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The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat
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journals and as we receive over 1000 submissions every year we need to be very selective in deciding which papers we can publish. In
making your assessment of the manuscript's suitability for publication in the journal please consider the following points.

Scientific Scope

Annals of Botany welcomes papers in all areas of plant science. Papers may address questions at any level of biological organization
ranging from molecular through cells and organs, to whole organisms, species, communities and ecosystems. Its scope extends to all
flowering and non-flowering taxa, and to evolutionary and pathology research. Many questions are addressed using comparative studies,
genetics, genomics, molecular tools, and modeling.

To merit publication in Annals of Botany, contributions should be substantial, concise, written in clear English and combine originality of
content with potential general interest.

We want to publish papers where our reviewers are enthusiastic about the science: is this a paper that you would keep for
reference, or pass on to your colleagues? If the answer is “no” then please enter a low priority score when you submit your report.

We want to publish papers with novel and original content that move the subject forward, not papers that report incremental
advances or findings that are already well known in other species. Please consider this when you enter a score for originality when
you submit your report.

Notes on categories of papers:

All review-type articles should be novel, rigorous, substantial and “make a difference” to plant science. The purpose is to
summarise, clearly and succinctly, the “cutting edge” of the subject and how future research would best be directed. Reviews should be
relevant to a broad audience and all should have a strong conclusion and illustrations including diagrams.

 

Primary Research articles should report on original research relevant to the scope of the journal, demonstrating an important
advance in the subject area, and the results should be clearly presented, novel and supported by appropriate experimental
approaches. The Introduction should clearly set the context for the work and the Discussion should demonstrate the importance of
the results within that context. Concise speculation, models and hypotheses are encouraged, but must be informed by the results
and by the authors' expert knowledge of the subject.

Reviews should place the subject in context, add significantly to previous reviews in the subject area and moving forward research
in the subject area. Reviews should be selective, including the most important and best, up-to-date, references, not a blow-by-blow
and exhaustive listing.

Research in Context should combine a review/overview of a subject area with original research, often leading to new ideas or
models; they present a hybrid of review and research. Typically a Research in Context article contains an extended Introduction that
provides a general overview of the topic before incorporating new research results with a Discussion proposing general models
and the impact of the research.

Viewpoints are shorter reviews, presenting clear, concise and logical arguments supporting the authors' opinions, and in doing so
help to stimulate discussions within the topic.

Botanical Briefings are concise, perhaps more specialised reviews and usually cover topical issues, maybe involving some
controversy.
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ABSTRACT 24 

 Background The combination of rising sea levels and increased likelihood of extreme 25 

storm events poses a major flood and erosion threat to our coastlines. As a result, many 26 

ecosystems recognized and valued for their important contribution to coastal defence, 27 

face increased damage from erosion and flooding. Nevertheless, only recently have we 28 

begun to examine how plant species and communities, respond to, and recover from, 29 

the many disturbances associated with storm events. 30 

 Scope We review how the threats posed by a combination of sea level rise and storms 31 

affects coastal sub-, inter-, and supra-tidal plant communities. We consider 32 

ecophysiological impacts at the level of the individual plant, but also how ecological 33 

interactions at community-level, and responses at landscape-scale, inform our 34 

understanding of how and why an increasing frequency and intensity of storm damage 35 

is vital to effective coastal management. While noting how research is centred on the 36 

impact of hurricanes in the US Gulf region, we take a global perspective and consider 37 

how ecosystems worldwide (e.g., seagrass, kelp forests, sand dunes, saltmarsh, 38 

mangroves) respond to storm damage and contribute to coastal defence. 39 

 Conclusions The threats posed by storms to coastal plant communities are undoubtedly 40 

severe, but beyond this obvious conclusion, we highlight four research priority areas. 41 

These call for studies focusing on (1) how storm disturbance affects plant reproduction 42 

and recruitment; (2) plant response to the multiple-stressors associated with ACC and 43 

storm events; (3) the role of ecosystem-level interactions in dictating post-disturbance 44 

recovery; and (4) models and long-term monitoring to better predict where and how 45 
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storms and other climate change-driven phenomenon impact coastal ecosystems and 46 

services. In so doing, we argue how plant scientists must work with geomorphologists 47 

and environmental agencies to protect the unique biodiversity and pivotal contribution 48 

to coastal defence delivered by plant communities. 49 

 50 

Key Words: Coastal Erosion - Flooding – Hurricanes -Kelp – Mangrove – Pine savannah - 51 

Salt Marsh – Sand Dunes – Seagrass - Sea-Level Rise - Storm Surge – Wave Attenuation 52 

 53 
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INTRODUCTION 57 

The past, present, and likely future impacts of Anthropogenic Climate Change (ACC) on 58 

terrestrial plant species and communities are widely reported and reasonably well 59 

understood (Parmesan and Hanley, 2015). Most studies focus on long-term, chronic effects, 60 

but considerable environmental threat is likely to stem from an increased frequency and 61 

intensity of acute, extreme events (Vasseur et al., 2014; Parmesan and Hanley, 2015). 62 

Although chronic stressors doubtless reduce ecosystem resilience, for many coastal plant 63 

communities the most important manifestation of ACC is likely to come from the acute 64 

disturbance, erosion, and flooding associated with storm events. 65 

In their most recent assessment of our changing climate, the Intergovernmental Panel on 66 

Climate Change (IPCC 2019) asserted that anthropogenically-driven Sea Level Rise (SLR), 67 

in tandem with an increase in storm frequency and intensity, poses a severe environmental 68 

threat to estuarine and coastal ecosystems (ECEs). Nonetheless, plant biologists have 69 

recognized this threat only recently, and when combined with our inability to predict where 70 

and when storms might occur, it is perhaps no surprise that relatively few authors have 71 

systematically addressed the issue. In-fact much of the initial relevant research was 72 

conducted in the SE United States where low-lying freshwater wetlands regularly 73 

experience periodic seawater inundation as a result of isostatic movements and subsidence, 74 

and changes in channel flow regime. Studies by Haller et al. (1974), McKee and 75 

Mendelssohn (1989) and Flynn et al. (1995) reporting species-specific variation in 76 

Floridian and Louisianan freshwater marsh plants to ‘natural’ salinity pulses, were 77 
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nonetheless prescient of how these communities can be expected to respond to 78 

contemporary and predicted changes in frequency and intensity of ACC-linked extreme 79 

events. Subsequently, a body of work conducted around the Gulf of Mexico has described 80 

the responses of wetland vegetation to the disturbance associated with recent hurricanes 81 

(Tate and Battaglia, 2013; Meixler, 2017; Imbert, 2018). 82 

The realization that coastlines globally now face increasing erosion and flood risk provides 83 

the impetus for understanding how hurricanes, typhoons, cyclones and other extreme 84 

weather events affect coastal vegetation. Moreover, in many vulnerable locations, ECEs 85 

have ‘added value’ in that they offer natural coastal protection against erosion and flooding 86 

(Temmerman et al., 2013; Morris et al., 2018). This key ecosystem service has 87 

considerable socio-economic benefits, reducing flood risk and damage for a fraction of the 88 

costs associated with constructing so-called ‘hard defences’ like concrete walls (Narayan et 89 

al., 2016; Morris et al., 2018). Nonetheless, society is only just beginning to appreciate this 90 

valuable service and how ECEs can be integrated into a dynamic flood defence strategy. 91 

Consequently, understanding the response of vegetation to shifts in storm regimes is critical 92 

to ensure effective risk management over coming decades. 93 

With this mind, we offer here a synthesis of the response of ECE vegetation to extreme 94 

storm events, and signpost how an understanding of these responses aids management of 95 

ECEs for flood and erosion mitigation. We contextualize recent scientific studies by 96 

exploring the threats to, and response of, plants challenged by both SLR and increasing 97 

storm frequency and severity. This necessitates understanding ecophysiological responses 98 

from the level of the individual, up to geomorphological factors operating across the entire 99 
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tidal range. We highlight also future research priorities, from laboratory experiments to 100 

large-scale modelling and mapping of post-disturbance vegetation responses, needed to 101 

provide an appreciation of the wider ecosystem services delivered by coastal habitats. By 102 

bringing together this diversity of topics, our aim is not only to signpost interdisciplinary 103 

research towards better management of ECEs, but also promote their integration into 104 

strategic coastal defence. 105 

THREATS TO COASTAL ECOSYSTEMS 106 

Although historically, land use change, pollution, and invasive species have all impacted 107 

ECEs, and while these threats are certain to continue into the future, our focus is on ACC. 108 

Indeed, there seems little doubt that ACC will pose the greatest challenge to coastal habitats 109 

for the remainder of this century and beyond (Millennium Ecosystem Assessment, 2005). 110 

Although elevated atmospheric CO2 (eCO2), and associated shifts in temperature, and 111 

precipitation will have profound effects on all plant communities (Parmesan and Hanley, 112 

2015), the combination of SLR, and increased sea surface temperatures (SST) and 113 

enhanced wave forcing is a particular pressing and unique issue for ECEs. 114 

Rising sea levels have already affected many coastal regions. IPCC (2019) stated with ‘high 115 

confidence’ that the 0.32m increase in global sea levels observed between 1970-2015 was 116 

attributable to ACC-driven thermal expansion of the seas and glacier mass loss. It seems 117 

clear that SLR will accelerate into the 21
st
 century, although IPCC (2019) have ‘high 118 

confidence’ that variation in ocean dynamics and coastal land-use will generate regional 119 

departures of about 30% around global averages. Not only does this place coastal regions 120 
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and habitats at significant (but varying) flood risk, there is ‘high confidence’ that SLR will 121 

continue for centuries, even if global mean temperatures are stabilized (IPCC, 2019). The 122 

ramifications of these changes are severe. IPCC (2019) has ‘very high confidence’ that low-123 

lying coastal areas will increasingly experience submergence, flooding and erosion 124 

throughout this century and beyond. 125 

It is important however, to distinguish between the impacts of long-term, chronic changes 126 

in Earth’s climate, and those imposed by acute ACC-linked events. Although an annual 127 

maximum predicted global SLR of 15 mm yr
-1

 (IPCC 2019) poses problems for coastal 128 

plants due to landward/upward displacement of the freshwater-saltwater aquifer interface 129 

(White and Kaplan, 2017), SLR and extreme weather together are likely to deal the greatest 130 

environmental threat to our coastlines (IPCC, 2019). A combination of increased SST 131 

coupled with SLR, is widely predicted to increase the frequency, severity and geographical 132 

distribution of tropical cyclones and storm surge events (IPCC, 2019). Consequently, 133 

present-day ‘one per century’ sea level extremes are expected on an annual basis for most 134 

coastlines by 2100 (IPCC, 2019). Not only will many supra-tidal ECEs face an increased 135 

risk of short-duration, seawater inundation as a result, the wave energies and sediment 136 

disturbance associated with intense storm activity will impact the many ECEs that help 137 

protect coastlines. In addition, most coastal habitats are strongly inter-connected, such that 138 

acute erosion and sediment loss from one (e.g. a sub-tidal sand bar), has major 139 

repercussions for sediment transport to nearby supra-tidal habitat (e.g. sand dunes) (Hanley 140 

et al., 2014). 141 
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Indeed, where sufficient ‘pre-event’ data are available, studies show major changes in 142 

coastal geomorphology and vegetation for many years afterwards. Carter et al. (2018) for 143 

example, used a time series of remotely sensed images to show major breaching, land-area 144 

reduction, and vegetation loss throughout the Mississippi-Alabama barrier islands in the 145 

first 10 months after Hurricane Katrina made landfall. These changes were however, site-146 

specific depending on sediment removal or accretion, underscoring the more general 147 

problem that it is difficult to predict exactly how and when storms affect particular 148 

coastlines. For example, in the unusually energetic series of winter storms that affected SW 149 

England in 2013/4, the most severe impacts coincided with high spring tides and occurred 150 

on west-facing beaches where subsequent dune erosion was extensive (Masselink et al., 151 

2015). Similarly, variation in wind directions meant a brackish marshland in Louisiana, 152 

USA, apparently unaffected by Hurricane Katrina in August 2005, experienced major 153 

seawater incursion following Hurricane Rita only a month later (Steyer et al., 2007). 154 

The spatio-temporal stochasticity associated with forecasting storm events presents a major 155 

limitation to our ability to predict where and when ECEs will be impacted. Nevertheless, it 156 

seems certain that ECEs globally can expect a significant increase in erosion and flood 157 

frequency and duration over coming decades. In Table 1, we summarize how the threats 158 

associated with extreme storms are likely to affect coastal habitats across the tidal range, 159 

and in the following sections, discuss how some of these key threats, exert major ecological 160 

effects on sublittoral, inter-tidal, and supra littoral habitats. 161 

  162 
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IMPACTS ON COASTAL PLANT COMMUNITIES 163 

Supra-tidal Plant Communities 164 

Vegetation subject to seawater immersion at exceptionally high tides or during storm surge 165 

events only. Affected habitats include sand dunes, and other (semi-)natural terrestrial and 166 

aquatic ecosystems (grasslands, pine savannah, freshwater wetlands). 167 

Due, in part, to our inability to predict where and when storm surges will occur, and even 168 

less effectively, control and replicate natural flood events, few field studies deal with the 169 

impact of storm disturbance on supra-tidal plant communities. Although remote sensing 170 

offers a way to assess and monitor largescale changes in vegetation following storm events 171 

(e.g. Carter et al., 2018; Douglas et al., 2018; Stagg et al., 2020), elucidating how saltwater 172 

flooding, mechanical damage, litter accumulation, and sediments affect the plant 173 

community is challenging. There is however, a relatively large body of research describing 174 

the (species-specific) effects of burial by sediments on sand dune species (Sykes and 175 

Wilson, 1990; Harris et al., 2017; Brown and Zinnert, 2018), while Tate and Battaglia, 176 

(2013) and Platt et al., (2015) report major negative effects of simulated post-hurricane 177 

litter deposition on Floridian and Mississippian pine savannah. Surprisingly however, few 178 

studies consider the immediate effects of physical damage on supra-littoral coastal 179 

vegetation (see Platt et al., 2000). 180 

The most widely reported impact of ACC-linked extreme events on supra-littoral ECEs is 181 

seawater flooding. Immersion in seawater brings additional problems for supra-littoral 182 

plants compared to those experienced by species in inland riparian, or coastal inter-tidal 183 
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communities. Flooding of the former is exclusively freshwater, while plants in most inter-184 

tidal ECEs have an inherent ability to tolerate salinity associated with (twice-daily) tidal 185 

immersion. Although by virtue of their association with the coast, sand dune, cliff edge, and 186 

other supra-littoral plants may be tolerant of salt spray (Malloch et al., 1985; Sykes and 187 

Wilson 1988), the combination of anoxia and salt stress imposed by seawater flooding is 188 

unique to these habitats. 189 

In fact the ‘salt stress’ associated with coastal flooding seems to be much more important to 190 

plant response and recovery than anoxia. In experiments where supra-littoral plants have 191 

been simultaneously exposed to freshwater and seawater immersion, the former has never 192 

resulted in any noticeable impact on plant ecophysiology compared with untreated (no 193 

immersion) controls (Tolliver et al., 2009; Hanley et al., 2013, 2017, 2020a,b; White et al., 194 

2014). A full appraisal of how and why salinity stress affects plant ecophysiology is beyond 195 

the scope of this review (see instead Flowers and Colmer, 2008; Munns and Tester, 2008; 196 

Negrão et al., 2017; the latter an excellent assessment of methods to evaluate plant 197 

physiological responses to salinity stress). In short however, high seawater salinity (of 198 

which chloride (55%) and sodium (31%) contribute most of the ‘salt’ content), causes both 199 

osmotic (limiting the plant's ability to absorb water) and ionic (increased toxicity via Na
+
 200 

and Cl
-
 accumulation) stresses (Munns and Tester, 2008). It is worth bearing in mind 201 

though that our oceans have marked seasonal and regional salinity variation (Donguy and 202 

Meyers, 1996) and that seawater is much more than ‘NaCl in solution’. Some ions such as 203 

K
+
 and Ca

2+
 have direct negative toxicological or osmotic effects, but also the potential to 204 

mitigate the impact of Na
+
 and Cl

- 
on plant metabolism (Flowers and Colmer, 2008; Munns 205 
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and Tester, 2008). It is likely that other ions have similar moderating influences over Na
+
 206 

and Cl
-
 stress, and consequently, understanding how seawater affects plant 207 

ecophysiological responses requires much more than a simplistic evaluation of the effects 208 

of NaCl alone. This point was reinforced by Hanley et al., (2020a), who show how short-209 

duration immersion of Trifolium repens in NaCl solutions elicited almost total mortality 210 

compared to plants subject to immersion in natural seawater or commercially available 211 

marine aquarium salt solutions. 212 

It is possible to monitor ECE recovery after a natural flood event (e.g. Flynn et al., 1995; 213 

Lantz et al., 2015), but this requires the ability to allocate resources quickly to an affected 214 

site in order to capture changes in vegetation as floodwaters recede. Moreover, to 215 

appreciate fully post-inundation transitions, a thorough understanding of the pre-flood 216 

ecosystem is also essential (Langston et al., 2017; Masselink et al., 2017). Some 217 

manipulative field experiments have been attempted, but logistical and even ethical issues 218 

mean these are uncommon (McKee and Mendelssohn, 1989; Tate and Battiglia, 2013; 219 

Abbott and Battiglia, 2015). Consequently, many studies employ controlled ‘flooding’ in 220 

greenhouse or ‘common garden’ experiments, although inevitably, experiments are 221 

constrained to focus on a limited species or habitat pool (van Zandt et al., 2003; Hanley et 222 

al., 2013, 2017, Li and Pennings, 2018). Many studies also impose long-term, or periodic, 223 

chronic salinity, rather than replicating the short-duration, acute immersion experienced 224 

immediately after a storm (Tolliver et al., 1997; van Zandt and Mopper 2002; van Zandt et 225 

al., 2003; Mopper et al., 2016; Li and Pennings, 2018). A further problem is that rather 226 

than use natural seawater, experiments are often undertaken using commercially available 227 
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marine aquarium salt or even NaCl solutions (Sykes and Wilson 1988; Flynn et al., 1995; 228 

Tolliver et al., 1997; Mopper et al., 2016), with no assessment of their validity as 229 

alternatives. In the second experiment described by Hanley et al., (2020a) however, six 230 

different European sand dune plant species showed remarkable uniformity in stress and 231 

ecophysiological responses to marine aquarium salt versus locally collected seawater. This 232 

consistency suggests that the chemistry of the former is indeed close enough to the latter to 233 

use marine aquarium salt as a reliable experimental substitute. 234 

Despite the various methodological problems, unsurprisingly perhaps, significant negative 235 

repercussions for plant survival, growth, and reproduction are apparent for plants subjected 236 

to seawater (or surrogate) immersion (van Zandt et al., 2003; Mopper et al., 2016; Hanley 237 

et al., 2017, 2020a,b; Li and Pennings, 2018; Lum and Barton, 2020). Mortality is 238 

common, but even where plants survive short-pulses of seawater exposure subsequent 239 

recovery is compromised. A typical response to the ionic and osmotic shock associated 240 

with salinity is the accumulation of stress metabolites (e.g. proline) and ions (Ca
2+

 and K
+
) 241 

to exclude or compartmentalize Na
+
 and Cl (Flowers and Colmer, 2008; Munns and Tester, 242 

2008) (likely explaining why plant response to NaCl solution is more extreme than 243 

seawater which contains 1.2% Ca
2+

 and 1% K
+
). Even if achieved however, a cost on plant 244 

fitness is probably inevitable (Munns and Tester, 2008; White et al., 2014; Hanley et al., 245 

2020a,b). 246 

Most importantly perhaps, the ability of plants to tolerate, and recover from, seawater 247 

flooding seems to be species-specific. Long-term observation of Arctic tundra following a 248 

major storm surge in the Mackenzie Delta, Canada, shows that dwarf shrub tundra had a 249 
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much-reduced regenerative capacity than graminoids or upright shrubs (Lantz et al., 2015 - 250 

see also Middleton, 2009; Tate and Battiglia, 2013). Manipulative greenhouse experiments 251 

(Hanley et al., 2017, 2020a; Li and Pennings, 2018; Edge et al., 2020) generally 252 

corroborate field observations of species-specific variation. Working on two native 253 

Hawaiian plants, Lum and Barton (2020) for example, report not only species-specific 254 

variation in ecophysiological responses to increased salinity (imposed over 3-weeks), but 255 

also that tolerance increased for both species as plants aged. These observations represent a 256 

critical component of our understanding of plant response to the environmental pressures 257 

associated with SLR and storm surges. Not only is species-specific variation important, but 258 

it is essential to elucidate plant responses throughout ontogeny. Middleton (2009) for 259 

example describes species-specific variation in post-hurricane germination and recruitment 260 

ability of US Gulf Coast marshland species, a response ascribed principally to increased 261 

salinity. At the other end of the plant life cycle, Hanley et al., (2020b) report how 262 

immersion of oilseed rape (Brassica napus) in seawater reduced seed yield, and perhaps 263 

most importantly, that growth of the resulting seedlings was also greatly reduced in 264 

comparison with progeny cultivated from non-flooded or even freshwater-flooded parent 265 

plants. 266 

Although work in this area is anything but ‘mature’, these studies signpost flooding as a 267 

potential selective filter that could remove species from the post disturbance community. 268 

The loss of key species or functional groups from any vegetation is likely to compromise 269 

ecosystem processes and so limit the ability to supply essential ecosystem services. For 270 

vegetation like sand dunes, these losses may be particularly profound. In Florida for 271 
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example, Miller (2015) identified reduced cover of the dune building grass, Uniola 272 

paniculata, in low elevation areas subject to frequent flooding as a likely reason why dune 273 

erosion was more common in these sites. The interplay of ACC-linked changes in storm 274 

frequency and severity, with resulting shifts in plant community composition and thus 275 

resilience against further storm damage, is pivotal for understanding how ECEs contribute 276 

to coastal defence. 277 

Inter-tidal Plant Communities 278 

Communities subject to periodic, but predictable, (twice daily) tidal submersion and 279 

exposure to air – mangroves, saltmarshes and some algal communities. 280 

Although mangrove forests are both a globally widespread and exceptionally important 281 

habitat for biodiversity and coastal defense provision in (sub)tropical regions, we focus 282 

here on the saltmarsh ecosystems more typically associated with temperate coastlines. This 283 

is simply because in this special issue, Krauss and Ostler (2020) provide a comprehensive 284 

review of how storms influence mangrove ecosystems and the vital ecosystem services they 285 

provide. 286 

The physical damage caused by storms ranges from waves and strong currents dislodging 287 

or breaking above-ground tissue (Möller et al., 2014), to complete denudation of vegetation 288 

(Morton and Barras, 2011). Fragmented or degraded marshes are generally more vulnerable 289 

to disturbance than intact habitat (Stagg et al., 2020) and so are less resilient to extreme 290 

events. Responses also vary with vegetation height and stiffness (Vuik et al., 2018). For 291 

example, when exposed to simulated storm conditions, the tall, rigid grass Elymus athericus 292 
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experienced more breakage than the shorter, more flexible Puccinellia maritima (Rupprecht 293 

et al., 2017). Strong winds and water flows can tear the root mat from the marsh surface, 294 

laterally folding it into ridges – described by Cahoon (2006) as like ‘pushing a rug up along 295 

a wooden floor’. This alters marsh topography, lowering areas where turf was lost and 296 

raising elevations (up to 2 m) on the folded ridges (Guntenspergen et al., 1995). This can 297 

affect long-term community recovery (Leonardi et al., 2018; Mossman et al., 2019). 298 

In addition to direct damage, storms modify plant communities through changes to the 299 

physical environment (see reviews by Cahoon, 2006; Leonardi et al., 2018). Storm-driven 300 

waves can cause lateral erosion of tidal flats and marshes (Callaghan et al., 2010), with 301 

erosion of fronting tidal flats increasing marsh loss by amplifying the consistent pressure 302 

imposed by normal wind and wave action (Leonardi et al., 2016). Saltmarshes are resistant 303 

to storm-driven erosion of the marsh surface however, with vegetation playing a key role in 304 

stabilizing the sediment (Spencer et al., 2016). Importantly, significant amounts of 305 

sediment (mobilised from sub-tidal, intertidal or upstream areas) are deposited on 306 

saltmarshes during these events (de Groot et al., 2011). For example, a single hurricane can 307 

deposit the equivalent of over a century of sediment accumulated in ‘normal’ conditions, 308 

and account for up to two thirds of long-term sedimentation (Williams and Flanagan, 309 

2009). Burial under such rapid deposition can kill vegetation (Callaway and Zedler, 2004), 310 

and reduce growth and seedling establishment (Langlois et al., 2001; Cao et al., 2018). 311 

Marsh recovery following storm-driven sediment deposition can be rapid however, 312 

(Guntenspergen et al., 1995) and increases in elevation improve colonization, particularly 313 

in subsiding marshes (Mendelssohn and Kuhn, 2003). 314 
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Storms can generate significant debris, either through breakage of local coastal vegetation 315 

or the remobilization of existing natural and artificial debris (Meixler, 2017). Like 316 

sediment, debris can kill or damage the vegetation beneath (Uhrin and Schellinger, 2011), 317 

modify environmental conditions such as sediment redox potential (Abbas et al., 2014), and 318 

lead to reductions in species richness (Tate and Battaglia, 2013). The amount of damage 319 

depends on the type of debris deposited (Uhrin and Schellinger, 2011), the size of the mat 320 

and how long it persists (Valiela and Rietsma, 1995), so in some circumstances, recovery 321 

can be quick (Ehl et al., 2017). Plant debris can also be important for propagule dispersal, 322 

but can act as a pathway for invasive species (Minchinton, 2006). 323 

The impact of changes in soil salinity following storms is less clear. In some circumstances, 324 

high rainfall can ameliorate conditions, allowing plants to colonize or grow faster. For 325 

example, in the dry climate of California, Noe and Zedler (2001) found that heavy rainfall 326 

provided a window for germination by reducing soil salinity and increasing soil moisture. 327 

Storms can also alter the inundation regime of tidal marshes through changes to coastal 328 

morphology that lead to closure of an estuary mouth or movements of tidal channels. 329 

Zedler (2010) summarises how the storm-driven closure of the Tijuana estuary had 330 

substantial negative impacts on tidal marsh vegetation when subsequent drought caused 331 

moisture loss and hypersalinity in sediments. 332 

More typical is the generally negative effect of seawater inundation; Janousek et al., (2016) 333 

report how experimental increases in inundation over one growing season reduced plant 334 

productivity. It is also likely that even where tidal marsh plants survive storm disturbance, 335 

they are so ecophysiologically compromised that interactions with other species change. 336 
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The study by Edge et al., (2020) on three European saltmarsh species is an excellent 337 

example. Following seawater immersion, the biomass of Triglochin maritima decreased 338 

markedly in mixed assemblages with Plantago maritima and Aster tripolium, compared to 339 

monoculture. Interestingly, Plantago performed markedly better in flooded, mixed 340 

assemblages than in monoculture, appearing to ‘take advantage’ of a relative decline in the 341 

growth of the other species (Hanley et al., (2017) describe very similar shifts for supra-342 

littoral plants). Edge et al., (2020) further note how that for 14 out of 18 trait-species 343 

combinations examined (including height, SLA, and leaf number), flooding response in 344 

mixed assemblages differed from monocultures, changing the direction, as well as 345 

magnitude, of flood effects. Plant trait and species composition shifts within saltmarsh 346 

communities are likely important to ecosystem stability and function (Ford et al., 2016), 347 

but if disturbance associated with storm events facilitates the spread of non-native species, 348 

repercussions could be more severe. This is exactly what Gallego-Tévar et al., (2020) 349 

report when they found that an invasive Spartina hybrid was better able to tolerate stressful 350 

post-flood salinity conditions than its parent species (see also Charbonneau et al., 2017). 351 

Together, these studies underscore the importance of species identity in dictating 352 

community responses to storm disturbances, and thus the capacity of the saltmarsh 353 

ecosystem to continue to deliver key services as ACC continues. 354 

Subtidal Plant Communities 355 

Ecosystems continually submerged below sea-level – primarily seagrass beds, but includes 356 

marine macro-algal communities, most commonly kelp ‘forests’ 357 
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Storm events can have substantial impacts on seagrass and macroalgal communities, from 358 

changes in the relative abundance of species within a community to total habitat loss. These 359 

impacts occur through physical disturbance from violent storms, burial by displaced 360 

sediment, and even subsequent ‘knock-on’ effects from pluvial flooding. 361 

High wave energy and flow speeds can physically damage fronds and stipes (Denny et al., 362 

1989), uproot individuals (Preen et al., 1995) or cause failure of holdfasts (Seymour et al., 363 

1989). While the biomechanics of storm effects are well understood (see Denny and 364 

Gaylord, 2002), predicting the impact of storm events is more complex. Structural damage 365 

and uprooting/ dislodgement can result in high mortality; for example, complete loss of 366 

giant kelp occurs in storm-intense years but is not seen everywhere (Edwards, 2004). Large, 367 

frequent and breaking waves exert the greatest forces and are most likely to result in 368 

structural damage or dislodgement, particularly in shallow water when a storm coincides 369 

with low tide (Preen et al., 1995; Filbee-Dexter and Scheibling, 2012). Even moderate 370 

waves can lead to entanglement of kelp fronds, increasing the potential for tissue damage 371 

(Seymour et al., 1989). Effects can vary according to substrate type, as wave-carried rocks 372 

can dislodge individuals, while sand grains and small pebbles scour roots and holdfasts or 373 

damage tissue (Shanks and Wright, 1986). Substrate type also affects the forces needed to 374 

dislodge macroaglae (Thomsen et al., 2004). 375 

Storm-driven waves do not affect every organism equally however. Vulnerability varies 376 

with spatial arrangement and age; individuals in the centre of algal stands are less likely to 377 

be removed by waves or strong currents, and small, young kelp are more easily dislodged 378 

than older, larger individuals (Thomsen et al., 2004). Nonetheless, the higher biomass of 379 
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very large kelp makes them more susceptible to high wave energies (Seymour et al., 1989). 380 

Consequently, severe storms can result in homogenization of age structure in kelp beds. 381 

Ecotypes or morphological plasticity provide resistance to high wave action (e.g. in shallow 382 

waters) (Fowler-Walker et al., 2006), allowing some individuals or populations to better 383 

cope with an extreme event. Storms are also generally most frequent at the point in the 384 

annual cycle where organisms are most resistant (Burnett and Koehl, 2019); accordingly, 385 

changes to storm seasonality may have significant consequences for these communities. 386 

In addition to the effects of wave action and shear stress, storm-generated waves and 387 

currents redistribute sediments, causing erosion in some areas and burial in others. Cabaco 388 

et al., (2008) identified significant species-specific variation in seagrass tolerance to both 389 

burial with sediment and erosion. Recovery is generally rapid under shallow burial, but this 390 

capacity decreases markedly when more sediment is deposited (Fourqurean and Rutten, 391 

2004; Gera et al., 2014). Consequently, burial by up to 45 cm of sediment, reported 392 

following some severe storms (Kosciuch et al., 2018; Browning et al., 2019), is likely to 393 

lead to localized loss of communities. 394 

As well as the impacts of storms at sea, heavy rainfall can have major impacts on sub-tidal 395 

ECEs via the discharge of nutrient-rich, sediment-laden freshwaters into coastal areas. 396 

These enriched waters cause turbidity and stimulate algal blooms and epiphytic growth, 397 

both of which lower light availability (Lapointe et al., 2019). Seagrasses are especially 398 

vulnerable (Cobaco et al., 2008), and impacts of flood-induced light limitation can be more 399 

severe than the physical impacts of storms (Carlson et al., 2010). In addition, heavy rainfall 400 

can reduce salinity, particularly in lagoons or estuaries, sometimes for several months 401 
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(Herbeck et al., 2011; Kowalski et al., 2018,). Some seagrasses are intolerant of hyposaline 402 

conditions, leading to mortality and sub-lethal effects (Fernandez-Torquemada and 403 

Sanchez-Lizaso, 2011). Ridler et al., (2006) observed that while thinning and leaf loss 404 

occurred immediately after hurricanes, further declines continued for many months likely 405 

due to low and fluctuating salinity. Tolerance to hyposalinity is however, variable between 406 

and within species, ecotype (Benjamin et al., 1999) and season (Fernandez-Torquemada 407 

and Sanchez-Lizaso, 2011) reducing the predictability of how seagrass communities 408 

respond. 409 

Storms are nonetheless important disturbance agents, and seagrasses can rapidly regrow 410 

from roots or rhizomes, despite substantial above-ground loss (Valiela et al., 1998). Other 411 

macroalage can reattach or regenerate when broken or dislodged (Thomsen and Wernberg, 412 

2005). Furthermore, storms may actually facilitate medium and long distance dispersal of 413 

seagrass and macroalgae propagules (Bell et al., 2008; Waters et al., 2018) and be 414 

important in maintaining food web complexity, although increasing storm frequencies can 415 

challenge the ability of kelps to regrow and simplify food web structure (Byrnes et al., 416 

2011). Damage to kelp fronds can for example, stimulate grazing activity, so increasing 417 

potential tissue loss to an already stressed individual (O'Brien et al., 2015). Reductions in 418 

canopy-forming macroalgae and seagrasses through a combination of direct storm damage 419 

and herbivory can lead to community shifts to opportunistic species, such as turf-forming 420 

algae (O'Brien et al., 2015, Filbee-Dexter and Wernberg, 2018). Gaps resulting from the 421 

storm-driven loss of corals and other benthic animals can nevertheless facilitate macroalgal 422 
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colonization, particularly in the absence or reduction of herbivory (Edmunds, 2019; 423 

Steneck et al., 2019). 424 

The impacts of extreme storm events are not experienced in isolation. Long-term 425 

environmental changes, such as SLR, eutrophication and overfishing, influence community 426 

susceptibility, as does the legacy of previous storms (i.e. position in the ‘storm recovery 427 

cycle’). For example, substantial seagrass losses in North Queensland, Australia, were the 428 

cumulative result of a succession of intense storm and flood years, urbanization, and 429 

agricultural run-off, rather than the consequence of a single storm (McKenna et al., 2015). 430 

Storm events are also stressing systems already impacted by ACC, a combination that 431 

could lead to higher losses than imposed by either driver in isolation (Babcock et al., 2019). 432 

Smale and Vance, (2016) for example report that while the cold-water kelp Laminaria 433 

hyperborea was relatively resistant to storms, mixed stands containing warm water species, 434 

such as L. ochrolueca, were more vulnerable. Consequently, observed and projected shifts 435 

in kelp community composition due to increasing temperatures (Pessarrodona et al., 2018) 436 

could lead to greater kelp community vulnerability. 437 

Collectively, the processes described above underpin observations of highly variable storm 438 

impact on sub-tidal plant communities (Edwards, 2004; Filbee-Dexter and Scheibling, 439 

2012). Long term studies can help identify the relative impacts of storms and anthropogenic 440 

factors (Cuvillier et al., 2017), but our understanding of storms on subtidal ECEs is limited 441 

by few long term studies outside of coral reefs (Duffy et al., 2019). While there are many 442 

estimates of the impacts of single storms, it is rarely possible to put the patch-scale losses in 443 

the context of the dynamics of the system. Despite advances with remote-sensing 444 
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techniques, the depth and turbidity of these systems mean that ground based observation 445 

will continue to be essential. 446 

PLANT COMMUNITIES AND COASTAL DEFENCE 447 

In addition to biodiversity loss, recent concern about the various threats to ECEs stems 448 

from their role in protecting agricultural land and urban communities from storm damage. 449 

Consequently, there is increasing focus on quantifying and valuing benefits associated with 450 

the ecosystem services provided by ECEs (Barbier et al. 2011, 2015; Temmerman et al., 451 

2013; Morris et al., 2018). Although the methods used to generate accurate, global, 452 

economic estimates remain in their infancy (Barbier 2016), Costanza et al., (2014) 453 

estimated that for tidal marshes alone, the provision of nursery grounds for commercial 454 

fisheries, carbon storage, recreation and flood protection provided US$24.8 trillion to the 455 

global economy. 456 

ECEs provide storm protection principally through the stabilization of substrates, and 457 

therefore the prevention of erosion, and attenuation of wave energy, and thus flood risk 458 

(Barbier 2015). Unlike hard (engineered) defences they are also dynamic; indeed the IPCC 459 

(2019) recognized how saltmarshes and mangroves can keep pace with fast rates of SLR (> 460 

10mm yr
-1

), depending on local variation in wave exposure, tidal range, sediment 461 

dynamics, and coastal land-use. Moreover, it is even possible that the extent of coastal 462 

wetlands (saltmarsh, freshwater marsh and mangrove) could increase by up to 60% because 463 

of SLR (Schuerch et al., 2018). With appropriate management, supra-littoral sand dunes are 464 

also capable of adapting to shifts in sea levels and storm frequencies (Hanley et al., 2014). 465 
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The growing evidence that ECEs reduce storm damage underpins their recognition as 466 

nature-based flood protection (Temmerman et al., 2013; Narayan et al., 2016; Van 467 

Coppenolle & Temmerman, 2019). The traditional approach to coastal defence has been to 468 

counter flood risk with ‘hard’ engineering, but measures like seawalls are expensive (up to 469 

£5,000 per m [Hudson et al., 2015]), inflexible, and often deliver unexpected 470 

environmental outcomes (Firth et al., 2014). Vegetated shorelines by contrast, are a natural 471 

defence and offer adaptability, flexibility and cost-effectiveness (e.g. £20 per m for dune 472 

stabilization (Hudson et al., 2015)), with the additional benefit of the other ecosystem 473 

services they provide (Costanza et al., 2014; Barbier 2015). 474 

Protective role played by different ECEs 475 

The protective value differs not only between ECEs, but also with regional and local 476 

geographical context. The principal defensive role played by dunes for example, stems 477 

from being a physical barrier to marine flooding, but their importance in this regard 478 

depends on local coastal geomorphology (e.g. sediment supply, land relief) and on the use 479 

and asset value of the land they protect (Hanley et al., 2014). Dune vegetation stabilises 480 

substrates and reduces wave-driven erosion, with plant shoots reducing wave swash and 481 

roots increasing mechanical strength of the sediment (Feagin et al., 2019), but even the 482 

identity of component species can be important. de Battisti and Griffin (2020) for 483 

example examined how three common European foredune species (Ammophila arenaria, 484 

Cakile maritima, and Salsola kali) varied in their ability to withstand simulated wave 485 

swash. Although Ammophilla was by far the most robust, by virtue of the protection 486 

provided by their roots, rhizomes and below ground shoots, all three species had a 487 
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remarkable capacity to tolerate wave action, underscoring how different plant species can 488 

contribute to sand dune stability. (See also Charbonneau et al., (2017) who report how 489 

North American dunes stabilized by the invasive Carex kobomugi were less affected by 490 

storm damage than those colonized by native Ammophila breviligulata). Nonetheless, de 491 

Battisti and Griffin (2020) also show that despite an exceptionally well-developed 492 

belowground shoot system, Ammophila resistance varies depending on sand particle size; 493 

the coarser sediments associated with restored habitats increasing erosion potential 494 

compared to finer sediment of natural regeneration sites. This finding is important since it 495 

underscores why elucidation of biological and environmental factors is crucial to the 496 

integration of natural habitats like sand dunes into coastal protection schemes. For other 497 

supra-littoral habitats however, we understand little about their putative role in coastal 498 

defence. Nonetheless, there is little doubt that coastal forests and freshwater wetlands 499 

provide other vital ecosystem services like carbon sequestration and storage (see Stagg et 500 

al., 2020; Ury et al., 2020). 501 

The ability to track SLR (Kirwan et al., 2016; IPCC, 2019) along with their well-known 502 

capacity for wave attenuation (Möller et al., 2014; Rupprecht et al., 2017), has put 503 

saltmarshes at the centre of current interest in ‘nature-based’ coastal defence solutions. 504 

How effective wave attenuation is, depends strongly on topography (even to the extent of 505 

friction imposed by the biogeomorphic landscape created by the plants) and (ontogenetic, 506 

seasonal or species-specific) plant traits like shoot stiffness and density (Bouma et al., 507 

2010, 2014; Möller et al., 2014). As a result, studies such as Zhu et al. (2020), describing 508 

variation in stem flexibility and breakability for a variety of European saltmarsh species, 509 
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are vital to understanding how communities will respond to increased storminess. Plant 510 

response can vary with wave conditions however. Shao et al. (2020) exposed Spartina 511 

alterniflora to different wave environments for 8 weeks and showed that key physiological 512 

and biochemical plant parameters varied accordingly; i.e. higher and more frequent waves 513 

imposed more stress. Nonetheless, wave-exposed plants tended to allocate more biomass to 514 

their roots, a response that may facilitate anchorage against wave impact. These 515 

biomechanical and morphological properties are likely to vary with plant age. Cao et al., 516 

(2020) for instance describe how after seven weeks of simulated wave exposure, seedling 517 

survival and growth declined for all three common marshland species examined (Spartina 518 

anglica, Scirpus maritimus and Phragmites australis). Taken together these studies 519 

increase our understanding and prediction of spatio-temporal variation in saltmarsh 520 

community response to wave exposure, an essential pre-requisite in the design and 521 

implementation of nature-based flood protection. 522 

In addition to species identity, age and seasonality, other marsh-specific characteristics are 523 

important determinants of wave attenuation. One of the key attributes is habitat size 524 

(Shepard et al., 2011). Indeed, in a recent analysis of the long-term marsh persistence 525 

around the UK, Ladd et al., (2019), revealed that marsh width was positively associated 526 

with higher sediment supply, although they noted also that current global declines in 527 

sediment flux are likely to diminish saltmarsh resilience to SLR. Although challenging, 528 

understanding the shifting dynamics of these regional-scale coastal processes is crucial to 529 

our ability to integrate marshes into coastal defence schemes (Bouma et al., 2014, 2016). 530 

Not only is that because we need to know where and how ECEs fit into an integrated 531 
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coastal management approach, but long-term salt marsh persistence depends on continual 532 

recruitment of new plants. 533 

For saltmarshes, propagule establishment often occurs on leading edges when sediment 534 

accretes on the adjacent ‘tidal flat’ (Bouma et al., 2016). Even an apparently minor change 535 

in sediment levels may be sufficient to facilitate seedling establishment; an effect 536 

demonstrated by Fivash et al., (2020) in their mesocosm experiment with the pioneer 537 

Salicornia procumbens. They show that elevation of sediment micro-topography by just 2 538 

cm was the overwhelming driver of seedling growth (i.e. an average 25 % increase). They 539 

ascribed this response primarily to the effects of the ‘tidally driven oxygen pump’, i.e. 540 

increased emersion time allows more aeration of the raised sediment (see also Mossman et 541 

al., 2019). Once pioneers like Salicornia have established, the environment they create 542 

(wave attenuation, sediment trapping and enhanced drainage) facilitates subsequent 543 

colonisation by later successional species and so the marsh can expand seaward 544 

(Temmerman et al., 2007). Storms also have the potential to increase the landward marsh 545 

area if the habitat can retreat and displace terrestrial habitats. In these circumstances, 546 

Kotter and Gedan (2020) demonstrate that saltmarsh is pre-primed to take advantage of 547 

this opportunity, reporting how seeds of halophytic species can disperse up to 15 m into 548 

northeast American coastal pine forest. They argue that although saltwater intrusion will 549 

limit forest regeneration, the soil seed bank can thus support continued landward migration 550 

of saltmarsh species. 551 

Much of the recent interest in mangroves stems from their perceived mitigation of the 2004 552 

Indian Ocean Tsunami on coastal settlements. While their actual contribution remains 553 
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questionable (Barbier 2015), nonetheless, a number of studies report that mangroves can 554 

lower wave heights and reduce water levels during storm surges (Das and Vincent, 2009; 555 

Armitage et al., 2019) and that their removal leads to increased coastal erosion and damage 556 

(Granek and Ruttenberg 2007; Barbier 2015). Like saltmarsh therefore, mangroves are at 557 

the forefront of contemporary research into how ECEs help defend our coastlines (see 558 

Krauss and Osland, 2020). It is also noteworthy, that Alongi (2008) highlights how much 559 

mangroves offer protection against extreme events is strongly linked to intrinsic habitat 560 

characteristics (these include forest location and width, tree density and size, soil texture), 561 

but also the presence of other ECEs, such as coral reefs, seagrass beds, and dunes. 562 

The case for a substantial protective role of sub-tidal ECEs remains less clear (although 563 

coral reefs are well studied and widely believed to play a major role – see Barbier 2015). It 564 

is known however, that seagrasses attenuate wave energy (Christianen et al., 2013; 565 

Reidenbach and Thomas, 2018), and thus likely offer some coastal defence (Barbier et al., 566 

2011; Ondiviela et al., 2014). Furthermore, the reduction in wave energy seagrasses 567 

provide can reduce the erosion experienced by adjacent tidal marsh systems (Carr et al., 568 

2018) and stabilise or even facilitate beach expansion (James et al., 2019). Consequently, 569 

the dramatic global decline of seagrass habitat is of great concern and underscores recent 570 

calls for wider habitat protection (Cullen-Unsworth and Unsworth 2018). It is less clear 571 

whether sub-tidal macroalgal communities play any role in wave attenuation and therefore 572 

coastal protection, but a full review is provided in this special issue (see Morris et al., 573 

2020). In short, Morris et al., (2020) note how only a limited number of studies have 574 

investigated coastal protection, and in their own study in Australia found that wave 575 
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attenuation by the kelp Ecklonia radiata was restricted to a small subset of the 576 

environmental conditions sampled. 577 

Using ECEs in integrated coastal defence 578 

The implementation of ‘soft’ or natural flood defences depends on landscape context 579 

(including the economic value of the land threatened by SLR, erosion, and storm damage) 580 

and whether it is actually feasible and cost-effective to maintain or move defences (Hoggart 581 

et al., 2014). The ‘hold the line’ option has been traditionally met by the construction of 582 

‘hard’ defences (engineered solutions utilising concrete walls, rocky breakwaters, steel 583 

piling, or stone gabions) but these are extremely expensive and have limited ecological 584 

value. There is nonetheless considerable interest in how we might ‘soften’ structures using 585 

design alterations (e.g. modification of surface topography) to increase biodiversity value 586 

(Firth et al., 2014). It is also recognised that vegetated foreshores reduce wave impact on 587 

sea walls, such that a fronting saltmarsh provides sufficient additional defence to allow sea 588 

wall height to be lowered, with substantial savings to capital and maintenance costs (Vuik 589 

et al., 2016). Where natural habitat is absent, it may be possible to create it using 590 

management actions to stabilize or accrete sediment. For example, the combination of 591 

beach nourishment, sand traps and planting can establish sand dunes to provide storm 592 

protection to landward hard defences (Feagin et al., 2015). At the landscape scale, the 593 

strategic integration of hard engineered and soft natural defences may provide the only 594 

realistic, cost-effective way to protect large sections of coastline. 595 
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It is imperative however, to ensure that where integrated management is planned, an 596 

engineered intervention does not detrimentally affect nearby ECEs. For example, hard 597 

defences can disrupt natural coastal processes and sediment supply (Hanley et al., 2014), 598 

while the problem of ‘coastal squeeze’ means that existing (or planned) ECEs fronting 599 

hard-engineered defences cannot always track SLR (Schuerch et al., 2018). In these 600 

situations, the long-term sustainability of natural flood protection may be greater if there is 601 

the potential to move the line of defence landward. This can simply involve ensuring a 602 

capacity for an existing ECE to ‘roll back’ (see Kotter and Gedan, 2020), but increasingly, 603 

ECEs are created in former terrestrial habitats; a process often termed ‘managed retreat’ or 604 

‘managed realignment’ (MR). 605 

The most common example is the breaching of sea walls or dykes to allow tidal flooding 606 

with the expectation that newly inundated land will develop into saltmarsh. These schemes 607 

have met with mixed success however, many studies showing that the plant communities 608 

developing in MR sites differ from those in adjacent natural marshes (Mossman et al., 609 

2012; Masselink et al., 2017). Environmental conditions, such as elevation in the tidal 610 

frame or geomorphic setting (Mossman et al., 2012; Masselink et al., 2017) are critical to 611 

successful restoration, but these alone are insufficient to explain all observed differences 612 

(Sullivan et al., 2018). Propagule dispersal is often limited and limiting (Mossman et al., 613 

2012) and species-specific differences in dispersal ability could mean that early colonisers 614 

inhibit the establishment of later arriving species (Sullivan et al., 2018). Planting species 615 

with low recruitment potential into newly established marshes could resolve this (Mossman 616 

et al., 2019). A relative lack of topographic heterogeneity in MR sites may also limit 617 
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transition to saltmarsh (Masselink et al., 2017; Lawrence et al., 2018). As we have seen 618 

(Mossman et al., 2019; Fivash et al., 2020), even minor changes in surface elevation can 619 

have a substantial impact on seedling recruitment in saltmarsh. These studies highlight that, 620 

while MR often fails to deliver ‘natural’ saltmarshes, there is considerable potential for 621 

research-led management to improve restoration success. 622 

SYNTHESIS AND FUTURE STUDIES 623 

Although considerable research effort is focused on the response of ECEs to disturbance 624 

events, there remains both a geographical bias towards the US Gulf and Atlantic seaboard 625 

states, and limited understanding of how the multiple stressors associated with SLR, 626 

extreme storms, and other anthropogenic activities affect even a fraction of ECE species or 627 

habitats. Beyond a simplistic call for ‘more research with additional species and regions’, 628 

we discuss how illumination of plant species and community responses to flooding, 629 

sediment movement, mechanical damage and landscape-scale processes is needed to better 630 

inform our ability to manage the biodiversity of ECEs and ensure their continued 631 

contribution to coastal defence (Fig 1). 632 

Research Priority I – Effects of storm damage and flooding on plant reproductive 633 

performance and recruitment 634 

Parmesan and Hanley (2015) highlighted how despite a wealth of information detailing 635 

plant species and community response to the warming, drought and elevated atmospheric 636 

CO2 (eCO2)associated with ACC, remarkably little is known about how any of these factors 637 

influence plant regeneration biology. The same failing is true of ECE response to SLR and 638 
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storms, even though recruitment success is manifestly pivotal to understanding how 639 

environmental stress and perturbation influence plant community recovery. Indeed, it is at 640 

this point worth stressing that the disturbance associated with storms is an important, 641 

positive, factor in ECE dynamics. It is for example, well understood that tropical cyclones 642 

stimulate reproduction and open regeneration opportunities (Zimmerman et al., 2018; 643 

Krauss and Osland 2020), while disturbance of sand dune vegetation is a key driver of plant 644 

biodiversity in these most dynamic of ecosystems (Green and Miller, 2019). What is less 645 

clear however, is how ACC-linked shifts in storm intensity and return times disrupt 646 

recruitment processes that have evolved in response to environmental dynamics typical of 647 

pre-industrial times (Hanley et al., 2014; Imbert 2018). 648 

Some experiments have focused on the effect of elevated salinity on flowering and 649 

reproduction, but all too often consider only long-term, chronic effects (e.g. Van Zandt and 650 

Mopper, 2002; Pathikonda et al., 2010; Rajaniemi and Barrett, 2018). Nonetheless, these 651 

studies are important as they show; (a) responses may only become apparent long after 652 

exposure (Van Zandt and Mopper, 2002), (b) reduced sexual reproduction was not 653 

compensated by vegetative reproduction (Pathikonda et al., 2010), and (c) germination 654 

potential is species-specific (Rajaniemi and Barrett, 2018). Many fewer authors report the 655 

impact of acute seawater flooding on the reproductive potential of coastal plants, but those 656 

that do evidence reduced flowering (White et al., 2014; Hanley et al., 2020a), and 657 

reproductive output (Hanley et al., 2020b). A critical element of the latter study was that 658 

the growth of seedlings cultivated from parent plants subject to acute seawater immersion 659 

declined; i.e. while the parent plant might survive long enough to reproduce, longer-term 660 
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regeneration potential is compromised. The importance of changes in wave action on the 661 

dynamic sediment environment in saltmarsh regeneration may be better understood 662 

(Boauma et al., 2016; Cao et al., 2018), but there is a need to elucidate the effects of all 663 

manifestations of storm damage and flooding on plant reproductive and recruitment 664 

potential, including storm-driven dispersal. 665 

Research Priority II –Coastal plant responses to multiple-stressors associated with SLR 666 

and storm damage 667 

Teasing apart the interactive effects of saltwater flooding, mechanical damage, litter 668 

accumulation, and sediment shift on the plant community is challenging, a problem made 669 

all the more difficult simply because so few studies (outside the SE USA at least) have 670 

systematically examined how these different factors affect and shape plant community 671 

responses in isolation, let alone combination. Using remote imaging, Hauser et al., (2015) 672 

report how saline inundation following Hurricane Sandy caused widespread wetland 673 

degradation in New Jersey, first by marsh dieback, and as a consequence, subsequent 674 

sediment erosion and retreat of the marsh inland. They also note the importance of plant 675 

community composition in this interaction; woody plants being more tolerant than 676 

herbaceous vegetation. Using an experimental approach, Tate and Battaglia (2013) 677 

considered the combined effects of seawater flooding and litter deposition. The application 678 

of locally sourced litter (degraded stems of black needlerush - Juncus roemerianus) to four 679 

plant communities along a Floridian estuarine gradient (brackish marsh, freshwater marsh, 680 

wetland forest, and pine savanna) had a profound negative effect on plant survival and 681 

species richness in all communities. In tandem with controlled seawater flooding however, 682 
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litter had a major impact on species composition in pine savannah, as salt-tolerant species 683 

capable of vegetative regrowth through dense detritus were the only species to persist. Tate 684 

and Battaglia (2013) also noted how vegetation in habitats with higher ambient sediment 685 

salinity was more resilient to the combined effects of flooding and litter deposition. 686 

These studies (see also Imbert, 2018; Kendrick et al., 2019) signpost the importance of 687 

interactive factors on the recovery of ECEs following storm and other ACC-linked 688 

disturbance events. Given the logistical issues associated with simultaneous replication or 689 

observation of multiple-stressors, it is unreasonable to expect a flurry of research focused 690 

on the interactive impacts of various storm disturbances on ECEs. Moreover, one could 691 

also argue that a true picture of coastal plant response needs also to consider eCO2 and 692 

shifts in temperature and precipitation (Parmesan and Hanley, 2015). Indeed, Huang et al., 693 

(2018) argued that an increase in night-time temperatures had facilitated the expansion of 694 

the shrub Morella cerifera into Virginian coastal grasslands with likely concomitant 695 

impacts on erosion regimes. Although by definition, unpicking the simultaneous interplay 696 

of several ACC-linked stressors is complex, as a first step studies could examine the 697 

responses of the same species to different stressors in isolation, and elucidate how at least 698 

two factors conspire to affect plant performance. 699 

Research Priority III –Plant community interactions and post-disturbance recovery 700 

Although it is well known that environmental perturbations (e.g. fire, herbivory, etc.), 701 

mediate plant community interactions, beyond a reasonable understanding of the role of 702 

tropical cyclones in forest dynamics (Hogan et al., 2016; but see Pruitt et al., 2019), the 703 
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impact of storms and SLR on plant-plant, plant-animal, and plant-microbial interactions in 704 

ECEs is poorly resolved. We have discussed already how species-specific variation in plant 705 

response to storms might act as a selective filter, removing susceptible species from the 706 

recovering plant community. This is why field and multi-species (microcosm) greenhouse 707 

experiments are invaluable; as shown by Hanley et al., (2017) and Edge et al., (2020), it is 708 

by no means certain that plant species responses in monoculture are replicated in mixed 709 

assemblages. Nonetheless, these kinds of study are rare and yet required to disentangle how 710 

plant-plant interactions vary in response to a variety of storm-related impacts. 711 

It is also worth stressing, that community interactions go beyond shifts in plant competitive 712 

hierarchies. For example, although Camprubi et al., (2012) report how three of six 713 

Mediterranean sand dune species suffered complete mortality within a week of exposure to 714 

seawater, the remainder had delayed or greatly reduced mortality when grown in 715 

association with the mycorrhizal fungi, Glomus intradices. Symbiotic mycorrhizal fungi are 716 

well known for their importance to plant health and vigour (Smith and Read, 2008), but in 717 

coastal vegetation like sand dunes, the association may be essential for survival (Koske et 718 

al., 2004). Unfortunately, the vast majority of work on how the plant-mycorrhizal 719 

association affects plant response to salinity comes from agricultural systems (Evelin et al., 720 

2019) and consequently we know little about how microbial symbionts respond to storm-721 

linked disturbances in ECEs, or how they moderate plant responses in the post-event 722 

community. 723 

Seawater inundation is also likely to have major effects on the soil physico-chemical 724 

environment upon which all organisms depend. A detailed assessment of soil structure and 725 
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chemistry is beyond the scope of this review, but in addition to reduced aeration, increasing 726 

ionic concentrations and exchange capacity likely affect the bioavailability of key mineral 727 

nutrients (Kadiri et al., 2012). Saline flooding will affect also soil microbial and 728 

invertebrate communities, and consequently, the decomposition and nutrient-cycling 729 

services they provide (Sjøgaard et al., 2018; Stagg et al., 2018). Remarkably few studies 730 

however, consider the impact of acute flooding on soil biogeochemistry, nor how additional 731 

stresses like sediment movement and litter accumulation affect soil dwelling animal and 732 

microbial communities and the processes they deliver. 733 

Aboveground interactions are no less important. In an elegant experiment where sods of 734 

Louisianan marshland vegetation were exposed over 2-years to saline flood treatments, 735 

with and without herbivory, Gough and Grace (1999) reported that species loss was fastest 736 

in seawater treatments when mammal herbivores were also present. Although the flooding 737 

treatment was designed to mimic SLR rather than acute flooding, this study nonetheless 738 

emphasises how, even if species can tolerate one stress (flooding), the imposition of a 739 

second (herbivory) may filter species from the ecosystem (see also Mopper et al., 2004; 740 

Schile and Mopper, 2006). Taken together, these studies underscore how post-storm 741 

conditions can affect plant morphology and the expression of defence metabolites, change 742 

herbivore performance and selection preferences, and how in combination, some plants 743 

may be excluded from the post-disturbance community. We cannot hope to understand how 744 

extreme storm events influence ECEs without a much greater understanding of these 745 

interactions. 746 



Coastal plants and extreme storm events 

36 
 

Research Priority IV – Better prediction of where and how storm events and SLR impact 747 

ECEs and the delivery of essential ecosystem services. 748 

Although we know that storms are more likely to happen with more frequency and greater 749 

intensity, a major challenge in predicting and understanding how ECEs will respond is to 750 

be able to forecast and define the range of storm surge and SLR scenarios for any given 751 

location. To achieve this, plant biologists must collaborate with geomorphologists, who 752 

with their understanding of bathymetry, wave dynamics, sediment supply, landform, and 753 

the biomechanical properties of vegetation, can offer vital insight into which ECEs are most 754 

susceptible and how they are likely to be affected (see also Krauss and Ostler, 2020). It also 755 

true, that in order to deliver accurate flood risk predictions and mitigation scenarios, 756 

geomorphologists must consider the contribution of plant communities to coastal processes. 757 

The concept and application of coastal flood risk frameworks (CRAF) in coastal 758 

management is relatively well developed, but the focus has tended to be on how 759 

vulnerability to flooding affects human society rather than ECEs (Hallegatte et al., 2013; 760 

Reimann et al., 2018; Viavattene et al., 2018). Nonetheless, there is developing 761 

appreciation that CRAF can be used to identify ‘at risk’ ecosystems (especially those that 762 

offer some measure of flood protection), or parts of the coastline where flood risk might be 763 

mitigated by virtue of the protection afforded by natural vegetation. In one such example, 764 

Christie et al. (2018) use the CRAF approach to pinpoint ‘hot spot’ sections of the North 765 

Norfolk (England) coast at greatest flood risk, and identify likely direct and indirect 766 

impacts based on an understanding of local geomorphology and hydrodynamic forcing 767 

during floods. Of particular note in this study is the finding that flood impact could be 768 
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reduced by saltmarsh; i.e. CRAF allows us to identify one of the key ecosystem services 769 

provided by coastal vegetation (see also Torresan et al., 2012). 770 

Another modelling approach, more familiar to plant biologists and ecologists, are species 771 

distribution models (SDMs). These have been widely used to predict how the geographical 772 

distribution of plant populations will respond to ACC-linked changes in precipitation and 773 

temperature (see Mairal et al., 2018; Rodríguez-Rodríguez et al., 2019). As noted already 774 

however, the combination of SLR with additional climate-change drivers is a unique, but 775 

largely ignored, issue for ECEs. Nonetheless, Garner et al. (2015) attempt some 776 

comparative synthesis, using SDM for Californian coastal plant species. They predict that 777 

by the end of this century, SLR alone threatens 60 of the 88 species considered and that 10 778 

could completely lose their existing habitat range (due to flooding and erosion) within the 779 

(24,000km
2
) study region. This compares with only four species where shifts in 780 

temperature and precipitation alone eliminate all currently suitable habitats. Indeed, unlike 781 

plants threatened by SLR, some species may even gain suitable habitat space under likely 782 

temperature and precipitation scenarios. Garner et al. (2015) stress however, that in order to 783 

develop robust predictive models for coastal species, a much better mechanistic 784 

understanding of vegetation responses to SLR, flooding and climate scenarios is needed. 785 

One way to achieve that aim is by undertaking long-term monitoring of threatened ECEs. 786 

This allows us to ‘ground truth’ predictive models by ‘back casting’ how recent 787 

environmental changes have actually influenced plant communities. By virtue of access to 788 

the Carolina Vegetation Survey, Ury et al., (2020) were able to monitor changes in coastal 789 

forest communities over the past two decades. They report how the growth of tree species 790 
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like Acer rubrum, Juniperus virginiana, Pinus serotina, Taxodium distichum and various 791 

Quercus species was considerably reduced in low elevation sites where high soil salt 792 

content evidenced recent increased seawater seepage. In so doing, it is then possible to 793 

track how chronic saltwater intrusion has influenced tree growth and shifts in community 794 

composition over a 7-13 year time scale, exactly the kind of data needed to validate 795 

predictive models and understand how vulnerable ECEs respond to SLR, and changing 796 

storm frequencies and intensities. Long-term ecological surveys are time consuming and 797 

labour intensive, and for large coastlines therefore, impractical over the decadal timeframes 798 

in which we expect significant geomorphological and ecological changes to occur. 799 

Nonetheless, the use of remote sensing techniques in combination with localised ‘ground-800 

truthing’ (see Stagg et al., 2020) offers an effective combination to monitor and predict 801 

coastal change. The fact that both Stagg et al., (2020) and Ury et al. (2020) highlight how 802 

the ability of coastal forests to deliver key ecosystem services is likely compromised by 803 

seawater inundation presents the most compelling reason to undertake long-term 804 

monitoring and predictive modelling studies into the future. 805 

Conclusions - ECEs in Perspective 806 

The threats posed by the myriad factors associated with ACC and changing storm patterns 807 

are worthy of considerable attention, not only from the many geomorphologists, 808 

environmental agencies and land managers already concerned with coastal defence, but also 809 

from biologists with any interest in plant ecophysiology or community ecology. Beyond 810 

any esoteric concern, as sea levels rise and the risk and impact of extreme storms increases, 811 

the associated economic repercussions will escalate. Hallegatte et al., (2013) for example, 812 
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estimated that the costs associated with flooding for the 136 largest coastal cities would 813 

increase from US$6 billion in 2005, to US$52 billion in 2050. Even under these extreme 814 

circumstances, it seems unlikely that taxpayers will willingly subside the high cost of 815 

protecting every vulnerable urban centre, transport link, or farm, with hard-engineered 816 

defences. Given that coastal cities and food production globally are exposed to increasing 817 

ACC-driven flood risk, nature-based risk mitigation, employing the conservation, 818 

management, or even creation of ECEs with the capacity to track SLR and mitigate storm 819 

surges seems ever more desirable. Indeed, the fact that Van Coppenolle & Temmerman 820 

(2019) suggest how a cost-effective and dynamic answer (i.e. wetland creation) to the 821 

problem of coastal defence can potentially be applied to over a third of the global land area 822 

within the influence zone of storm surges, it would seem foolish to ignore the possibility. 823 

A better understanding of the response of ECEs to seawater flooding, physical damage, 824 

litter accumulation etc., at the levels of individual plant species (ecophysiological), 825 

ecosystem (interactions), and landscape (distributions), can be delivered by plant scientists 826 

from across our various disciplines. In turn, conservation biologists and ecologists can set 827 

to work protecting and enhancing those habitats that deliver coastal defence. Only by so 828 

doing can society hope to protect the unique biodiversity of our coastal habitats and the 829 

essential ecosystem services they offer us in return. 830 

  831 
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Figure Legend 1344 

Figure 1. A summary of the principal research priorities (I – IV) and avenues for future 1345 

study needed to understand the response of estuarine and coastal plant communities to the 1346 

disturbances associated with extreme storm events. The proposed level and overlap of study 1347 

(Individual plant, Ecosystem, and Landscape) for each priority is shown. CRAF - Coastal 1348 

Flood Risk Frameworks; SDM – Species Distribution Model 1349 
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Table 1 A summary of the principal acute threats and example responses reported for (semi-)natural coastal plant communities 1352 

subject to extreme storm events. 1353 

Habitat Threat Response Example studies 

S
u

b
-t

id
a

l 

Kelp-forests 
Physical damage 

& dislodgment 
Storms cause widespread mortality, but 
age- and species-specific effects. 

Thomsen et al. (2004); 

Smale and Vance (2016) 

Seagrass 

Physical damage 
Major losses of seagrass biomass 
following tropical cyclones. 

Sachithanandam et al. 

(2014); Culliver et al. (2017) 

Sand deposition 
High deposition causes (species-specific) 
mortality. 

Cabaco et al. (2008) 

Turbidity 
Sediment run-off had greater negative 
impact than storm damage. 

Carlson et al. (2010) 

Rapid salinity 
change 

Long-term, post-storm impacts on 
community composition. 

Ridler et al. (2006); 
Benjamin et al. (1999) 

In
te

r-
ti

d
a
l 

Saltmarsh 

Physical damage 
Stem breakage likely, although response 
differs among species. Denudation of 
vegetation can also occur. 

Möller et al. (2014); Vuik et 

al. (2018); Cahoon (2006) 

Erosion 
Storm-induced erosion of the fronting tidal 
flat may induce marsh erosion and 
vegetation loss. 

Callaghan et al. (2010); 
Bouma et al. (2016); 

Leonardi et al., (2016, 2018) 

Sand, sediment or 
litter deposition 

Burial under sediment or debris can kill 
vegetation (depending on timing, depth 
and species). 

Callaway and Zedler (2004); 
Meixler (2017); Leonardi et 

al., (2018) 

Changes in salinity 
or inundation 

Heavy rainfall can create opportunities for 
germination, but salinity changes cause 
shifts in species and communities. 

Zedler (2010); Meixler 
(2017); Edge et al., (2020) 
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Mangrove 

Physical damage/ 

Erosion 

Species-specific variation in tree response 
(including mortality) to storm damage. 

Doyle et al. (1995); Imbert 

(2018) 

Scour caused Avicenna marina mortality 
along South African shoreline fringe. 

Steinke and Ward (1989) 

Sand/ Litter 
deposition 

Impact of litter largely unknown (see 
Krauss and Osland 2020), but increased 
decomposition influences carbon-budgets. 

Barr et al. (2012) 

Phosphorus-rich sediments stimulate post-
storm forest productivity. 

Castañeda‐Moya et al. 
(2010); Adame et al. (2013) 

Sediments covered roots, causing anoxia 
and tree mortality 

Paling et al. (2008) 

S
u

p
ra

-t
id

a
l 

Sand dunes 

Physical damage/ 
Erosion 

Sediment loss negatively affects 
vegetation, but extent depends on dune 
morphology and vegetation cover. 

Hanley et al. (2014); Miller 
et al. (2015); Schwarz et al. 

(2019) 

Sand deposition 
Sand accumulation induced (species-
specific) morphological responses. 

Harris et al. (2017); Brown 

and Zinnert (2018) 

Saline Inundation 
Reduced plant performance but species-
specific variation in ‘stress’ responses. 

Camprubi et al., (2012); 
Hoggart et al. (2014); 
Hanley et al. (2020a) 

Freshwater 
marshland 

Erosion 
Plant mortality facilitated subsequent 
sediment loss and erosion. 

Howes et al. (2010); Hauser 
et al. (2015) 

Litter deposition 
Experimental litter deposition reduced 
species diversity. 

Tate and Battaglia (2013) 

Saline Inundation Widespread plant mortality observed. 
Abbott and Battaglia (2015); 

Hauser et al. (2015) 

Other 
habitats 

Physical damage 
Storm damage caused localised Pinus 
elliotii mortality in Florida everglades. 

Platt et al. (2000) 

Litter deposition High litter density reduced species Tate and Battaglia, (2013); 
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diversity in SE USA pine savannah. Platt et al. (2015) 

Saline Inundation 

Negative effects on recovery of Canadian 
tundra, but with species-specific variation. 

Lantz et al. (2015) 

High mortality of Floridian ‘freshwater 
forest’ species. 

Langston et al. (2017) 

 1354 



Individual plant 

I. Reproduction 

and recruitment 

II. Multiple 

stressors 

Manipulative 

experiments to 

determine impacts 

of erosion, litter, 

sedimentation,  

inundation, flow & 

waves on; 

• Fecundity 

• Germination 

• Seedling 

establishment 

• Vegetative spread 

Manipulative 

experiments to 

determine 

ecophysiological 

responses to ACC-

linked stressors 

• Temperature 

(averages & 

extremes) 

• Precipitation 

• Flooding 

• Litter 

• Elevated CO2 

III. Community 

Interactions 

IV. Storm prediction 

and ecosystem 

services 

Manipulative 

experiments to 

elucidate how 

storms influence 

post-disturbance; 

• Plant competition & 

facilitation 

• Plant-animal 

interactions 

• Plant-microbial 

interactions 

• Soil biogeo-

chemistry 

Long-term 

ecological 

(including remote 

sensing) 

monitoring to 

generate predictive 

models 

underpinned by 

priorities I-III. 

• Geomorphological 

processes 

•CRAF 

•SDMs 

Ecosystem 

Landscape 


	Cover Page
	Article File #1
	Fig 1

