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Multivariate Small Area Estimation of Multidimensional Latent Economic Wellbeing 

Indicators 

  

Manuscript 

 

Abstract: Factor analysis models are used in data dimensionality reduction problems where the 

variability among observed variables can be described through a smaller number of unobserved latent 

variables. This approach is often used to estimate the multidimensionality of wellbeing. We employ 

factor analysis models and use multivariate EBLUP (MEBLUP) under a unit-level small area 

estimation approach to predict a vector of means of factor scores representing wellbeing for small 

areas. We compare this approach to the standard approach whereby we use SAE (univariate and 

multivariate) to estimate a dashboard of EBLUPs of the means of the original variables and then 

averaged. Our simulation study shows that the use of factor scores provides estimates with lower 

variability than weighted and simple averages of standardised MEBLUPs and univariate EBLUPs. 

Moreover, we find that when the correlation in the observed data is taken into account before small 

area estimates are computed, multivariate modelling does not provide large improvements in the 

precision of the estimates over the univariate modelling. We close with an application using the 

European Union Statistics on Income and Living Conditions data. 

 

Keywords: Factor analysis models; Latent variables, Model-based inference; Multivariate EBLUP; 

Multivariate multilevel models; 

 

 

 

1. Introduction 

The international scientific community, national statistical agencies, and international organisations 

have pointed out the multidimensional nature of wellbeing as developed under the UN initiative of 

the Sustainable Development Goals (United Nations, 2017). In particular, government agencies in 

European Union (EU) countries have been developing wellbeing measurement frameworks. One 

example is the Italian Statistical Institute (ISTAT) and National Council for Economics and Labour 

(CNEL) “Equitable and Sustainable Wellbeing (BES)” project (ISTAT and CNEL, 2015). These 

frameworks generally consist of many dimensions (also called domains), each with many single 

indicators associated to them. To reduce data dimensionality, summary statistics in the form of a 

composite indicator may be helpful for policy makers to inform policies targeted towards improving 

wellbeing. According to OECD-JRC (2008), composite indicators arise when single indicators are 

compiled into a single index based on an underlying model. The composite indicator measures 

multidimensional concepts that cannot be studied by single indicators. The set of single indicators 

estimated individually is referred to as a dashboard of indicators in the social indicators literature. 

There is on-going debate about the appropriateness of using composite indicators versus a dashboard 

of single indicators: Ravallion (2011) points out that single multidimensional indicators lead to a loss 

of information, while Yalonetzky (2012), on the other hand, stresses that composite estimates are 

necessary when the goal is measuring multiple deprivations (or wellbeing) within the same unit 

(individual or household). In order to measure multidimensional wellbeing, analysing a dashboard of 

single indicators (means, totals, ratios, etc.) from the initial set of variables is a standard approach. 

However, if many indicators need to be analysed, the result may be difficult to interpret. Factor 

analysis models can be used to reduce data dimensionality and produce composite estimates. In these 
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models, the variability among observed correlated variables is described through a smaller number 

of unobserved latent variables (factors).   

 

In order to inform policy makers who base their decisions on wellbeing measurements, there is a need 

to obtain accurate and precise indicators at a local area level since wellbeing phenomena are 

heterogeneous and have different and varying features in territorial areas. However, data obtained 

from national surveys which measure wellbeing, e.g. income and quality of life, are not reliable at 

small area levels. One way to overcome this problem is through model-based inference such as small 

area estimation (SAE) (Rao and Molina, 2015). Small area estimates ‘borrow strength’ from related 

small areas through the use of auxiliary variables available at the population level and other related 

(correlated) dependent variables. As an example, one of the most important social surveys available 

in EU countries for investigating social phenomena is the Statistics for Income and Living Conditions 

(EU-SILC). This data can be used to produce accurate direct estimates only at the Nomenclature of 

Territorial Units for Statistics (NUTS) 2 level (Giusti et al., 2012a) while any areas below this level 

are unplanned domains with small or even zero sample sizes.   

Multivariate SAE, particularly in the unit-level approach, is a research field still under investigation 

and there is an important gap about social exclusion and wellbeing measurement in a multivariate 

SAE framework. In the unit-level SAE approach, Fuller and Harter (1987) propose the use of 

multivariate mixed-effects models in order to predict a vector of means of multiple characteristics of 

a finite population. Datta et al. (1999) develop a multivariate empirical best linear unbiased predictor 

(MEBLUP) and empirical bayes (EB) approach for small area mean vectors. They also propose an 

approximation of the mean squared error and show a gain in efficiency obtainable by using 

multivariate mixed-effects models compared to univariate models since the correlations between the 

vector components are taken into account. Molina (2009) deals with the multivariate mixed-effects 

model under a logarithmic transformation, and Baillo and Molina (2009) study a particular case of 

the multivariate nested error regression model for uncorrelated random effects. Ngaruye et al.  (2017) 

propose the use of a multivariate linear model for repeated measures data which aims to borrow 

strength both across small areas and over time. In the area-level SAE approach, Fay (1987) and Datta 

et al. (1991) consider the multivariate extension to the univariate Fay-Herriot model. Further 

extensions, applications and estimation procedures are considered in González-Manteiga et al. 

(2008b), Benavent and Morales (2016) and more recently by Ito and Kubokawa (2018). In this paper, 

we focus on the unit-level multivariate SAE approach where we assume that the auxiliary variables 

are known for all units of the sample. 

 

In the classical univariate unit-level SAE approach, the use of the univariate Battese, Harter, and 

Fuller (BHF) model is widely used (Battese et al., 1988). The model is a mixed-effects model and 

allows taking into account between-area variability in the prediction stage based on auxiliary 

information available for the population, such as a register or census. The univariate BHF model can 

be naturally extended to the multivariate case, where a vector of means becomes the new object of 

statistical inference.   

 

Moretti et al. (2018b) evaluate the use of factor analysis models in SAE in order to reduce data 

dimensionality for economic wellbeing indicators in a unit-level univariate SAE approach and show 

that factor scores can provide good estimates of multidimensional wellbeing phenomena at small area 

level. A dashboard of single indicators estimated at the small area level using a unit-level univariate 

https://www.sciencedirect.com/science/article/pii/S016794731500170X#br000085
https://www.sciencedirect.com/science/article/pii/S016794731500170X#br000085
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SAE approach was compared to small area estimates of a single composite indicator arising from the 

factor analysis model. They showed a gain in terms of the reduction in mean squared error when 

comparing the estimated mean factor scores with the use of an averaged dashboard of single 

indicators. According to the factor analysis assumptions, the composite estimates derived from the 

latent factors are linearly related to the observed variables, and hence have the same economic 

interpretation. In this paper, we extend Moretti et al. (2018b) by studying the case of more than one 

latent factor and use a multivariate empirical best linear unbiased predictor (MEBLUP) for factor 

score mean predictions. This new approach is compared to the averaging of dashboard small area 

estimates from the original variables using both a univariate and multivariate SAE approach.   

 

In summary, this paper will investigate the following comparisons: 

a) Comparison of EBLUP and MEBLUP of single observed response variables;  

b) Comparison of EBLUP and MEBLUP of multidimensional latent factors as measured by factor 

scores; 

c) Comparison of the use of latent factors in (b) to a dashboard of single observed response variables 

expressed as a simple or weighted average of standardised EBLUP and MEBLUP from (a).  

 

The remainder of this paper is organised as follows: in section 2 we introduce the multivariate SAE 

approach for a mean vector and review the multivariate EBLUP (MEBLUP) under the unit-level 

multivariate nested-error model. In section 3, we discuss the data dimensionality reduction problem 

via a factor analysis model. In section 4, we present a simulation study to evaluate our approach and 

address the comparisons (a) to (c) above. In section 5, we consider the multidimensionality issue of 

housing deprivation in Italy through an application using Italian EU-SILC data. We conclude our 

work in section 6 with a final discussion on the main findings and future research. 

 

2. Multivariate Empirical Best Linear Unbiased Predictor (MEBLUP)  

Let 𝑑 = 1, … , 𝐷 denote the small areas for which we want to compute estimates, and let us consider 

a sample 𝑠 ⊂ 𝛺 of size 𝑛 drawn from a target finite population 𝛺 of size 𝑁. The set of non-sampled 

units, 𝑁 − 𝑛, is denoted by 𝑟, hence, 𝑠𝑑 = 𝑠⋂𝛺𝑑 is the sub-sample from the small area 𝑑 of size 𝑛𝑑, 

𝑛 = ∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. 𝑟𝑑 denotes the set of non-sampled units for small area 𝑑 of size 𝑁𝑑 −

𝑛𝑑.  

Consider 𝒚𝑑𝑖 = (𝒚𝑑𝑖1, … , 𝒚𝑑𝑖𝐾), which denotes the 𝐾-dimensional row vector of interest on the target 

𝐾 variables for 𝑖 = 1, … , 𝑁𝑑 , 𝑑 = 1, … , 𝐷, we can write the target means vector as follows: 

�̅�𝑑 = 𝑁𝑑
−1 ∑ 𝒚𝑑𝑖

𝑁𝑑

𝑖=1

. 

 

(1) 

Hence, because of linearity of this quantity, each area means vector can be split into sampled and 

non-sampled (out-of-sample) elements as follows:  

�̅�𝑑 = 𝑁𝑑
−1 (∑ 𝒚𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝒚𝑑𝑖

𝑖∈𝑟𝑑

). 

 

(2) 

The quantity ∑ 𝒚𝑑𝑖𝑖∈𝑟𝑑
 is not observed, so it needs to be predicted. In this work we propose the use 

of the multivariate mixed-effects model, suggested in SAE by Fuller and Harter (1987) in order to 
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predict the out-of-sample observations.  

 

2.1 Multivariate nested-error linear regression model 

We assume that unit-specific auxiliary variables 𝒙𝑑𝑖 are available for all the population elements 𝑖 in 

each small area 𝑑 coming from a census or register.  We also assume that the following linear model 

relates the response variables to the auxiliary variables as follows (Fuller and Harter, 1987): 

𝒚𝑑𝑖 = 𝒙𝑑𝑖𝜷 + 𝒖𝑑 + 𝒆𝑑𝑖 , 𝑑 = 1, … , 𝐷, 𝑖 = 1, … , 𝑁𝑑, 

𝒖𝑑 ~
𝑖𝑖𝑑

𝑁𝐾(𝟎, 𝜮𝑢), 𝒆𝑑𝑖 ~
𝑖𝑖𝑑

𝑁𝐾(𝟎, 𝜮𝑒),  𝒖𝑑  𝑎𝑛𝑑 𝒆𝑑𝑖  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

 

(3) 

where 𝒙𝑑𝑖 is a 𝑝-dimensional row vector of auxiliary variables including the constant 1 as the first 

term, 𝜷 is a 𝑝 × 𝐾 matrix of unknown regression coefficients, 𝒖𝑑 is a 𝐾-dimensional row vector of 

area effects representing the random variations between small areas not explained by the auxiliary 

variables, and 𝒆𝑑𝑖 is 𝐾-dimensional row vector of the individual effects; 𝒖𝑑 and 𝒆𝑑𝑖 are assumed to 

be independent and normally distributed, 𝑁𝐾 denotes a 𝐾-variate Normal distribution. Here, the 𝐾 ×

𝐾 positive-definite matrices 𝜮𝑢 and 𝜮𝑒 are the variance-covariance matrices of the area effects and 

individual effects, respectively.  

In many applications of the multivariate modelling framework, the same covariates are used for all 𝐾 

response variables (Fuller and Harter, 1987; Molina, 2009; Baillo and Molina, 2009; Datta et. al., 

1999). For the case of using different covariates for each response variable we refer to other work in 

multivariate mixed-effects models, such as Goldstein (2011). 

 

2.2 Estimation and prediction of unknown parameters 

A random sample 𝑠 of size 𝑛 < 𝑁 is drawn from the finite population 𝛺 according to a sampling 

design. Model (3) can be written for 𝑖 = 1, . . . , 𝑛𝑑 without loss of generality (Rao and Molina, 2015). 

We make use of the following matrix notation which refers to the sample quantities (Fuller and Harter, 

1987):  

𝒀′ = (𝒚11, 𝒚12, . . . , 𝒚1,𝑛1
, . . . , 𝒚𝐷1, . . . , 𝒚𝐷,𝑛𝐷

), 

𝑿′ = [(𝑰𝐾⨂𝒙11)′, (𝑰𝐾⨂𝒙12)′, . . . , (𝑰𝐾⨂𝒙1,𝑛1
)′, . . . , (𝑰𝐾⨂𝒙𝐷,𝑛𝐷

)′], 

where 𝒀 denotes the vector of nK observations on 𝒚𝑑𝑖 where 𝒚𝑑𝑖 is defined above, and 𝑿 denotes the 

𝑛𝐾 × 𝑝𝐾 matrix of covariates. The operator ⨂ denotes the Kronecker product, and 𝑰 denotes the 

identity matrix.  

Let us now denote the covariance matrix of 𝒀 by 

𝑽(𝒀) = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔(𝑽11, … , 𝑽𝐷𝐷) (4) 

where 𝑽𝑑𝑑 = (𝑱𝑑𝑑⨂𝜮𝑢) + (𝑰𝑛𝑑
⨂𝜮𝑒). 𝑱𝑑𝑑 is the 𝑛𝑑 × 𝑛𝑑 matrix with every element equal to one. 

Let 𝑣𝑒𝑐 𝜷 denote the column vector of dimension 𝑝𝐾 obtained by listing the columns of 𝜷 one under 

the other starting from the first column. The estimator of 𝑣𝑒𝑐 𝜷 is: 
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𝑣𝑒𝑐 �̂� = (𝑿′�̂�−1𝑿)
−1

𝑿′�̂�−1𝒀. (5) 

The empirical best linear unbiased predictors of the random effects are given by (Fuller and Harter, 

1987): 

�̂�𝑑 = (�̅�𝑑,𝑠 − �̅�𝑑,𝑠�̂�)[(�̂�𝑢 + 𝑛𝑑
−1�̂�𝑒)

−1
�̂�𝑢], 𝑑 = 1, … , 𝐷 (6) 

where �̅�𝑑,𝑠 denotes the sample mean vector and �̅�𝑑,𝑠 denotes the means of the auxiliary variables in 

area d. The index ‘s’ refers to the sample quantities.  �̂�𝑢 and �̂�𝑒 are estimators of 𝜮𝑢 and 𝜮𝑒, 

respectively. We refer to Schafer et al. (2002) for the estimation algorithm where the maximum 

likelihood approach is used. 

The Multivariate Empirical Best Linear Unbiased Predictor (MEBLUP) of �̅�𝑑 is given by (Fuller 

and Harter, 1987; Rao and Molina, 2015): 

�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

= �̅�𝑑,𝑝𝑜𝑝�̂� + �̂�𝑑 , 𝑑 = 1, … , 𝐷, (7) 

where �̅�𝑑,𝑝𝑜𝑝 denotes the known population means of 𝒙𝑑𝑖 for area d. In case of areas with 𝑛𝑑 = 0 it 

holds that �̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 = �̂̅�𝑑

𝑆𝑦𝑛
= �̅�𝑑,𝑝𝑜𝑝�̂� (Rao and Molina, 2015); “Syn” denotes the synthetic 

estimator. We note that for the MEBLUP estimation in formula (7), only the means of the population 

covariates need to be known (�̅�𝑑,𝑝𝑜𝑝), thus in practise we do not have to link the sample data to the 

Census data when the sample is small compared to the population (Rao and Molina, 2015; Moretti et 

al., 2018b). 

The mean squared error of (7) can be estimated via resampling techniques, such as the parametric 

bootstrap, which is widely used in small area estimation under mixed-effects models. We refer to 

González-Mainteiga et al. (2008a) for statistical theory related to the use of bootstrap to produce MSE 

estimates under the univariate SAE models. In particular, they show that the parametric bootstrap 

may provide more accurate MSE estimates compared to analytical approximations due to its second-

order accuracy. Moretti et al. (2018a) extended the parametric bootstrap approach to multivariate SAE 

and also accounts for �̂̅�𝑑
𝑆𝑦𝑛

when 𝑛𝑑 = 0 based on the prediction error as in standard linear regression 

models. In addition, Moretti et al. (2018b) accounts for the error in the factor analysis models in the 

bootstrap algorithm. 

  

3. Data dimensionality reduction and the use of factor scores 

Composite indicators are measures for multidimensional phenomena that cannot be studied by the 

use of single indicators. Due to their complexity, composite indicators should be based on theoretical 

frameworks and/or definitions to combine single indicators in a way which reflects the phenomena 

structure (OECD-JRC, 2008). A vast literature on multivariate statistical analysis techniques is 

available; for a formal review on the main methods we refer to Härdle and Simar (2012). In this paper 

we assume that latent constructs exist for a wellbeing domain and use factor analysis models to reduce 

the data dimensionality from the original variables. 
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3.1. The confirmatory factor analysis model 

Let us consider a 𝐾 × 1 vector of observed random variables 𝒀 and we assume that they are linearly 

dependent on a vector of factors 𝒇, with dimension 𝑀 × 1 (𝑀 < 𝐾). Thus, we can write the following 

linking model (Kaplan, 2009; Mair, 2018): 

𝒀 = 𝚲𝒇 + 𝝐 (8) 

where 𝝐 denotes the error associated with the factors (containing both measurement and specific 

errors), and 𝜦 is a 𝐾 × 𝑀 matrix of factor loadings.  

Therefore, the implied covariance matrix, also known as the fundamental equation in factor analysis 

models, is given by (Kaplan, 2009): 

𝜮 = 𝜦𝜱𝜦′ + 𝜣, (9) 

where 𝜱 is a 𝑀 × 𝑀 matrix of factor covariance matrix, and 𝜣 is a 𝐾 × 𝐾 covariance matrix of the 

errors with 𝝐 ∼ 𝑁(𝟎, 𝜣). In confirmatory factor analysis (CFA), restrictions are put on the matrix 𝜦: 

the elements related to observed variables that are not loaded on a particular factor are fixed to 0 

(Kaplan, 2009 and Mair, 2018). The CFA model is also called restricted confirmatory factor analysis 

model in the literature (see e.g. Kaplan, 2009).  

The Maximum Likelihood (ML) approach is used to estimate the model parameters. ML equations 

under factor analysis models are complicated to solve analytically, so iterative numerical algorithms 

are proposed in the literature (see Mardia et al., 1979; Jöreskog, 1967; Yang-Wallentin, et al., 2010). 

Thus, model estimates can be obtained by iteratively minimizing the following function (Kaplan, 

2009): 

ℓ𝑀𝐿 =
𝑛

2
[𝑙𝑜𝑔|𝜮| + 𝑡𝑟{𝑹𝜮−𝟏}], (10) 

where 𝑹 denotes the observed (empirical) covariance matrix. 

3.2   Factor scores estimation in case of continuous observed variables 

After the model parameters are estimated, the factor scores are also estimated. Factor scores are 

defined as estimates of the values of the unobserved latent variables for each unit 𝑖. For a review of 

factor scores estimators we refer to Johnson and Wichern (1998). 

Using the regression method, the individual factor scores estimate for sample units are given by 

(Härdle and Simar, 2012; Lawley and Maxwell, 1971) where �̂� denotes the estimator of 𝜦: 

�̂�𝑖 = �̂�′𝑹−1𝒚𝑖. (11) 

3.3   Factor scores estimation when at least one variable in 𝒀 is binary or ordered categorical 
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In the presence of both binary and continuous observed variables, under a maximum likelihood 

estimation approach, the factor scores may be estimated via the expected posterior method (Estabrook 

and Neale, 2013; Boker, et al., 2011; Muthén, 2004) and computed in Mplus 7.4 (Muthén and Muthén, 

2012). This estimation procedure is applied in section 5 where an application with real EU-SILC data 

is proposed. 

In the case that at least one variable in 𝒀 is binary or ordered categorical then conditional 

independence is assumed: 

𝑔(𝒚𝑖|𝒇𝑖) = ∏ 𝑔𝑖(𝑦𝑖𝑘|𝒇𝑖),

𝐾

𝑘=1

 

(12) 

here, the factor scores estimates are obtained from the mode of the posterior of 𝒇𝑖 by minimizing the 

following function 𝐻 with respect to 𝒇𝑖, i.e.: 

𝐻 = 1/2(𝒇𝑖 − 𝝁𝑖)
′𝜮−1(𝒇𝑖 − 𝝁𝑖) −  ∑ 𝑙𝑛 𝑔(𝒚𝑖𝑘|𝒇𝑖)

𝐾

𝑘=1

. 
(13) 

 The prior of 𝒇𝒊 is defined by 𝜙(𝒇𝒊) ∼ 𝑁(𝝁𝑖, 𝜮) and the posterior distribution by 𝑡(𝒇𝑖|𝒚𝑖) ∝

𝜙(𝒇𝒊) 𝑔(𝒚𝑖|𝒇𝑖). The minimization of (13) needs to be done via iterative techniques, such as quasi-

Newton techniques (Muthén, 2004). Detailed theory related to latent variables modelling in case of 

non-continuous variables can be found in Muthén (1983) and Muthén (1984). 

 

4. Simulation study 

This simulation study is designed to assess the feasibility of the multivariate MEBLUP compared to 

the univariate EBLUP when considering the problem of data dimensionality reduction and the 

comparisons (a) to (c) mentioned in the introduction.  

The overall results of the simulation study are evaluated via the empirical root mean squared error 

(RMSE) described in Section 4.2. 

 

4.1. Generating the population 

We generate a single population with 𝑁 = 20,000, 𝐷 = 80, and 130 ≤ 𝑁𝑑 ≤ 420. 𝑁𝑑 are generated 

from the discrete Uniform distribution, 𝑁𝑑 ∼ 𝑑𝑈𝑛𝑖𝑓(130, 420) with ∑ 𝑁𝑑
𝐷
𝑑=1 = 20,000. 𝒚𝑑𝑖 

observations are generated according to the multivariate mixed-effects model shown in (3). The 

simulation parameters 𝜮𝑒 and 𝜷 are estimated from real Australian Agricultural and Grazing 

Industries Survey data (Australia, Bureau of Agricultural Economics, 1978; Molina, 2009). We define 

the following covariance matrix 𝜮𝑒: 

𝜮𝑒 = [

0.386 𝜎12 𝜎13 𝜎14

𝜎21 0.414 𝜎23 𝜎24

𝜎31 𝜎32 0.213 𝜎34

𝜎41 𝜎42 𝜎43 0.301

]. 

Let 𝑟𝑢 and 𝑟𝑒 denote the correlation coefficients associated with the covariance matrices 𝜮𝑢 and 𝜮𝑒 

respectively. Hence, 𝜎𝑙𝑗 with 𝑙 ≠ 𝑗 in 𝜮𝑒 varies according to 𝑟𝑒. For example, 𝜎12 = 𝑟𝑒√0.386 ∙ 0.414  

in the above matrix 𝜮𝑒. The intra-class correlation coefficients are fixed as follows: 𝐼𝐶𝐶𝑘 =

{0.05, 0.1, 0.3}. Therefore the variances of 𝜮𝑢 are generated as functions of the variances of 𝜮𝑒  as 

follows: 𝐼𝐶𝐶𝑘 = 𝜎𝑢𝑦𝑘
2 /(𝜎𝑢𝑦𝑘

2 + 𝜎𝑒𝑦𝑘
2 ), where 𝑘 = 1, … ,4 denote the 𝑘𝑡ℎ component of 𝒚𝑑𝑖.The 

covariances for 𝜮𝑢 are then calculated as described above for 𝜮𝑒. 

In this simulation we study the following combinations of 𝑟𝑢 and 𝑟𝑒: 𝑟𝑢 = 𝑟𝑒 = 0.2,   𝑟𝑢 =
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0.2 and 𝑟𝑒 = 0.7,  𝑟𝑢 = −0.2 and 𝑟𝑒 = 0.7.  

The 𝜷 regression coefficients matrix (first column relates to the intercept) is given by the following: 

𝜷 = [

1.001 0.386 0.141
1.187 0.377 0.133
1.086 0.035 0.024
0.114 0.009 0.002

]. 

Two uncorrelated covariates are generated from discrete Uniform distributions, 

𝑥𝑑𝑖1~𝑑𝑈𝑛𝑖𝑓(145,459), 𝑥𝑑𝑖2~𝑑𝑈𝑛𝑖𝑓(55,345). 

On the generated population, we run two Confirmatory Factor Analysis (CFA) models described in 

section 3.1: the first model for one latent factor and the second model for two latent factors. This is 

based on an initial exploratory analysis where we identified that both CFA models provide a good fit 

to the generated population. We show in Appendix A the goodness of fit statistics of the two CFA 

models on the generated population for the simulation study. For each latent factor in both CFA 

models, we estimate the population factor scores from (11), these are denoted by 𝒇𝑖 , 𝑖 = 1, … , 𝑁.  

Error! Reference source not found. shows how the factors relate to the observed variables for the 

case of two latent factors in the CFA model.  

 

<Figure 1 about here> 

 

As mentioned in Moretti et al. (2018b), although factor analysis models have been developed to 

account for multilevel structures, it is not possible to estimate these models for unplanned domains 

given small and zero sample size domains. Future work will investigate this problem in small area 

estimation of latent variables. 

We also calculate the following true values based on the generated population for each of the small 

area 𝑑: the factor score means, simple averages of the standardized observed variable means, and 

weighted averages using the CFA loadings denoted by �̅�𝑑𝑚
𝑆_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

 and �̅�𝑑𝑚
𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

, respectively, 

where m denotes the mth factor and the averages are taken over those variables associated to the mth 

factor (see Figure 1). The true means are calculated from the generated population to be used in 

evaluations of the RMSE and BIAS (see formulas (15) and (16)).  

For example, the weighted average (based on the factor loadings) of standardized EBLUPs (which 

have been transformed with zero mean and unit variance) for area d for the variables 𝑘 = 1, … , 𝐾 that 

contribute to the 𝑚𝑡ℎ factor is given by: 

�̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃_𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

=
∑ (�̂̅�𝑑𝑘

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝐸𝐵𝐿𝑈𝑃�̂�𝑘𝑚)𝐾
𝑘=1

∑ �̂�𝑘𝑚
𝐾
𝑘=1

, 𝑑 = 1, … , 𝐷, 𝑚 = 1, … , 𝑀          (14)  

where �̂�𝑘𝑚 is the estimated factor loading for variable 𝑘 related to factor 𝑚. 

 

4.2. Simulation steps 

The simulation study consists in the following steps: 

1. Draw 𝑆 = 500 samples with 𝑛 = 1,000 using simple random sampling without replacement from 

the generated population. The expected sample size per area is 𝐸(𝑛𝑑) = 5; 

2. Fit the one-factor and two-factor CFA model on each sample and estimate the EBLUP factor score 

means from each model for each area 𝑑 in each sample. In addition to the separate EBLUP factor 

score means for each of the factors under the two-factor CFA model, estimate the MEBLUP factor 

score means; 
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3. The EBLUP and MEBLUP for each of the observed variables and vectors 𝒀 are also estimated in 

order to construct simple averages of the standardized small area EBLUPs and MEBLUPs, and a 

weighted average using the factor loadings estimated in 2 and shown in (14); 

4. As the true values are known from the generated population, we can calculate the root mean 

squared error and the bias for each area 𝑑 for the different types of estimates: EBLUPs and 

MEBLUPs of factor score means; and simple and weighted averages of EBLUPs and MEBLUPs. 

For example, for the univariate EBLUPs of the observed variable mean k denoted by �̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃, the 

root mean squared error is given by:  

𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃) = √𝑆−1 ∑(�̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 −  �̅�𝑑𝑘
𝑇𝑅𝑈𝐸)

2

 

𝑆

𝑠=1

, 

 

(15) 

      the bias of �̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃 is given by: 

𝐵𝐼𝐴𝑆(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃) = 𝑆−1 ∑(�̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 −  �̅�𝑑𝑘
𝑇𝑅𝑈𝐸) 

𝑆

𝑠=1

, 
 

(16) 

where  �̅�𝑑𝑘
𝑇𝑅𝑈𝐸 = 𝑁𝑑

−1 ∑ 𝑦
𝑖𝑘

𝑁𝑑
𝑖=1  denotes the true mean of the 𝑌𝑘 variable for the 𝑑𝑡ℎ area observed 

in the population. 

 

4.3. Results of the simulation study 

In this section we describe the main results of the simulation study grouped according to comparisons 

(a), (b) and (c) as described in the introduction. The Root Mean Squared Error (15) and bias (16) are 

used as quality measures in order to evaluate the results. 

 

4.3.1. Comparison (a) of EBLUP and MEBLUP of single observed response variables 

Table 1 shows the percentage relative reduction (in terms of RMSE) of the multivariate MEBLUP 

over the univariate EBLUP under comparison (a) for single observed response variables. The 

percentage relative reduction in terms of RMSE for each area is calculated as follows: 

𝛥𝑑𝑘 =
𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘

𝑀𝐸𝐵𝐿𝑈𝑃)−𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃)

𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃)

∙ 100, 𝑘 = 1, … , 𝐾, 𝑑 = 1, . . . , 𝐷.,  

𝛥𝑑𝑘 estimates are then averaged across the areas to provide summary statistics for each variable 𝑘: 

𝛥𝑘 =  𝐷−1 ∑ 𝛥𝑑𝑘𝑑 . 

Table 2 presents the bias of the EBLUP and MEBLUP estimates of the observed responses variables 

averaged over the small area for the three scenarios.  

 

<Table 1 about here> 

<Table 2 about here> 

 

 

When the correlations 𝑟𝑒 and 𝑟𝑢 are equal to 0.2, we see that the MEBLUP does not provide much 

improvement over the univariate EBLUP. Indeed, when 𝑟𝑒 and 𝑟𝑢 tend to 0 we are close to the 

independence case, whereby univariate analysis provide the same results as the multivariate analysis 

(Datta et al., 1999). When correlation coefficients associated to 𝜮𝑒 are large, MEBLUP provides more 

efficient predictions than EBLUP. As it has already been noted by Datta et al. (1999), these gains tend 

to become large when the signs of 𝑟𝑒 and 𝑟𝑢 are opposite. The gains in efficiency are good even when 
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the intra-class correlation is low, although we have larger improvements with respect to the RMSE 

when the intra-class correlation increases. These results confirm previous findings in the multivariate 

SAE literature, e.g. Datta et al. (1999). Also, although the univariate EBLUPs are all unbiased (very 

small biases are observed across the small areas), these biases are even smaller in the case of the 

MEBLUPs. In fact, as pointed out in Berridge and Crouchley (2011), if responses are correlated and 

we ignore this in the modelling, there is a risk of making errors in the statistical inference. Thus, it is 

important to consider multivariate EBLUP in case of correlated variables. 

 

4.3.2. Comparison (b) of EBLUP and MEBLUP of multidimensional latent factors (two-factor 

CFA model) as measured by factor scores  

Table 3 shows the estimates of the correlation terms between the two factors and the intra-class 

correlations resulting from the MEBLUP of the two latent factors that were estimated by the two-

factor CFA model. It can be seen that the estimated correlation terms and ICC of the two latent factors 

increase compared to the correlation structure of the original variables when 𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 and 

𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2. Under the case 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 there are mixed results for the correlation 

term of 𝑟𝑢 between the two factors and we see a decrease in the estimated ICC.  

 

<Table 3 about here> 

 

Table 4 shows the percentage relative reduction (in terms of RMSE) of the multivariate MEBLUP 

over the univariate EBLUP of the factor scores. The case 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 produces smaller ICCs. 

This means that the MEBLUP has little gain over the univariate EBLUP. The case of 𝑟𝑒 = 0.7, 𝑟𝑢 =

−0.2 and 𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 produce high factor correlations and higher ICCs; thus, increased 

efficiency of MEBLUP over the EBLUP. Note that the values of the RMSE of the factor scores means 

SAE predictions are shown in Table 6. 

 

<-Table 4 about here> 

 

4.3.3. Comparison (c) of the use of  latent factors (b) to simple and weighted averages of 

standardised EBLUP and MEBLUP estimates 

One-Factor CFA Model  

Table 5 provides the values of the RMSE of the estimates under consideration in comparison (c): 

simple and weighted averages of standardised original variables for EBLUPs and MEBLUPs and the 

one-factor CFA factor score means from the univariate SAE EBLUP. Table 6 shows the bias of factor 

scores means (EBLUP only) from one-factor CFA model, and simple and weighted averages of 

standardised original variables EBLUP and MEBLUP. Furthermore, Table 7 shows the percentage 

relative reduction in RMSE for the simple and weighted averages of standardised MEBLUPs over 

EBLUPs.  

<Table 5 about here> 
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From Table 5, we can see that the RMSEs of the EBLUPs of the factor scores under the one-factor 

CFA model are all smaller than the RMSEs of the simple and weighted averages of single variables 

under both the EBLUP and MEBLUP approaches. This confirms findings in Moretti et al. (2018b), 

which showed that factor score means estimated through EBLUP are more efficient compared to the 

dashboard approach of taking averages of indicators.  

<Table 6 about here> 

From Table 6 it can be seen that, although the biases of the estimates coming from the different 

approaches are all very small, the factor scores produce smaller bias in the estimates compared to 

simple and weighted averages of standardised EBLUPs and MEBLUPs. This is particularly true when 

the intra-class correlation is small. When the intra-class correlation is equal to 0.3 the bias reductions 

in the use of factor scores compared to the averages is not large. The MEBLUP approach provides 

smaller biases compared to the EBLUP. The bias is generally smaller for the case 𝑟𝑒 = 0.7, 𝑟𝑢 =

−0.2. 

<Table 7 about here> 

In addition, the MEBLUP approach for the single variables provides estimates of simple and weighted 

averages with lower variability than the case where the single variables are estimated under the 

univariate EBLUP from Table 7. However, we do not see MSE reductions when the correlations in 

the variance-covariance matrices are small, which is the case when 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2. 

 

Two-Factor CFA Model  

Here we present the results for the two-factor CFA model shown in Figure 1. Table 8 provides the 

values of the RMSE of each of the estimates under consideration in comparison (c): simple and 

weighted averages of standardised original variables for EBLUPs and MEBLUPs associated to each 

of the factors, and the two-factor CFA factor score means from the univariate and multivariate SAE. 

Table 9 shows the bias of factor score means from two factor CFA model and simple and weighted 

averages of standardized original variables EBLUP and MEBLUP. Table 10 shows the percentage 

relative reduction in RMSE for simple and weighted averages of standardised MEBLUPs over 

EBLUPs for those variables associated to each of the factors in the two-factor CFA model as shown 

in Table 4. 

<Table 8 about here> 

Table 8 shows that factor scores produce composite estimates with lower variability than simple and 

weighted averages for the two-factors case similar to the findings for the one-factor case in Table 5. 

Also, the MEBLUP provides estimates with lower variability than EBLUP for simple and weighted 

averages of those variables associated to each of the two factors in the two-factor CFA model. The 

percentage relative reduction is larger in the case of opposite signs in 𝑟𝑒 and 𝑟𝑢. We also see no gains 

in efficiency when correlations are small.  

From Table 9, it can be seen that even in the case of the two-factor CFA model the use of factor scores 

produce estimates with a smaller bias than the other two approaches. The differences between the 

bias of the EBLUP and MEBLUP are not always large since they depend on the correlation structure.  
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<Table 9 about here> 

<Table 10 about here> 

 

4.4. Discussion on simulation study results 

In this simulation study we investigated the use of CFA models in data dimensionality reduction and 

the application of multivariate SAE for small area indicators. It can be seen that, in line with the 

general multivariate SAE literature, the use of multivariate mixed-effects models provides estimates 

with smaller variability than the univariate BHF model when variables are highly correlated with high 

intra-class correlations. In particular, the percentage of MSE reduction becomes larger when 𝑟𝑒 and 

𝑟𝑢 have opposite signs. The use of factor score means provide more efficient estimates than the use 

of the simple and weighted averages of standardised EBLUPs and MEBLUPs of original variables 

for multidimensional phenomena although they have the same economic interpretation. Interestingly, 

we can see that if the correlations in the original data are low, we see little or no gain in using an 

MEBLUP approach compared to the univariate EBLUP. The CFA model produces factor scores to 

represent latent variables which changes the correlation structures compared to the original variables. 

In particular, if the intra-class correlation reduces as a result of the CFA model, we see little gain in 

using the MEBLUP compared to the EBLUP. On the other hand, when correlations in the original 

data are high, and the correlation structure between factor scores remains high with an increased intra-

class correlation, this leads to larger gains in the MEBLUP approach. However, in both cases we see 

that the MEBLUP approach has less reduction of RSMEs over the univariate EBLUP when 

considering factor score means estimation, compared to a much larger reduction of RSMEs when 

comparing simple and weighted averages of small area estimates on the original variables. Thus it 

appears that when accounting for the correlation structure in the original data a priori through the use 

of CFA models, we can use a simpler univariate EBLUP approach on each of the factor scores means 

since there are little gains in using the MEBLUP approach.  

 

5. Application  

In this section we present an application using real data on housing quality in Italy, focusing on one 

of the key dimensions in the multidimensional Italian “Economic Wellbeing” of the BES framework. 

Housing quality is also an important determinant of wellbeing in other Organisation for Economic 

Co-operation and Development (OECD) countries (Andrews et al., 2011). Data from EU-SILC 2009 

and the Italian Census 2001 (for the auxiliary variables) are used. Although the 2009 EU-SILC data 

were collected in 2008 (seven years after the census), the years 2001–2007 were a period of relatively 

slow growth and low inflation in Italy (Giusti et al., 2012b). Future work will take into account more 

recent data for comparisons.  

 

5.1. Data and variables 

The EU-SILC is conducted yearly by ISTAT for Italy, and coordinated by EUROSTAT at the EU 

level. For the Italian geography, the survey is designed to produce accurate estimates only at the 

national and regional levels (NUTS-2) and provinces, whereas municipalities (NUTS-3 and LAU-2 

levels), and lower geographical levels are unplanned domains (Giusti et al., 2012a). We use the EU-

SILC 2009 dataset for Tuscany. The 14th Population and Housing Census 2001 surveyed 1,388,252 

households of persons living in Tuscany permanently or temporarily, including the homeless 

population and persons without a dwelling. Although EU-SILC uses a complex survey design, an 
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important feature in the Italian EU-SILC for Tuscany is that every household (and thus adult in the 

household) has an equal inclusion probability (Eurostat, 2018). Sample designs which implement 

equal probability selection methods (EPSEM) have many practical advantages and are commonly 

used in survey practice (Kish, 1995).  A sensitivity analysis (not shown here) where the regression 

models account for the survey design showed no significant differences in the results for the Italian 

EU-SILC for Tuscany.   

We focus on the following sub-dimensions of housing quality (Eurostat, 2016): housing deprivation 

and problems related to the residential area. Due to data availability, a limited number of variables 

are selected: severe material deprivation, smog, noise, crime, housing ownership, presence of 

humidity, darkness inside the house, absence of rubbish in the street, and absence of damages in 

public buildings. Income is another factor related to wellbeing, although monetary measurement is 

not always exhaustive for measuring poverty and wellbeing phenomena (Stiglitz et al., 2008). 

However, income has an interesting effect on housing quality. As Fusco (2015) notes, income and 

housing deprivation are negatively associated and, in the long run, this relationship becomes stronger. 

Therefore, it is reasonable to consider income in the analysis of multidimensional housing quality. In 

our work we use equivalised disposable income denoted by 𝐼𝐷𝐸, which is calculated as follows 

(Atkinson et al., 2002): 

𝐼𝑖
𝐷𝐸 =

𝐼𝑖
𝐷

𝑛𝑖
𝐸 , 𝑖 = 1, … , 𝑁,  

  (17) 

 

where 𝑖 = 1, … , 𝑁 denotes households, 𝐼𝑖
𝐷 is the disposable household income, and 𝑛𝑖

𝐸 is the 

equivalised household size calculated in the following way: 

𝑛𝑖
𝐸 = 1 + 0.5 ∙ (𝐻𝑀14+ − 1) + 0.3 ∙ 𝐻𝑀13−, (18) 

where 𝐻𝑀14+ is the number of household members aged 14 and over at the end of the income 

reference period, and 𝐻𝑀13− is the number of household members aged 13 or younger at the end of 

the income reference period.    

The exploratory variables used in the model (following model-fit diagnostics not shown here) relate 

to the head of the household and are common to both EU-SILC and Census data. They are gender, 

age, year of education, household size, size of the flat (in squared metres), and status of employment. 

Appendix B shows descriptive statistics of the observed variables and auxiliary variables used in the 

application. 

 

5.2. Factor analysis and composite estimates 

First, we show results of the unrestricted factor analysis model, also known as Exploratory Factor 

Analysis (EFA), on the observed variables to investigate their contribution to the total variability 

(Kaplan, 2009). Table 11 shows the factor structure of the first two factors and how the variables 

relate to the factors via the factor loadings. According to the factor structure, the following two latent 

variables can be defined: residential area deprivation (factor 1) and housing material deprivation 

(factor 2) as shown in Figure 2. Figure 3 shows the scree plot of the EFA eigenvalues where it can be 

seen that indeed the first two factors explain a good amount of the total variability. Therefore, we 

keep two factors and carry out the Confirmatory Factor Analysis (CFA) model estimation stage. The 

factor scores are estimated from the CFA model using Mplus 7.4. For technical aspects on the 

estimators we refer to Muthén (2004), Muthén (1983) and Muthén (1984). 
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<Table 11 about here> 

<Figure 2 about here> 

<Figure 3 about here> 

The goodness of fit statistics, root mean square error of approximation (RMSEA), the comparative 

fit index (CFI), and Tucker-Lewis index (TLI) show good results according to Hu and Bentler (1999): 

𝑅𝑀𝑆𝐸𝐴 = 0.040, 𝐶𝐹𝐼 = 0.925, 𝑎𝑛𝑑 𝑇𝐿𝐼 = 0.901. The estimated correlation coefficient between 

factor 1 and factor 2 is 0.4. Error! Reference source not found. shows the distributions of the factor 

scores for each of the latent variables arising from the CFA model following the use of the Box-Cox 

transformation with a parameter 𝛿 (Box and Cox, 1964) in order to approximate the normal 

distribution assumption needed for the SAE models. For Factor 1 we used 𝛿 = 3.2  and for Factor 2 

we used 𝛿 = 3.0. 

 

<Figure 4 about here> 

 

5.3. Small area estimates and model diagnostics 

Tuscany municipalities are defined as the EU-SILC small areas, with sample sizes ranging from 0 to 

135 households. We assume a hierarchical structure in the data with households (level 1) nested within 

municipalities (level 2). The total number of households in the sample is 1,448 and 59 out of 287 

municipalities were sampled. We build two different types of SAE models: first, we apply the 

univariate BHF approach and consider the factor scores as two separate dependent variables to obtain 

estimates of the univariate EBLUPs of the single factor means. Also, the multivariate approach is 

applied and the vector of the factor score means is predicted by MEBLUP. The MSEs of the EBLUPs 

of factor score means are estimated as in Moretti et al. (2018b). The MSEs of the MEBLUPs are 

estimated as in Moretti et al. (2018a), taking into account the variability arising from the CFA model 

as proposed in Moretti et al. (2018b). 

In case of areas where 𝑛𝑑 = 0 it holds that (Rao and Molina, 2015):  

𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 = 𝑓̅̂

𝑑𝑚
𝑆𝑦𝑛

= �̅�𝑑,𝑝𝑜𝑝�̂�𝐸𝐵𝐿𝑈𝑃, 𝑚 = 1,2

�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 = �̂̅�𝑑

𝑆𝑦𝑛
= �̅�𝑑,𝑝𝑜𝑝�̂�𝑀𝐸𝐵𝐿𝑈𝑃

, 
(19) 

where 𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 and �̂̅�𝑑𝑚

𝑀𝐸𝐵𝐿𝑈𝑃 denote the EBLUP of the mean of the factor scores for the 𝑚𝑡ℎ factor 

and the MEBLUP of the mean vector of factor scores, respectively. 

The final EBLUP and MEBLUP factor score means are then transformed for enabling interpretation 

and mapping using the ‘Min-Max’ criterion (OECD-JRC, 2008), which transforms the estimates to 

the interval [0,1]. For example, for the EBLUP of the m=1,2 factors, the factor scores mean is 

transformed to a value given by: 

𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃∗ =

𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 − 𝑚𝑖𝑛 (𝑓̅̂

𝑑𝑚
𝐸𝐵𝐿𝑈𝑃)

𝑚𝑎𝑥 (𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃) − 𝑚𝑖𝑛 (𝑓̅̂

𝑑𝑚
𝐸𝐵𝐿𝑈𝑃)

,   𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃∗ ∈ [0,1]. 

(20) 

where 𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 denotes the EBLUP of factor score means for the 𝑚𝑡ℎ factor for small area 𝑑, the 

minimum and maximum are across all EBLUPs in areas 𝑑 = 1, … , 𝐷.  

We proceed with the MEBLUP of factor score means and interpret our findings. Table 12 shows the 

percentiles for the transformed latent housing quality indicators based on MEBLUP of factor score 
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means. Error! Reference source not found. shows the maps of residential area deprivation and 

housing material deprivation, respectively. 

<Table 12 about here> 

<Figure 5 about here> 

 

Although the residential area deprivation dimension is positively correlated with the housing material 

deprivation dimension, there are important differences at the area level between the two sub-

dimensions. These differences can be seen in the maps. Looking at residential area deprivation 

estimates (Error! Reference source not found.; left panel) it can be seen that the municipalities 

located in Massa e Carrara and Siena provinces have the lowest values of the residential area 

deprivation indicators. Low levels of residential area deprivation are estimated for some 

municipalities of the south Grosseto province (Manciano and Magliano in Toscana). The highest 

values in residential area deprivation areas are estimated for municipalities located in the north of the 

Florence province and north Livorno province. The second map in Error! Reference source not 

found. (right panel) depicts the housing material deprivation indicator. Interestingly, although the 

correlation between the two indicators is 0.4, there are noteworthy differences in some areas: Massa 

e Carrara, north Siena, Florence, Grosseto and south Siena provinces. For the municipalities located 

in these provinces the estimates of the housing material deprivation indicator belong to the 4th 

quantile, denoting high levels of housing material deprivation and belong to the 1st and 2nd quantiles 

denoting low levels of residential area deprivation. 

 

Error! Reference source not found. and Error! Reference source not found. show the RMSEs of 

residential area deprivation and housing material deprivation comparing the EBLUP and MEBLUP 

estimates for those small areas with 𝑛𝑑 > 0, respectively.  

 

<Figure 6 about here> 

<Figure 7 about here> 

 

It can be seen from the figures that the MEBLUP approach provides smaller RMSE over the 

univariate EBLUP approach. The percentage reduction in terms of RMSE across all areas is 6.41% 

and 7.90% for residential area deprivation and housing material deprivation, respectively. 

The model estimates of the variance components and correlations of the latent factors are:  

�̂�𝑒,𝑓1

2 = 0.086, 𝜎𝑢,𝑓1

2 = 0.023,  

�̂�𝑒,𝑓2

2 = 0.170, 𝜎𝑢,𝑓2

2 = 0.017,  

�̂�𝑒 [
0.086 0.012
0.012 0.169

] , 𝑤𝑖𝑡ℎ �̂�𝑒 = 0.10, 

�̂�𝑢 [0.023 0.015
0.015 0.016

] , 𝑤𝑖𝑡ℎ �̂�𝑢 = 0.78. 

The estimated ICCs are 0.21 and 0.09 for factor 1 and factor 2, respectively. 

Error! Reference source not found. and Error! Reference source not found. show the Q-Q plots 

of the residuals (level-1 and level-2) from the univariate BHF and multivariate mixed-effects model, 

respectively, for both of the factors. It can be seen that the residuals are approximately normally 

distributed and, in the case of the multivariate mixed-effects model, they behave slightly better. 

However, it can be noted that level-1 residuals for factor scores 2 behave slightly worse than factor 

scores 1, particularly in the univariate BHF model. In this case, nonparametric or semi-nonparametric 

mixed-effects models may be considered. Papageorgiou and Hinde (2010) introduced two families of 
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density in these models, the semi-nonparametric and smooth nonparametric densities. Multivariate 

models with such densities have not been studied in SAE and are a topic for future work. Despite the 

issues regarding level-1 residuals, our small area estimates are in line with previous studies 

considering similar economic wellbeing indicators (Moretti, et al., 2018; Marchetti, et al. 2012; Giusti 

et al. 2015).  

Finally, the run-time of the application was negligible and the proposed approach can handle large 

datasets and number of covariates. 

 

<Figure 8 about here> 

<Figure 9 about here> 

 

6. Discussion 

In this paper we evaluated the use of a multivariate empirical best linear unbiased predictor 

(MEBLUP) under a unit-level mixed-effects model for data dimensionality reduction. In particular, 

we compared the use of factor score means with the use of simple and weighted averages of 

standardised EBLUPs and MEBLUPs of original variables in a large-scale simulation study. 

The reduction in terms of MSE of the multivariate analysis over the univariate analysis depends on 

the correlation coefficients (𝑟𝑒 and 𝑟𝑢) associated with the variance-covariance matrices and intra-

class correlation of the original variables and, in particular, how these change when accounting for 

the correlations a priori through factor analysis models. This can be seen in the simulation study in 

comparisons a) and b). Furthermore, when factor score means on several latent variables are used in 

data dimensionality reduction, these may be estimated using univariate EBLUPs since the correlation 

structure is accounted for a priori via the factor analysis model. This is shown in the simulation study 

under comparison (c), where percentages of reduction in terms of RMSE for the factor scores case 

between MEBLUP and EBLUP are small compared to the reduction in the weighted and simple 

averages of the original variables. We also show that the standard approach of using a dashboard of 

indicators, whether calculating each one via univariate BHF model or in a multivariate SAE model 

have higher RMSE’s compared to using factor scores, this is shown in the evaluations of comparison 

c) of the simulation study. 

However, we note that factor scores are still crucial in data dimensionality reduction where different 

types of variables may arise (binary, continuous, categorical etc.). In fact, in the real data application, 

we have variables measured on different scales, hence, multivariate EBLUP would require 

generalised multivariate mixed-effects models, which have not been studied in SAE so far and is a 

topic for future work. Factor scores estimated by a factor analysis model overcome this issue and 

allow the study of multidimensional well-being phenomena. In case of skewed distributions, other 

modelling strategies may be used, such as nonparametric or semi-nonparametric model settings. For 

example, Papageorgiou and Hinde (2010) considered these families of densities in multivariate 

generalized mixed-effects models. Attention to these problems in multivariate SAE approaches is a 

topic for future work. 

 

Funding: This research was financially supported by the United Kingdom Economic and Social 

Research Council (ESRC) [grant number ES/J500094/1]. 
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Appendix A: Goodness of Fit for CFA Models on Generated Population for Simulation Study 

in Section 4 

Here we present the goodness of fit for the CFA models estimated on the generated population in the 

simulation study. We consider the following indices: the Standardised Root Mean Square Residual 

(SRMR), the Comparative Fit Index (CFI) and the Tucker Lewis Index (TLI). SRMR is the square 

root of the difference between the residuals of the sample covariance matrix and the hypothesised 

covariance model. It ranges between 0 and 1, and indicates good fit when values equal or lower to 

0.08 are assumed (Hu and Bentler, 1999). CFI evaluates the model fit by investigating the discrepancy 

between the data and the hypothesised model (Gatignon, 2010). Its values range from 0 to 1, with 

larger values indicating better fit. A CFI value of 0.95 or higher is accepted as an indicator of good 

fit (Hu and Bentler, 1999). A TLI range is the same as CFI, for example a TLI equal to 0.95 indicates 

the considered model improves the fit by 95% relative to the null model. The cut-off for this index is 

0.95 (Hu and Bentler, 1999). 

Table A1 Confirmatory factor analysis goodness of fit statistics, one-factor and two-factor model, 

on the generated population 

  One-factor model Two-factor model 

Correlation structure 𝐼𝐶𝐶𝑘 SRMR CFI TLI SRMR CFI TLI 

𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐  0.05 0.016 0.985 0.956 0.026 0.985 0.956 

 0.1 0.016 0.986 0.957 0.016 0.986 0.957 

 0.3 0.016 0.991 0.972 0.016 0.991 0.972 

𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐  0.05 0.040 0.969 0.908 0.035 0.989 0.978 

 0.1 0.038 0.971 0.912 0.032 0.975 0.925 

 0.3 0.028 0.985 0.955 0.020 0.985 0.955 

𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐  0.05 0.040 0.970 0.909 0.038 0.978 0.978 

 0.1 0.032 0.975 0.924 0.029 0.968 0.927 

 0.3 0.020 0.985 0.955 0.024 0.987 0.978 
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Appendix B: Description of variables on EU-SILC 2009 Tuscany data for Application in Section 

5 

Table B1 Descriptive statistics of the observed variables (EU-SILC, Tuscany 2009). 

Variable Mean S.D. 

Severe material deprivation 4% 0.0384 

Smog 17% 0.373 

Noise 23% 0.424 

Crime 13% 0.341 

Housing ownership 74% 0.439 

Presence of humidity 15% 0.358 

Darkness inside the house 8% 0.277 

Equivalised disposable income 20,090 13,990.88 

Rooms per household component 1.989 1.239 

 

Table B2 Frequency distribution of access to public services (EU-SILC, Tuscany 2009) 

Access to public services 

  Absolute frequency Relative frequency % 

Very difficult 133 9.19 
Some difficulties 249 17.20 
Easy 631 43.58 
Very easy 290 20.03 
Not needed 145 10.01 
Total 1448 100.00 

 

Table B3 Frequency distribution of damages to public buildings (EU-SILC, Tuscany 2009) 

Perception of damages to public buildings 

  Absolute frequency Relative frequency % 

Always 65 4.49 
Often 83 5.73 
Sometime 294 20.30 
Never 1006 69.48 
Total 1448 100.00 
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Table B4 Frequency distribution of perception of rubbish in the street (EU-SILC, Tuscany 2009) 

 

 

 

 

 

 

 

 

Table B5 Descriptive statistics of the auxiliary variables (EU-SILC, Tuscany 2009) 

Variable Mean S.D. 

Household size 2.43 1.18 

Gender (female) 70% 0.46 

Status of employment (employed) 50% 0.50 

Age 57.39 16.86 

Years of education 9.76 4.56 

Flat  (or house) size in squared metres 97.54 38.43 

 

 

  

Perception of rubbish in the street 

  Absolute frequency Relative frequency % 

Always 75 5.18 
Often 82 5.66 
Sometime 308 21.27 
Never 983 67.89 
Total 1448 100.00 
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Appendix C: Specification of the software used in Section 4 and 5 

Here we describe the main R packages that can be used to replicate the analysis.  

 

C.1 Estimation of small area means and MSE under univariate EBLUP approach. Although we 

programmed our functions manually, the sae package (Molina and Marhuenda, 2015) may be used: 

 Required packages: nlme, MASS 

 Functions: eblupBHF( ) and pbmseBHF( ) 

nlme and MASS are still required.  

 

C.2 Running Mplus models in the R environment via MplusAutomation (Muthén and Muthén, 2012;  

Hallquist and Wiley, 2014) 

 Functions: mplusObject( ), mplusModeler( ) 

Mplus is required. 

 

C.3 Mapping using spdep, maptools, sp, Hmisc 

 Functions: readShapePoly( ), spplot( ). 

 

C.4 Multivariate mixed-effects model ML fitting via mlmmm (Yucel, 2010) 

 Function: mlmmm.em(). 

 

C.5 On the implementation in Mplus 

Confirmatory Factor Analysis with continuous and categorical observed variables (application in 

Section 5) 

 

 

Figure C1 Confirmatory Factor Analysis with continuous and categorical observed variables in 

Mplus 

TITLE: Confirmatory Factor Analysis with continuous and categorical 

observed variables (application) 

DATA: FILE IS EUSILC.09.dat; 

VARIABLE: NAMES ARE y1-y10; 

 CATEGORICAL AREA y1-y9; 

 WEIGHT = weight; 

 STRATIFICATION = strat; 

 CLUSTER = psu;  

ANALYSIS: TYPE = COMPLEX; 

MODEL: f1 BY y2 y3 y4 y8 y9; 

 f2 BY y1 y5 y6 y7 y10; 

SAVEDATA: FILE IS output.sav; 

          SAVE IS FSCORES; 
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Note that the following command, STRATIFICATION = strat, and CLUSTER = psu are used to 

account for stratification and clustering in the estimation. In our work, after a sensitivity analysis, we 

decided not to include the commands in the software. We refer to section 5 for more details on the 

sampling design of the Italian SILC.  Theory and more technical aspects on estimators used in this 

article but under complex sampling designs can be found in Muthén and Satorra (1995). In particular, 

if weights are included in the analysis, a weighted sample mean vector and weighted sample 

covariance matrix are used in the estimators”.  
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Tables in manuscript 

Table 1 Percentage relative reduction (%) in RMSE of MEBLUP over EBLUP ( 𝛥𝑘) for single 

observed response variables averaged over all areas  

  Scenario 

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

0.05 

𝒚𝟏 -3.50 -9.21 -1.04 

𝒚𝟐 -3.00 -10.81 -1.02 

𝒚𝟑 -3.00 -12.22 -0.30 

𝒚𝟒 -2.00 -12.01 0.00 

0.1 

𝒚𝟏 -6.00 -18.42 -0.31 

𝒚𝟐 -3.41 -18.33 -0.20 

𝒚𝟑 -6.00 -19.20 -0.03 

𝒚𝟒 -6.02 -16.90 -0.09 

0.3 

𝒚𝟏 -8.00 -20.00 0.00 

𝒚𝟐 -7.51 -19.20 0.00 

𝒚𝟑 -7.03 -21.11 0.00 

𝒚𝟒 -6.52 -18.90 0.00 

 

Table 2 Bias of EBLUP and MEBLUP for single observed response variables averaged over all 

areas 

    Scenario  

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

  EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

0.05 

𝒚𝟏 0.093 0.082 0.098 0.014 0.099 0.098 

𝒚𝟐 0.095 0.019 0.094 0.013 0.094 0.092 

𝒚𝟑 0.075 0.064 0.067 0.008 0.068 0.066 

𝒚𝟒 0.085 0.073 0.077 0.009 0.076 0.074 

0.1 

𝒚𝟏 0.113 0.090 0.100 0.029 0.110 0.108 

𝒚𝟐 0.111 0.087 0.104 0.013 0.105 0.104 

𝒚𝟑 0.087 0.068 0.083 0.007 0.086 0.085 

𝒚𝟒 0.094 0.077 0.094 0.010 0.095 0.094 

0.3 

𝒚𝟏 0.13 0.102 0.126 0.110 0.124 0.122 

𝒚𝟐 0.133 0.110 0.134 0.120 0.134 0.132 

𝒚𝟑 0.102 0.083 0.098 0.089 0.100 0.109 

𝒚𝟒 0.114 0.096 0.114 0.100 0.112 0.110 
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Table 3 �̂�𝑒, �̂�𝑢, and 𝐼𝐶�̂� of factor scores under multivariate MEBLUP averaged across samples. 

 Scenario 

 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

𝑰𝑪𝑪𝒌 0.05 0.1 0.3 0.05 0.1 0.3 0.05 0.1 0.3 

�̂�𝒆 0.85 0.70 0.60 0.75 0.70 0.62 0.53 0.63 0.75 

�̂�𝒖 0.95 0.90 0.95 0.95 0.88 0.90 0.00 0.20 0.59 

𝑰𝑪�̂�𝒇𝟏
 0.16 0.24 0.51 0.20 0.20 0.53 0.04 0.06 0.09 

𝑰𝑪�̂�𝒇𝟐
 0.15 0.19 0.50 0.20 0.18 0.48 0.06 0.04 0.09 

 

Table 4 Percentage relative reduction (%) in terms of RMSE of MEBLUP of factor scores means 

over EBLUP ( 𝛥𝑘), two-factor CFA model  

  Scenario 

𝑰𝑪𝑪𝒌 Factor score 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

0.05 
Factor 1 -2.44 -2.50 0.00 

Factor 2 -2.50 -2.56 0.00 

0.1 
Factor 1 -2.56 -3.13 0.00 

Factor 2 -3.33 -2.86 0.00 

0.3 
Factor 1 -4.48 -5.56 0.00 

Factor 2 -5.56 -6.67 0.00 

 

 

Table 5 RMSE of factor scores means from one-factor CFA model, and simple and weighted 

averages of standardised original variables EBLUP/MEBLUP (Bold values highlight smaller 

RMSE for factor score means under EBLUP). 

  Scenario 

𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

  EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

0.05 

Factor scores 0.081 - 0.080 - 0.079 - 

Simple averages 0.267 0.244 0.231 0.181 0.230 0.228 

Weighted averages 0.230 0.220 0.207 0.164 0.185 0.184 

0.1 

Factor scores 0.070 - 0.061 - 0.063 - 

Simple averages 0.246 0.225 0.250 0.180 0.207 0.205 

Weighted averages 0.180 0.190 0.224 0.162 0.190 0.189 

0.3 

Factor scores 0.065 - 0.039 - 0.078 -  

Simple averages 0.200 0.177 0.181 0.160 0.198 0.197  

Weighted averages 0.175 0.157 0.163 0.144 0.185 0.185  
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Table 6 Bias of factor scores means (EBLUP only) from one-factor CFA model, and simple and 

weighted averages of standardised original variables EBLUP/MEBLUP  

  Scenario 

𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

  EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

0.05 

Factor scores 0.005 - 0.004 - 0.006 - 

Simple averages 0.014 0.010 0.008 0.007 0.010 0.009 

Weighted averages 0.008 0.006 0.007 0.006 0.008 0.008 

0.1 

Factor scores 0.001 - 0.001 - 0.000 - 

Simple averages 0.012 0.010 0.003 0.001 0.001 0.001 

Weighted averages 0.005 0.003 0.003 0.001 0.001 0.001 

0.3 

Factor scores 0.001 - 0.001 - 0.001 -  

Simple averages 0.004 0.003 0.004 0.003 0.002 0.002  

Weighted averages 0.003 0.002 0.003 0.002 0.001 0.001  

 

 

Table 7 Percentage relative reduction (%) in terms of RMSE of simple and weighted averages of 

standardised MEBLUP over EBLUP (𝛥𝑘). 

 Scenario 

𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

0.05 
Simple averages -8.61 -21.65 -0.87 

Weighted averages -4.35 -20.77 -0.54 

0.1 
Simple averages -8.54 -28.00 0.00 

Weighted averages -5.56 -27.68 0.00 

0.3 
Simple averages -11.50 -11.60 -0.51  

Weighted averages -10.29 -11.66 0.00  
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Table 8 RMSE of factor score means from two factor CFA model and simple and weighted averages 

of standardized original variables EBLUP/ MEBLUP (Bold values highlight smaller RMSE for 

factor score means under EBLUP/MEBLUP). 

  Scenario 

 𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

   EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

F
a
ct

o
r 

1
 

0.05 

Factor scores 0.082 0.080 0.080 0.078 0.032 0.032 

Simple averages 0.380 0.360 0.360 0.340 0.350 0.340 

Weighted averages 0.378 0.358 0.353 0.330 0.340 0.330 

0.1 

Factor scores 0.078 0.076 0.064 0.062 0.034 0.034 

Simple averages 0.450 0.410 0.450 0.330 0.400 0.402 

Weighted averages 0.430 0.390 0.440 0.340 0.395 0.394 

0.3 

Factor scores 0.067 0.064 0.036 0.034 0.048 0.048  

Simple averages 0.600 0.530 0.610 0.585 0.356 0.355  

Weighted averages 0.589 0.519 0.530 0.435 0.346 0.345  

F
a
ct

o
r 

2
 

0.05 

Factor scores 0.040 0.039 0.039 0.038 0.012 0.012  

Simple averages 0.487 0.468 0.443 0.350 0.462 0.460  

Weighted averages 0.485 0.462 0.440 0.344 0.450 0.449  

0.1 

Factor scores 0.030 0.029 0.035 0.034 0.022 0.022  

Simple averages 0.400 0.364 0.470 0.350 0.400 0.400  

Weighted averages 0.388 0.345 0.465 0.341 0.375 0.375  

0.3 

Factor scores 0.036 0.034 0.030 0.028 0.028 0.028  

Simple averages 0.360 0.310 0.312 0.250 0.258 0.258  

Weighted averages 0.350 0.305 0.305 0.253 0.245 0.245  
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Table 9 Bias of factor score means from two factor CFA model and simple and weighted averages of 

standardized original variables EBLUP/ MEBLUP 

  Scenario 

 𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

   EBLU

P 

MEBLU

P 

EBLU

P 

MEBLU

P 

EBLU

P 

MEBLU

P 

F
a
ct

o
r 

1
 

0.05 

Factor scores 0.067 0.065 0.014 0.010 0.027 0.025 

Simple averages 0.082 0.032 0.029 0.015 0.031 0.025 

Weighted 

averages 

0.080 0.029 0.020 0.012 0.029 0.028 

0.1 

Factor scores 0.063 0.061 0.025 0.015 0.028 0.027 

Simple averages 0.083 0.075 0.033 0.020 0.034 0.034 

Weighted 

averages 
0.080 0.071 0.029 0.020 0.031 0.031 

0.3 

Factor scores 0.053 0.052 0.029 0.028 0.030 0.028  

Simple averages 0.060 0.059 0.036 0.035 0.039 0.032  

Weighted 

averages 
0.058 0.058 0.030 0.029 0.037 0.031  

F
a
ct

o
r 

2
 

0.05 

Factor scores 0.031 0.030 0.031 0.030 0.017 0.017  

Simple averages 0.384 0.383 0.403 0.390 0.399 0.399  

Weighted 

averages 
0.380 0.378 0.399 0.388 0.398 0.397  

0.1 

Factor scores 0.030 0.026 0.030 0.030 0.018 0.017  

Simple averages 0.320 0.320 0.399 0.380 0.320 0.320  

Weighted 

averages 
0.318 0.317 0.395 0.375 0.318 0.317  

0.3 

Factor scores 0.024 0.022 0.028 0.027 0.033 0.032  

Simple averages 0.350 0.349 0.283 0.255 0.040 0.039  

Weighted 

averages 
0.348 0.340 0.280 0.250 0.038 0.037  

 

Table 10 Percentage relative reduction (%) in terms of RMSE for simple and weighted averages of 

variables associated to each of the factors of MEBLUP over EBLUP, ( 𝛥𝑘) two-factors CFA model.  

  Scenario 

𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

  Simple Weighted Simple Weighted Simple Weighted 

0.05 Factor 1 -5.26 -5.29 -5.56 -6.52 -2.86 -2.94 

 Factor 2 -3.90 -4.74 -20.99 -21.82 -0.43 -0.22 

0.1 Factor 1 -8.89 -9.30 -26.67 -22.73 -0.50 -0.25 

 Factor 2 -9.00 -11.08 -25.53 -26.67 0.00 0.00 

0.3 Factor 1 -11.67 -11.88 -16.67 -17.92 -0.28 -0.29 

 Factor 2 -13.89 -12.86 -19.87 -17.05 0.00 0.00 
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Table 11 Factor structure for two latent factors using EFA. 

Variable  Factor 

1 

Factor 2 

Severe material deprivation 𝑦1 0.010 0.733 

Smog 𝑦2 0.757 0.025 

Noise 𝑦3 0.617 0.154 

Crime 𝑦4 0.659 0.130 

Housing ownership 𝑦5 0.096 -0.589 

Presence of humidity 𝑦6 0.010 0.596 

Darkness inside the house 𝑦7 -0.002 0.551 

Absence of rubbish in the street 𝑦8 -0.843 0.084 

Absence of damages in public buildings 𝑦9 -0.810 0.012 

Log equivalised disposable income 𝑦10 0.139 -0.398 

 

Table 12 Percentiles for transformed latent housing quality indicators based on MEBLUP of factor 

score means. 

 MEBLUP Percentile 

 0% 25% 50% 75% 100% 

Residential area deprivation 0.000 0.261 0.266 0.270 1.000 

Housing material deprivation 0.000 0.418 0.457 0.502 1.000 

 


