
Please cite the Published Version

Ausaf, A, Khan, MZ, Javed, MA and Bashir, AK (2020) WLAN aware cognitive medium access
control protocol for IoT applications. Future Internet, 12 (1). ISSN 1999-5903

DOI: https://doi.org/10.3390/fi12010011

Publisher: MDPI AG

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/625218/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article published in Future Internet by MDPI.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-7595-2522
https://doi.org/10.3390/fi12010011
https://e-space.mmu.ac.uk/625218/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


future internet

Article

WLAN Aware Cognitive Medium Access Control
Protocol for IoT Applications

Asfund Ausaf 1, Mohammad Zubair Khan 2,*, Muhammad Awais Javed 1,* and
Ali Kashif Bashir 3

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad,
Islamabad 45550, Pakistan; asfundausaf@gmail.com

2 Department of Computer Science, College of Computer Science and Engineering,
Taibah University Madinah, Madina 42353, Saudi Arabia

3 Department of Computing and Mathematics, Manchester Metropolitan University,
Manchester M15 6BH, UK; dr.alikashif.b@ieee.org

* Correspondence: mkhanb@taibahu.edu.sa (M.Z.K.); awais.javed@comsats.edu.pk (M.A.J.);
Tel.: +966-537562956 (M.Z.K.); +92-3355927096 (M.A.J.)

Received: 4 December 2019; Accepted: 9 January 2020; Published: 11 January 2020
����������
�������

Abstract: Internet of Things (IoT)-based devices consist of wireless sensor nodes that are
battery-powered; thus, energy efficiency is a major issue. IEEE 802.15.4-compliant IoT devices
operate in the unlicensed Industrial, Scientific, and Medical (ISM) band of 2.4 GHz and are subject to
interference caused by high-powered IEEE 802.11-compliant Wireless Local Area Network (WLAN)
users. This interference causes frequent packet drop and energy loss for IoT users. In this work,
we propose a WLAN Aware Cognitive Medium Access Control (WAC-MAC) protocol for IoT
users that uses techniques, such as energy detection based sensing, adaptive wake-up scheduling,
and adaptive backoff, to reduce interference with the WSN and improve network lifetime of the
IoT users. Results show that the proposed WAC-MAC achieves a higher packet reception rate and
reduces the energy consumption of IoT nodes.

Keywords: wireless sensor networks; medium access control; IEEE 802.15.4; IEEE 802.11

1. Introduction

Wi-Fi is one of the major contributors to today’s global connectivity and economy [1]. With a
significant increase in wireless data transfer demands in recent years, the wireless spectrum has
become a scarce and expensive resource. As the number of Internet of Things (IoT) devices utilizing
the open spectrum bands (like the 2.4 GHz band) is increased, this calls for a reevaluation of spectrum
access protocols. Since the medium access control protocols are designed for a particular technology,
they fail to achieve fair and efficient wireless resource sharing in the presence of interference from
other miscellaneous technologies [2–9].

Wi-Fi is the major source of interference in the Industrial, Scientific, and Medical (ISM) radio band
due to its high power and data rate as compared to the other technologies sharing the same 2.4 GHz
ISM band [10]. Other technologies, such as IoT devices operating in the ISM band, can greatly benefit
from the knowledge of current spectrum occupancy and design protocols for wireless coexistence,
thus improving their transmission efficiency.

IoT devices consist of battery-powered wireless sensor nodes, and depletion of the battery
will strip IoT devices from network communication. A common scenario in the future will be the
co-existence of various IoT devices (consisting of IEEE 802.15.4 based wireless sensor nodes) with
the already installed IEEE 802.11-based Wireless Local Area Network (WLAN). Both these wireless
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technologies operate in the unlicensed ISM band of 2.4 GHz and cause interference to each others’
transmissions. For this particular scenario, IoT devices will be subjected to more interference caused
by the high-powered WLAN system. On the other hand, interference from the low-powered IEEE
802.15.4 transmissions will not impact the performance of the IEEE 802.11 devices [11].

A key issue in IoT is that WLAN nodes are unaware or blind to the existence of IEEE 802.15.4-based
IoT devices due to the difference in the magnitude of transmission power. Therefore, WLAN nodes
do not defer channel access when there is an ongoing packet transmission of packet IoT nodes.
This overlapping of transmission results in frequent packet drop and energy loss for the IoT nodes
when they are communicating with the IoT edge devices or sink nodes. An efficient medium access
control protocol for IoT nodes is required to reduce packet loss due to transmission overlap so that the
energy efficiency of IoT devices can be improved.

Performance evaluation of WLAN shows that its traffic is bursty, i.e., data frames are transmitted
together in clusters and have short intervals between them, while the idle inactive periods between
the cluster of frames are notably longer and can be exploited by IoT nodes for their transmission [12].
Cognitive medium access is a dynamic spectrum access method that allows secondary users to access
the primary user’s radio spectrum (which is not currently used by the primary user) [13–16].

In this paper, we propose a WLAN Aware Cognitive Medium Access Control (WAC-MAC)
protocol that is adopted by the IEEE 802.15.4-compliant IoT nodes to reduce the interference of
co-existing WLAN nodes. IoT nodes employ a sensing mechanism based on energy detection to find
WLAN user activity and identify inactive periods of WLAN transmission. This is done by introducing
a sensing phase in the superframe structure. WAC-MAC also uses an adaptive wake-up scheduling
technique that reduces the current beacon interval in case the medium is busy after the sensing phase.
This results in quicker sensing of the medium, again, instead of sleeping for the long beacon interval.
Lastly, the WAC-MAC protocol uses an adaptive backoff scheme based on the node’s battery lifetime.
This mechanism allows nodes with less remaining energy to transmit quickly, hence conserving their
energy. Results show that the proposed WAC-MAC protocol reduces the packet loss, as well as
improves network energy life time and end-to-end delay. The following are the major contribution of
our paper.

• Addition of a sensing phase in the superframe structure which allows IoT nodes to determine
WLAN transmission and to subsequently identify extended inactive period between the cluster of
WLAN frames.

• An adaptive wake-up scheduling scheme for IoT nodes which allows them to modify their
superframe duration and beacon intervals in case the medium is busy with WLAN transmissions.

• An adaptive backoff scheme for IoT nodes which prioritizes the channel access for nodes with
lower remaining battery life.

The rest of the paper is organized as follows. In Section 2, we provide a detailed review of
the literature. Section 3 gives an overview and operation of the IEEE 802.11 and the IEEE 802.15.4
technologies. In Section 4, we provide the considered system model including interference, sensing,
and energy consumption model. Section 5 describes the proposed WAC-MAC protocol. In Section 6,
performance evaluation, including the simulation results, is presented. Finally, we conclude the paper
in Section 7.

2. Related Work

Several ideas have been proposed to improve the communication and energy efficiency in IoT
wireless sensor devices. In Reference [17], the authors minimize the idle listening time by turning off
the radio of the sensor nodes when they are idle and not transmitting. This technique is implemented
by using wake-up radios and an adaptive duty cycle control algorithm. In Reference [18,19], wireless
sensor nodes tune to the best available communication band in a multi-channel network based on
cross-network interference.
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The authors in [20] propose techniques, such as frame aggregation and back-up channel
availability, to improve the energy efficiency of the network. When both the sender and the receiver of
a packet are the same, frame aggregation is performed at the MAC layer, where ten data frames are
combined. Using this approach, packet overhead is reduced since packet headers are only attached
once with the aggregated frame. To improve network reliability, backup channel availability is used
in which, at any instant, if a primary user needs to access a channel when secondary users may be
engaged in a communication, then without any transmission break-up, the secondary users move over
to the available backup channel.

Authors in [21] propose a multi-channel MAC protocol in which secondary users reserve data
channels using information exchange on a separate control channel. Nodes share information, such as
channel sensing and destination node address, in the form of short preamble packets sent in series,
rather than an extended preamble. Rather than being awake for the extended preamble, nodes that are
not the destination for a packet go to sleep mode whenever the first short preamble is heard.

Reference [22] proposed a MAC protocol that improves channel utilization and energy efficiency.
In a cognitive network where periodic spectrum sensing is performed, the transmission interval that is
available for secondary users is often narrow which results in contention and reduced energy efficiency.
The proposed scheme grants access to a single secondary user to transmit data packets before the start
of the next spectrum sensing interval. Within this period, all other nodes go into their sleep mode,
hence conserving the energy.

In Reference [23], authors propose a MAC protocol that mitigates WLAN interference experienced
by the Zigbee devices using payload and header redundancy. WLAN transmissions can uniformly
alter any of the bits in a Zigbee packet, thereby losing the whole frame. In the case of collisions,
the header is generally the part that is altered. The proposed MAC protocol sends frames with multiple
headers, allowing numerous opportunities to detect the packets. Having multiple headers increases
network overhead, but it minimizes data loss, thereby reducing packet re-transmission, increasing
network delivery rate, and improving energy consumption.

Authors in [24] propose a MAC protocol in which wireless sensors nodes (with packets to transmit)
force WLAN to back off by sending a high powered jamming signal at the Distributed Interframe
Spacing (DIFS) interval. The transmit power value of the jamming signal is set to the maximum WLAN
power measured during the sensing period. The proposed MAC protocol reduces collision faced by
the sensor nodes and results in a high packet delivery ratio. However, due to the use of jamming
signals, the energy consumption of the network is increased.

A multi-hop cognitive MAC protocol is proposed in Reference [25] to reduce energy consumption
caused by hidden WLAN terminals. Using continuous spectrum sensing, nodes decide about the
available transmission opportunities. The next-hop distance for multi-hop communication is optimized
based on the WLAN channel occupancy statistics. Results show an increased data throughput and
reduced packet error rate.

A coexistence model between IEEE 802.15.4 and IEEE 802.11b/g is proposed by authors in [10].
The model uses factors, such as transmit power and transmission time, to establish co-existence ranges.
The concept of co-existence ranges has been established by extending the concept of interference
ranges and sensing across various wireless standards. Sensor nodes transmit packets by identifying
IEEE 802.11 frame spaces and co-existence ranges.

Several works predict the availability of a free channel to avoid WLAN interference. For the
case when there is a single WLAN access point with non-saturated traffic, Reference [26] modeled the
arrival rate of WLAN packets as a Bernoulli process. A Poisson arrival process is assumed for WLAN
traffic, and queuing technique (M/G/1) is used for output buffer modeling in Reference [27]. Inspired
from the work of Reference [25,27], a superframe structure is proposed, with the added function of
spectrum sensing to capture the two causes of inactivity; one is the time interval of the long white
space, while the other is the short back off interval between two consecutive frames.
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A major issue in the previous works is the high energy consumption of IoT nodes and inefficient
utilization of WLAN extended inactive period. In this paper, we focus on these two problems and
provide a solution.

3. Overview and Operation of IEEE 802.11 and IEEE 802.15.4

3.1. IEEE 802.11

IEEE 802.11 specifies medium access control, physical layer rules, and algorithms for WLAN.
There are two modes of operation for implementation of Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) in WLAN that are supported by the IEEE 802.11: (i) Distributed Coordination
Function (DCF): Contention-based access method that uses virtual carrier sensing along with physical
sensing. Just like Ethernet, it first checks whether the radio link is free before transmitting. Stations use
a random backoff after every frame to avoid collision, with the first transmitting devices seizing the
channel. DCF may apply Clear To Send/Request To Send technique to further reduce the probability
of collisions; and (ii) Point Coordination Function (PCF): Contention-free access method where the
access point manages transmission between nodes using polling. To obtain priority over standard
contention based utilities, PCF allows stations to transmit frames after a shorter interval [28].

WLAN DCF Traffic Model

WLAN traffic is bursty and its channel utilization is as shown in Figure 1. As can be seen,
there exist gaps or periods of inactivity between two consecutive packets, as shown in Figure 2 [12].
WLAN data frames exist in clusters with short intervals between them, whereas the idle inactive
periods between the clusters are longer. The reason for short intervals between the frames is due to
the contention mechanism of the IEEE 802.11 MAC layer, in which senders take backoff for a short
random interval before every transmission [29].

Figure 1. Traffic traces of Wireless Local Area Network (WLAN) networks in real-time envirnoment [12].

Figure 2. Enlarged view of WLAN traffic traces, packet transmission [12].

Most of the WLAN traffic uses Distributed Coordination Function (DCF) method. In case of
DCF media access type, WLAN users sense the channel before initiating a transmission, as shown
in Figure 3. If the medium is sensed as idle for Distributed Interframe Spacing (DIFS) time interval,
the transmission takes place; otherwise, the node defers its transmission. After the DIFS interval,
the node will generate a random backoff delay uniformly chosen between an interval [0, W], which is
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called the Contention Window (CW), where W is the size of the contention window. Initial W is set
to a value of minimum contention window, or CWmin. Once the channel is again free for a DIFS time
interval, the back-off timer is decremented. The backoff counter freezes if a transmission is detected on
the medium. When the backoff timer reaches zero, the node transmits a data packet and waits for the
Short Interframe Spacing (SIFS) interval before the next transmission [30].

Figure 3. WLAN basic media access control scheme; slotted Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) contention-based channel access. DIFS = Distributed Interframe
Spacing; SIFS = Short Interframe Spacing.

WLAN activity is divided into two states, the active state and the idle state. The active state
consists of the time data is transmitted, including DIFS, SIFS, and Acknowledgment (ACK) intervals.
The idle state consists of the WLAN contention period known as the contention window (CW) and
WLAN inactive period known as white space (WS). Several works in the literature have modeled the
active and inactive periods of WLAN [27,31]. As in Reference [25], active period fA(t) can be modeled
by a uniform distribution, as given below:

fA(t) =
1

τmax − τmin
, t ε (τmin, τmax), (1)

where parameters (τmax) and (τmin) define range of maximum and minimum values of the estimated
active period.

Similarly, time spent by the WLAN users for contention, i.e., for backoff procedure, can be
modeled by uniform distribution, as given below [25]:

fCW(t) =
1

τBK − 0
, t ε (0, τBK), (2)

where parameters (τBK) represent the maximum backoff time, given by the WLAN specification.
To estimate the idle duration due to WLAN inactive periods is more involved and depends on

the type of user traffic. Several candidate distributions are widely used for spectrum activity modeling
and are employed for deriving empirical IEEE 802.11 Cumulative Distribution Functions (CDF) of
network idle-time [32]. In this paper, we employ Poisson distribution to estimate the WLAN inactive
period with exponentially distributed inter-arrival time.

3.2. IEEE 802.15.4

The IEEE 802.15.4 is the MAC and physical layer standard for low rate wireless personal area
networks. The IoT devices considered in this paper consist of IEEE 802.15.4-compliant sensor nodes and
an infrastructure unit in the form of a network coordinator (sink node). IoT devices have low power
and limited processing abilities that often communicate in single and multi-hop fashion. Each IoT
sensor node consists of a sensing unit, storage unit, transceiver unit, processing unit, and power
unit [33]. IEEE 802.15.4 employs two modes of operation. Beacon Mode, in which slotted Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA), as shown in Figure 4, is used for data
transmission. Clear Channel Assessment (CCA) is used in the physical layer to determine the channel
occupancy [34]. CCA either performs Energy Detection or Carrier Sense, or a combination of both.
CCA shall report a busy channel upon detection of any energy above the predefined energy threshold
or a signal with known characteristics, such as modulation and spreading features. In IEEE 802.15.4
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WSNs, a channel is sensed only during the CCA period. In Non-Beacon Mode, un-slotted CSMA/CA is
used for data transmission [35].

Figure 4. IEEE 802.15.4 basic media access control scheme; slotted CSMA/CA contention-based channel
access. CCA = Clear Channel Assessment.

3.2.1. Beacon Mode Versus Non-Beacon Mode Comparison

Beacon-enabled mode has several advantages over non-beacon-enabled mode of sensor nodes.
In beacon-enabled mode, regular beacons are sent by network coordinator (sink node) to synchronize
all the sensor nodes and allocate Guaranteed Time Slot (GTS) for data transmission. Moreover,
it supports a flexible Duty Cycle (DC), where the active time of the nodes can be adjusted as per the
network scenario. In comparison, non-beacon enabled mode is suitable for an ad hoc communication
scenario where there is no coordinator node.

3.2.2. IEEE 802.15.4 Superframe Structure

IEEE 802.15.4 uses a superframe structure, as shown in Figure 5, to control channel access and the
network coordinator (sink node) transmits beacons at predetermined intervals [36]. The coordinator
splits the superframe into active and inactive periods. The Beacon Interval (BI) is defined as the time
interval after which the superframe is repeated. The Superframe Duration (SD) is defined as the time
interval of the active period. The active period (or SD) is the sum of the Contention Access Period
(CAP) and Contention Free Period (CFP). Each SD consists of 16 time slots, of which CFP is allocated
7 time slots. By using two parameters, namely the Beacon Order (BO) and the Superframe Order (SO),
the coordinator controls the duty cycle of the superframe, i.e., BI and SD. During the CAP, the sensor
nodes must contest with each other using slotted CSMA/CA to transmit the GTS request (for data
transmission) to the coordinator. The coordinator then allocates GTS in the CFP of the next BI. In every
BI, the nodes go into inactive mode to preserve energy [37].

Figure 5. IEEE 802.15.4 superframe structure. CAP = Contention Access Period; CFP = Contention Free
Period; GTS = Guaranteed Time Slot.

To evaluate Beacon Interval and Superframe Duration, the following equation can be used:

BI = 960× 2BO, (3)
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SD = 960× 2SO. (4)

The Duty Cycle is given by the following equation:

DC =
SO
BO

= 2(SO−BO), (5)

where 0 ≤ SO ≤ BO ≤ 14.

3.2.3. IEEE 802.15.4 Contention-Based Channel Access in Beacon-Enabled Mode

In the case of IEEE 802.15.4 contention-based channel access, the two main variables that
control the channel access algorithm are the number of backoff (NB) and the backoff exponent (BE).
Here, NB controls the number of times the CSMA/CA algorithm must take a backoff for channel
access, and BE defines the number of backoff periods for channel access. At the start, NB is initialized
with a value equal to zero and the value of BE is selected as BE ε (macMinBE, macMaxBE) with an
initial value of macMinBE (default value equal to 3). To avoid collisions, the contention algorithm
uses a random wait time in the range of [2BE − 1]. Here, one backoff unit period is equal to 20Ts

(Ts = 16 µs). After the random backoff time, the channel is sensed for a time interval equal to Clear
Channel Assessment (CCA). If the channel is busy, then the contention algorithm increments the values
of BE and NB by one, while checking that BE does not increase beyond macMaxBE. If NB has a value
of less than or equal to macMaxBE, the backoff process is repeated or the packet is dropped. If the
channel is idle after CCA, CSMA/CA will immediately start the data transmission process [38].

4. System Model

The system model considered in this paper is shown in Figure 6. The IoT network includes a
WLAN access point that covers the area in which IoT nodes are deployed. A beacon-enabled single-hop
sensor network is considered, which consists of a network coordinator (sink node) or coordinator
communicating with several IoT sensors S = 1, 2, ..., N. WLAN and IoT sensor nodes are static and
operate at ISM Band (2.4 GHz). The transmission power of WLAN is usually around 12 dBm to
−20 dBm. The WLAN stations are not aware of the IoT sensor nodes [29] as the WLAN carrier sense
does not allow the detection of low-powered sensor node signals. This causes collisions and packet
losses for the IoT nodes. On the other hand, the transmission power of the IoT sensor nodes is in
the order of 0 dBm to −3 dBm [39], and their impact on WLAN transmissions is imperceptible [31].
To ensure efficient IoT communications, WLAN activity should be considered before transmission.

Figure 6. System model.
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4.1. Interference Model

The signal propagation considered in this paper is based on the free space path loss model.
For correct reception of a packet by the WSN node, the received power should be higher than the
given threshold, denoted as λ, which is the Signal to Interference plus Noise Ratio (SINR) threshold.
If a receiver IoT node comes within the transmission region of the WLAN transmitter, the packet of
IoT node is lost. An interference radius RI (area from which the interference exists from a WLAN
transmission) for IoT node can be expressed as follows [39]:

RI =
η

√
(λ)(PWLAN)(PLo)

(PIoT)(PLo)(r−η)− (λ)(σ2
N)

, (6)

where r is the distance between the transmitter and the receiver IoT sensor nodes, η is the path
loss exponent, PIoT is the IoT sensor node’s transmit power, PWLAN is the WLAN transmit power,
PLo denotes the attenuation (at a distance of 1 m), and σ2

N is the noise power. In this research, we used
a simple noise model where noise power is given as N = kTB. Here k is Boltzmann constant, T is
temperature and B is bandwidth. We ignored antenna noise temperature and receiver noise figure to
simplify the noise model.

4.2. Sensing Model

IoT nodes carry out channel sensing based on energy detection through its incorporated Received
Signal Strength Indicator (RSSI). Two types of sensing are performed by the sensor nodes; the first
one is for identifying the WLAN inactive period, and the second one is for channel access control.
Sensing measurement is based on sensor node’s parameter called the maximum sensitivity level (ψ). It is
defined as the minimum signal SNR that can be detected by a sensor node. Sensing procedure within a
finite time can be modeled as probabilistic energy detection, which is characterized by the parameters,
such as the probability of missed detection pMD (signal is not detected) and the probability of false
alarm pFA (when the sensing detects the signal while the channel is idle).

Energy detection of a signal depends on the estimation of energy decision threshold γ, which is
a function of the probability of false alarm pFA and sensing time ts and is calculated for a certain
value of the probability of false alarm. Probability of false alarm pFA is expressed by the following
equation [40]:

pFA(ts; γ) = Q
(
(γ− σ2

N)/σ2
N

√
2/( fsts)

)
, (7)

where σ2
N is noise power, fs is sampling frequency and ts is sensing time. Energy decision threshold γ

is given as follows:

γ(pFA) = max
{

ψ, σ2
N

[
1 +

√
(2/( fsts)Q−1(pFA)

]}
. (8)

Sensor nodes determine the received signal power level and compare it with the energy decision
threshold γ to decide about the presence of the signal. Probability of missed detection pMD depends
on the received signal power PRx(d) and distance to the transmitter d:

PRx(d) = (PWLAN)(PLo)(d−η), (9)

where PWLAN is WLAN transmit power, PLo is attenuation at a reference distance, and η is the path loss
exponent. With known received signal power, we can determine the probability of missed detection,
which is expressed as follows [40]:

pMD(ts, d; γ(pFA)) = 1−Q

(
γ(pFA)− (σ2

N + PRx(d))
σ2

N

√
(2/( fsts)

)
. (10)
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Complement of probability of missed detection is probability of detection, i.e., (pD = 1− pMD),
which is given as follows:

pD(ts, d; γ(pFA)) = Q

(
γ(pFA)− (σ2

N + PRx(d))
σ2

N

√
(2/( fsts)

)
. (11)

4.3. Energy Consumption Model

IoT sensor nodes operate in four modes; transmission, reception, sleep, and idle. The total energy
consumed by the sensor node is the energy consumed during these four modes. Transmission mode is
the one in which the sensor node transmits data to either the coordinator or other nodes. The total
energy consumed by the sensor node in this phase depends on the size of the transmitted data [41].
In reception mode, the sensor node receives data from other nodes, such as the coordinator in our
model, and the total energy consumed in this mode depends on the amount of data received by the
sensor node. The idle mode is the one in which a node is not sending nor receiving packets, and energy
is mainly spent to power the circuit. In sleep mode, the majority of the sensor circuitry is turned off,
and the energy consumption of the sensor becomes minimal, depending on the sleep period duration.
Thus, the total energy consumed by the sensor node is equal to

Ec = Etx + Erx + Esleep + Eidle, (12)

where Ec is the total energy consumed during superframe, Etx is the energy consumed during data
transmission, Erx is the energy consumed during data reception, Esleep is the energy consumed during
sleep mode, and Eidle is the energy consumed during idle periods.

Etx = V × Itx × ttx = V × Itx ×
L
R

, (13)

where Etx is the energy consumed in transmitting the data, V is sensor battery voltage, Itx is the current
consumed during the transmission, and ttx is the time required for transmission, which is equal to the
ratio of packet size L to the data rate R.

The reception mode energy consumption consists of energy consumed during the beacon received
by the sensor nodes and given as:

Erx = V × Irx × trx = V × Irx ×
Beacon

R
, (14)

where Irx is the current required during the reception, and trx is the reception time.
Energy consumed during sleeping mode is given as:

Esleep = V × Isleep × tsleep, (15)

tsleep = BI − SD = 2BO−SO, (16)

where Isleep is the current drawn during the sleep period. BO and SO are beacon order and superframe
order values, respectively. Thus, the total energy consumed during a superframe is equal to:

Ec = V
[
(

L
R
)(Itx) + (2BO−SO)Isleep + (

Beacon
R

)(Itx)

]
. (17)

4.4. Performance Analysis of Energy Detection

The performance of the energy detection procedure is evaluated in this portion by comparing
simulation results with theoretical values. The energy detection technique relies on the energy of
the received signal to detect primary users. The first step in energy detection is the filtering of the
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out-of-band frequency signals. In the next step, these signals are passed through a square block and an
adder block. If the resulting output is greater than a threshold (γ), a licensed node is detected [42].

Received signal y(n) can be calculated from the following equation [43]:

y(n) = s(n) + w(n), (18)

where s(n) is the input signal power, w(n) is the additive white Gaussian noise (AWGN) sample, and n
is the sample’s index. Then, the decision metric based on the energy of the received signal can be
given as

M =
1
N

N

∑
n=1
|y(n)|2, (19)

where M is the decision metric, and N = ( fs ∗ ts) is the number of samples. Comparing the decision
metric M to a threshold γ corresponds to a selection between the following two hypotheses:

H0 : y(n) = w(n), (20)

H1 : y(n) = s(n) + w(n), (21)

where H0 stands for detection of noise only, and H1 stands for detection of noise and transmitted signal.
Receiver Operating Curve, or ROC, is often used to assess the performance of a detector based on

two metrics: first is the probability of false alarm, and second is the probability of detection. ROC plots
the probability of detection PD versus the probability of false alarm PFA for a given value of SNR.

Probability of detecting a transmitted signal is given as

PD = P
(

M >
γ

H1

)
. (22)

Probability of false alarm can be defined as the detection probability of the frequency band being
occupied when, in fact, there is no transmitted signal and can be written as

PFA = P
(

M >
γ

H0

)
. (23)

As per the definitions of both probabilities, it is noticeable that, for probability of detection,
high value is desired, and for probability of false alarm, low value is desired.

Figure 7 depicts the probability of detection of a WLAN user at different SNR values for a targeted
value of probability of false alarm. PD increases with the increase in received SNR. The plot shows
that the data obtained from simulation results closely match the theoretical values.

Figure 8 depicts the probability of detection of a WLAN user for different values of probability of
false alarm. It can be seen that increasing PFA will result in increased chances of PD.

Figure 9 depicts the probability of detection versus probability of false alarm for received
SNR = −12 dB. Results show that there is a greater chance of false detection at higher PD values.
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Figure 7. Receiver Operating Curve (ROC) plot for probability of detection vs received Signal To Noise
Ratio (SNR).

Figure 8. Plot for probability of detection vs SNR for different probability of false alarm.

Figure 9. ROC plot for probability of detection vs probability of false alarm.
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5. Proposed WLAN Aware Cognitive MAC (WAC- MAC) Protocol

In this section, we explain the proposed WLAN Aware Cognitive MAC (WAC-MAC) protocol
for IoT nodes to improve energy efficiency and data throughput. WAC-MAC protocol modifies
the superframe structure of IEEE 802.15.4 to incorporate sensing time slots for increased reliability.
Moreover, an adaptive wake-up scheduling mechanism is introduced to improve the end-to-end delay
of IoT data.

5.1. Sensing Time Slot in Superframe

WAC-MAC protocol adds a new time slot known as sensing time slot in the superframe structure,
as shown in Figure 10. Each beacon interval starts with a beacon frame used by the coordinator for
coordinator discovery and synchronization. Each sensor node then performs the spectrum sensing in
the sensing time slot. The goal of spectrum sensing is to determine if the spectrum is idle or active
using energy detection. The sensing time slot is greater than the maximum backoff value for WLAN
transmissions. This is done to identify if the channel is empty due to WLAN contention or extended
inactive period.

Figure 10. Proposed superframe structure and media access control scheme for Internet of Things
(IoT) network.

Note that IEEE 802.15.4 devices do adopt CSMA/CA strategy at the MAC level for media access
(i.e., manage contention between simultaneous IEEE 802.15.4 transmission). However, the additional
sensing phase introduced in this paper is to determine the extended inactive period between the
clusters of WLAN frames, which are notably longer. This additional sensing phase serves two
purposes: (1) to determine whether media is busy or idle; (2) to determine whether media is idle due
to WLAN contention window or due to WLAN extended inactive period. IEEE 802.15.4 devices can
transmit data in these extended inactive pockets, which will reduce the overlapping probability of
ongoing IEEE 802.15.4 devices transmission with new WLAN communication. In the proposed system
model, two types of sensing are performed; the first one is for WLAN active transmission, and second
one is for media access control.

After the sensing time, if the medium is idle, the sensor node proceeds with the transmission
using CSMA/CA. In case the channel is busy, the IoT nodes use the adaptive wake-up scheduling
mechanism explained in the next subsection. Note that CFP in the superframe is not considered in this
work since we assume that each IoT sensor node has continuous data to be transmitted to the network
coordinator (sink node) and no GTS requests are required to be sent. Thus, the active period consists
of CAP only.
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5.2. Adaptive Wake-Up Scheduling for Sensor Nodes

IoT sensor nodes go into sleep mode for the whole superframe duration if the medium is sensed
as busy and wakes up at the start of the next beacon interval. This is done to conserve energy in
sensor nodes to extend their lifespan; however, it also results in large end-to-end delay. To overcome
this problem, in WAC-MAC, an adaptive wake-up scheduling scheme is proposed based on results
of energy detection in which sensor nodes adjust their sleep time if the medium is found busy.
This is done through pruning in superframe duration SD by half, thus resulting in an early wake-up.
The coordinator node, after beacon transmission, immediately starts sensing the spectrum for primary
user activity. In the case of the user being present, the coordinator node also adjusts its beacon
transmission time accordingly. IoT sensor nodes dynamically adjust their wake-up scheduling based
on the result of energy detection to reduce end-to-end-delay, as illustrated in Algorithm 1.

Algorithm 1: Adaptive Wake-Up Scheduling Algorithm

1 Initialization;
2 Sensor node wake-up and starts listening the channel;

Data: Input
3 EWLAN ←WLAN Energy;
4 Tsleep ← Sensor Sleep Time;
5 Ttx ← Transmission Time;
6 Tbeacon ← Beacon Frame;
7 Tsensing ← Sensing Time;
8 SD = 960× 2SO;
9 SD = BI ← Superframe Duration = Beacon Interval;

10 Scan the channel until receive the beacon;
11 Scan the channel for WLAN activity;
12 while Scanning for WLAN activity do
13 if EWLAN = 1 then
14 BI = BI

2 ;
15 Tsleep = SD

2 × (Tbeacon + Tsensing);
16 WLAN user is present;
17 Superframe duration become half of the current duration;
18 else
19 BI = BI;
20 Tsleep = SD× (Tbeacon + Tsensing + Ttx);
21 WLAN user is absent;
22 Superframe duration remain same for the current duration;
23 end
24 end
25 Output: BI, Tsleep

5.3. Adaptive Backoff

For channel access in IEEE 802.15.4, the CSMA/CA algorithm uses only a small range of backoff
exponents values in the range of [macMinBE, macMaxBE], where the value of macMinBE by default is
equal to 3, and the value of macMaxBE is 5. The selection of these backoff exponents by all nodes may
result in collisions and cause energy loss in IoT nodes. To solve this issue, we propose an energy-based
adaptive backoff scheme where nodes with lower battery time are allocated a lower backoff value,
thus giving them a higher priority to transmit. A lower backoff value implies less wait required
for channel access. The advantage of this scheme is that nodes with lower energy can complete
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their transmissions before their energy gets depleted. Particularly, for energy harvesting-based
IoT nodes, this scheme allows nodes to go quickly into sleep mode and harvest energy for future
transmissions. Another advantage of this scheme is that nodes are allocated different macMinBE
values, hence reducing the chance of selecting the same backoff value. Nodes are divided into three
priority classes based on their energy level, as shown in the table 1.

Table 1. Energy Levels mapping to macMinBE Values. BE = backoff exponent.

Energy Level Priority Class MacMinBE Value

0%–30% L1 1

30%–60% L2 2

>60% L3 3

The energy level values are calculated based on the residual power of the sensors. Devices that
belong to priority class (L1) get their macMinBE value decremented by a value of ‘2’. Devices that
belong to priority class (L2) get their macMinBE value decremented by a value of ‘1’. Devices that
belong to priority class (L3) get their macMinBE value decremented by a value of ‘0’. Figure 11 depicts
the flow chart of proposed CSMA/CA with an adaptive backoff exponent scheme based on the energy
level of sensor nodes.

Figure 11. Proposed adaptive backoff exponent algorithm for IoT network node. NB = number of backoff.
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6. Simulation Results

We consider a beacon-enabled star topology IoT network for performance evaluation. A WLAN
access point covers an area where IoT nodes are deployed. Both WLAN and IoT nodes are static
and operating at 2.4 GHz ISM band. In the proposed model, the considered wireless sensor network
(WSN) load is very low; thus contention, congestion, and in-network interference have a minimal
impact on WSN, which we aim to loosen in future work. A single interfering WLAN user with a
payload size of 512 bytes that resides within transmission range of the Access Point is considered for
simulation. Frequency of WLAN transmission is modeled using Poisson distribution. Five active IoT
devices having different energy levels from one another are considered. Each IoT node sends uplink
data to the network coordinator (sink node) having uplink data of 15 bytes in size. IoT nodes reside
within the transmission range of WLAN users, having a radius of 50 m. The distance between the IoT
sensor nodes and the coordinator is kept at 15 m. Simulations are performed using MATLAB and IEEE
802.15.4-compliant MicaZ IoT sensor nodes are considered [44]. Parameters for an energy and channel
model for an IEEE 802.15.4-compliant IoT device are presented in Table 2. In the simulations, beacons
are sent by the coordinator at regular intervals to the sensor nodes. Simulation parameters for WLAN
and IoT sensors node are shown in Table 3.

Table 2. Energy model and channel model for IoT nodes.

Parameters Setup for Performance Evaluation

Parameter Value

Path Loss Exponent 4.0
Noise Power −103 dBm

Path Loss Attenuation 9.98 × 10−5

Sensing Time 0.512 × 10−3

Sampling Frequency 5 MHz
Battery 3 V

Sleeping Current 0.001 mA
Idle Current 0.02 mA

Receive Current 19.7 mA
Transmit Current 17.4 mA
Sensing Current 15.3 mA

Table 3. Simulation parameters for WLAN and IoT nodes. CW = Contention Window; BO = Beacon
Order; SO = Superframe Order.

System Parameters Used for Simulation

Parameter IEEE 802.15.4 IEEE 802.11b/g

Bandwidth 5 MHz 22 MHz
Transmission Power 0 dBm 12 dBm
Receiver Sensitivity −85 dBm −82 dBm
Transmission Rate 250 kbps 54 Mbps
Backoff unit time 320 µs 20 µs

CCA 128 µs N/A
DIFS N/A 50 µs

CWmin N/A 15
Payload Size 15 byte 512 bytes

BO = SO 0 N/A
macMinBE 3 N/A
macMaxBE 5 N/A

Max Retransmission 5 N/A

We compare the proposed WAC-MAC protocol with the protocol in the IEEE 802.15.4 standard.
Metrics used for comparison include the number of packets received, end-to-end delay, network energy
consumption, the energy consumption of individual nodes, and network lifetime.
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6.1. Number of Packets Received

Figure 12 shows the cumulative number of packets received for the standard and the proposed
WAC-MAC protocol. WAC-MAC protocol delivers 780 bytes of data as compared to 700 bytes of
data transmitted by the standards scheme. This improvement in the number of packets sent is due
to the added function of sensing before frame transmission to identify WLAN inactivity periods,
thus resulting in low chances of transmission overlap with the WLAN user.

Figure 12. Number of packets received. WAC-MAC = WLAN Aware Cognitive Medium Access Control.

6.2. End-to-End Delay

Figure 13 shows the average end-to-end delay of packets for both the standard and the proposed
WAC-MAC protocols. The standard scheme can achieve lower end-to-end delay as compared to the
WAC-MAC protocol. Particularly, for 600 kilobytes of data transmission, the standard scheme takes
around 250 ms as compared to 450 ms taken by the WAC-MAC protocol. The lower end-to-end delay
of the standard protocol is due to the absence of any sensing mechanism within the frame duration.
In comparison, WAC-MAC protocol adds the sensing phase at the start of the frame to detect WLAN
users. However, WAC-MAC transmits more data as compared to the standard scheme, at the cost of
higher delay.

Figure 13. End-to-end delay.
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6.3. Network Energy Consumption

Figure 14 plots network energy consumption, including all the senor nodes, in the standard
and the proposed WAC-MAC method. As illustrated in the following figures, the standard protocol
consumes 0.25–2 joules more energy as compared to the WAC-MAC protocol. This increased energy
consumption is due to packet loss of the sensors caused by the WLAN interference. WAC-MAC
reduces simultaneous transmissions between the WLAN users and IoT sensor nodes by adding the
sensing function. This reduces packet loss and improves the energy efficiency of the sensor nodes.

Figure 14. Network energy consumption.

6.4. Energy Consumption of Individual Nodes

Figure 15 illustrates the energy consumption of individual sensor nodes having different energy
levels for the standard and the proposed WAC-MAC protocol. It can be seen that all the sensor nodes
improve their energy consumption by 0.5–1 joules using WAC-MAC protocol. The improvement is
due to the addition of the sensing phase, as well as the adaptive backoff algorithm, in which nodes
with depleted battery life are assigned priority transmissions.

Figure 15. Energy consumption of individual nodes.
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6.5. Network Lifetime

Figure 16 illustrates the lifetime of IoT nodes for the standard and the proposed WAC-MAC
protocol. The graph shows the number of beacon intervals required to deplete the energy of a sensor
node. For the standard protocol, all nodes deplete their energy within 17 BI. On the other hand,
WAC-MAC extends the network lifetime of IoT nodes to 27 BI. This improvement is due to the added
function of sensing in the proposed WAC-MAC, as a result of which the sensor nodes transit to the
sleep mode if WLAN user is active during the sensing period. This results in the energy conservation
of IoT sensor nodes, which would otherwise be wasted due to unsuccessful transmission.

Figure 16. Network lifetime.

7. Conclusions

In this paper, we consider a co-existence scenario in which low-powered IEEE 802.15.4 IoT devices
are subjected to interference caused by high-powered IEEE 802.11 devices. We propose a WLAN Aware
Cognitive Medium Access Control (WAC-MAC) protocol that is adopted by the IoT users to reduce the
interference of co-existing WLAN users. The proposed WAC-MAC alters the superframe structure of
the IEEE 802.15.4 to introduce the sensing phase based on energy detection and incorporates adaptive
wake-up scheduling in case the medium is busy. Moreover, an adaptive backoff scheme based on
the battery of the sensor node is also included to reduce collisions and improve network lifetime.
Results show that the proposed WAC-MAC protocol increases the number of received packets and
reduces the energy consumption of IoT nodes.
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