

Please cite the Published Version

Hanley, ME, Bouma, TJ and Mossman, HL (10) (2019) The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat. Annals of Botany, 125 (2). pp. 197-212. ISSN 0305-7364

DOI: https://doi.org/10.1093/aob/mcz204

Publisher: Oxford University Press (OUP)

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/625211/

Usage rights: O In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publication in Annals of Botany, published by and copyright Oxford University Press.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat

Thank you for agreeing to review this paper for Annals of Botany. The Annals of Botany aims to be among the very top of plant science journals and as we receive over 1000 submissions every year we need to be very selective in deciding which papers we can publish. In making your assessment of the manuscript's suitability for publication in the journal please consider the following points.

Scientific Scope

Annals of Botany welcomes papers in all areas of plant science. Papers may address questions at any level of biological organization ranging from molecular through cells and organs, to whole organisms, species, communities and ecosystems. Its scope extends to all flowering and non-flowering taxa, and to evolutionary and pathology research. Many questions are addressed using comparative studies, genetics, genomics, molecular tools, and modeling.

To merit publication in Annals of Botany, contributions should be substantial, concise, written in clear English and combine originality of content with potential general interest.

- We want to publish papers where our reviewers are enthusiastic about the science: is this a paper that you would keep for reference, or pass on to your colleagues? If the answer is "no" then please enter a low priority score when you submit your report.
- We want to publish papers with novel and original content that move the subject forward, not papers that report incremental advances or findings that are already well known in other species. Please consider this when you enter a score for originality when you submit your report.

Notes on categories of papers:

All review-type articles should be novel, rigorous, substantial and "make a difference" to plant science. The purpose is to summarise, clearly and succinctly, the "cutting edge" of the subject and how future research would best be directed. Reviews should be relevant to a broad audience and all should have a strong conclusion and illustrations including diagrams.

- Primary Research articles should report on original research relevant to the scope of the journal, demonstrating an important
 advance in the subject area, and the results should be clearly presented, novel and supported by appropriate experimental
 approaches. The Introduction should clearly set the context for the work and the Discussion should demonstrate the importance of
 the results within that context. Concise speculation, models and hypotheses are encouraged, but must be informed by the results
 and by the authors' expert knowledge of the subject.
- *Reviews* should place the subject in context, add significantly to previous reviews in the subject area and moving forward research in the subject area. Reviews should be selective, including the most important and best, up-to-date, references, not a blow-by-blow and exhaustive listing.
- Research in Context should combine a review/overview of a subject area with original research, often leading to new ideas or models; they present a hybrid of review and research. Typically a Research in Context article contains an extended Introduction that provides a general overview of the topic before incorporating new research results with a Discussion proposing general models and the impact of the research.
- *Viewpoints* are shorter reviews, presenting clear, concise and logical arguments supporting the authors' opinions, and in doing so help to stimulate discussions within the topic.
- Botanical Briefings are concise, perhaps more specialised reviews and usually cover topical issues, maybe involving some controversy.

1	The gathering storm: optimizing
2	management of coastal ecosystems in the
3	face of a climate-driven threat
4	
5	Mick E Hanley ^{*1} , Tjeerd J Bouma ^{2,3} & Hannah L Mossman ⁴
6	
7 8	1 School of Biological and Marine Sciences, University of Plymouth, UK. mehanley@plymouth.ac.uk
9 10	2 Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Korringaweg 7, 4401 NT Yerseke.
11 12	3 The Netherlands and Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands
13	4 Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
14	
15	
16	*Author for correspondence: Dr Mick Hanley
17	Tel: +44 (0) 1752 584631
18	E-mail: mehanley@plymouth.ac.uk
19	Orchid ID 0000-0002-3966-8919
20	
21	
22	Running Head: Coastal plants and extreme storm events
23	

ABSTRACT

25 •	Background The combination of rising sea levels and increased likelihood of extreme
26	storm events poses a major flood and erosion threat to our coastlines. As a result, many
27	ecosystems recognized and valued for their important contribution to coastal defence,
28	face increased damage from erosion and flooding. Nevertheless, only recently have we
29	begun to examine how plant species and communities, respond to, and recover from,
30	the many disturbances associated with storm events.
31 •	Scope We review how the threats posed by a combination of sea level rise and storms
32	affects coastal sub-, inter-, and supra-tidal plant communities. We consider
33	ecophysiological impacts at the level of the individual plant, but also how ecological
34	interactions at community-level, and responses at landscape-scale, inform our
35	understanding of how and why an increasing frequency and intensity of storm damage
36	is vital to effective coastal management. While noting how research is centred on the
37	impact of hurricanes in the US Gulf region, we take a global perspective and consider
38	how ecosystems worldwide (e.g., seagrass, kelp forests, sand dunes, saltmarsh,
39	mangroves) respond to storm damage and contribute to coastal defence.
40 •	Conclusions The threats posed by storms to coastal plant communities are undoubtedly
41	severe, but beyond this obvious conclusion, we highlight four research priority areas.
42	These call for studies focusing on (1) how storm disturbance affects plant reproduction
43	and recruitment; (2) plant response to the multiple-stressors associated with ACC and
44	storm events; (3) the role of ecosystem-level interactions in dictating post-disturbance
45	recovery; and (4) models and long-term monitoring to better predict where and how

46	storms and other climate change-driven phenomenon impact coastal ecosystems and
47	services. In so doing, we argue how plant scientists must work with geomorphologists
48	and environmental agencies to protect the unique biodiversity and pivotal contribution
49	to coastal defence delivered by plant communities.
50	
51	Key Words: Coastal Erosion - Flooding – Hurricanes -Kelp – Mangrove – Pine savannah -
52	Salt Marsh – Sand Dunes – Seagrass - Sea-Level Rise - Storm Surge – Wave Attenuation
53	
54	
55	
56	

INTRODUCTION

58	The past, present, and likely future impacts of Anthropogenic Climate Change (ACC) on
59	terrestrial plant species and communities are widely reported and reasonably well
60	understood (Parmesan and Hanley, 2015). Most studies focus on long-term, chronic effects,
61	but considerable environmental threat is likely to stem from an increased frequency and
62	intensity of acute, extreme events (Vasseur et al., 2014; Parmesan and Hanley, 2015).
63	Although chronic stressors doubtless reduce ecosystem resilience, for many coastal plant
64	communities the most important manifestation of ACC is likely to come from the acute
65	disturbance, erosion, and flooding associated with storm events.
66	In their most recent assessment of our changing climate, the Intergovernmental Panel on
67	Climate Change (IPCC 2019) asserted that anthropogenically-driven Sea Level Rise (SLR),
68	in tandem with an increase in storm frequency and intensity, poses a severe environmental
69	threat to estuarine and coastal ecosystems (ECEs). Nonetheless, plant biologists have
70	recognized this threat only recently, and when combined with our inability to predict where
71	and when storms might occur, it is perhaps no surprise that relatively few authors have
72	systematically addressed the issue. In-fact much of the initial relevant research was
73	conducted in the SE United States where low-lying freshwater wetlands regularly
74	experience periodic seawater inundation as a result of isostatic movements and subsidence,
75	and changes in channel flow regime. Studies by Haller et al. (1974), McKee and
76	Mendelssohn (1989) and Flynn et al. (1995) reporting species-specific variation in
77	Floridian and Louisianan freshwater marsh plants to 'natural' salinity pulses, were

nonetheless prescient of how these communities can be expected to respond to
contemporary and predicted changes in frequency and intensity of ACC-linked extreme
events. Subsequently, a body of work conducted around the Gulf of Mexico has described
the responses of wetland vegetation to the disturbance associated with recent hurricanes
(Tate and Battaglia, 2013; Meixler, 2017; Imbert, 2018).
The realization that coastlines globally now face increasing erosion and flood risk provides

the impetus for understanding how hurricanes, typhoons, cyclones and other extreme 84 weather events affect coastal vegetation. Moreover, in many vulnerable locations, ECEs 85 have 'added value' in that they offer natural coastal protection against erosion and flooding 86 87 (Temmerman et al., 2013; Morris et al., 2018). This key ecosystem service has considerable socio-economic benefits, reducing flood risk and damage for a fraction of the 88 costs associated with constructing so-called 'hard defences' like concrete walls (Narayan et 89 90 al., 2016; Morris et al., 2018). Nonetheless, society is only just beginning to appreciate this valuable service and how ECEs can be integrated into a dynamic flood defence strategy. 91 92 Consequently, understanding the response of vegetation to shifts in storm regimes is critical 93 to ensure effective risk management over coming decades.

With this mind, we offer here a synthesis of the response of ECE vegetation to extreme
storm events, and signpost how an understanding of these responses aids management of
ECEs for flood and erosion mitigation. We contextualize recent scientific studies by
exploring the threats to, and response of, plants challenged by both SLR and increasing
storm frequency and severity. This necessitates understanding ecophysiological responses
from the level of the individual, up to geomorphological factors operating across the entire

tidal range. We highlight also future research priorities, from laboratory experiments to
large-scale modelling and mapping of post-disturbance vegetation responses, needed to
provide an appreciation of the wider ecosystem services delivered by coastal habitats. By
bringing together this diversity of topics, our aim is not only to signpost interdisciplinary
research towards better management of ECEs, but also promote their integration into
strategic coastal defence.

106 THREATS TO COASTAL ECOSYSTEMS

107 Although historically, land use change, pollution, and invasive species have all impacted

108 ECEs, and while these threats are certain to continue into the future, our focus is on ACC.

109 Indeed, there seems little doubt that ACC will pose the greatest challenge to coastal habitats

110 for the remainder of this century and beyond (Millennium Ecosystem Assessment, 2005).

111 Although elevated atmospheric CO₂ (eCO₂), and associated shifts in temperature, and

112 precipitation will have profound effects on all plant communities (Parmesan and Hanley,

113 2015), the combination of SLR, and increased sea surface temperatures (SST) and

enhanced wave forcing is a particular pressing and unique issue for ECEs.

115 Rising sea levels have already affected many coastal regions. IPCC (2019) stated with '*high*

116 *confidence* ' that the 0.32m increase in global sea levels observed between 1970-2015 was

117 attributable to ACC-driven thermal expansion of the seas and glacier mass loss. It seems

118 clear that SLR will accelerate into the 21st century, although IPCC (2019) have '*high*

119 *confidence*' that variation in ocean dynamics and coastal land-use will generate regional

departures of about 30% around global averages. Not only does this place coastal regions

and habitats at significant (but varying) flood risk, there is '*high confidence*' that SLR will
continue for centuries, even if global mean temperatures are stabilized (IPCC, 2019). The
ramifications of these changes are severe. IPCC (2019) has '*very high confidence*' that lowlying coastal areas will increasingly experience submergence, flooding and erosion
throughout this century and beyond.

It is important however, to distinguish between the impacts of long-term, chronic changes 126 in Earth's climate, and those imposed by acute ACC-linked events. Although an annual 127 128 maximum predicted global SLR of 15 mm yr⁻¹ (IPCC 2019) poses problems for coastal plants due to landward/upward displacement of the freshwater-saltwater aquifer interface 129 130 (White and Kaplan, 2017), SLR and extreme weather together are likely to deal the greatest environmental threat to our coastlines (IPCC, 2019). A combination of increased SST 131 coupled with SLR, is widely predicted to increase the frequency, severity and geographical 132 133 distribution of tropical cyclones and storm surge events (IPCC, 2019). Consequently, 134 present-day 'one per century' sea level extremes are expected on an annual basis for most coastlines by 2100 (IPCC, 2019). Not only will many supra-tidal ECEs face an increased 135 136 risk of short-duration, seawater inundation as a result, the wave energies and sediment disturbance associated with intense storm activity will impact the many ECEs that help 137 protect coastlines. In addition, most coastal habitats are strongly inter-connected, such that 138 acute erosion and sediment loss from one (e.g. a sub-tidal sand bar), has major 139 repercussions for sediment transport to nearby supra-tidal habitat (e.g. sand dunes) (Hanley 140 et al., 2014). 141

Indeed, where sufficient 'pre-event' data are available, studies show major changes in 142 143 coastal geomorphology and vegetation for many years afterwards. Carter et al. (2018) for 144 example, used a time series of remotely sensed images to show major breaching, land-area 145 reduction, and vegetation loss throughout the Mississippi-Alabama barrier islands in the 146 first 10 months after Hurricane Katrina made landfall. These changes were however, site-147 specific depending on sediment removal or accretion, underscoring the more general 148 problem that it is difficult to predict exactly how and when storms affect particular 149 coastlines. For example, in the unusually energetic series of winter storms that affected SW 150 England in 2013/4, the most severe impacts coincided with high spring tides and occurred 151 on west-facing beaches where subsequent dune erosion was extensive (Masselink et al., 152 2015). Similarly, variation in wind directions meant a brackish marshland in Louisiana, 153 USA, apparently unaffected by Hurricane Katrina in August 2005, experienced major 154 seawater incursion following Hurricane Rita only a month later (Steyer et al., 2007). 155 The spatio-temporal stochasticity associated with forecasting storm events presents a major 156 limitation to our ability to predict where and when ECEs will be impacted. Nevertheless, it 157 seems certain that ECEs globally can expect a significant increase in erosion and flood 158 frequency and duration over coming decades. In Table 1, we summarize how the threats 159 associated with extreme storms are likely to affect coastal habitats across the tidal range, and in the following sections, discuss how some of these key threats, exert major ecological 160 161 effects on sublittoral, inter-tidal, and supra littoral habitats.

162

163 IMPACTS ON COASTAL PLANT COMMUNITIES

164 Supra-tidal Plant Communities

165 *Vegetation subject to seawater immersion at exceptionally high tides or during storm surge*

166 events only. Affected habitats include sand dunes, and other (semi-)natural terrestrial and

167 *aquatic ecosystems (grasslands, pine savannah, freshwater wetlands).*

168 Due, in part, to our inability to predict where and when storm surges will occur, and even less effectively, control and replicate natural flood events, few field studies deal with the 169 170 impact of storm disturbance on supra-tidal plant communities. Although remote sensing 171 offers a way to assess and monitor largescale changes in vegetation following storm events (e.g. Carter et al., 2018; Douglas et al., 2018; Stagg et al., 2020), elucidating how saltwater 172 173 flooding, mechanical damage, litter accumulation, and sediments affect the plant 174 community is challenging. There is however, a relatively large body of research describing the (species-specific) effects of burial by sediments on sand dune species (Sykes and 175 176 Wilson, 1990; Harris et al., 2017; Brown and Zinnert, 2018), while Tate and Battaglia, (2013) and Platt et al., (2015) report major negative effects of simulated post-hurricane 177 litter deposition on Floridian and Mississippian pine savannah. Surprisingly however, few 178 179 studies consider the immediate effects of physical damage on supra-littoral coastal vegetation (see Platt et al., 2000). 180

181 The most widely reported impact of ACC-linked extreme events on supra-littoral ECEs is

seawater flooding. Immersion in seawater brings additional problems for supra-littoral

183 plants compared to those experienced by species in inland riparian, or coastal inter-tidal

communities. Flooding of the former is exclusively freshwater, while plants in most intertidal ECEs have an inherent ability to tolerate salinity associated with (twice-daily) tidal
immersion. Although by virtue of their association with the coast, sand dune, cliff edge, and
other supra-littoral plants may be tolerant of salt spray (Malloch *et al.*, 1985; Sykes and
Wilson 1988), the combination of anoxia and salt stress imposed by seawater flooding is
unique to these habitats.

In fact the 'salt stress' associated with coastal flooding seems to be much more important to 190 191 plant response and recovery than anoxia. In experiments where supra-littoral plants have been simultaneously exposed to freshwater and seawater immersion, the former has never 192 193 resulted in any noticeable impact on plant ecophysiology compared with untreated (no immersion) controls (Tolliver et al., 2009; Hanley et al., 2013, 2017, 2020a,b; White et al., 194 2014). A full appraisal of how and why salinity stress affects plant ecophysiology is beyond 195 196 the scope of this review (see instead Flowers and Colmer, 2008; Munns and Tester, 2008; 197 Negrão *et al.*, 2017; the latter an excellent assessment of methods to evaluate plant physiological responses to salinity stress). In short however, high seawater salinity (of 198 199 which chloride (55%) and sodium (31%) contribute most of the 'salt' content), causes both osmotic (limiting the plant's ability to absorb water) and ionic (increased toxicity via Na⁺ 200 and Cl⁻ accumulation) stresses (Munns and Tester, 2008). It is worth bearing in mind 201 202 though that our oceans have marked seasonal and regional salinity variation (Donguy and 203 Meyers, 1996) and that seawater is much more than 'NaCl in solution'. Some ions such as K⁺ and Ca²⁺ have direct negative toxicological or osmotic effects, but also the potential to 204 mitigate the impact of Na⁺ and Cl⁻ on plant metabolism (Flowers and Colmer, 2008; Munns 205

206	and Tester, 2008). It is likely that other ions have similar moderating influences over Na^+
207	and Cl ⁻ stress, and consequently, understanding how seawater affects plant
208	ecophysiological responses requires much more than a simplistic evaluation of the effects
209	of NaCl alone. This point was reinforced by Hanley et al., (2020a), who show how short-
210	duration immersion of Trifolium repens in NaCl solutions elicited almost total mortality
211	compared to plants subject to immersion in natural seawater or commercially available
212	marine aquarium salt solutions.
213	It is possible to monitor ECE recovery after a natural flood event (e.g. Flynn <i>et al.</i> , 1995;
214	Lantz et al., 2015), but this requires the ability to allocate resources quickly to an affected
215	site in order to capture changes in vegetation as floodwaters recede. Moreover, to
216	appreciate fully post-inundation transitions, a thorough understanding of the pre-flood
217	ecosystem is also essential (Langston et al., 2017; Masselink et al., 2017). Some
218	manipulative field experiments have been attempted, but logistical and even ethical issues
219	mean these are uncommon (McKee and Mendelssohn, 1989; Tate and Battiglia, 2013;
220	Abbott and Battiglia, 2015). Consequently, many studies employ controlled 'flooding' in
221	greenhouse or 'common garden' experiments, although inevitably, experiments are
222	constrained to focus on a limited species or habitat pool (van Zandt et al., 2003; Hanley et
223	al., 2013, 2017, Li and Pennings, 2018). Many studies also impose long-term, or periodic,
224	chronic salinity, rather than replicating the short-duration, acute immersion experienced
225	immediately after a storm (Tolliver et al., 1997; van Zandt and Mopper 2002; van Zandt et
226	al., 2003; Mopper et al., 2016; Li and Pennings, 2018). A further problem is that rather
227	than use natural seawater, experiments are often undertaken using commercially available

228	marine aquarium salt or even NaCl solutions (Sykes and Wilson 1988; Flynn et al., 1995;
229	Tolliver et al., 1997; Mopper et al., 2016), with no assessment of their validity as
230	alternatives. In the second experiment described by Hanley et al., (2020a) however, six
231	different European sand dune plant species showed remarkable uniformity in stress and
232	ecophysiological responses to marine aquarium salt versus locally collected seawater. This
233	consistency suggests that the chemistry of the former is indeed close enough to the latter to
234	use marine aquarium salt as a reliable experimental substitute.
235	Despite the various methodological problems, unsurprisingly perhaps, significant negative
236	repercussions for plant survival growth and reproduction are apparent for plants subjected
230	to seawater (or surrogate) immersion (van Zandt <i>et al.</i> 2003: Monner <i>et al.</i> 2016: Hanley
237	at al. 2017, 2020a b: Li and Pennings, 2018: Lum and Barton, 2020). Mortality is
230	et ut., 2017, 2020a,0, Et and Tennings, 2018, Eunit and Barton, 2020). Mortanty is
239	common, but even where plants survive short-pulses of seawater exposure subsequent
240	recovery is compromised. A typical response to the ionic and osmotic shock associated
241	with salinity is the accumulation of stress metabolites (e.g. proline) and ions (Ca^{2+} and K^+)
242	to exclude or compartmentalize Na^+ and Cl (Flowers and Colmer, 2008; Munns and Tester,
243	2008) (likely explaining why plant response to NaCl solution is more extreme than
244	seawater which contains 1.2% Ca^{2+} and 1% K^{+}). Even if achieved however, a cost on plant

fitness is probably inevitable (Munns and Tester, 2008; White et al., 2014; Hanley et al., 245

246 2020a,b).

Most importantly perhaps, the ability of plants to tolerate, and recover from, seawater 247 flooding seems to be species-specific. Long-term observation of Arctic tundra following a 248 major storm surge in the Mackenzie Delta, Canada, shows that dwarf shrub tundra had a 249

much-reduced regenerative capacity than graminoids or upright shrubs (Lantz et al., 2015 -250 251 see also Middleton, 2009; Tate and Battiglia, 2013). Manipulative greenhouse experiments 252 (Hanley et al., 2017, 2020a; Li and Pennings, 2018; Edge et al., 2020) generally 253 corroborate field observations of species-specific variation. Working on two native 254 Hawaiian plants, Lum and Barton (2020) for example, report not only species-specific variation in ecophysiological responses to increased salinity (imposed over 3-weeks), but 255 256 also that tolerance increased for both species as plants aged. These observations represent a 257 critical component of our understanding of plant response to the environmental pressures 258 associated with SLR and storm surges. Not only is species-specific variation important, but 259 it is essential to elucidate plant responses throughout ontogeny. Middleton (2009) for 260 example describes species-specific variation in post-hurricane germination and recruitment ability of US Gulf Coast marshland species, a response ascribed principally to increased 261 262 salinity. At the other end of the plant life cycle, Hanley et al., (2020b) report how 263 immersion of oilseed rape (Brassica napus) in seawater reduced seed yield, and perhaps 264 most importantly, that growth of the resulting seedlings was also greatly reduced in 265 comparison with progeny cultivated from non-flooded or even freshwater-flooded parent 266 plants.

Although work in this area is anything but 'mature', these studies signpost flooding as a potential selective filter that could remove species from the post disturbance community. The loss of key species or functional groups from any vegetation is likely to compromise ecosystem processes and so limit the ability to supply essential ecosystem services. For vegetation like sand dunes, these losses may be particularly profound. In Florida for

example, Miller (2015) identified reduced cover of the dune building grass, *Uniola paniculata*, in low elevation areas subject to frequent flooding as a likely reason why dune
erosion was more common in these sites. The interplay of ACC-linked changes in storm
frequency and severity, with resulting shifts in plant community composition and thus
resilience against further storm damage, is pivotal for understanding how ECEs contribute
to coastal defence.

278 Inter-tidal Plant Communities

279 Communities subject to periodic, but predictable, (twice daily) tidal submersion and

280 *exposure to air – mangroves, saltmarshes and some algal communities.*

Although mangrove forests are both a globally widespread and exceptionally important habitat for biodiversity and coastal defense provision in (sub)tropical regions, we focus here on the saltmarsh ecosystems more typically associated with temperate coastlines. This is simply because in this special issue, **Krauss and Ostler (2020)** provide a comprehensive review of how storms influence mangrove ecosystems and the vital ecosystem services they provide.

The physical damage caused by storms ranges from waves and strong currents dislodging or breaking above-ground tissue (Möller *et al.*, 2014), to complete denudation of vegetation (Morton and Barras, 2011). Fragmented or degraded marshes are generally more vulnerable to disturbance than intact habitat (Stagg *et al.*, 2020) and so are less resilient to extreme events. Responses also vary with vegetation height and stiffness (Vuik *et al.*, 2018). For example, when exposed to simulated storm conditions, the tall, rigid grass *Elymus athericus*

293	experienced more breakage than the shorter, more flexible Puccinellia maritima (Rupprecht
294	et al., 2017). Strong winds and water flows can tear the root mat from the marsh surface,
295	laterally folding it into ridges – described by Cahoon (2006) as like 'pushing a rug up along
296	a wooden floor'. This alters marsh topography, lowering areas where turf was lost and
297	raising elevations (up to 2 m) on the folded ridges (Guntenspergen et al., 1995). This can
298	affect long-term community recovery (Leonardi et al., 2018; Mossman et al., 2019).
299	In addition to direct damage, storms modify plant communities through changes to the
300	physical environment (see reviews by Cahoon, 2006; Leonardi et al., 2018). Storm-driven
301	waves can cause lateral erosion of tidal flats and marshes (Callaghan et al., 2010), with
302	erosion of fronting tidal flats increasing marsh loss by amplifying the consistent pressure
303	imposed by normal wind and wave action (Leonardi et al., 2016). Saltmarshes are resistant
304	to storm-driven erosion of the marsh surface however, with vegetation playing a key role in
305	stabilizing the sediment (Spencer et al., 2016). Importantly, significant amounts of
306	sediment (mobilised from sub-tidal, intertidal or upstream areas) are deposited on
307	saltmarshes during these events (de Groot et al., 2011). For example, a single hurricane can
308	deposit the equivalent of over a century of sediment accumulated in 'normal' conditions,
309	and account for up to two thirds of long-term sedimentation (Williams and Flanagan,
310	2009). Burial under such rapid deposition can kill vegetation (Callaway and Zedler, 2004),
311	and reduce growth and seedling establishment (Langlois et al., 2001; Cao et al., 2018).
312	Marsh recovery following storm-driven sediment deposition can be rapid however,
313	(Guntenspergen et al., 1995) and increases in elevation improve colonization, particularly
314	in subsiding marshes (Mendelssohn and Kuhn, 2003).

315	Storms can generate significant debris, either through breakage of local coastal vegetation
316	or the remobilization of existing natural and artificial debris (Meixler, 2017). Like
317	sediment, debris can kill or damage the vegetation beneath (Uhrin and Schellinger, 2011),
318	modify environmental conditions such as sediment redox potential (Abbas et al., 2014), and
319	lead to reductions in species richness (Tate and Battaglia, 2013). The amount of damage
320	depends on the type of debris deposited (Uhrin and Schellinger, 2011), the size of the mat
321	and how long it persists (Valiela and Rietsma, 1995), so in some circumstances, recovery
322	can be quick (Ehl et al., 2017). Plant debris can also be important for propagule dispersal,
323	but can act as a pathway for invasive species (Minchinton, 2006).
324	The impact of changes in soil salinity following storms is less clear. In some circumstances,
325	high rainfall can ameliorate conditions, allowing plants to colonize or grow faster. For
326	example, in the dry climate of California, Noe and Zedler (2001) found that heavy rainfall
327	provided a window for germination by reducing soil salinity and increasing soil moisture.
328	Storms can also alter the inundation regime of tidal marshes through changes to coastal
329	morphology that lead to closure of an estuary mouth or movements of tidal channels.
330	Zedler (2010) summarises how the storm-driven closure of the Tijuana estuary had
331	substantial negative impacts on tidal marsh vegetation when subsequent drought caused
332	moisture loss and hypersalinity in sediments.
333	More typical is the generally negative effect of segmeter inundation: Janousek <i>et al.</i> (2016).
224	report how experimental increases in inundation over one growing season reduced plant
334	report now experimental increases in inundation over one growing season reduced plant
335	productivity. It is also likely that even where tidal marsh plants survive storm disturbance,
336	they are so ecophysiologically compromised that interactions with other species change.

337	The study by Edge et al., (2020) on three European saltmarsh species is an excellent
338	example. Following seawater immersion, the biomass of Triglochin maritima decreased
339	markedly in mixed assemblages with Plantago maritima and Aster tripolium, compared to
340	monoculture. Interestingly, Plantago performed markedly better in flooded, mixed
341	assemblages than in monoculture, appearing to 'take advantage' of a relative decline in the
342	growth of the other species (Hanley et al., (2017) describe very similar shifts for supra-
343	littoral plants). Edge et al., (2020) further note how that for 14 out of 18 trait-species
344	combinations examined (including height, SLA, and leaf number), flooding response in
345	mixed assemblages differed from monocultures, changing the direction, as well as
346	magnitude, of flood effects. Plant trait and species composition shifts within saltmarsh
347	communities are likely important to ecosystem stability and function (Ford et al., 2016),
348	but if disturbance associated with storm events facilitates the spread of non-native species,
349	repercussions could be more severe. This is exactly what Gallego-Tévar et al., (2020)
350	report when they found that an invasive Spartina hybrid was better able to tolerate stressful
351	post-flood salinity conditions than its parent species (see also Charbonneau et al., 2017).
352	Together, these studies underscore the importance of species identity in dictating
353	community responses to storm disturbances, and thus the capacity of the saltmarsh
354	ecosystem to continue to deliver key services as ACC continues.

355 Subtidal Plant Communities

356 *Ecosystems continually submerged below sea-level – primarily seagrass beds, but includes*

357 marine macro-algal communities, most commonly kelp 'forests'

358 Storm events can have substantial impacts on seagrass and macroalgal communities, from 359 changes in the relative abundance of species within a community to total habitat loss. These 360 impacts occur through physical disturbance from violent storms, burial by displaced 361 sediment, and even subsequent 'knock-on' effects from pluvial flooding. 362 High wave energy and flow speeds can physically damage fronds and stipes (Denny et al., 363 1989), uproot individuals (Preen et al., 1995) or cause failure of holdfasts (Seymour et al., 364 1989). While the biomechanics of storm effects are well understood (see Denny and 365 Gaylord, 2002), predicting the impact of storm events is more complex. Structural damage and uprooting/ dislodgement can result in high mortality; for example, complete loss of 366 367 giant kelp occurs in storm-intense years but is not seen everywhere (Edwards, 2004). Large, 368 frequent and breaking waves exert the greatest forces and are most likely to result in 369 structural damage or dislodgement, particularly in shallow water when a storm coincides 370 with low tide (Preen et al., 1995; Filbee-Dexter and Scheibling, 2012). Even moderate 371 waves can lead to entanglement of kelp fronds, increasing the potential for tissue damage 372 (Seymour *et al.*, 1989). Effects can vary according to substrate type, as wave-carried rocks 373 can dislodge individuals, while sand grains and small pebbles scour roots and holdfasts or 374 damage tissue (Shanks and Wright, 1986). Substrate type also affects the forces needed to 375 dislodge macroaglae (Thomsen et al., 2004).

Storm-driven waves do not affect every organism equally however. Vulnerability varies
with spatial arrangement and age; individuals in the centre of algal stands are less likely to
be removed by waves or strong currents, and small, young kelp are more easily dislodged
than older, larger individuals (Thomsen *et al.*, 2004). Nonetheless, the higher biomass of

380	very large kelp makes them more susceptible to high wave energies (Seymour et al., 1989).
381	Consequently, severe storms can result in homogenization of age structure in kelp beds.
382	Ecotypes or morphological plasticity provide resistance to high wave action (e.g. in shallow
383	waters) (Fowler-Walker et al., 2006), allowing some individuals or populations to better
384	cope with an extreme event. Storms are also generally most frequent at the point in the
385	annual cycle where organisms are most resistant (Burnett and Koehl, 2019); accordingly,
386	changes to storm seasonality may have significant consequences for these communities.
387	In addition to the effects of wave action and shear stress, storm-generated waves and
388	currents redistribute sediments, causing erosion in some areas and burial in others. Cabaco
389	et al., (2008) identified significant species-specific variation in seagrass tolerance to both
390	burial with sediment and erosion. Recovery is generally rapid under shallow burial, but this
391	capacity decreases markedly when more sediment is deposited (Fourqurean and Rutten,
392	2004; Gera et al., 2014). Consequently, burial by up to 45 cm of sediment, reported
393	following some severe storms (Kosciuch et al., 2018; Browning et al., 2019), is likely to
394	lead to localized loss of communities.

395 As well as the impacts of storms at sea, heavy rainfall can have major impacts on sub-tidal

396 ECEs via the discharge of nutrient-rich, sediment-laden freshwaters into coastal areas.

397 These enriched waters cause turbidity and stimulate algal blooms and epiphytic growth,

both of which lower light availability (Lapointe *et al.*, 2019). Seagrasses are especially

vulnerable (Cobaco *et al.*, 2008), and impacts of flood-induced light limitation can be more

400 severe than the physical impacts of storms (Carlson *et al.*, 2010). In addition, heavy rainfall

401 can reduce salinity, particularly in lagoons or estuaries, sometimes for several months

402	(Herbeck <i>et al.</i> , 2011; Kowalski <i>et al.</i> , 2018,). Some seagrasses are intolerant of hyposaline
403	conditions, leading to mortality and sub-lethal effects (Fernandez-Torquemada and
404	Sanchez-Lizaso, 2011). Ridler et al., (2006) observed that while thinning and leaf loss
405	occurred immediately after hurricanes, further declines continued for many months likely
406	due to low and fluctuating salinity. Tolerance to hyposalinity is however, variable between
407	and within species, ecotype (Benjamin et al., 1999) and season (Fernandez-Torquemada
408	and Sanchez-Lizaso, 2011) reducing the predictability of how seagrass communities
409	respond.

Storms are nonetheless important disturbance agents, and seagrasses can rapidly regrow 410 411 from roots or rhizomes, despite substantial above-ground loss (Valiela et al., 1998). Other 412 macroalage can reattach or regenerate when broken or dislodged (Thomsen and Wernberg, 2005). Furthermore, storms may actually facilitate medium and long distance dispersal of 413 414 seagrass and macroalgae propagules (Bell et al., 2008; Waters et al., 2018) and be 415 important in maintaining food web complexity, although increasing storm frequencies can 416 challenge the ability of kelps to regrow and simplify food web structure (Byrnes *et al.*, 417 2011). Damage to kelp fronds can for example, stimulate grazing activity, so increasing potential tissue loss to an already stressed individual (O'Brien et al., 2015). Reductions in 418 canopy-forming macroalgae and seagrasses through a combination of direct storm damage 419 and herbivory can lead to community shifts to opportunistic species, such as turf-forming 420 algae (O'Brien et al., 2015, Filbee-Dexter and Wernberg, 2018). Gaps resulting from the 421 422 storm-driven loss of corals and other benthic animals can nevertheless facilitate macroalgal

423 colonization, particularly in the absence or reduction of herbivory (Edmunds, 2019;
424 Steneck *et al.*, 2019).

425 The impacts of extreme storm events are not experienced in isolation. Long-term environmental changes, such as SLR, eutrophication and overfishing, influence community 426 427 susceptibility, as does the legacy of previous storms (i.e. position in the 'storm recovery 428 cycle'). For example, substantial seagrass losses in North Queensland, Australia, were the 429 cumulative result of a succession of intense storm and flood years, urbanization, and agricultural run-off, rather than the consequence of a single storm (McKenna et al., 2015). 430 Storm events are also stressing systems already impacted by ACC, a combination that 431 432 could lead to higher losses than imposed by either driver in isolation (Babcock *et al.*, 2019). 433 Smale and Vance, (2016) for example report that while the cold-water kelp Laminaria hyperborea was relatively resistant to storms, mixed stands containing warm water species, 434 435 such as L. ochrolueca, were more vulnerable. Consequently, observed and projected shifts in kelp community composition due to increasing temperatures (Pessarrodona et al., 2018) 436 437 could lead to greater kelp community vulnerability.

438 Collectively, the processes described above underpin observations of highly variable storm

439 impact on sub-tidal plant communities (Edwards, 2004; Filbee-Dexter and Scheibling,

440 2012). Long term studies can help identify the relative impacts of storms and anthropogenic

factors (Cuvillier *et al.*, 2017), but our understanding of storms on subtidal ECEs is limited

by few long term studies outside of coral reefs (Duffy *et al.*, 2019). While there are many

estimates of the impacts of single storms, it is rarely possible to put the patch-scale losses in

the context of the dynamics of the system. Despite advances with remote-sensing

techniques, the depth and turbidity of these systems mean that ground based observationwill continue to be essential.

447 PLANT COMMUNITIES AND COASTAL DEFENCE

448 In addition to biodiversity loss, recent concern about the various threats to ECEs stems

449 from their role in protecting agricultural land and urban communities from storm damage.

450 Consequently, there is increasing focus on quantifying and valuing benefits associated with

451 the ecosystem services provided by ECEs (Barbier *et al.* 2011, 2015; Temmerman *et al.*,

452 2013; Morris *et al.*, 2018). Although the methods used to generate accurate, global,

453 economic estimates remain in their infancy (Barbier 2016), Costanza et al., (2014)

454 estimated that for tidal marshes alone, the provision of nursery grounds for commercial

455 fisheries, carbon storage, recreation and flood protection provided US\$24.8 trillion to the

456 global economy.

ECEs provide storm protection principally through the stabilization of substrates, and

therefore the prevention of erosion, and attenuation of wave energy, and thus flood risk

459 (Barbier 2015). Unlike hard (engineered) defences they are also dynamic; indeed the IPCC

460 (2019) recognized how saltmarshes and mangroves can keep pace with fast rates of SLR (>

461 10mm yr⁻¹), depending on local variation in wave exposure, tidal range, sediment

462 dynamics, and coastal land-use. Moreover, it is even possible that the extent of coastal

463 wetlands (saltmarsh, freshwater marsh and mangrove) could increase by up to 60% because

464 of SLR (Schuerch *et al.*, 2018). With appropriate management, supra-littoral sand dunes are

465 also capable of adapting to shifts in sea levels and storm frequencies (Hanley *et al.*, 2014).

466	The growing evidence that ECEs reduce storm damage underpins their recognition as
467	nature-based flood protection (Temmerman et al., 2013; Narayan et al., 2016; Van
468	Coppenolle & Temmerman, 2019). The traditional approach to coastal defence has been to
469	counter flood risk with 'hard' engineering, but measures like seawalls are expensive (up to
470	£5,000 per m [Hudson et al., 2015]), inflexible, and often deliver unexpected
471	environmental outcomes (Firth et al., 2014). Vegetated shorelines by contrast, are a natural
472	defence and offer adaptability, flexibility and cost-effectiveness (e.g. £20 per m for dune
473	stabilization (Hudson et al., 2015)), with the additional benefit of the other ecosystem
474	services they provide (Costanza et al., 2014; Barbier 2015).

475 Protective role played by different ECEs

The protective value differs not only between ECEs, but also with regional and local 476 geographical context. The principal defensive role played by dunes for example, stems 477 478 from being a physical barrier to marine flooding, but their importance in this regard depends on local coastal geomorphology (e.g. sediment supply, land relief) and on the use 479 480 and asset value of the land they protect (Hanley et al., 2014). Dune vegetation stabilises substrates and reduces wave-driven erosion, with plant shoots reducing wave swash and 481 482 roots increasing mechanical strength of the sediment (Feagin et al., 2019), but even the 483 identity of component species can be important. de Battisti and Griffin (2020) for example examined how three common European foredune species (Ammophila arenaria, 484 Cakile maritima, and Salsola kali) varied in their ability to withstand simulated wave 485 swash. Although Ammophilla was by far the most robust, by virtue of the protection 486 provided by their roots, rhizomes and below ground shoots, all three species had a 487

remarkable capacity to tolerate wave action, underscoring how different plant species can 488 489 contribute to sand dune stability. (See also Charbonneau et al., (2017) who report how 490 North American dunes stabilized by the invasive *Carex kobomugi* were less affected by 491 storm damage than those colonized by native Ammophila breviligulata). Nonetheless, de 492 Battisti and Griffin (2020) also show that despite an exceptionally well-developed 493 belowground shoot system, *Ammophila* resistance varies depending on sand particle size; 494 the coarser sediments associated with restored habitats increasing erosion potential 495 compared to finer sediment of natural regeneration sites. This finding is important since it 496 underscores why elucidation of biological and environmental factors is crucial to the integration of natural habitats like sand dunes into coastal protection schemes. For other 497 498 supra-littoral habitats however, we understand little about their putative role in coastal 499 defence. Nonetheless, there is little doubt that coastal forests and freshwater wetlands 500 provide other vital ecosystem services like carbon sequestration and storage (see Stagg et 501 al., 2020; Ury et al., 2020).

502 The ability to track SLR (Kirwan *et al.*, 2016; IPCC, 2019) along with their well-known

503 capacity for wave attenuation (Möller *et al.*, 2014; Rupprecht *et al.*, 2017), has put

saltmarshes at the centre of current interest in 'nature-based' coastal defence solutions.

505 How effective wave attenuation is, depends strongly on topography (even to the extent of

506 friction imposed by the biogeomorphic landscape created by the plants) and (ontogenetic,

seasonal or species-specific) plant traits like shoot stiffness and density (Bouma *et al.*,

508 2010, 2014; Möller *et al.*, 2014). As a result, studies such as **Zhu** *et al.* (2020), describing

509 variation in stem flexibility and breakability for a variety of European saltmarsh species,

510	are vital to understanding how communities will respond to increased storminess. Plant
511	response can vary with wave conditions however. Shao et al. (2020) exposed Spartina
512	alterniflora to different wave environments for 8 weeks and showed that key physiological
513	and biochemical plant parameters varied accordingly; i.e. higher and more frequent waves
514	imposed more stress. Nonetheless, wave-exposed plants tended to allocate more biomass to
515	their roots, a response that may facilitate anchorage against wave impact. These
516	biomechanical and morphological properties are likely to vary with plant age. Cao et al.,
517	(2020) for instance describe how after seven weeks of simulated wave exposure, seedling
518	survival and growth declined for all three common marshland species examined (Spartina
519	anglica, Scirpus maritimus and Phragmites australis). Taken together these studies
520	increase our understanding and prediction of spatio-temporal variation in saltmarsh
521	community response to wave exposure, an essential pre-requisite in the design and
522	implementation of nature-based flood protection.
523	In addition to species identity, age and seasonality, other marsh-specific characteristics are
524	important determinants of wave attenuation. One of the key attributes is habitat size
525	(Shepard et al., 2011). Indeed, in a recent analysis of the long-term marsh persistence
526	around the UK, Ladd et al., (2019), revealed that marsh width was positively associated
527	with higher sediment supply, although they noted also that current global declines in
528	sediment flux are likely to diminish saltmarsh resilience to SLR. Although challenging,

529 understanding the shifting dynamics of these regional-scale coastal processes is crucial to

our ability to integrate marshes into coastal defence schemes (Bouma *et al.*, 2014, 2016).

531 Not only is that because we need to know where and how ECEs fit into an integrated

coastal management approach, but long-term salt marsh persistence depends on continualrecruitment of new plants.

534 For saltmarshes, propagule establishment often occurs on leading edges when sediment 535 accretes on the adjacent 'tidal flat' (Bouma et al., 2016). Even an apparently minor change 536 in sediment levels may be sufficient to facilitate seedling establishment; an effect 537 demonstrated by Fivash et al., (2020) in their mesocosm experiment with the pioneer 538 Salicornia procumbens. They show that elevation of sediment micro-topography by just 2 539 cm was the overwhelming driver of seedling growth (i.e. an average 25 % increase). They ascribed this response primarily to the effects of the 'tidally driven oxygen pump', i.e. 540 541 increased emersion time allows more aeration of the raised sediment (see also Mossman et 542 al., 2019). Once pioneers like Salicornia have established, the environment they create (wave attenuation, sediment trapping and enhanced drainage) facilitates subsequent 543 544 colonisation by later successional species and so the marsh can expand seaward 545 (Temmerman et al., 2007). Storms also have the potential to increase the landward marsh 546 area if the habitat can retreat and displace terrestrial habitats. In these circumstances, 547 Kotter and Gedan (2020) demonstrate that saltmarsh is pre-primed to take advantage of 548 this opportunity, reporting how seeds of halophytic species can disperse up to 15 m into northeast American coastal pine forest. They argue that although saltwater intrusion will 549 550 limit forest regeneration, the soil seed bank can thus support continued landward migration of saltmarsh species. 551

Much of the recent interest in mangroves stems from their perceived mitigation of the 2004
Indian Ocean Tsunami on coastal settlements. While their actual contribution remains

554	questionable (Barbier 2015), nonetheless, a number of studies report that mangroves can
555	lower wave heights and reduce water levels during storm surges (Das and Vincent, 2009;
556	Armitage et al., 2019) and that their removal leads to increased coastal erosion and damage
557	(Granek and Ruttenberg 2007; Barbier 2015). Like saltmarsh therefore, mangroves are at
558	the forefront of contemporary research into how ECEs help defend our coastlines (see
559	Krauss and Osland, 2020). It is also noteworthy, that Alongi (2008) highlights how much
560	mangroves offer protection against extreme events is strongly linked to intrinsic habitat
561	characteristics (these include forest location and width, tree density and size, soil texture),
562	but also the presence of other ECEs, such as coral reefs, seagrass beds, and dunes.
563	The case for a substantial protective role of sub-tidal ECEs remains less clear (although
564	coral reefs are well studied and widely believed to play a major role - see Barbier 2015). It
565	is known however, that seagrasses attenuate wave energy (Christianen et al., 2013;
566	Reidenbach and Thomas, 2018), and thus likely offer some coastal defence (Barbier et al.,
567	2011; Ondiviela et al., 2014). Furthermore, the reduction in wave energy seagrasses
568	provide can reduce the erosion experienced by adjacent tidal marsh systems (Carr et al.,
569	2018) and stabilise or even facilitate beach expansion (James et al., 2019). Consequently,
570	the dramatic global decline of seagrass habitat is of great concern and underscores recent
571	calls for wider habitat protection (Cullen-Unsworth and Unsworth 2018). It is less clear
572	whether sub-tidal macroalgal communities play any role in wave attenuation and therefore
573	coastal protection, but a full review is provided in this special issue (see Morris et al.,
574	2020). In short, Morris et al., (2020) note how only a limited number of studies have
575	investigated coastal protection, and in their own study in Australia found that wave

- 576 attenuation by the kelp *Ecklonia radiata* was restricted to a small subset of the
- 577 environmental conditions sampled.

578 Using ECEs in integrated coastal defence

579 The implementation of 'soft' or natural flood defences depends on landscape context 580 (including the economic value of the land threatened by SLR, erosion, and storm damage) 581 and whether it is actually feasible and cost-effective to maintain or move defences (Hoggart et al., 2014). The 'hold the line' option has been traditionally met by the construction of 582 'hard' defences (engineered solutions utilising concrete walls, rocky breakwaters, steel 583 584 piling, or stone gabions) but these are extremely expensive and have limited ecological value. There is nonetheless considerable interest in how we might 'soften' structures using 585 design alterations (e.g. modification of surface topography) to increase biodiversity value 586 587 (Firth et al., 2014). It is also recognised that vegetated foreshores reduce wave impact on sea walls, such that a fronting saltmarsh provides sufficient additional defence to allow sea 588 wall height to be lowered, with substantial savings to capital and maintenance costs (Vuik 589 590 et al., 2016). Where natural habitat is absent, it may be possible to create it using management actions to stabilize or accrete sediment. For example, the combination of 591 592 beach nourishment, sand traps and planting can establish sand dunes to provide storm 593 protection to landward hard defences (Feagin et al., 2015). At the landscape scale, the strategic integration of hard engineered and soft natural defences may provide the only 594 realistic, cost-effective way to protect large sections of coastline. 595

It is imperative however, to ensure that where integrated management is planned, an 596 597 engineered intervention does not detrimentally affect nearby ECEs. For example, hard 598 defences can disrupt natural coastal processes and sediment supply (Hanley et al., 2014), while the problem of 'coastal squeeze' means that existing (or planned) ECEs fronting 599 600 hard-engineered defences cannot always track SLR (Schuerch et al., 2018). In these 601 situations, the long-term sustainability of natural flood protection may be greater if there is 602 the potential to move the line of defence landward. This can simply involve ensuring a 603 capacity for an existing ECE to 'roll back' (see Kotter and Gedan, 2020), but increasingly, 604 ECEs are created in former terrestrial habitats; a process often termed 'managed retreat' or 605 'managed realignment' (MR).

The most common example is the breaching of sea walls or dykes to allow tidal flooding 606 with the expectation that newly inundated land will develop into saltmarsh. These schemes 607 608 have met with mixed success however, many studies showing that the plant communities developing in MR sites differ from those in adjacent natural marshes (Mossman et al., 609 2012; Masselink et al., 2017). Environmental conditions, such as elevation in the tidal 610 611 frame or geomorphic setting (Mossman et al., 2012; Masselink et al., 2017) are critical to successful restoration, but these alone are insufficient to explain all observed differences 612 (Sullivan et al., 2018). Propagule dispersal is often limited and limiting (Mossman et al., 613 2012) and species-specific differences in dispersal ability could mean that early colonisers 614 inhibit the establishment of later arriving species (Sullivan et al., 2018). Planting species 615 with low recruitment potential into newly established marshes could resolve this (Mossman 616 617 et al., 2019). A relative lack of topographic heterogeneity in MR sites may also limit

transition to saltmarsh (Masselink *et al.*, 2017; Lawrence *et al.*, 2018). As we have seen

619 (Mossman *et al.*, 2019; Fivash *et al.*, 2020), even minor changes in surface elevation can

620 have a substantial impact on seedling recruitment in saltmarsh. These studies highlight that,

621 while MR often fails to deliver 'natural' saltmarshes, there is considerable potential for

622 research-led management to improve restoration success.

623

SYNTHESIS AND FUTURE STUDIES

Although considerable research effort is focused on the response of ECEs to disturbance 624 625 events, there remains both a geographical bias towards the US Gulf and Atlantic seaboard 626 states, and limited understanding of how the multiple stressors associated with SLR, extreme storms, and other anthropogenic activities affect even a fraction of ECE species or 627 628 habitats. Beyond a simplistic call for 'more research with additional species and regions', 629 we discuss how illumination of plant species and community responses to flooding, sediment movement, mechanical damage and landscape-scale processes is needed to better 630 631 inform our ability to manage the biodiversity of ECEs and ensure their continued contribution to coastal defence (Fig 1). 632

633 **Research Priority I** – *Effects of storm damage and flooding on plant reproductive*

634 *performance and recruitment*

Parmesan and Hanley (2015) highlighted how despite a wealth of information detailing

636 plant species and community response to the warming, drought and elevated atmospheric

 CO_2 (eCO₂) associated with ACC, remarkably little is known about how any of these factors

638 influence plant regeneration biology. The same failing is true of ECE response to SLR and

639	storms, even though recruitment success is manifestly pivotal to understanding how
640	environmental stress and perturbation influence plant community recovery. Indeed, it is at
641	this point worth stressing that the disturbance associated with storms is an important,
642	positive, factor in ECE dynamics. It is for example, well understood that tropical cyclones
643	stimulate reproduction and open regeneration opportunities (Zimmerman et al., 2018;
644	Krauss and Osland 2020), while disturbance of sand dune vegetation is a key driver of plant
645	biodiversity in these most dynamic of ecosystems (Green and Miller, 2019). What is less
646	clear however, is how ACC-linked shifts in storm intensity and return times disrupt
647	recruitment processes that have evolved in response to environmental dynamics typical of
648	pre-industrial times (Hanley et al., 2014; Imbert 2018).
649	Some experiments have focused on the effect of elevated salinity on flowering and
650	reproduction, but all too often consider only long-term, chronic effects (e.g. Van Zandt and
651	Mopper, 2002; Pathikonda et al., 2010; Rajaniemi and Barrett, 2018). Nonetheless, these
652	studies are important as they show; (a) responses may only become apparent long after
653	exposure (Van Zandt and Mopper, 2002), (b) reduced sexual reproduction was not
654	compensated by vegetative reproduction (Pathikonda et al., 2010), and (c) germination
655	potential is species-specific (Rajaniemi and Barrett, 2018). Many fewer authors report the
656	impact of acute seawater flooding on the reproductive potential of coastal plants, but those
657	that do evidence reduced flowering (White et al., 2014; Hanley et al., 2020a), and
658	reproductive output (Hanley et al., 2020b). A critical element of the latter study was that
659	the growth of seedlings cultivated from parent plants subject to acute seawater immersion
660	declined; i.e. while the parent plant might survive long enough to reproduce, longer-term

regeneration potential is compromised. The importance of changes in wave action on the

662 dynamic sediment environment in saltmarsh regeneration may be better understood

(Boauma *et al.*, 2016; Cao *et al.*, 2018), but there is a need to elucidate the effects of all

664 manifestations of storm damage and flooding on plant reproductive and recruitment

665 potential, including storm-driven dispersal.

Research Priority II –*Coastal plant responses to multiple-stressors associated with SLR and storm damage*

Teasing apart the interactive effects of saltwater flooding, mechanical damage, litter 668 accumulation, and sediment shift on the plant community is challenging, a problem made 669 all the more difficult simply because so few studies (outside the SE USA at least) have 670 671 systematically examined how these different factors affect and shape plant community 672 responses in isolation, let alone combination. Using remote imaging, Hauser et al., (2015) report how saline inundation following Hurricane Sandy caused widespread wetland 673 degradation in New Jersey, first by marsh dieback, and as a consequence, subsequent 674 675 sediment erosion and retreat of the marsh inland. They also note the importance of plant 676 community composition in this interaction; woody plants being more tolerant than herbaceous vegetation. Using an experimental approach, Tate and Battaglia (2013) 677 678 considered the combined effects of seawater flooding and litter deposition. The application 679 of locally sourced litter (degraded stems of black needlerush - Juncus roemerianus) to four plant communities along a Floridian estuarine gradient (brackish marsh, freshwater marsh, 680 wetland forest, and pine savanna) had a profound negative effect on plant survival and 681 682 species richness in all communities. In tandem with controlled seawater flooding however,

683 litter had a major impact on species composition in pine savannah, as salt-tolerant species 684 capable of vegetative regrowth through dense detritus were the only species to persist. Tate 685 and Battaglia (2013) also noted how vegetation in habitats with higher ambient sediment 686 salinity was more resilient to the combined effects of flooding and litter deposition. These studies (see also Imbert, 2018; Kendrick et al., 2019) signpost the importance of 687 688 interactive factors on the recovery of ECEs following storm and other ACC-linked 689 disturbance events. Given the logistical issues associated with simultaneous replication or 690 observation of multiple-stressors, it is unreasonable to expect a flurry of research focused on the interactive impacts of various storm disturbances on ECEs. Moreover, one could 691 692 also argue that a true picture of coastal plant response needs also to consider eCO₂ and shifts in temperature and precipitation (Parmesan and Hanley, 2015). Indeed, Huang et al., 693 (2018) argued that an increase in night-time temperatures had facilitated the expansion of 694 695 the shrub *Morella cerifera* into Virginian coastal grasslands with likely concomitant impacts on erosion regimes. Although by definition, unpicking the simultaneous interplay 696 697 of several ACC-linked stressors is complex, as a first step studies could examine the 698 responses of the same species to different stressors in isolation, and elucidate how at least two factors conspire to affect plant performance. 699

700 Research Priority III – Plant community interactions and post-disturbance recovery

Although it is well known that environmental perturbations (e.g. fire, herbivory, etc.),

- mediate plant community interactions, beyond a reasonable understanding of the role of
- tropical cyclones in forest dynamics (Hogan *et al.*, 2016; but see Pruitt *et al.*, 2019), the

704	impact of storms and SLR on plant-plant, plant-animal, and plant-microbial interactions in
705	ECEs is poorly resolved. We have discussed already how species-specific variation in plant
706	response to storms might act as a selective filter, removing susceptible species from the
707	recovering plant community. This is why field and multi-species (microcosm) greenhouse
708	experiments are invaluable; as shown by Hanley et al., (2017) and Edge et al., (2020), it is
709	by no means certain that plant species responses in monoculture are replicated in mixed
710	assemblages. Nonetheless, these kinds of study are rare and yet required to disentangle how
711	plant-plant interactions vary in response to a variety of storm-related impacts.
712	It is also worth stressing, that community interactions go beyond shifts in plant competitive
713	hierarchies. For example, although Camprubi et al., (2012) report how three of six
714	Mediterranean sand dune species suffered complete mortality within a week of exposure to
715	seawater, the remainder had delayed or greatly reduced mortality when grown in
716	association with the mycorrhizal fungi, Glomus intradices. Symbiotic mycorrhizal fungi are
717	well known for their importance to plant health and vigour (Smith and Read, 2008), but in
718	coastal vegetation like sand dunes, the association may be essential for survival (Koske et
719	al., 2004). Unfortunately, the vast majority of work on how the plant-mycorrhizal
720	association affects plant response to salinity comes from agricultural systems (Evelin et al.,
721	2019) and consequently we know little about how microbial symbionts respond to storm-
722	linked disturbances in ECEs, or how they moderate plant responses in the post-event
723	community.

724 Seawater inundation is also likely to have major effects on the soil physico-chemical725 environment upon which all organisms depend. A detailed assessment of soil structure and

726	chemistry is beyond the scope of this review, but in addition to reduced aeration, increasing
727	ionic concentrations and exchange capacity likely affect the bioavailability of key mineral
728	nutrients (Kadiri et al., 2012). Saline flooding will affect also soil microbial and
729	invertebrate communities, and consequently, the decomposition and nutrient-cycling
730	services they provide (Sjøgaard et al., 2018; Stagg et al., 2018). Remarkably few studies
731	however, consider the impact of acute flooding on soil biogeochemistry, nor how additional
732	stresses like sediment movement and litter accumulation affect soil dwelling animal and
733	microbial communities and the processes they deliver.
734	Aboveground interactions are no less important. In an elegant experiment where sods of
735	Louisianan marshland vegetation were exposed over 2-years to saline flood treatments,
736	with and without herbivory, Gough and Grace (1999) reported that species loss was fastest
737	in seawater treatments when mammal herbivores were also present. Although the flooding
738	treatment was designed to mimic SLR rather than acute flooding, this study nonetheless
739	emphasises how, even if species can tolerate one stress (flooding), the imposition of a
740	second (herbivory) may filter species from the ecosystem (see also Mopper et al., 2004;
741	Schile and Mopper, 2006). Taken together, these studies underscore how post-storm
742	conditions can affect plant morphology and the expression of defence metabolites, change
743	herbivore performance and selection preferences, and how in combination, some plants
744	may be excluded from the post-disturbance community. We cannot hope to understand how
745	extreme storm events influence ECEs without a much greater understanding of these
746	interactions.

Research Priority IV – Better prediction of where and how storm events and SLR impact ECEs and the delivery of essential ecosystem services.

749 Although we know that storms are more likely to happen with more frequency and greater 750 intensity, a major challenge in predicting and understanding how ECEs will respond is to 751 be able to forecast and define the range of storm surge and SLR scenarios for any given 752 location. To achieve this, plant biologists must collaborate with geomorphologists, who 753 with their understanding of bathymetry, wave dynamics, sediment supply, landform, and 754 the biomechanical properties of vegetation, can offer vital insight into which ECEs are most susceptible and how they are likely to be affected (see also Krauss and Ostler, 2020). It also 755 756 true, that in order to deliver accurate flood risk predictions and mitigation scenarios, 757 geomorphologists must consider the contribution of plant communities to coastal processes. 758 The concept and application of coastal flood risk frameworks (CRAF) in coastal 759 management is relatively well developed, but the focus has tended to be on how 760 vulnerability to flooding affects human society rather than ECEs (Hallegatte et al., 2013; 761 Reimann et al., 2018; Viavattene et al., 2018). Nonetheless, there is developing 762 appreciation that CRAF can be used to identify 'at risk' ecosystems (especially those that 763 offer some measure of flood protection), or parts of the coastline where flood risk might be 764 mitigated by virtue of the protection afforded by natural vegetation. In one such example, 765 Christie *et al.* (2018) use the CRAF approach to pinpoint 'hot spot' sections of the North Norfolk (England) coast at greatest flood risk, and identify likely direct and indirect 766 impacts based on an understanding of local geomorphology and hydrodynamic forcing 767 768 during floods. Of particular note in this study is the finding that flood impact could be

reduced by saltmarsh; i.e. CRAF allows us to identify one of the key ecosystem services
provided by coastal vegetation (see also Torresan *et al.*, 2012).

771	Another modelling approach, more familiar to plant biologists and ecologists, are species
772	distribution models (SDMs). These have been widely used to predict how the geographical
773	distribution of plant populations will respond to ACC-linked changes in precipitation and
774	temperature (see Mairal et al., 2018; Rodríguez-Rodríguez et al., 2019). As noted already
775	however, the combination of SLR with additional climate-change drivers is a unique, but
776	largely ignored, issue for ECEs. Nonetheless, Garner et al. (2015) attempt some
777	comparative synthesis, using SDM for Californian coastal plant species. They predict that
778	by the end of this century, SLR alone threatens 60 of the 88 species considered and that 10
779	could completely lose their existing habitat range (due to flooding and erosion) within the
780	(24,000km ²) study region. This compares with only four species where shifts in
781	temperature and precipitation alone eliminate all currently suitable habitats. Indeed, unlike
782	plants threatened by SLR, some species may even gain suitable habitat space under likely
783	temperature and precipitation scenarios. Garner et al. (2015) stress however, that in order to
784	develop robust predictive models for coastal species, a much better mechanistic
785	understanding of vegetation responses to SLR, flooding and climate scenarios is needed.
786	One way to achieve that aim is by undertaking long-term monitoring of threatened ECEs.
787	This allows us to 'ground truth' predictive models by 'back casting' how recent
788	environmental changes have actually influenced plant communities. By virtue of access to
789	the Carolina Vegetation Survey, Ury et al., (2020) were able to monitor changes in coastal
790	forest communities over the past two decades. They report how the growth of tree species

791 like Acer rubrum, Juniperus virginiana, Pinus serotina, Taxodium distichum and various 792 Quercus species was considerably reduced in low elevation sites where high soil salt 793 content evidenced recent increased seawater seepage. In so doing, it is then possible to 794 track how chronic saltwater intrusion has influenced tree growth and shifts in community 795 composition over a 7-13 year time scale, exactly the kind of data needed to validate 796 predictive models and understand how vulnerable ECEs respond to SLR, and changing 797 storm frequencies and intensities. Long-term ecological surveys are time consuming and 798 labour intensive, and for large coastlines therefore, impractical over the decadal timeframes 799 in which we expect significant geomorphological and ecological changes to occur. Nonetheless, the use of remote sensing techniques in combination with localised 'ground-800 801 truthing' (see Stagg et al., 2020) offers an effective combination to monitor and predict 802 coastal change. The fact that both Stagg et al., (2020) and Ury et al. (2020) highlight how 803 the ability of coastal forests to deliver key ecosystem services is likely compromised by seawater inundation presents the most compelling reason to undertake long-term 804 805 monitoring and predictive modelling studies into the future.

806 Conclusions - ECEs in Perspective

807 The threats posed by the myriad factors associated with ACC and changing storm patterns

are worthy of considerable attention, not only from the many geomorphologists,

809 environmental agencies and land managers already concerned with coastal defence, but also

- 810 from biologists with any interest in plant ecophysiology or community ecology. Beyond
- any esoteric concern, as sea levels rise and the risk and impact of extreme storms increases,
- the associated economic repercussions will escalate. Hallegatte *et al.*, (2013) for example,

813	estimated that the costs associated with flooding for the 136 largest coastal cities would
814	increase from US\$6 billion in 2005, to US\$52 billion in 2050. Even under these extreme
815	circumstances, it seems unlikely that taxpayers will willingly subside the high cost of
816	protecting every vulnerable urban centre, transport link, or farm, with hard-engineered
817	defences. Given that coastal cities and food production globally are exposed to increasing
818	ACC-driven flood risk, nature-based risk mitigation, employing the conservation,
819	management, or even creation of ECEs with the capacity to track SLR and mitigate storm
820	surges seems ever more desirable. Indeed, the fact that Van Coppenolle & Temmerman
821	(2019) suggest how a cost-effective and dynamic answer (i.e. wetland creation) to the
822	problem of coastal defence can potentially be applied to over a third of the global land area
823	within the influence zone of storm surges, it would seem foolish to ignore the possibility.
824	A better understanding of the response of ECEs to seawater flooding, physical damage,
825	litter accumulation etc., at the levels of individual plant species (ecophysiological),
826	ecosystem (interactions), and landscape (distributions), can be delivered by plant scientists
827	from across our various disciplines. In turn, conservation biologists and ecologists can set
828	to work protecting and enhancing those habitats that deliver coastal defence. Only by so
829	doing can society hope to protect the unique biodiversity of our coastal habitats and the
830	essential ecosystem services they offer us in return.

LITERATURE CITED

- Abbas A, Rubio-Casal A, de Cires A, *et al.* 2014. Wrack burial reduces germination and
 establishment of the invasive cordgrass *Spartina densiflora*. *NeoBiota*, 21: 65.
- Abbott MJ, Battaglia LL. 2015. Purple pitcher plant (*Sarracenia rosea*) dieback and
 partial community disassembly following experimental storm surge in a coastal
 pitcher plant bog. *PLoS ONE* 10: e0125475.
- Adame MF, Zaldívar-Jimenez A, Teutli C, *et al.* 2013. Drivers of mangrove litterfall
 within a karstic region affected by frequent hurricanes. *Biotropica* 45: 147–154.
- Alongi DM. 2008. Mangrove forests: resilience, protection from tsunamis, and responses to
 global climate change. *Estuarine, Coastal and Shelf Science* 76: 1–13.
- Armitage AR, Weaver CA, Kominoski JS, Pennings SC. 2019. Resistance to hurricane
 effects varies among vegetation types in the marsh-mangrove ecotone. *Estuaries and Coasts* doi.org/10.1007/s12237-019-00577-3.
- Babcock RC, Bustamante RH, Fulton EA, *et al.* 2019. Severe continental-scale impacts
 of climate change are happening now: extreme climate events impact marine habitat
 forming communities along 45% of Australia's coast. *Frontiers in Marine Science*6: 14.
- 849 Barbier EB 2015. Valuing the storm protection service of estuarine and coastal
 850 ecosystems. *Ecosystem Services* 11: 32-38.
- **Barbier EB. 2016.** The protective value of estuarine and coastal ecosystem services in a
- wealth accounting framework. *Environmental and Resource Economics* **64**: 37-58.
- Barbier EB, Hacker SD, Kennedy C, *et al.* 2011. The value of estuarine and coastal
 ecosystem services. *Ecological Monographs* 81: 169-183.
- Barr JG, Engel V, Smith TJ, Fuentes JD. 2012. Hurricane disturbance and recovery of
 energy balance, CO₂ fluxes and canopy structure in a mangrove forest of the Florida
 Everglades. *Agricultural and Forest Meteorology* 153: 54–66.
- Bell SS, Fonseca MS, Kenworthy WJ. 2008. Dynamics of a subtropical seagrass
 landscape: links between disturbance and mobile seed banks. *Landscape Ecology*23: 67-74.

861	Benjamin KJ, Walker DI, McComb AJ, Kuo J. 1999. Structural response of marine and
862	estuarine plants of Halophila ovalis (R-Br.) Hook. f. to long-term hyposalinity.
863	Aquatic Botany 64: 1-17.
864	Bouma T, Vries MD, Herman PM. 2010. Comparing ecosystem engineering efficiency of
865	two plant species with contrasting growth strategies. Ecology 91: 2696–2704.
866	Bouma TJ, van Belzen J, Balke T, et al. 2014. Identifying knowledge gaps hampering
867	application of intertidal habitats in coastal protection: opportunities & steps to take.
868	Coastal Engineering, 87: 147–157.
869	Bouma TJ, van Belzen J, Balke T, et al. 2016. Short-term mudflat dynamics drive long-
870	term cyclic salt marsh dynamics. Limnology and Oceanography 61: 2261-2275.
871	Brown JK, Zinnert JC. 2018. Mechanisms of surviving burial: Dune grass interspecific
872	differences drive resource allocation after sand deposition. <i>Ecography</i> 9 : e02162.
873	Browning TN, Sawyer DE, Brooks GR, Larson RA, Ramos-Scharron CE, Canals-
874	Silander M. 2019. Widespread deposition in a coastal bay following three major
875	2017 hurricanes (Irma, Jose, and Maria). Scientific Reports 9: 13.
876	Burnett NP, Koehl MAR. 2019. Mechanical properties of the wave-swept kelp Egregia
877	menziesii change with season, growth rate and herbivore wounds. Journal of
878	Experimental Biology 222: doi: 10.1242/jeb.190595.
879	Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ. 2011.
880	Climate-driven increases in storm frequency simplify kelp forest food webs. Global
881	Change Biology 17: 2513-2524.
882	Cabaco S, Santos R, Duarte CM. 2008. The impact of sediment burial and erosion on
883	seagrasses: A review. Estuarine Coastal and Shelf Science 79: 354-366.
884	Cahoon DR. 2006. A review of major storm impacts on coastal wetland elevations.
885	Estuaries and Coasts, 29: 889-898.
886	Callaghan DP, Bouma TJ, Klaassen P, et al., 2010. Hydrodynamic forcing on salt-marsh
887	development: Distinguishing the relative importance of waves and tidal flows.
888	Estuarine, Coastal and Shelf Science, 89: 73-88.
889	Callaway JC, Zedler JB. 2004. Restoration of urban salt marshes: Lessons from southern
890	California. Urban Ecosystems, 7: 107-124.

- 891 Camprubi A, Abril M, Estaun V, Calvet C. 2012. Contribution of arbuscular mycorrhizal
 892 symbiosis to the survival of psammophilic plants after sea water flooding. *Plant and*893 Soil 351: 97–105.
- Carlson PR, Yarbro LA, Kaufman KA, Mattson RA. 2010. Vulnerability and resilience
 of seagrasses to hurricane and runoff impacts along Florida's west coast.
 Hydrobiologia 649: 39-53.
- Carr J, Mariotti G, Fahgerazzi S, McGlathery K, Wiberg P. 2018. Exploring the
 impacts of seagrass on coupled marsh-tidal flat morphodynamics. *Frontiers of Environmental Science* 6: 92.
- Carter GA, Otvos EG, Anderson CP, Funderburk WR, Lucas KL. 2018. Catastrophic
 storm impact and gradual recovery on the Mississippi-Alabama barrier islands,
 2005–2010: Changes in vegetated and total land area, and relationships of post storm ecological communities with surface elevation. *Geomorphology* 321: 72-86.
- 904 Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, *et al.* 2010. Sediment and nutrient
 905 deposition associated with Hurricane Wilma in mangroves of the Florida Coastal
 906 Everglades. *Estuaries and Coasts* 33: 45–58.
- 907 Cao H, Zhu Z, Balke T, Zhang L, Bouma TJ. 2018. Effects of sediment disturbance
 908 regimes on Spartina seedling establishment: Implications for salt marsh creation and
 909 restoration. *Limnology and Oceanography*, 63: 647-659.
- 910 Cao H, Zhu Z, James R, *et al.* 2020. Wave effects on seedling establishment of three
 911 pioneer marsh species: survival, morphology and biomechanics. *Annals of Botany*912 125: doi.org/10.1093/aob/mcz136.
- 913 Charbonneau BR, Wootton LS, Wnek JP, Langley JA, Posner MA. 2017. A species
 914 effect on storm erosion: Invasive sedge stabilized dunes more than native grass
- 915 during Hurricane Sandy. *Journal of Applied Ecology* **54**: 1–10.
- 916 Christianen M.JA, van Belzen J, Herman PMJ, et al. 2013. Low-canopy seagrass beds
 917 still provide important coastal protection services. *PLoS One* 8: e62413.
- 918 Colmer TD, Voesenek LACJ. 2009. Flooding tolerance: suites of plant traits in variable
 919 environments. *Functional Plant Biology* 36: 665-681.

920	Costanza R, de Groot R, Sutton P, et al., 2014. Changes in global value of ecosystem
921	services. Global Environmental Change 26: 152-158.
922	Cullen-Unsworth LC, Unsworth RFK. 2018. A call for seagrass protection. Science 361:
923	446–448.
924	Cuvillier A, Villeneuve N, Cordier E, et al. 2016. Causes of seasonal and decadal
925	variability in a tropical seagrass seascape (Reunion Island, South Western Indian
926	Ocean). Estuarine, Coastal and Shelf Science 184: 90-101.
927	Das S, Vincent JR. 2009. Mangroves protected villages and reduced death toll during
928	Indian super cyclone. Proceedings of the National Academy of Sciences 106: 7357-
929	7360.
930	de Battisti D, Griffin JN. 2020. Belowground biomass of plants, with a key contribution
931	of buried shoots, increases foredune resistance to wave swash. Annals of Botany
932	125 : doi.org/10.1093/aob/mcz125
933	de Groot AV, Veeneklaas RM, Bakker JP. 2011. Sand in the salt marsh: Contribution of
934	high-energy conditions to salt-marsh accretion. Marine Geology, 282: 240-254.
935	Denny M, Brown V, Carrington E, Kraemer G, Miller A. 1989. Fracture-mechanics and
936	the survival of wave-swept macroalgae. Journal of Experimental Marine Biology
937	and Ecology 127 : 211-228.
938	Denny M, Gaylord B. 2002. The mechanics of wave-swept algae. Journal of Experimental
939	<i>Biology</i> 205 : 1355-1362.
940	Donguy J R, Meyers G. 1996. Seasonal variations of sea surface salinity and temperature
941	in the tropical Indian Ocean. Deep Sea Research Part I 43: 117–138.
942	Douglas SH, Bernier JC, Smith KEL. 2018. Analysis of multi-decadal wetland changes,
943	and cumulative impact of multiple storms 1984 to 2017. Wetlands Ecology and
944	Management 26 : 1121–1142.
945	Doyle TW, Smith TJ, Robblee MB. 1995. Wind damage effects of Hurricane Andrew on
946	mangrove communities along the southwest coast of Florida. Journal of Coastal
947	<i>Research</i> 21 : 159–168.

- 948 Duffy JE, Benedetti-Cecchi L, Trinanes J, et al. 2019. Toward a coordinated global
- 949 observing system for seagrasses and marine macroalgae. *Frontiers in Marine*950 *Science* 6: doi: 10.3389/fmars.2019.00317.
- Edge RS, Sullivan MJP, Pedley SM, Mossman HL. 2020. Species interactions modulate
 the response of saltmarsh plants to flooding. *Annals of Botany* 125:
 doi.org/10.1093/aob/mcz120
- Edmunds PJ. 2019. Three decades of degradation lead to diminished impacts of severe
 hurricanes on Caribbean reefs. *Ecology* 100: e02587.
- Edwards MS. 2004. Estimating scale-dependency in disturbance impacts: El Niños and
 giant kelp forests in the northeast Pacific. *Oecologia* 138: 436-447.
- Ehl KM, Raciti SM, Williams JD. 2017. Recovery of salt marsh vegetation after removal
 of storm-deposited anthropogenic debris: Lessons from volunteer clean-up efforts in
 Long Beach, NY. *Marine Pollution Bulletin*, 117: 436-447.
- Evelin H, Devi TS, Gupta S, Kapoor R. 2019. Mitigation of salinity stress in plants by
 arbuscular mycorrhizal symbiosis: Current understanding and new challenges.
 Frontiers in Plant Science 10: 470.
- Feagin RA, Figlus J, Zinnert JC, *et al.* 2015. Going with the flow or against the grain?
 The promise of vegetation for protecting beaches, dunes, and barrier islands from
 erosion. *Frontiers in Ecology and the Environment* 13: 203–210.
- Feagin RA, Furman M, Salgado K, et al. 2019. The role of beach and sand dune
 vegetation in mediating wave run up erosion. *Estuarine, Coastal and Shelf Science*219: 97–106.
- 970 Fernandez-Torquemada Y, Sanchez-Lizaso JL. 2011. Responses of two Mediterranean
 971 seagrasses to experimental changes in salinity. *Hydrobiologia* 669: 21-33.
- 972 Filbee-Dexter K, Scheibling RE. 2012. Hurricane-mediated defoliation of kelp beds and
- 973 pulsed delivery of kelp detritus to offshore sedimentary habitats. *Marine Ecology*974 *Progress Series* 455: 51-64.
- 975 Filbee-Dexter K, Wernberg T. 2018. Rise of turfs: a new battlefront for globally declining
 976 kelp forests. *Bioscience* 68: 64-76.

977	Firth LC, Thompson RC, Bohn K, et al. 2014. Between a rock and a hard place:
978	environmental and engineering considerations when designing coastal defence
979	structures. Coastal Engineering 87: 122-135.
980	Fivash GS, Belzen JV, Temmink RJM, et al., 2020. Micro-topography boosts growth
981	rates in salt marsh pioneers by amplifying a tidally-driven oxygen pump:
982	implications for restoration and recruitment. Annals of Botany 125: doi:
983	10.1093/aob/mcz137.
984	Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:
985	945-963.
986	Flynn KM, McKee KL, Mendelssohn IA. 1995. Recovery of freshwater marsh vegetation
987	after a saltwater intrusion event. Oecologia 103: 63–72.
988	Fourqurean JW, Rutten LM. 2004. The impact of Hurricane Georges on soft-bottom,
989	back reef communities: Site- and species-specific effects in south Florida seagrass
990	beds. Bulletin of Marine Science 75: 239-257.
991	Fowler-Walker MJ, Wernberg T, Connell SD. 2006. Differences in kelp morphology
992	between wave sheltered and exposed localities: morphologically plastic or fixed
993	traits? Marine Biology 148: 755-767.
994	Gallego-Tévar B, Grewell BJ, Futrell CJ, Drenovsky RE, Castillo JM. 2020. Interactive
995	effects of salinity and inundation on native Spartina foliosa, invasive S. densiflora,
996	and their hybrid from San Francisco Estuary, California. Annals of Botany 125:
997	doi.org/10.1093/aob/mcz170.
998	Garner KL, Chang MY, Fulda MT et al. 2015. Impacts of sea level rise and climate
999	change on coastal plant species in the central California coast. PeerJ 3: e958.
1000	Granek EF, Ruttenberg BI. 2007. Protective capacity of mangroves during tropical
1001	storms: a case study from 'Wilma' and 'Gamma' in Belize. Marine Ecological
1002	Progress Series 343: 101-105.
1003	Gera A, Pages JF, Arthur R, Farina S, Roca G, Romero J, Alcoverro T. 2014. The
1004	effect of a centenary storm on the long-lived seagrass Posidonia oceanica.
1005	Limnology and Oceanography 59 : 1910-1918.

- Green MD, Miller TE. 2019. Germination traits explain deterministic processes in the
 assembly of early successional coastal dune vegetation. *Estuaries and Coasts* 42:
 1008 1097–1103.
- Gurbisz C, Kemp WM, Sanford LP, Orth RJ. 2016. Mechanisms of storm-related loss
 and resilience in a large submersed plant bed. *Estuaries and Coasts* 39: 951-966.
- 1011 Guntenspergen GR, Cahoon DR, Grace J, et al. 1995. Disturbance and recovery of the
- Louisiana coastal marsh landscape from the impacts of Hurricane Andrew. *Journal*of *Coastal Research*: 324-339.
- Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. 2013. Future flood losses in major
 coastal cities. *Nature Climate Change* 3: 802-806,
- Haller WT, Sutton DL, Barlowe WC. 1974. Effects of salinity on growth of several
 aquatic macrophytes. *Ecology* 55: 891-894.
- Hanley ME, Yip PYS, Hoggart SPG, et al. 2013. Riding the storm: The response of
 Plantago lanceolata to simulated tidal flooding. *Journal of Coastal Conservation* 17: 799-803.
- Hanley ME, Hoggart SPG, Simmonds DJ, *et al.* 2014. Shifting sands? Coastal protection
 by sand banks, beaches and dunes. *Coastal Engineering* 87: 136-146.
- Hanley ME, Gove TL, Cawthray GR, Colmer TD. 2017. Differential responses of three
 coastal grassland species to seawater flooding. *Journal of Plant Ecology* 10: 322–
 330.
- Hanley ME, Sanders SKD, Stanton H-M, Billington RA, Boden R. 2020a. A pinch of
 salt: Response of coastal grassland plants to simulated seawater inundation
 treatments. *Annals of Botany* 125: doi 10.1093/aob/mcz042
- Hanley ME, Hartley FC, Hayes L, Franco M. 2020b. Simulated seawater flooding
 reduces oilseed rape growth, yield, and progeny performance. *Annals of Botany* 1031 125: doi.10.1093/aob/mcz026.
- Harris AL, Zinnert JC, Young DR. 2017. Differential response of barrier island dune
 grasses to species interactions and burial. *Plant Ecology* 218: 609–619.

1034	Hauser S, Meixler MS, Laba M. 2015. Quantification of impacts and ecosystem services
1035	loss in New Jersey coastal wetlands due to Hurricane Sandy storm surge. Wetlands
1036	35 : 1137-1148.

- Herbeck LS, Unger D, Krumme U, Liu SM, Jennerjahn TC. 2011. Typhoon-induced
 precipitation impact on nutrient and suspended matter dynamics of a tropical
 estuary affected by human activities in Hainan, China. *Estuarine Coastal and Shelf Science* 93: 375-388.
- Hogan JA, Zimmerman JK, Thompson J, Nytch CJ, Uriarte M. 2016. The interaction
 of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one
 years of change. *Ecosphere* 7: e01405
- Hoggart SPG, Hanley ME, Parker DJ, et al. 2014. The consequences of doing nothing:
 The effects of seawater flooding on coastal zones. *Coastal Engineering* 87: 169182.
- Huang H, Zinnert JC, Wood LK, Young DR, D'Odorico P. 2018. A non-linear shift
 from grassland to shrubland in temperate barrier islands. *Ecology* 99: 1671-1681.
- Hudson T, Keating K, Pettit A. 2015. Cost estimation for coastal protection summary
 of evidence. Environment Agency UK, Report no. SC080039/R7.
- 1051 Imbert D. 2018. Hurricane disturbance and forest dynamics in east Caribbean mangroves.
 1052 *Ecosphere* 9: e02231.
- **IPCC, 2019.** Summary for Policymakers. In: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate* [Pörtner H-O, Roberts DC, Masson-Delmotte V,
 P. et al., (eds.)]. IPCC, Geneva, Switzerland, In press.
- 1056 James RK, Silva R, van Tussenbroek BI et al., 2019. Maintaining tropical beaches with
- 1057 seagrass and algae: A promising alternative to engineering solutions. *BioScience* 69:
 1058 136–142.
- 1059 Janousek CN, Buffington KJ, Thorne KM, Guntenspergen GR, Takekawa JY,
- **Dugger BD. 2016**. Potential effects of sea-level rise on plant productivity: species-
- 1061
 specific responses in northeast Pacific tidal marshes. Marine Ecology Progress
- 1062 *Series*, **548**: 111-125.

- Kadiri M, Spencer KL, Heppell CM. 2012, Potential contaminant release from
 agricultural soil and dredged sediment following managed realignment. *Journal of Soils and Sediments* 12: 1581–1592.
- Kendrick GA, Nowicki RJ, Olsen YS, *et al.*, 2019. A systematic review of how multiple
 stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic
 seagrass community. *Frontiers in Marine Science* 6: 455.
- 1069 Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S. 2016.
 1070 Overestimation of marsh vulnerability to sea level rise. *Nature Climate Change* 6:
 1071 253–260.
- Kosciuch TJ, Pilarczyk JE, Hong I, *et al.* 2018. Foraminifera reveal a shallow nearshore
 origin for overwash sediments deposited by Tropical Cyclone Pam in Vanuatu
 (South Pacific). *Marine Geology* 396: 171-185.
- Koske RE, Gemma JN, Corkidi L, Siguenza C, Rincon E. 2004. Arbuscular
 mycorrhizas in coastal dunes. In: Martinez ML, Psuty NP. (eds.) *Coastal Dunes, Ecology and Conservation*, Springer, Heidelberg, pp. 173-187.
- Kottler EJ, Gedan K. 2020. Seeds of change: will the soil seed bank support marsh
 migration? *Annals of Botany* 125: doi 10.1093/aob/mcz133
- Kowalski JL, DeYoe HR, Boza GH, Hockaday DL, Zimba PV. 2018. A comparison of
 salinity effects from Hurricanes Dolly (2008) and Alex (2010) in a Texas Lagoon
 System. *Journal of Coastal Research* 34: 1429-1438.
- 1083 Krauss KW Osland MJ. 2020. Tropical cyclones and the organization of mangrove
 1084 forests: a review. *Annals of* Botany 125: doi.org/10.1093/aob/mcz161.
- Ladd CJT, Duggan-Edwards MF, Bouma TJ, Pagès JF, Skov MW. 2019. Sediment
 supply explains long-term and large-scale patterns in saltmarsh lateral expansion
 and erosion. *Geophysical Research Letters* doi.org/10.1029/2019GL083315.
- Langlois E, Bonis A, Bouzillé JB. 2001. The response of *Puccinellia maritima* to burial: A
 key to understanding its role in salt-marsh dynamics? *Journal of Vegetation Science*, 12: 289-297.

1091	Langston AK, Kaplan DA, Putz FE. 2017. A casualty of climate change? Loss of
1092	freshwater forest islands on Florida's Gulf Coast. Global Change Biology 23: 5383-
1093	5397.

- Lantz TC, Kokelj SV, Fraser RH. 2015. Ecological recovery in an Arctic delta following
 widespread saline incursion. *Ecological Applications* 25: 172–185.
- Lapointe BE, Herren LW, Brewton RA, Alderman P. 2019. Nutrient over-enrichment
 and light limitation of seagrass communities in the Indian River Lagoon, an
 urbanized subtropical estuary. *Science of the Total Environment* 699: 134068.
- Larkum AWD, West RJ. 1990. Long-term changes of seagrass meadows in Botany Bay,
 Australia. *Aquatic Botany* 37: 55-70.
- Lawrence PJ, Smith GR, Sullivan MJP, Mossman HL. 2018. Restored saltmarshes lack
 the topographic diversity found in natural habitat. *Ecological Engineering* 115: 58–
 66.
- Leonardi N, Ganju NK, Fagherazzi S. 2016. A linear relationship between wave power
 and erosion determines salt-marsh resilience to violent storms and hurricanes.
 Proceedings of the National Academy of Sciences, 113: 64-68.
- Leonardi N, Carnacina I, Donatelli C, *et al.*, 2018. Dynamic interactions between coastal
 storms and salt marshes: A review. *Geomorphology* 301: 92–107.
- Li F, Pennings SC. 2018. Responses of tidal freshwater and brackish marsh macrophytes
 to pulses of saline water simulating sea level rise and reduced discharge. *Wetlands* 38: 885–891.
- 1112 Lum TD, Barton KE. 2020. Ontogenetic variation in salinity tolerance and ecophysiology
 1113 of coastal dune plants. *Annals of Botany* 125: doi.org/10.1093/aob/mcz097.
- Mairal M, Caujapé-Castells J, Pellissier L, *et al.* 2018. A tale of two forests: ongoing
 aridification drives population decline and genetic diversity loss at continental scale
 in Afro-Macaronesian evergreen-forest archipelago endemics. *Annals of Botany*1122: 1005–1017.
- Malloch AJC, Bamidele JF, Scott AM. 1985. The phytosociology of British sea-cliff
 vegetation with special reference to the ecophysiology of some maritime cliff
 plants. *Vegetatio* 62: 309-317.

1121	Masselink G.	Scott T	, Poate T, a	et al. 2015.	The extreme 2	2013/14 v	winter storms:
------	--------------	---------	--------------	--------------	---------------	-----------	----------------

- Hydrodynamic forcing and coastal response along the southwest coast of England. *Earth Surface Processes and Landforms* 41: 378-391.
- Masselink G, Hanley ME, Halwyn AC, *et al.*, 2017. Evaluation of salt marsh restoration
 by means of self-regulating tidal gate Avon estuary, south Devon, UK. *Ecological Engineering* 106: 174-190.
- McKee KL, Mendelssohn IA 1989. Response of a freshwater marsh plant community to
 increased salinity and increased water level. *Aquatic Botany* 34: 301-316.
- McKenna S, Jarvis J, Sankey T, *et al.* 2015. Declines of seagrasses in a tropical harbour,
 North Queensland, Australia, are not the result of a single event. *Journal of Biosciences* 40: 389-398.
- Meixler MS. 2017. Assessment of Hurricane Sandy damage and resulting loss in
 ecosystem services in a coastal-urban setting. *Ecosystem Services* 24: 28-46
- Mendelssohn IA, Kuhn NL. 2003. Sediment subsidy: effects on soil-plant responses in a
 rapidly submerging coastal salt marsh. *Ecological Engineering*, 21: 115-128.
- Middleton EA. 2009. Regeneration of coastal marsh vegetation impacted by hurricanes
 Katrina and Rita. *Wetlands* 29: 54-65.
- Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being:
 Biodiversity Synthesis. World Resources Institute, Washington, DC.
- Minchinton TE. 2006. Rafting on wrack as a mode of dispersal for plants in coastal
 marshes. *Aquatic Botany*, 84: 372-376.
- Möller I, Kudella M, Rupprecht F, *et al.* 2014. Wave attenuation over coastal salt
 marshes under storm surge conditions. *Nature Geoscience* 7: 727-731.
- Mopper S, Wang YY, Criner C, Hasenstein K. 2004. *Iris hexagona* hormonal responses
 to salinity stress, leafminer herbivory, and phenology. *Ecology* 85: 38–47.
- Mopper S, Wiens KC, Goranova GA. 2016. Competition, salinity, and clonal growth in
 native and introduced irises. *American Journal of Botany* 103: 1575–1581.
- Morris RL, Konlechner TM, Ghisalberti M, Swearer SE. 2018. From grey to green:
 Efficacy of eco-engineering solutions for nature-based coastal defence. *Global Change Biology* 24: 1827-1842.

- Morris RL, Graham TDJ, Kelvin J, Ghisalberti M, Swearer SE. 2020. Kelp beds as
 coastal protection: wave attenuation of *Ecklonia radiata* in a shallow coastal bay.
 Annals of Botany 125: doi.org/10.1093/aob/mcz127.
- Morton RA, Barras JA. 2011. Hurricane impacts on coastal wetlands: A half-century
 record of storm-generated features from southern Louisiana. *Journal of Coastal Research*, 27: 27-43.
- Mossman HL, Davy AJ, Grant A. 2012. Does managed coastal realignment create
 saltmarshes with 'equivalent biological characteristics' to natural reference sites?
 Journal of Applied Ecology 49: 1446-1456.
- Mossman HL, Grant A, Davy AJ. 2019. Manipulating saltmarsh microtopography
 modulates the effects of elevation on sediment redox potential and halophyte
 distribution. *Journal of Ecology* doi.10.1111/1365-2745.13229.
- Munns R, Tester M. 2008. Mechanisms of salt tolerance. *Annual Review of Plant Biology*59: 651-681.
- Narayan S, Beck MW, Reguero BG, *et al.* 2016. The effectiveness. costs and coastal
 protection benefits of natural and nature-based defences. *PLoS ONE* 11: e0154735.
- 1167 Negrão S, Schmöckel SM, Tester M. 2017. Evaluating physiological responses of plants
 1168 to salinity stress. *Annals of Botany* 119: 1–11.
- 1169 Noe GB, Zedler JB. 2001. Variable rainfall limits the germination of upper intertidal
 1170 marsh plants in southern California. *Estuaries*, 24: 30-40.
- Noe G, Krauss K, Lockaby B, Conner WH, Hupp CR. 2013. The effect of increasing
 salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal
 freshwater forested wetlands. *Biogeochemistry* 114: 225–244.
- 1174 O'Brien JM, Scheibling RE, Krumhansl KA. 2015. Positive feedback between large-
- scale disturbance and density-dependent grazing decreases resilience of a kelp bed
 ecosystem. *Marine Ecology Progress Series* 522: 1-13.
- 1177 Ondiviela B, Losada IJ, Lara JL, *et al.* 2014. The role of seagrasses in coastal protection
 1178 in a changing climate. *Coastal Engineering* 87: 158–168.

- Paling EI, Kobryn HT, Humphreys G. 2008. Assessing the extent of mangrove change
 caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia.
 Estuarine, Coastal and Shelf Science 77: 603–613.
- Parmesan C, Hanley ME. 2015. Plants and climate change: complexities and surprises.
 Annals of Botany 115: 849-864.
- Pathikonda S, Meerow A, He Z, Mopper S. 2010. Salinity tolerance and genetic
 variability in freshwater and brackish *Iris hexagona* colonies. *American Journal of Botany* 97: 1438-1443.
- Pessarrodona A Foggo A, Smale DA. 2018. Can ecosystem functioning be maintained
 despite climate-driven shifts in species composition? Insights from novel marine
 forests. *Journal of Ecology* 107: 91–104.
- Platt WJ, Doren RF, Armentano, TV. 2000. Effects of Hurricane Andrew on stands of
 slash pine (*Pinus elliotii* var. *densa*) in the everglades region of south Florida. *Plant Ecology* 146: 43– 60.
- Platt WJ, Joseph D Ellair DP. 2015. Hurricane wrack generates landscape-level
 heterogeneity in coastal pine savanna. *Ecography* 38: 63–73.
- Preen AR, Long WJL, Coles RG. 1995. Flood and cyclone related loss, and partial
 recovery, of more than 1000 km² of seagrass in Hervey-Bay, Queensland, Australia.
 Aquatic Botany 52: 3-17.
- Pruitt JN, Little AG, Majumdar SJ, Schoener TW, Fisher DN 2019. Call-to-Action: A
 global consortium for tropical cyclone ecology. *Trends in Ecology and Evolution*doi.org/10.1016/j.tree.2019.04.009.
- Rajaniemi TK, Barrett DT. 2018. Germination responses to abiotic stress shape species
 distributions on coastal dunes. *Plant Ecology* 219: 1271–1282.
- Reidenbach MA, Thomas EL. 2018. Influence of the seagrass, *Zostera marina*, on wave
 attenuation and bed shear stress within a shallow coastal bay. *Frontiers in Marine Science* 5: 397.
- Reimann L, Vafeidis AT, Brown S, Hinkel J, Tol RSJ. 2018. Mediterranean UNESCO
 World Heritage at risk from coastal flooding and erosion due to sea-level rise.
 Nature Communications 9: 4161.

1209	Ridler MS, Dent RC, Arrington DA. 2006. Effects of two hurricanes on Syringodium
1210	filiforme, manatee grass, within the Loxahatchee River Estuary, southeast Florida.
1211	Estuaries and Coasts 29: 1019-1025.
1212	Rodríguez-Rodríguez P, de Castro AGF, Seguí J, Traveset A, Sosa PA 2019. Alpine
1213	species in dynamic insular ecosystems through time: conservation genetics and
1214	niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Annals of
1215	Botany 123 : 505-519.

- Rupprecht F, Möller I, Paul M, *et al.* 2017. Vegetation-wave interactions in salt marshes
 under storm surge conditions. *Ecological Engineering*, 100: 301-315.
- Sachithanandam V, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. 2014.
 Assessment of Cyclone Lehar's impact on seagrass meadows in Ross and Smith
 Islands, North Andaman. *Natural Hazards* 72: 1253-1258.
- Schile L, Mopper S. 2006. The deleterious effects of salinity stress on leafminers and their
 freshwater host. *Ecological Entomology* 31: 345–351.
- Schuerch M, Vafeidis A, Slawig T, Temmerman S. 2013. Modelling the influence of
 changing storm patterns on the ability of a salt marsh to keep pace with sea level
 rise. *Journal of Geophysical Research: Earth Surface*, 118: 84-96.
- Schuerch S, Spencer T, Temmerman S, *et al.*, 2018. Future response of global coastal
 wetlands to sea-level rise. *Nature* 561: 231–234.
- Schwarz C, Brinkkemper J, Ruessink G. 2019. Feedbacks between biotic and abiotic
 processes governing the development of foredune blowouts: A Review. *Journal of Marine Science and Engineering* 7: doi.org/10.3390/jmse7010002
- Seymour RJ, Tegner MJ, Dayton PK, Parnell PE. 1989. Storm wave-induced mortality
 of giant-kelp, *Macrocystis pyrifera*, in southern-California. *Estuarine Coastal and* Shelf Science 28: 277-292.
- Shanks AL, Wright WG. 1986. Adding teeth to wave action the destructive effects of
 wave-borne rocks on intertidal organisms. *Oecologia* 69: 420-428.
- Shao D, Zhou W, Bouma TJ, et al., 2020. Physiological and biochemical responses of the
 salt-marsh plant *Spartina alterniflora* to long-term wave exposure. *Annals of Botany* 1238 125: doi 10.1093/aob/mcz067

- Shepard CC, Crain CM, Beck MW. 2011. The protective role of coastal marshes: A
 systematic review and meta-analysis. *PLoS ONE* 6: e27374.
- Sjøgaard KS, Valdemarsen TB, Treusch AH. 2018. Responses of an agricultural soil
 microbiome to flooding with seawater after managed coastal realignment.
 Microorganisms 6: doi: 10.3390/microorganisms6010012.
- 1244 Smale DA, Vance T. 2016. Climate-driven shifts in species' distributions may exacerbate
- the impacts of storm disturbances on North-east Atlantic kelp forests. *Marine and Freshwater Research* 67: 65-74.
- Smith SE, Read DJ. 2008. *Mycorrhizal Symbiosis*, 3rd edn, Elsevier, Academic Press, New
 York, USA.
- Spencer T, Möller I, Rupprecht F, *et al.* 2016. Salt marsh surface survives true-to-scale
 simulated storm surges. *Earth Surface Processes and Landforms*, 41: 543-552.
- Stagg CL, Baustian MM, Perry CL, Carruthers TJB, Hall CT. 2018. Direct and
 indirect controls on organic matter decomposition in four coastal wetland
 communities along a landscape salinity gradient. *Journal of Ecology* 106: 655-670.
- Stagg CL, Osland MJ, Moon JA, *et al.*, 2020. Quantifying hydrologic controls on localand landscape-scale indicators of coastal wetland loss. *Annals of Botany* 125: doi
 10.1093/aob/mcz144.
- Steinke TD, Ward CJ. 1989. Some effects of the cyclones Domoina and Imboa on
 mangrove communities in the St. Lucia estuary, South Africa. South African
 Journal of Botany 55: 340–348.
- Steneck RS, Arnold SN, Boenish R, *et al.* 2019. Managing recovery resilience in coral
 reefs against climate-induced bleaching and hurricanes: a 15 year case study from
 Bonaire, Dutch Caribbean. *Frontiers in Marine Science* 6: doi:
- 1263 10.3389/fmars.2019.00265.
- Steyer GD, Perez BC, Piazza SC, Suir G 2007. Potential consequences of saltwater
 intrusion associated with hurricanes Katrina and Rita. In: *Science and the storms – the USGS response to the hurricanes of 2005.* Report 13066C, Reston Virginia,
 USA.

- Sullivan MJP, Davy AJ, Grant A, Mossman HL. 2018. Is saltmarsh restoration success
 constrained by matching natural environments or altered succession? A test using
 niche models. *Journal of Applied Ecology* 55: 1207–1217.
- 1271 Sykes MT, Wilson JB. 1988. An experimental investigation into the response of some
 1272 New Zealand sand dune species to salt spray. *Annals of Botany* 62: 159-166.
- Tate AS, Battaglia LL. 2013. Community disassembly and reassembly following
 experimental storm surge and wrack application. *Journal of Vegetation Science* 24:
 46-57.
- 1276 Temmerman S, Bouma TJ, van de Koppel J, *et al.* 2007. Vegetation causes channel
 1277 erosion in a tidal landscape. *Geology* 35: 631–634.
- Temmerman S, Govers G, Wartel S, Meire P. 2004. Modelling estuarine variations in
 tidal marsh sedimentation: Response to changing sea level and suspended sediment
 concentrations. *Marine Geology* 212: 1–19.
- Temmerman S, Meire P, Bouma TJ, *et al.* 2013. Ecosystem-based coastal defence in the
 face of global change. *Nature* 504: 79–83.
- Thomsen MS, Wernberg T. 2005. Miniview: What affects the forces required to break or
 dislodge macroalgae? *European Journal of Phycology* 40: 139-148.
- Thomsen MS, Wernberg T, Kendrick GA. 2004. The effect of thallus size, life stage,
 aggregation, wave exposure and substratum conditions on the forces required to
 break or dislodge the small kelp *Ecklonia radiata*. *Botanica Marina* 47: 454-460.
- Tolliver KS, Martin DW, Young DR. 1997. Freshwater and saltwater flooding response
 for woody species common to barrier island swales. *Wetlands* 17: 10-18.
- Torresan S, Critto A, Rizzi J, Marcomini A. 2012. Assessment of coastal vulnerability to
 climate change hazards at the regional scale: the case study of the north Adriatic
 sea. *Natural Hazards and Earth System Sciences* 12: 2347-2368.
- Uhrin AV, Schellinger J. 2011. Marine debris impacts to a tidal fringing-marsh in North
 Carolina. *Marine Pollution Bulletin*, 62: 2605-2610.
- Ury EA, Anderson SM, Peet RK, Bernhardt ES, Wright JP. 2020. Succession,
 regression and loss: does evidence of saltwater exposure explain recent changes in

- the tree communities of North Carolina's Coastal Plain? Annals of Botany 125:
 doi.org/10.1093/aob/mcz039.
- Valiela I, Rietsma CS. 1995. Disturbance of salt marsh vegetation by wrack mats in Great
 Sippewissett Marsh. *Oecologia*, 102: 106-112.
- Valiela I, Peckol P, D'Avanzo C, *et al.* 1998. Ecological effects of major storms on
 coastal watersheds and coastal waters: Hurricane Bob on Cape Cod. *Journal of Coastal Research* 14: 218-238.
- 1304 Van Coppenolle R, Temmerman S. 2019. A global exploration of tidal wetland creation
 1305 for nature-based flood risk mitigation in coastal cities. *Estuarine, Coastal and Shelf* 1306 Science 226: 106262
- 1307 Van Zandt PA, Mopper S. 2002. Delayed and carryover effects of salinity on flowering in
 1308 *Iris hexagona* (Iridaceae). *American Journal of Botany* 89: 364–383.
- Van Zandt PA, Tobler MA, Mouton E, Hasenstein KH, Mopper S. 2003. Positive and
 negative consequences of salinity stress for the growth and reproduction of the
 clonal plant, *Iris hexagona. Journal of Ecology* 91: 837–846.
- Vasseur DA, DeLong JP, Gilbert B, *et al.* 2014. Increased temperature variation poses a
 greater risk to species than climate warming. *Proceedings of the Royal Society B- Biological Sciences* 281: 1–8.
- Viavattene C, Jiménez JA, Ferreira O, *et al.* 2018. Selecting coastal hotspots to storm
 impacts at the regional scale: the Coastal Risk Assessment Framework. *Coastal Engineering* 134: 33-47.
- 1318 Vuik V, Jonkman SN, Borsje BW, Suzuki T. 2016. Nature-based flood protection: The
 1319 efficiency of vegetated foreshores for reducing wave loads on coastal dikes. *Coastal* 1320 *Engineering* 116: 42– 56.
- 1321 Vuik V, Suh Heo HY, Zhu Z, Borsje BW, Jonkman SN. 2018. Stem breakage of salt
 1322 marsh vegetation under wave forcing: a field and model study. *Estuarine, Coastal* 1323 *and Shelf Science* 200: 41-58.
- Waters JM, King TM, Fraser CI, Craw D. 2018. Crossing the front: contrasting storm forced dispersal dynamics revealed by biological, geological and genetic analysis of
 beach-cast kelp. *Journal of the Royal Society Interface* 15: 20180046.

1327	White AC, Colmer TD, Cawthray GR, Hanley ME. 2014. Variable response of three
1328	Trifolium repens ecotypes to soil flooding by seawater. Annals of Botany 114: 347-
1329	356.
1330	White E, Kaplan D. 2017. Restore or retreat? Saltwater intrusion and water management
1331	in coastal wetlands. Ecosystem Health and Sustainability 3 e01258.
1332	Williams HFL, Flanagan WM. 2009. Contribution of Hurricane Rita storm surge
1333	deposition to long-term sedimentation in Louisiana coastal woodlands and marshes.
1334	Journal of Coastal Research 56: 1671-1675.
1335	Zhu Z, Yang Z, Bouma TJ. 2020. Biomechanical properties of marsh vegetation in space
1336	and time: effects of salinity, inundation and seasonality. Annals of Botany 125: doi
1337	10.1093/aob/mcz063.
1338	Zimmerman JK, Hogan JA, Nytch CJ, Bithorn JE. 2018. Effects of hurricanes and
1339	climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.
1340	<i>Ecology</i> 99 : 1402:1410
1341	Zedler JB. 2010. How frequent storms affect wetland vegetation: a preview of climate-
1342	change impacts. Frontiers in Ecology and the Environment, 8: 540-547.

1344 Figure Legend

- 1345 Figure 1. A summary of the principal research priorities (I IV) and avenues for future
- 1346 study needed to understand the response of estuarine and coastal plant communities to the
- 1347 disturbances associated with extreme storm events. The proposed level and overlap of study
- 1348 (Individual plant, Ecosystem, and Landscape) for each priority is shown. CRAF Coastal
- 1349 Flood Risk Frameworks; SDM Species Distribution Model
- 1350

- **Table 1** A summary of the principal acute threats and example responses reported for (semi-)natural coastal plant communities
- subject to extreme storm events.

Habitat		Threat	Response	Example studies
Sub-tidal	Kelp-forests	Physical damage & dislodgment	Storms cause widespread mortality, but age- and species-specific effects.	Thomsen <i>et al</i> . (2004); Smale and Vance (2016)
	Seagrass	Physical damage	Major losses of seagrass biomass following tropical cyclones.	Sachithanandam <i>et al.</i> (2014); Culliver <i>et al</i> . (2017)
		Sand deposition	High deposition causes (species-specific) mortality.	Cabaco <i>et al</i> . (2008)
		Turbidity	Sediment run-off had greater negative impact than storm damage.	Carlson <i>et al.</i> (2010)
		Rapid salinity change	Long-term, post-storm impacts on community composition.	Ridler <i>et al</i> . (2006); Benjamin <i>et al</i> . (1999)
Inter-tidal	Saltmarsh	Physical damage	Stem breakage likely, although response differs among species. Denudation of vegetation can also occur.	Möller <i>et al</i> . (2014); Vuik <i>et al</i> . (2018); Cahoon (2006)
		Erosion	Storm-induced erosion of the fronting tidal flat may induce marsh erosion and vegetation loss.	Callaghan <i>et al</i> . (2010); Bouma <i>et al</i> . (2016); Leonardi <i>et al</i> ., (2016, 2018)
		Sand, sediment or litter deposition	Burial under sediment or debris can kill vegetation (depending on timing, depth and species).	Callaway and Zedler (2004); Meixler (2017); Leonardi <i>et</i> <i>al.</i> , (2018)
		Changes in salinity or inundation	Heavy rainfall can create opportunities for germination, but salinity changes cause shifts in species and communities.	Zedler (2010); Meixler (2017); Edge <i>et al</i> ., (2020)

	Phys Mangrove	Physical damage/ Erosion	Species-specific variation in tree response (including mortality) to storm damage.	Doyle <i>et al.</i> (1995); Imbert (2018)
			Scour caused Avicenna marina mortality along South African shoreline fringe.	Steinke and Ward (1989)
		Sand/ Litter deposition	Impact of litter largely unknown (see Krauss and Osland 2020), but increased decomposition influences carbon-budgets.	Barr <i>et al.</i> (2012)
			Phosphorus-rich sediments stimulate post- storm forest productivity.	Castañeda-Moya <i>et al.</i> (2010); Adame <i>et al</i> . (2013)
			Sediments covered roots, causing anoxia and tree mortality	Paling <i>et al</i> . (2008)
Supra-tidal	Sand dunes	Physical damage/ Erosion	Sediment loss negatively affects vegetation, but extent depends on dune morphology and vegetation cover.	Hanley <i>et al</i> . (2014); Miller <i>et al</i> . (2015); Schwarz <i>et al</i> . (2019)
		Sand deposition	Sand accumulation induced (species- specific) morphological responses.	Harris <i>et al</i> . (2017); Brown and Zinnert (2018)
		Saline Inundation	Reduced plant performance but species- specific variation in 'stress' responses.	Camprubi <i>et al.,</i> (2012); Hoggart <i>et al.</i> (2014); Hanley <i>et al.</i> (2020a)
	Freshwater marshland	Erosion	Plant mortality facilitated subsequent sediment loss and erosion.	Howes <i>et al</i> . (2010); Hauser <i>et al</i> . (2015)
		Litter deposition	Experimental litter deposition reduced species diversity.	Tate and Battaglia (2013)
		Saline Inundation	Widespread plant mortality observed.	Abbott and Battaglia (2015); Hauser <i>et al.</i> (2015)
	Other habitats	Physical damage	Storm damage caused localised <i>Pinus elliotii</i> mortality in Florida everglades.	Platt <i>et al</i> . (2000)
		Litter deposition	High litter density reduced species	Tate and Battaglia, (2013);

			diversity in SE USA pine savannah.	Platt <i>et al.</i> (2015)
		Saline Inundation	Negative effects on recovery of Canadian tundra, but with species-specific variation.	Lantz <i>et al.</i> (2015)
			High mortality of Floridian 'freshwater forest' species.	Langston <i>et al</i> . (2017)

I. Reproduction and recruitment

II. Multiple stressors

III. Community Interactions IV. Storm prediction and ecosystem services

Manipulative experiments to determine impacts of erosion, litter, sedimentation, inundation, flow & waves on;

- Fecundity
- Germination
- Seedling
 establishment
- Vegetative spread

Manipulative experiments to determine ecophysiological responses to ACClinked stressors

- Temperature (averages & extremes)
- Precipitation
- Flooding
- Litter
- Elevated CO₂

Manipulative experiments to elucidate how storms influence post-disturbance;

- Plant competition & facilitation
- Plant-animal interactions
- Plant-microbial interactions
- Soil biogeochemistry

Long-term ecological (including remote sensing) monitoring to generate predictive models underpinned by priorities I-III.

- Geomorphological
 processes
- •CRAF
- •SDMs

Landscape

Individual plant

Ecosystem