 359 
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table S4A) and the interaction in particular contributed a lot to computation time 360 

because with 91 days and 432 MOTUS there are nearly 40,000 effects. All models 361 

were run for 260,000 iterations, with the first 60,000 removed as burn-in and thinning 362 

every 100. These models took two months to run on an iMac 10.13.6 with 3.4 Ghz 363 

Intel core i7, 16GB RAM and 4 cores. 364 

 365 

To examine trends in the presence/absence of prey orders in blue tit diet, the dataset 366 

was reduced down to presence/absence of the six most common orders (Araneae, 367 

Coleoptera, Diptera, Hemiptera, Hymenoptera and Lepidoptera), termed ‘focal 368 

orders’, which together comprise over 91% of all prey taxa identified. A similar 369 

GLMM to that described above was then employed, but with focal order and date, 370 

latitude, elevation and tree diversity individually and interacted with focal order as 371 

fixed effects. Site, nest-box, day and faecal samples were fitted as random main effects 372 

and as random interactions with focal order. These models were run for 195,000 373 

iterations, with the first 45,000 removed as burn-in and thinning every 75.  374 

 375 

To assess the repeatability of the approach we used a similar analysis to that described 376 

above with the presence/absence of each MOTU as a response for the faecal samples 377 

for which extraction, PCR and metabarcoding had been replicated (29 samples x 432 378 

MOTUs). Fixed effects were year and the number of faeces in the sample, both as 379 

factors, with random terms limited to MOTU, faecal sample ID, faecal sample ID by 380 

MOTU interaction, extraction sample ID and residual. This model was run for 13 381 

million generations with the first 3 million removed as burn-in and thinning every 382 

5000.  383 
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 384 

All numeric predictor variables in all analyses were scaled to have a mean of 0 and a 385 

variance of 1 to provide direct comparability of results. We used parameter expanded 386 

priors for the variances such that the marginal priors on all variances followed a scaled 387 

(1000) F1,1 distribution. Traces of posteriors were visually inspected to check for 388 

convergence and adequate sampling. For the main model, the effective sample sizes 389 

(ESS) were a bit low for some variances (< 500), but in all cases the ESS were adequate 390 

to provide a reliable point estimate (>100) even if in some instances the accuracy of 391 

the credible intervals is poor. As a test of model adequacy we conducted posterior 392 

predictive simulations to assess whether key features of the data were captured (Fig. 393 

S3). We opted to use an MCMCglmm approach rather than much faster numerical 394 

integration approaches, such as lme4 (Bates, Maechler, & Bolker, 2012) or glmmTMB 395 

(Brooks et al., 2017), because posterior predictions revealed that parameter estimates 396 

from MCMCglmm provided an accurate description of the data, whereas those from 397 

lme4 and glmmTMB were highly inconsistent (Appendix 2). Additional simulations 398 

confirmed that parameter estimates from lme4 were highly biased, most likely because 399 

with rare-outcome data the approximations used for integrating over the random 400 

effects break down. 401 

 402 

In order to get a quantitative understanding of how α and β diversity change across 403 

different levels of biological organisation (e.g., nestbox or site) and as a function of 404 

continuous biogeographic variables (e.g., elevation or tree diversity) we develop a 405 

framework for focussing repeatability metrics at the appropriate biological level (see 406 

Appendix 2). The two-way dichotomy into between-group and within-group that 407 
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forms the basis of standard repeatability calculations (see Nakagawa & Schielzeth, 408 

2010 for a review) can be seen as a special case. The quantities required for these 409 

calculations also appear in many indices developed by ecologists to quantify similarity 410 

in community structure. Given this, we show how such indices can also be derived 411 

directly from a GLMM which has the advantages that credible intervals can easily be 412 

computed, incomplete sampling is naturally dealt with (Chao, Chazdon, Colwell, & 413 

Shen, 2006) and changes in the indices as a function of differences in a continuous 414 

variable (such as latitude) can be handled. The main disadvantage of the approach is 415 

that between-species correlation structures may typically be richer than what a fitted 416 

GLMM assumes, such that variation in community structure may be greater than the 417 

model allows. However, posterior predictive checking allows model inadequacies to 418 

be detected, and richer correlation structures are available, for example through a 419 

phylogeny (Hadfield & Nakagawa, 2010) or through factor analysis (Niku, Hui, 420 

Taskinen, & Warton, 2019; Warton et al., 2015).  421 

 422 

In Appendix 2 we also present methods for using model outputs to generate 423 

expectations for the taxon richness of a faecal sample and Jaccard index (often used in 424 

studies of β-diversity) that quantifies the similarity of facecal samples. This allows us 425 

to relate model coefficients back to effect sizes that are more often used in community 426 

ecology. However, as the Jaccard index captures both turnover and community 427 

nestedness (Baselga, 2010), in the results we mainly use repeatability to quantify 428 

turnover.  429 

 430 

 431 
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Results 432 

 433 

Read quality 434 

The three MiSeq runs combined generated 34.04 million raw paired-end reads, of 435 

which 9.8 million were classified as COI amplicons after de-multiplexing based on the 436 

primer sequences. Amplicons for 16S and rbcL were also generated, but our diet 437 

analysis focuses only on COI. 8.9 million merged sequences passed all the quality 438 

filters. Out of these, 8.7 million sequences were retained after alignment against the 439 

reference OTU sequences. 440 

 441 

Diet Composition 442 

After identifying samples that tested positive for blue tit 16S DNA, excluding non-443 

prey taxa and collapsing similar sequences, we identified 432 prey MOTUs across 444 

772 faecal samples. Of these MOTUs, 57% could be matched to candidate species on 445 

the basis of > 99% sequence identity and a voucher/reference specimen identified to 446 

species level. A further 4% were >99% matched and therefore identifiable to species 447 

level, but lacking a reference initially identified to species level. The remainder of 448 

MOTUs are not identifiable to species level but are diagnostically distinct dietary 449 

items at minimum within the order identified by the best hit. (Appendix 1 Fig. S2, 450 

Table S3). The mean number of MOTUs per sample was 5.06, with mode = 3, 451 

median = 5 and range = 0 - 20. The MOTU abundance distribution was highly right-452 

skewed, with 42.4% recorded in only one sample and 74.3% recorded in five or 453 

fewer samples (Fig. 1A).  454 

 455 
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Only 15 MOTUs were recorded in more than 50 samples (five Lepidoptera, four 456 

Hemiptera, three Diptera and one each of Collembola, Coleoptera and Hymenoptera). 457 

Eleven of these MOTUs were identified to species level, with Argyresthia goedartella 458 

(Lepidoptera: Yponomeutidae) most common (34.6% of samples, Fig. 1A inset). Most 459 

of these species are associated with resources available early in spring (Table S4), such 460 

as catkins on birch (Betula pendula/pubescens) or alder (Alnus glutinosa) or buds of 461 

birch or sycamore (Acer pseudoplatanus). We also found winter moth (Operophtera 462 

brumata) in 27 samples (3.5%), the larvae of which comprise a major component of 463 

nestling diet later in the spring but were not known to occur in the diet in early spring.  464 

 465 

Eighteen invertebrate orders were encountered in at least one sample, with Insecta 466 

contributing 86.1% of MOTUs. Within insects, MOTUs matched to the order 467 

Lepidoptera were the most commonly recorded (present in 73.6% of samples, Fig. 1B) 468 

and taxon-rich (131 taxa, Fig. 1C). Other commonly recorded orders were Hemiptera, 469 

Diptera, Hymenoptera, Coleoptera, Araneae and Collembola. 470 

 471 

Technical Repeatability  472 

The value of faecal metabarcoding as a tool to infer diet depends on how reliable it 473 

proves to be and a key measure of this is repeatability. Our protocol included 30 paired 474 

replicate extractions from a different portion of the same faecal sample (although note 475 

that the sample was not homogenised prior to extraction), 29 of which remained after 476 

quality control and which we used to estimate technical repeatability (Appendix 1 477 

Table S5G). The repeatability estimate is highly sensitive to the quantity being 478 

measured (measurand), the definition of within and between group, the reference 479 
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population and whether it is considered on the latent or data scale (Appendix 2). The 480 

technical repeatability of a MOTU within a faeces (with only faeces and faeces:MOTU 481 

contributing to the between-group variance) had a posterior mode of 0.305 (95% 482 

credible interval = 0.223 – 0.408) on the data (0,1) scale and 0.783 (0.712 – 0.845) on 483 

the latent (threshold) scale. Variation in MOTU richness at the sample level was 484 

reasonable (0.325 (0.118 – 0.770)) but the richness of samples within faeces are not 485 

strongly correlated and so the technical repeatability of richness for a faeces is low 486 

(Data; 0.003 (0 – 0.714), Latent; 0.003 (0 – 0.676)). However, the credible intervals 487 

are large, and the main analysis (see below) shows non-zero correlations between the 488 

richness of faeces from the same nestbox suggesting the true technical repeatability of 489 

richness must be non-zero. 490 

 491 

Dietary MOTU richness 492 

We used a generalized linear mixed model (GLMM) with a binary (threshold) response 493 

to examine the predictors of MOTU presence. From the main effects we can gain 494 

insights into how dietary MOTU richness (related to α-diversity) varies across time 495 

and space. Day of year predicted a small but significant increase in dietary richness 496 

over the course of the spring (b = 0.082 (0.024 – 0.135), Fig. 2C), with the expected 497 

number of MOTUs per faecal sample increasing from 1.981 to 3.933 from the first to 498 

last date (Table 2). For elevation (b = -0.022 (-0.131 – 0.104)) and latitude (b = 0.058 499 

(-0.015 – 0.144)) gradients in dietary richness were non-significant (Fig. 2A-B, Table 500 

2), as were the metrics describing among-site variation in woodland habitat (total 501 

foliage, foliage diversity, amount of oak, amount of birch, Table S5B). The 502 

repeatability of species richness within nestboxes at a site was moderate (Data; 0.140 503 
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(0.041-0.264), Latent; 0.158 (0.046-0.296), Appendix 2) but we found little evidence 504 

that richness varied among sites or among days within a year (after controlling for the 505 

linear increase). The effect of including more than one faeces in the sample was 506 

positive, but non-significant. 507 

 508 

Dietary MOTU turnover 509 

The probability of being present in a sample varied substantially across MOTUs 510 

(variance on probit scale  = 0.574 (0.475 – 0.696), Appendix 1 Table S5B). From the 511 

interactions between MOTU identity and other terms we can gain insights into how 512 

the probability of sampling individual MOTUs changes over time and space, providing 513 

a measure of turnover and its significance. There was significant among MOTU 514 

variation in the slope of presence/absence on day of year, elevation and latitude 515 

(Appendix 1 Table S5B, Fig. 2D-F), with MOTU turnover more pronounced over 516 

elevation and day of year. However, the predicted repeatabilities for MOTUs in faeces 517 

sampled at the same elevation (but at different sites) were rather low (Data; 0.002 518 

(0.001-0.003), Latent; 0.041 (0.028-0.059)). Due to the substantial between- faeces 519 

and between nest-box variation in MOTU presence the repeatability for the site-level 520 

probability of a MOTU at the same elevation was higher (Data; 0.066 (0.041 – 0.095), 521 

Latent; 0.148 (0.106 – 0.215)), but still modest. The effect of date was similarly low 522 

and even within nestboxes the repeatability of a MOTU in faeces from the same day 523 

was small (Data; 0.002 (0.001-0.004), Latent; 0.081 (0.057-0.114)). See Appendix 2 524 

for further analysis of repeatabilities. As an alternative measure of how environmental 525 

variables affect community composition we calculated the expectation for the Jaccard 526 

index and standardised Jaccard index (Appendix 2) between two sites at (i) the mean 527 
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and (ii) sampled extremes of latitude, elevation and day of year (Table 2). For all three 528 

environmental variables communities are less similar (lower Jaccard index) at the 529 

extremes than they are at the mean, but this effect is most pronounced for elevation 530 

and day of year. 531 

 532 

We considered among-MOTU variation in the relationship between the four 533 

continuous habitat variables and probability of occurrence in four additional models 534 

(Tables S5C–F). For three habitat metrics (total foliage, tree diversity and oak 535 

availability) among-MOTU variation in habitat slopes was small and non-significant, 536 

implying no discernible MOTU turnover along these gradients. The slope of MOTU 537 

presence/absence on birch availability exhibited significant among-MOTU variation, 538 

but turnover along this gradient is less than found for biogeographic and temporal 539 

gradients (Appendix 1 Table S5F, Fig. S4) indicating a weak relationship.  540 

 541 

The variance in the MOTU identity by site effects was large (0.474 (0.394 – 0.551)), 542 

revealing that even after controlling for biogeographic trends in turnover gradients 543 

there is substantial MOTU turnover among sites (Table S5B). Indeed, the 544 

biogeographic and habitat variables in aggregate only explained a small fraction of the 545 

between site variance (Data; 0.101 (0.069 – 0.142), Latent; 0.236 (0.174 –0.296), 546 

Appendix 2). The total within-site (due to both biogeographic variation and random 547 

site variation) repeatability was small if assessed at the level of faeces (Data; 0.023 548 

(0.016 – 0.029), Latent; 0.275 (0.242 – 0.306)) but larger if assessed at the level of 549 

nestboxes (Data; 0.270 (0.223 – 0.334), Latent; 0.568 (0.520 – 0.628)). This arises 550 

because of the considerable variance amongst faeces within a nestbox. The variance 551 
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in MOTU identity by nestbox effects was comparable to the site effects (0.434 (0.376 552 

–0.529)), but the within-nestbox repeatability at a single site was small (Data; 0.016 553 

(0.012 – 0.022), Latent; 0.275 (0.247 – 0.312)), again because of the large between- 554 

faeces variance. The within-nestbox repeatability across sites (where site and nestbox 555 

effects contribute to the between group variance) was greater (Data; 0.069 (0.057 – 556 

0.083), Latent; 0.474 (0.445 – 0.502)). 557 

 558 

Interactions between MOTU and plate, plate-row and plate-column were also 559 

significant (Appendix 1 Table S5B), which may reflect within plate contamination. 560 

However, our placing of samples on the plate in the order in which samples were 561 

collected in the field (spatially and temporally structured) could also contribute to this 562 

signature if there is spatiotemporal structure in MOTU presence/absence that is not 563 

accounted for by the day of year:MOTU and site:MOTU terms.  564 

 565 

Order level trends 566 

Lepidoptera showed a significant increase in probability of occurrence with increasing 567 

latitude (b = 0.236 (0.044 – 0.430)) and elevation (b =  0.309 (0.073 – 0.583), Fig. 568 

3AB, Appendix 1 Table S6). Other than Lepidoptera, only Diptera also showed a 569 

significant increase with latitude (b = 0.252 (0.058 – 0.446)). Hymenoptera showed a 570 

significant increase in probability of occurrence with increasing elevation (b = 0.319 571 

(0.061 – 0.557)), with positive trends also apparent for Diptera, Hemiptera and 572 

Coleoptera.   573 

 574 
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The probability of sampling a hemipteran increases very steeply through time over the 575 

course of the spring (b = 0.422 (0.259 – 0.590)), with significant positive relationships 576 

also apparent for Lepidoptera (b = 0.174 (0.006 – 0.341)) and Coleoptera (b = 0.269 577 

(0.113 – 0.424)) (Fig. 3C). Increasing site level tree diversity had a significant positive 578 

effect on the probability of sampling Diptera (b = 0.344 (0.095 – 0.586)) and a 579 

significant negative effect on the probability of sampling  Hymenoptera (b = -0.283 (-580 

0.528 – -0.037), Fig. 3D). 581 

 582 

 583 

Discussion 584 

 585 

We demonstrate that faecal metabarcoding can provide deep insights into the diet of a 586 

generalist woodland bird, and provide the first in-depth analysis of the natural diet of 587 

a passerine bird prior to breeding. We show that across Scottish woodlands in early 588 

spring - when overall food availability is low - blue tits are able to locate and harvest 589 

over 400 prey taxa. Further, we show strong temporal patterns in the taxonomic 590 

richness and composition of the invertebrate prey items.  591 

 592 

Diet Composition 593 

Our findings on blue tit diet composition broadly agree with previous work on this 594 

species (Betts, 1955; J. Gibb & Betts, 1963). As for previous faecal metabarcoding 595 

studies on generalist insectivores (Clare, Fraser, Braid, Fenton, & Hebert, 2009; 596 

Jedlicka, Vo, & Almeida, 2016; Sedlock, Krüger, & Clare, 2014), we found most 597 

dietary taxa to be rare. The six most common orders were also detected using 598 
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morphology-based identification of gizzard contents by Betts (1955). For a fuller 599 

discussion of the commonest taxa see the extended discussion in Appendix 1. 600 

 601 

One surprise in our data was the prevalence of winter moth early in the spring. The 602 

larvae of this species are one of the main foods provisioned to nestling tits (Betts, 1955; 603 

C. Perrins, 1991) and whilst they are the most common spring Lepidopteran larvae on 604 

our transect, their availability peaks in late May/early June (Shutt, Burgess, et al., 605 

2019), and so we did not anticipate finding them in the diet in March/April. A post hoc 606 

analysis (GLMM with threshold response, site and nestbox effects as random and year 607 

effects as fixed) revealed that the probability of occurrence in a sample increases 608 

significantly in the days running up to the site-average first egg laying date (b = 0.039, 609 

CI = 0.023 – 0.055), from around a 2% chance at 30 days prior to laying to 17% at the 610 

average site-level blue tit first egg date. This increase in the incidence of winter moth 611 

in the diet most likely corresponds with a change in the availability of early instar 612 

larvae, rather than eggs, which would be available throughout the period (Waring & 613 

Townsend, 2017). This finding raises the possibility that tits might use early instars of 614 

winter moth and other foliar caterpillar larvae as a cue of when to breed. 615 

 616 

Dietary Richness and Turnover 617 

The biogeographic variables that we considered, latitude and elevation, had no 618 

significant effect upon dietary MOTU richness, but a significant effect upon dietary 619 

turnover. This reveals that whilst the total richness of prey eaten may not vary 620 

geographically (see also the very low site variance), the taxa comprising the diet vary 621 

along biogeographic clines (more so over elevation than latitude) and also from site to 622 
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site, as revealed by the significant site by MOTU interaction component. These 623 

findings are consistent with those from faecal metabarcoding of insectivorous bats 624 

(Clare, Symondson, Broders, et al., 2014; Sedlock et al., 2014) and could indicate local 625 

dietary specialisation. However, we suspect that a more likely explanation for this 626 

apparent specialisation is that it arises from patterns in prey availability (V. Moran & 627 

Southwood, 1982) and that the birds are flexible in their prey.  628 

 629 

The increase in dietary MOTU richness as spring progresses parallels seasonal 630 

increases in the abundance and availability of herbivorous insects in European forests 631 

(Bale et al., 2002; Southwood, Wint, Kennedy, & Greenwood, 2004). Whilst dietary 632 

richness generally increases during spring, some taxa become less likely to occur and 633 

others more so, arising from the distinct phenologies of individual prey taxa (Forrest, 634 

2016; Southwood et al., 2004). All of the main orders showed a tendency toward 635 

increasing as spring progressed, though on the data scale the increase was steepest for 636 

Hemiptera, which may be attributable to a pronounced spring phenology in the 637 

abundance of aphids on buds and leaves (Bell et al., 2015).           638 

 639 

The habitat indices that we consider were non-significant predictors of blue tit dietary 640 

richness, and MOTU turnover along such gradients was much weaker than estimated 641 

for the biogeographic and temporal variables. One potential explanation for our low 642 

estimate of turnover along such habitat gradients is that most invertebrate prey species 643 

may not be entirely restricted to a particular tree species. Alternatively, perhaps our 644 

‘territory’ based habitat metrics are inadequate measures of the availability of different 645 

tree species to each bird at this time. At face value our results are consistent with the 646 
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greater importance of larger-scale geographic clines (i.e. latitude, elevation) as 647 

determinants of prey presence/absence, presumably because they act as a proxy for 648 

other environmental variables that limit invertebrate distributions, such as temperature. 649 

However, substantial spatial turnover remained even after controlling for 650 

spatiotemporal gradients, which suggests that there are important drivers of prey 651 

turnover that we have overlooked. 652 

 653 

Model based inference of richness and turnover 654 

Describing and explaning temporal and geographical variation in components of 655 

diversity is a mainstay of community ecology (Dornelas et al., 2014; Li et al., 2018; 656 

Magurran, 2013). α-diversity can be calculated for the sampled community scale (be 657 

that a location or point in time), which has made its statistical analysis relatively 658 

straightforward. In comparison, β-diversity is often calculated as a pairwise 659 

similarity between communities (Koleff, Gaston, & Lennon, 2003), and where 660 

multiple communities are considered the non-independence of comparisons presents 661 

a challenge to statistical inference (Baselga, 2010). In an important development 662 

Baeten et al. (2014) explained how a generalized linear model with taxon 663 

presence/absence as a binomial response could be used to estimate changes in 664 

richness and turnover between points and crucially determine statistical significance. 665 

Here we have extended their framework to a generalized linear mixed model and we 666 

show that the interaction of taxon (MOTU) with categorical (random intercepts) and 667 

continuous (random slopes) variables estimates turnover between points (in space or 668 

time) and along gradients, respectively. We also show that it is possible to predict the 669 

Jaccard index (measure of β-diversity) between a pair of communities sampled at 670 
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points in space or time as a measure of effect size (Appendix 2). The principal 671 

benefits of this new model-based approach over existing pair-wise approaches are 672 

that (i) it allows estimation of confidence intervals and p values for turnover and 673 

richness along gradients and among samples without such calculations being 674 

complicated by non-independence; (ii) hierarchical structure in the sampling can be 675 

included, and turnover can be assessed at each level explicitly taking into account 676 

heterogeneity in sampling effort at lower levels; (iii) multiple covariates can be 677 

included; (iv) inferences can be made including or excluding a control for taxon 678 

abundance and (v) model based inference of repeatability is possible (see Appendix 679 

2). The model coefficients can also be used to derive predictions of the total number 680 

of taxa in a community and the Jaccard index (or alternative β-diversity metric) 681 

between communities. Our model is defined in the context of the probability of a 682 

taxon being present in a faecal sample, and as the number of samples (n) increases 683 

total taxon richness is predicted to increase monotonically (with a decelerating 684 

slope), such that when n = ∞, every taxon will be present. There are similarities 685 

between this curve and rarefaction curves that are often used to standardise for 686 

heterogeneity in sampling in ecology (Gotelli & Colwell, 2011), with both methods 687 

requiring inference of the probability of each taxon being in a sample. In addition, 688 

the Jaccard index will increase monotonically and with an accelerating function with 689 

increasing species richness (Appendix 2) and monotonically and with a decelerating 690 

function with sampling effort. Given that community level diversity metrics are 691 

highly sensitive to the choice of n, we suggest that when using our framework an n = 692 

1 represents the most natural level at which to report community-level metrics (see 693 

Appendix 2) and requires no extrapolation. 694 
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 695 

A limitation of our approach is that by imposing a parametric correlation structure on 696 

the data, that correlation structure is relatively simple and probably doesn't catch the 697 

full complexity of species associations. For example, if there was a patchily 698 

distributed species of herb on which three prey taxa were specialised on, then these 699 

three species would co-occur with higher probability than our model would suggest. 700 

Rectifying these problem would require a) identifying the herb that generates these 701 

correlations, measuring its prevalence and incorporating that data into the model b) 702 

use more complex correlation structures to be modelled in situations where the 703 

number of taxa is large (Runcie & Mukherjee, 2013; Warton et al., 2015) or c) 704 

develop sandwich type estimators (Huber, 1967; Zeger, Liang, & Albert, 1988) that 705 

would allow robust inferences to be made even when unmodelled correlations exist.   706 

 707 

Methodological Considerations 708 

In this study we have demonstrated that faecal metabarcoding can provide a robust and 709 

powerful method for assessing passerine diet, allowing greater sample sizes and 710 

taxonomic resolution than direct assessment (Betts, 1955). Inclusion of positive and 711 

negative controls and repeat samples are part of the standard laboratory practice 712 

(Alberdi et al., 2018) – though few previous metabarcoding studies have included any 713 

of these (but see De Barba et al., 2014; Jedlicka et al., 2016) – and have proven 714 

invaluable in informing this work. Our protocol yielded fourteen MOTUs for the 715 

positive control taxon, suggesting that the 2% divergence rule of thumb used in early 716 

barcoding studies to group conspecific COI barcode sequences in Metazoa (Hebert, 717 

Cywinska, & Ball, 2003 and http://www.barcodinglife.com) is likely to produce 718 



 31 

spurious taxa, potentially misleading naïve analyses and underlining the necessity for 719 

subsequent quality control steps. Negative controls (extraction and PCR) allowed us 720 

to identify a case of systematic contamination and also informed our cut-off number 721 

of reads (but see Deagle et al., 2018 for a critique of thresholds). After strict removal 722 

of samples that appeared likely to have been affected by systematic contamination, 723 

some residual contamination on plates was evident and we were able to control for this 724 

to some degree by including row:MOTU, column:MOTU and plate:MOTU as random 725 

terms. We recommend that future studies adopt the plate:MOTU random term and 726 

randomise samples across plates, such that samples from a single year, site or time of 727 

year do not all appear on one plate. Although the maximum number of taxa in a sample 728 

was high (n = 20), PCR competition and the methodological maximum reads per 729 

metabarcoding plate presumably place a limit on detecting very rare dietary items. 730 

Reducing the number of target loci (three in this study, see methods) or level of 731 

multiplexing (i.e. the number of samples per sequencing run) could increase the reads 732 

available per locus per sample and increase detectability. However, reducing 733 

multiplexing may come at an increased financial cost for sequencing. 734 

 735 

From our repeat samples we were able to estimate technical repeatability and several 736 

measures of biological repeatability (Appendix 2). Repeatability of MOTU 737 

presence/absence was rather low, consistent with low repeatability estimates found by 738 

another study that subsampled avian faecal samples (Jedlicka et al., 2016). An 739 

implication is that if the focus of an avian faecal metabarcoding study is on the 740 

detection of the presence/absence of a specific taxon, then multiple repeat DNA 741 

extractions, amplifications and metabarcoding runs are advisable. Homogenisation of 742 
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faecal samples prior to DNA extraction may increase both the ability to detect a 743 

particular taxon and repeatability given the possible heterogeneity within single faeces.  744 

 745 

Conclusion 746 

Using a metabarcoding approach, we reveal the diet of a generalist passerine at a finer 747 

resolution than any previous study and quantify dietary richness and turnover across 748 

space and time. At the scale of our study, blue tit dietary richness increases as spring 749 

progresses, but is unaffected by latitude, elevation and habitat, whilst dietary turnover 750 

is most pronounced over temporal (day of year) and elevational gradients.  751 

 752 
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Tables and Figures 999 

 1000 

Table 1. Sampling and laboratory protocols employed by published faecal barcoding 1001 
studies focusing on the invertebrate component of diet. An entry of ‘None’ means that 1002 
while steps may have been taken in the study, no specific method was detailed. 1003 
 1004 
Number of 
study species 
(most 
common 
species) 

Total 
number of 
samples 
(maximum 
number of 
samples per 
species) 

Number of 
sites (region)  

Controls Measures taken 
to assess 
repeatability 

Reference 

1 (Lesser 
Prairie-
Chicken) 

314 4 (Kansas and 
Colorado, 
USA) 

None None (Sullins et 
al., 2018) 

1  
(Western 
Bluebird) 

210 3 
(neighbouring 
vineyards, 
California, 
USA) 

None Ten faeces 
subsampled.  

(Jedlicka 
et al., 
2016) 

3  
(Wood 
Thrush) 

137 (51) 1 
(Pennsylvania
, USA) 

PCR 
negatives 
and 
positives 

None (Trevelline
, Nuttle, 
Hoenig, et 
al., 2018) 

1  
(Louisiana 
Waterthrush) 

130  2 (Arkansas 
and 
Pennsylvania, 
USA) 

None None (Trevelline
, Latta, 
Marshall, 
Nuttle, & 
Porter, 
2016) 

1 
(Louisiana 
Waterthrush) 

92 3 (headwater 
streams, 
Pennsylvania, 
USA) 

None None (Trevelline
, Nuttle, 
Porter, et 
al., 2018) 

(Rufous 
hummingbird
) 
 

30 1 (Vancouver 
Island, 
Canada) 

1 x 
extraction 
negative 

None (A. J. 
Moran, 
Prosser, & 
Moran, 
2019) 

13  
(Lewin’s 
Honeyeater) 

82 (29) 1 (Bundaberg, 
Australia) 

Extraction 
negatives 

PCR run twice 
to test 
amplification 
repeatability 

(Crisol-
Martínez, 
Moreno-
Moyano, 
Wormingt
on, Brown, 
& Stanley, 
2016) 
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1  
(Western 
Bluebird)* 

16 2 
(neighbouring 
vineyards, 
California, 
USA) 

None Faecal sample 
was subdivided 
and run on two 
extraction kits. 

(Jedlicka 
et al., 
2013) 

4 (Blue tit, 
Great Tit, 
Willow Tit) 

14 (4) 2 (Oulu and 
Kuusamo, 
Finland) 

Extraction 
negative 

None (Rytkönen 
et al., 
2019) 

      
3  
(Sedge 
Warbler)‡  

11 (6) 3 (South 
Wales, UK) 

None None (King, 
Symondso
n, & 
Thomas, 
2015) 

‡ Study employed Sanger sequencing rather than metabarcoding. 1005 
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Table 2. Expectations for the MOTU richness of - and Jaccard indices between -1007 

samples of communities at (i) the same and (ii) extreme points along latitude, 1008 

elevation and day of year gradients. Expectations are calculated for a random sample, 1009 

nestbox, day and site averaging over variation in other predictor variables (for further 1010 

details see Appendix 2). Expectations were generated for 2014 and a single faecal 1011 

sample. 1012 

 1013 

Predictor Sampling 

position 

MOTU 

richness at 

mean 

MOTU 

richness at 

minimum 

MOTU 

richness at 

maximum 

Jaccard 

index 

Standardised 

Jaccard index1 

Latitude Mean 2.339 

(1.665 - 

3.271) 

  0.011 
(0.008 - 
0.015) 

5.255 (4.238 - 
6.296) 

Latitude Extremes  2.607 (1.476 - 
3.831) 

2.213 (1.266 - 
3.444) 

0.009 
(0.006 - 
0.012) 

3.569 (2.776 - 
4.423) 

Elevation Mean 2.340 

(1.669 - 

3.277) 

  0.013 
(0.009 - 
0.017) 

5.966 (4.814 - 
7.179) 

Elevation Extremes  2.435 (1.524 - 
3.647) 
 

2.138 (1.084 - 
3.700) 
 

0.008 
(0.005 - 
0.011) 

2.344 (1.727 - 
3.047) 

Day of 

year 

Mean 2.464 
(1.653 - 
3.252) 
 

  0.013 
(0.008 - 
0.017) 

5.922 (4.811 - 
7.103) 

Day of 

year 

Extremes  1.981 (1.352 - 
2.848) 
 

3.933 (2.459 - 
5.603) 
 

0.007 
(0.005 - 
0.010) 

1.973 (1.431 - 
2.592) 

 1014 

1 The standardised Jaccard index is the ratio of the observed index to that expected if the same number 1015 

of species were sampled at random from two communities (see Appendix 2). It will tend to be > 1 as 1016 

common/widespread species will be over-represented in both communities. The expectation for the 1017 

Jaccard index and standardised index for two samples taken entirely at random from the transect is 1018 
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0.01 (0.007 – 0.014) and 4.727 (3.891 – 5.732), respectively, and these values can be taken as a 1019 

baseline that captures the effect of common/widespread species on measures of community similarity.    1020 
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 1021 

Fig. 1 A Histogram of the abundance distribution of prey MOTUs. Inset details the 1022 
most prevalent MOTUs identified to species level (those recorded in more than 50 1023 
samples), with the number of samples they were recorded in. B Relative abundance of 1024 
prey orders in the spring diet of blue tits. C Number of MOTUs within prey orders 1025 
(families comprising > 10 MOTUs are highlighted individually within their respective 1026 
orders). In B and C orders within Insecta (left) are split from orders within other classes 1027 
(right). Images are used to indicate taxonomic order rather than the life-stage or species 1028 
that is preyed upon. 1029 
  1030 
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 1031 

Fig. 2 Dietary richness (A – C) and turnover (D – F) along latitudinal (A, D), 1032 
elevational (B, E) and temporal (C, F) gradients. In A - C the solid black lines indicates 1033 
the model prediction of dietary MOTU occurrence (related to richness), with the solid 1034 
orange area illustrating the 95% credible intervals in the slope. In D – F the green lines 1035 
correspond to the 95% upper and lower bounds of the estimated distribution of among-1036 
MOTU slopes. The wider the difference between the upper and lower line the greater 1037 
the turnover along the gradient. Predictions are made from the core model (Table S4B). 1038 
  1039 
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 1040 

Fig. 3 Model predictions for the occurence of six prey orders across A. latitude, B. 1041 

elevation, C. day of year and D. tree diversity. Predictions are made based on the 1042 

intercept of the model reported in Table S5. 1043 


