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Abstract 

This article deals with mean squared error (MSE) estimation of a multivariate empirical best 

linear unbiased predictor (MEBLUP) under the unit-level multivariate nested-errors 

regression model for small area estimation via parametric bootstrap. A simulation study is 

designed to evaluate the performance of our algorithm and compare it with the univariate 

case bootstrap MSE which has been shown to be consistent to the true MSE. The simulation 

shows that, in line with the literature, MEBLUP provides unbiased estimates with lower MSE 

than EBLUP. We also provide a short empirical analysis based on real data collected from the 

U.S. Department of Agriculture. 
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1. Introduction 

Regional policies need to base their funding allocation on reliable statistical information. 

However, large-scale social sample surveys are typically not designed to be representative at 

a low geographical level. Thus, small area estimation (SAE) methods based on models might 

provide more accurate estimates than direct estimators (Rao and Molina, 2015). Mixed 

effects linear regression models are traditionally used in order to provide more accurate 

estimates than design-based estimation techniques. These kinds of models have been used 

extensively in the literature, and for a detailed review of these in SAE we refer to Rao and 

Molina (2015). Estimating the precision of small area estimates is a crucial and challenging 

exercise (Marchetti et al., 2012).  

As Molina (2009) points out, when the target of inferential interest is a random vector, 

multivariate regression models might be a natural model setting. Indeed, multivariate models 

take into account the correlation structure among the vector components; hence, it is possible 

to improve the precision of the estimates over the univariate case (Datta et al., 1999). Fuller 

and Harter (1987) develop a multivariate mixed effects model to predict a vector of means of 

multiple characteristics of a finite population. Datta et al. (1999) propose a multivariate 

empirical best linear unbiased predictor (MEBLUP) and empirical bayes (EB) approach for 

small area mean vectors along with an approximation for the mean squared error (MSE). 

Some recent work in the literature are Molina (2009) and Baillo and Molina (2009). Molina 

(2009) deals with the multivariate mixed effects model with logarithmic transformation, and 

Baillo and Molina (2009) study a particular case of the multivariate nested error regression 

model with correlated sampling errors. Both papers provide analytical approximations for the 

MSE. 
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The best linear unbiased predictor (BLUP) depends on unknown quantities (variance 

components). When these quantities are estimated using suitable estimation techniques, we 

obtain the empirical BLUP (EBLUP). Unfortunately, the exact MSE of an EBLUP cannot be 

obtained in closed form; therefore, approximations have been proposed in the literature 

(González-Manteiga et al., 2008a). Kackar and Harville (1981) propose an approximation of 

the MSE assuming normality of the errors and random effects. Prasad and Rao (1990) obtain 

an MSE approximation for models with block-diagonal covariance matrices. Datta and Lahiri 

(2000) provide analytical approximations for general models with a block-diagonal structure 

when variance components are estimated by maximum likelihood (ML) or restricted 

maximum likelihood (REML). Das et al. (2004) deal with approximations for a wider class of 

models. In multivariate SAE, Datta et al. (1999) propose a second-order unbiased analytical 

approximation for the MSE of a multivariate EBLUP following Datta and Lahiri (2000). 

When the MSE exact analytical estimator cannot be computed, an alternative way to 

approximate the MSE is via bootstrap techniques. It is important to highlight that, even when 

large sample approximations are available, the bootstrap may provide more accurate 

estimation alternatives due to its second-order accuracy (González-Manteiga et al., 2008a). 

This property is not achieved by the majority of asymptotic methods. We refer to Efron and 

Tibshirani (1993) and Hall (1992) for a broader discussion of this property. 

In this article, we assume that the values of the target vector in the units of a finite population 

are realizations of a random multivariate variable following the Fuller and Harter multivariate 

mixed effects model (Fuller and Harter, 1987). We propose a maximum likelihood (ML)-

based parametric bootstrap procedure designed for estimating a vector of MSEs for a vector 

of means when the auxiliary variables are available at the unit-level.  
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This paper is organised as follows. In section 2 the multivariate mixed effects model is 

reviewed along with the multivariate EBLUP. In section 3 we discuss the MSE estimation via 

parametric bootstrap. In section 4 we study the behaviour of our bootstrap MSE in a model-

based simulation study and compare it with the univariate case. In section 5 we present an 

example based on survey data on corn and soy bean production. In section 6 we conclude 

with some final remarks. 

 

2. Multivariate Small Area Estimation of a Means Vector 

Let 𝑑 = 1, … , 𝐷 denote the small areas for which we want to compute the estimates and let us 

consider a sample 𝑠 ⊂ 𝛺 of size 𝑛 drawn from the target finite population 𝛺 of size 𝑁. The 

non-sampled units, 𝑁 − 𝑛 are denoted by 𝑟, hence, 𝑠𝑑 = 𝑠⋂𝛺𝑑 is the sub-sample from the 

small area 𝑑 of size 𝑛𝑑, 𝑛 = ∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. 𝑟𝑑 denotes the non-sampled units for 

small area 𝑑 of 𝑁𝑑 − 𝑛𝑑  dimension. 

Considering 𝒚𝑑𝑖 = (𝑦𝑑𝑖1, . . . , 𝑦𝑑𝑖𝐾), which denotes the K-dimensional row vector of 

observations on the target K variables for 𝑖 = 1, … , 𝑁𝑑   and 𝑑 = 1, … , 𝐷, we can define the 

target mean vector as follows: 

 

�̅�𝑑 = 𝑁𝑑
−1 ∑ 𝒚𝑑𝑖

𝑁𝑑

𝑖=1

. 

 

(1) 

 

Because of linearity of this quantity, each area mean vector can be split into sampled and 

non-sampled (out-of-sample) elements as follows:  
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�̅�𝑑 = 𝑁𝑑
−1 (∑ 𝒚𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝒚𝑑𝑖

𝑖∈𝑟𝑑

). 

 

(2) 

 

The quantity ∑ 𝒚𝑑𝑖𝑖∈𝑟𝑑
 is not observed, so it needs to be predicted. In this article we make use 

of the multivariate mixed effects model advocated in unit-level SAE by Fuller and Harter 

(1987). 

 

2.1 Multivariate nested-error linear regression model 

We assume that the following linear model relates the response variables to the covariates in 

the population as follows (Fuller and Harter, 1987): 

 

𝜉: 𝒚𝑑𝑖 = 𝒙𝑑𝑖𝜷 + 𝒖𝑑 + 𝒆𝑑𝑖, 𝑑 = 1, … , 𝐷, 𝑖 = 1, … , 𝑁𝑑, 

𝒖𝑑 ~
𝑖𝑖𝑑

𝑁𝐾(𝟎, 𝜮𝑢), 𝒆𝑑𝑖 ~
𝑖𝑖𝑑

𝑁𝐾(𝟎, 𝜮𝑒)  

 

(3) 

where 𝒙𝑑𝑖 is a p-dimensional row vector of auxiliary variables, 𝜷 is a 𝑝 × 𝐾 matrix of 

unknown regression coefficients, 𝒖𝑑 is a K-dimensional row vector of area effects, and 𝒆𝑑𝑖 is 

K-dimensional row vector of the individual effects; 𝒖𝑑 and 𝒆𝑑𝑖 are assumed to be 

independent and normally distributed, 𝑁𝐾 denotes a K-variate Normal distribution. Here, the 

𝐾 × 𝐾 positive-definite matrices 𝜮𝑢 and 𝜮𝑒 are the variance-covariance matrices of the area 

effects and individual effects, respectively. 

Under model (3) we can write the realised mean of area d as: 
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�̅�𝑑 = �̅�𝑑,𝑝𝑜𝑝𝜷 + 𝒖𝑑 (4) 

where �̅�𝑑,𝑝𝑜𝑝 denotes the known population means of 𝒙𝑑𝑖 for area d. 

 

2.2 Estimation and prediction of unknown parameters 

For simplicity we now make use of the following notation (Fuller and Harter, 1987): 

𝒀′ = (𝒚11, 𝒚12, . . . , 𝒚1,𝑛1
, . . . , 𝒚𝐷1, . . . , 𝒚𝐷,𝑛𝐷

), 

𝑿′ = [(𝑰𝐾⨂𝒙11)′, (𝑰𝐾⨂𝒙12)′, . . . , (𝑰𝐾⨂𝒙1,𝑛1
)′, . . . , (𝑰𝐾⨂𝒙𝐷,𝑛𝐷

)′], 

where 𝒀 denotes the vector of NK observations on 𝒚𝑑𝑖 where 𝒚𝑑𝑖 is defined above, and 𝑿 

denotes the 𝑁𝐾 × 𝑝𝐾 matrix of covariates. The operator ⨂ denotes the Kronecker product, 

and 𝑰 denotes the identity matrix.  

Let us now denote the covariance matrix of 𝒀 by 

𝑽(𝒀) = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔(𝑽11, … , 𝑽𝐷𝐷) 
(5) 

where 𝑽𝑑𝑑 = (𝑱𝑑𝑑⨂𝜮𝑢) + (𝑰𝑛𝑑
⨂𝜮𝑒). 𝑱𝑑𝑑 is the 𝑛𝑑 × 𝑛𝑑 matrix with every element equal to 

one. Let 𝑣𝑒𝑐 𝜷 denote the column vector of dimension pK obtained by listing the columns of 

𝜷 one under the other starting from the first column. The estimator of 𝑣𝑒𝑐 𝜷 is: 

 

𝑣𝑒𝑐 �̂� = (𝑿′�̂�−1𝑿)
−1

𝑿′�̂�−1𝒀. (6) 
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The empirical best linear unbiased predictors of the random effects are given by the following 

expression (Fuller and Harter, 1987): 

 

�̂�𝑑 = (�̅�𝑑,𝑠 − �̅�𝑑,𝑠�̂�)[(�̂�𝑢 + 𝑛𝑑
−1�̂�𝑒)

−1
�̂�𝑢], 𝑑 = 1, … , 𝐷 (7) 

where �̅�𝑑,𝑠 denotes the sample mean vector and �̅�𝑑,𝑠 denotes the means of the auxiliary 

variables in area d. The index ‘s’ refers to the sample quantities.  �̂�𝑢 and �̂�𝑒 are estimators of 

𝜮𝑢 and 𝜮𝑒, respectively. We refer to Schafer et al. (2002) for the estimation algorithm where 

the maximum likelihood (ML) approach is used. 

The Multivariate Empirical Best Linear Unbiased Predictor (MEBLUP) of �̅�𝑑 is given by 

(Fuller and Harter, 1987; Rao and Molina, 2015): 

 

�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

= �̅�𝑑,𝑝𝑜𝑝�̂� + �̂�𝑑, 𝑑 = 1, … , 𝐷 

(8) 

where �̅�𝑑,𝑝𝑜𝑝 denotes the known population means vector. 

3. Parametric Bootstrap 

This section introduces a bootstrap algorithm approximation of the MSE of �̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

 

denoted by 𝑴𝑺𝑬 (�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

) and given by the following (Kackar and Harville, 1984): 

𝑴𝑺𝑬 (�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

) = 𝐸 [(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

− �̅�𝑑) (�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

− 𝒚𝑑)
′

] = 
(9) 

= 𝑴𝑺𝑬 (�̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃

) + 𝐸 [(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

− �̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃) (�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃
− �̂̅�𝑑

𝑀𝐵𝐿𝑈𝑃)
′

] + 



9 

 

+𝐸 [(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

− �̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃) (�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃
− �̅�𝑑  )

′

]

+ 𝐸 [(�̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃

− �̅�𝑑 ) (�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 − �̂̅�𝑑

𝑀𝐵𝐿𝑈𝑃)
′

]. 

where we denote the Multivariate Best Linear Unbiased Predictor of �̅�𝑑 (assuming known 

covariance matrices) by �̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃. It can be shown that the last two terms of equation (9) are 

equal to zero for any unbiased and translation invariant estimator of the variance components 

(Kackar and Harville, 1984). The term 𝐸 [(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃

− �̂̅�𝑑
𝑀𝐵𝐿𝑈𝑃) (�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃
− �̂̅�𝑑

𝑀𝐵𝐿𝑈𝑃)
′

] 

accounts for the estimation of the variance components. 

We propose to use the parametric bootstrap procedure proposed by González-Manteiga et al. 

(2008a) extended to the multivariate mixed effects model used in this article. Let 𝛺 be a finite 

population of dimension 𝑁 generated by the superpopulation model given by (3), and let 

�̅�𝑑 = 𝑁𝑑
−1 ∑ 𝒚𝑑𝑖

𝑁𝑑
𝑖=1  be the linear vector of target parameters of 𝛺. Let s be a random sample 

drawn from 𝛺 of dimension 𝑛, using a specific sampling design. 

We list the steps of the algorithm as follows: 

1. Fit the multivariate model (3) to the sample s, 𝒚𝑠 = (𝒚1𝑠
′ , … , 𝒚𝐷𝑠

′ )′, and obtain the 

estimates of the model parameters: let us denote the estimates as �̂�, �̂�𝑢, and �̂�𝑒. 

 

2. Generate the bootstrap area effects 𝒖𝑑
∗(𝑏)

~
𝑖𝑖𝑑

 𝑁𝐾(𝟎, �̂�𝑢), 𝑑 = 1, … , 𝐷. We use the symbol * 

for the bootstrap quantities, while (b) refers to the index of the bth bootstrap replication, 

𝑏 = 1, . . . , 𝐵. 

 

3. Generate the bootstrap errors for the sample units 𝒆𝑑𝑖
∗(𝑏)

~
𝑖𝑖𝑑

𝑁𝐾(𝟎, �̂�𝑒), 𝑖 ∈ 𝑠𝑑 independently 
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of the 𝒖𝑑
∗(𝑏)

, 𝑑 = 1, … , 𝐷. 

 

4. Calculate the true means vectors for each small area of the bootstrap population as 

follows: 

 

�̅�𝑑
∗(𝑏)

=  �̅�𝑑,𝑝𝑜𝑝�̂� + 𝒖𝑑
∗(𝑏)

 , 𝑑 = 1, … , 𝐷, (10) 

where �̅�𝑑,𝑝𝑜𝑝 denotes the means of the known population auxiliary variables. 

 

5. Generate the responses for the sample units by using the sample covariates vectors 𝒙𝑑𝑖,

𝑖 ∈ 𝑠𝑑: 

 

𝜉∗:  𝒚𝑑𝑖
∗(𝑏)

=  𝒙𝑑𝑖�̂� + 𝒖𝑑
∗(𝑏)

+  𝒆𝑑𝑖
∗(𝑏)

, 𝑑 = 1, … , 𝐷, (11) 

The bootstrap sample data vector is denoted by 𝒚𝑠
∗(𝑏)

= [(𝒚1𝑠
∗(𝑏)

)
′

, … , (𝒚𝐷𝑠
∗(𝑏)

)
′

]
′

. Under 

model 𝜉∗, given s, the MSE of �̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗ is denoted by 𝑴𝑺𝑬∗(�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃∗). Hence, for 

estimating the MSE of �̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 given in (9), we propose to use the bootstrap MSE. 

 

6. Fit model (3) to the bootstrap sample data 𝒚𝑠
∗(𝑏)

 and obtain the bootstrap MEBLUPs 

�̂̅�𝑑
∗(𝑏)

, 𝑑 = 1, … , 𝐷.  

 

7. Replicate steps (2) through (6) for 𝑏 = ,1 … , 𝐵. The Monte Carlo approximation of the 

bootstrap estimator 𝑴𝑺𝑬∗(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗) is given by: 
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𝒎𝒔𝒆∗(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗) =

1

𝐵
∑(�̂̅�𝑑

∗(𝑏)
− �̅�𝑑

∗(𝑏)
)(�̂̅�𝑑

∗(𝑏)
− �̅�𝑑

∗(𝑏)
)

′

, 𝑑 = 1, … , 𝐷.

𝐵

𝑏=1

 

(12) 

We note that when 𝐵 → ∞, 𝒎𝒔𝒆∗(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗) is a consistent estimator of 𝑴𝑺𝑬∗(�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃∗) 

(Rao and Molina, 2015). 

The parametric bootstrap procedure has been proven to be consistent as an estimator of the 

true MSE under the univariate unit-level model (González-Manteiga et al., 2008a) and the 

Fay-Herriot model (González-Manteiga et al., 2008b). In general, the proofs in these papers 

have been based on the fact that the final estimate of the MSE obtained by the bootstrap 

procedure is consistent if the model parameter estimates are consistent. Since we are using 

the Maximum Likelihood estimators for estimating the model parameters in the multivariate 

SAE approach, which have well-known consistency properties as shown in Sweeting (1980) 

and Mardia and Marshall (1984), we can prove the consistency of our proposed parametric 

bootstrap algorithm to the true MSE by the method of imitation. 

 

4. Simulation Study 

This simulation is designed to study the performance of the bootstrap MSE estimator 

presented in Section 3 under a multivariate mixed effects model when the target vector 

parameter is a vector of means. The results are compared with the “truth” as described in 

Section 4.2 and the aim is to show that a multivariate bootstrap procedure will be appropriate 

in the case of multivariate SAE. The bias is also studied. In the case of the univariate SAE, 

the bootstrap MSEs are compared with the Prasad-Rao analytical approximation of MSE 

(Prasad and Rao, 1990). Software developed by Yucel (2010) and Molina and Marhuenda 
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(2015) are used in order to estimate parameters of the multivariate and univariate models, 

respectively. We list the details of the functions in the appendix. 

 

4.1 Generating the population 

The simulation is a model-based simulation, where 𝑆 = 1,000 populations are generated, 

then a sample from each population is extracted. We generate an unbalanced population using 

parameters with 𝑁 = 20,000, 𝐷 = 80, and 130 ≤ 𝑁𝑑 ≤ 420. 𝑁𝑑, 𝑑 = 1, … , 𝐷 is generated 

from the discrete Uniform distribution, 𝑁𝑑 ∼ 𝑑𝑈𝑛𝑖𝑓(130, 420), with ∑ 𝑁𝑑
𝐷
𝑑=1 = 20,000. 

The simulation modelling parameters have been chosen according to survey and satellite data 

for corn and soy beans in 12 Iowa counties, obtained from the 1978 June survey of the U.S. 

Department of Agriculture and from land observatory satellites, also known as LANDSAT 

during the 1978 growing season. These data were also used by Datta et al. (1999). 

𝒚𝑑𝑖 observations are generated according to the multivariate mixed effects model (3) 

described in section 2. Here we consider a bivariate model with 𝑘 = 1,2; 𝐾 = 2. In this 

section, we use the following notation, 𝑌𝑘 for 𝑘 = 1,2 which denote the target variables. 

Regarding the auxiliary variables, we have (𝑝 = 3) 𝒙𝑑𝑖 = (1, 𝑥𝑑𝑖1, 𝑥𝑑𝑖2). The two 

uncorrelated covariates are generated from the discrete Uniform distribution as follows: 

𝑥𝑑𝑖1~𝑑𝑈𝑛𝑖𝑓(145, 459), 𝑥𝑑𝑖2~𝑑𝑈𝑛𝑖𝑓(55, 345). 

The regression coefficients are given in the following matrix: 

𝜷 = [
17.97 0.36 −0.03

−16.35 0.02 0.50
] 

The variance-covariance matrices are given by: 

𝜮𝑒 = [
297.71 −150.82

−150.82 170.29
] 
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𝜮𝑢 = [
63.31 35.35
35.35 219.32

] 

with associated correlation coefficients 𝜌𝑒 = −0.7 and 𝜌𝑢 = 0.3, respectively. The intra-class 

correlations are 0.2 and 0.6 for the first and second components, respectively; these have 

been chosen according to the LANDSAT data. We also studied the case where 𝜌𝑒 and 𝜌𝑢 

have the same signs i.e. 𝜌𝑒 = 0.7 and 𝜌𝑢 = 0.3. 

For computational reasons, we did not perform a simulation study varying many 𝜌𝑒, 𝜌𝑢 and 

intra-class correlation coefficient values. For more details on the role of these in multivariate 

SAE we refer to Datta et al. (1999). Their paper shows that when 𝜌𝑒 and 𝜌𝑢 have opposite 

signs the multivariate modelling performs much better than the univariate modelling in terms 

of MSE. Of course, when 𝜌𝑒 and 𝜌𝑢 are small (theoretically tending to zero), we are close to 

the independence case, where the univariate modelling performs identically to the 

multivariate modelling Datta et al. (1999). 

 

The steps of the simulation are as follows, for 𝑑 = 1, … , 𝐷 and 𝑠 = 1, … , 𝑆, with 𝑆 = 1000: 

1. Populations generation: generate 𝒚𝑑𝑖𝑠 according to model (3) for 𝑠 = 1, … , 𝑆, with 

parameters presented above; 

2. Sample selection: draw a simple random sample without replacement of size 𝑛 = 1,000 

from each simulated population; 

3. Fit the univariate Battese, Harter and Fuller model (BHF) (Battese et al., 1988) on each 

sample s and obtain the estimates of the model parameters: �̂�𝑒𝑠
2 , �̂�𝑢𝑠

2  and �̂�𝑠
𝐵𝐻𝐹, thus the 

univariate EBLUPs are estimated: �̂̅�𝑑𝑠,1
𝐸𝐵𝐿𝑈𝑃 and �̂̅�𝑑𝑠,2

𝐸𝐵𝐿𝑈𝑃; 

4. Estimate the MSEs of �̂̅�𝑑𝑠,1
𝐸𝐵𝐿𝑈𝑃 and �̂̅�𝑑𝑠,2

𝐸𝐵𝐿𝑈𝑃 on each sample s via parametric bootstrap 

(González-Manteiga et al., 2008a) with 𝐵 = 500 replications and Prasad-Rao analytical 
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approximation (PR) according to Prasad and Rao (1999). In the economy of space, the PR 

approximation is estimated for the 𝜌𝑒 = −0.7 and 𝜌𝑢 = 0.3 case only; 

5. Fit the multivariate mixed effects model given in (3) on each sample s and obtain the 

model parameters estimates: �̂�𝑒𝑠, �̂�𝑢𝑠 and �̂�𝑠, and the multivariate EBLUP: �̂̅�𝑑𝑠
𝑀𝐸𝐵𝐿𝑈𝑃 for 

𝜌𝑒 = −0.7,  𝜌𝑢 = 0.3 and 𝜌𝑒 = 0.7, 𝜌𝑢 = 0.3 cases. 

6. Estimate the vector of MSEs of �̂̅�𝑑𝑠
𝑀𝐸𝐵𝐿𝑈𝑃 on each sample s via the parametric bootstrap 

proposed in section 3 with 𝐵 = 500 replications. 

The results are evaluated via the empirical MSE (EMSE), which is considered to be the 

“truth”, the bootstrap MSE across the 𝑆 = 1,000 simulations, and the relative bias (RBIAS) 

for each small area d. These quantities are respectively defined by the following estimators: 

𝑬𝑴𝑺𝑬(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃) = 𝑆−1 ∑ (�̂̅�𝑑𝑠

𝑀𝐸𝐵𝐿𝑈𝑃𝑆
𝑠=1 − �̅�𝑑𝑠)(�̂̅�𝑑𝑠

𝑀𝐸𝐵𝐿𝑈𝑃 − �̅�𝑑𝑠)′, (12) 

 

𝒎𝒔𝒆∗
𝐵(�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃∗) = 𝑆−1∑𝑠=1
𝑆 𝒎𝒔𝒆∗𝒔(�̂̅�𝑑𝑠

𝑀𝐸𝐵𝐿𝑈𝑃∗), (13) 

 

     where we denote the bootstrap MSE of sample s in area d by:  𝒎𝒔𝒆∗𝒔(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗) 

𝑹𝑩𝑰𝑨𝑺 [𝒎𝒔𝒆∗ (�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃∗
)]

= 𝑆−1∑𝑠=1
𝑆 [𝒎𝒔𝒆∗𝑠 (�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃∗
) − 𝑬𝑴𝑺𝑬(�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃)] /𝑬𝑴𝑺𝑬(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃). 

 

(14) 

𝑬𝑴𝑺𝑬(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃) denotes the empirical mean squared error of �̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃, where �̅�𝑑𝑠 =

𝑁𝑑
−1∑𝑖=1

𝑁𝑑 𝒚𝑑𝑖𝑠. 𝒎𝒔𝒆∗(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗) denotes the average of the bootstrap MSEs (based on 𝐵 =

500 replicates) across the 𝑆 = 1,000 samples drawn in the simulation, and 

𝑹𝑩𝑰𝑨𝑺[𝒎𝒔𝒆∗(�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃∗)] denotes its relative bias. 

The same estimators can be written for the univariate case both for the bootstrap and Prasad-

Rao (PR) approximations. We do not review the Prasad-Rao analytical approximation in this 
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paper, thus we refer to Prasad and Rao (1999) for theoretical details. The reader may want to 

refer to González-Manteiga et al. (2008a) for the parametric bootstrap for the univariate case. 

 

4.2 Results 

Here we compare first the MSE estimates obtained via the Prasad-Rao analytical 

approximation with the MSE estimates obtained by parametric bootstrap for the univariate 

case. Table 1 shows the descriptive statistics and bias of the Prasad-Rao and bootstrap 

estimators for univariate EBLUP across the small areas. It can be seen that the Prasad-Rao 

MSEs analytical approximations are slightly more biased than the bootstrap MSEs (by 

comparing the EMSE with its mean across the 𝑆 = 1,000 samples) under our scenario. 

Figure 1 and Figure 2 show the relative bias of the MSEs; these show that the Prasad-Rao 

MSE approximation slightly overestimates the true MSE for some areas. This is particularly 

true for 𝑌1. For more details on the Prasad-Rao approximation compared to the bootstrap for 

univariate EBLUP via simulation studies we refer to González-Manteiga et al. (2008a). 

------------------------------------------  

Insert Table 1 about here  

------------------------------------------- 

------------------------------------------  

Insert Figure 1 about here  

------------------------------------------- 

------------------------------------------  

Insert Figure 2 about here  

------------------------------------------- 

In Table 2 we compare the results of the univariate with the multivariate bootstrap MSE 

estimation in terms of reduction in MSE and bias. We calculate the relative percentages of 

reduction in terms of EMSE (and bootstrap MSE) as follows: Δ𝑑𝑘 =
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𝐸𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝑀𝐸𝐵𝐿𝑈𝑃)−𝐸𝑀𝑆𝐸(�̂̅�𝑑𝑘

𝐸𝐵𝐿𝑈𝑃)

𝐸𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃)

∙ 100, for 𝑑 = 1, … , 𝐷, where 𝑘 = 1,2 denotes the index of the 

kth component of the MEBLUP means vector or the kth variable in case of univariate EBLUP. 

These are shown in parentheses ( ). We also show the median across the small areas of the 

following quantities: empirical MSE (𝐸𝑀𝑆𝐸), bootstrap MSE estimates (𝑚𝑠𝑒∗) and relative 

bias % (𝑅𝐵𝐼𝐴𝑆(𝑚𝑠𝑒∗)%), and relative percentages of reduction in terms of EMSE (and 

bootstrap MSE) (𝛥𝑑). We provide the median across the small area as a robust central 

tendency index to avoid the impact of extreme values in some small areas (Giusti et al., 2013; 

Chambers et al., 2011). Figure 3 and Figure 4 show the comparisons of the bootstrap MSEs 

estimated for the EBLUPs and MEBLUPs for the opposite signs case only. It can be seen 

that, in line with the EMSEs, the multivariate bootstrap procedure provides predictions with 

lower variability than the univariate approach, and the MSE estimates show no noticeable 

bias across the small areas. When the population size in area d, 𝑁𝑑, increases, 𝛥𝑑𝑘 becomes 

smaller. The percentages of reduction in terms of MSE are smaller in the case of same signs 

of the correlation coefficients in the variance-covariance matrices. 

------------------------------------------  

Insert Table 2 about here  

------------------------------------------ 

------------------------------------------  

Insert Figure 3 about here  

------------------------------------------- 

------------------------------------------  

Insert Figure 4 about here  

------------------------------------------- 

 

4.3 Final remarks on the simulation study 
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The percentage of reductions in terms of MSE (and EMSE) may depend on the magnitude 

and sign of 𝜌𝑒 and 𝜌𝑢 as well as the intra-class correlation coefficient. As Datta et al. (1999) 

points out that when 𝜌𝑒 and 𝜌𝑢 have opposite signs, the multivariate model performs better in 

terms of MSE than the univariate modelling case. It can be seen that when the signs in the 

variance-covariance matrices are the same the percentages of reduction in terms of MSE of 

the multivariate EBLUP over the univariate ones are smaller than in the case of opposite 

signs. 

Our bootstrap procedure performs well under the model assumptions, and we can see 

appreciable gains in efficiency in terms of MSE over the univariate modelling. Also, we note 

that there is no bias in the estimates of the MSE.  

 

5. Application to Corn and Soy Bean Data 

We apply our multivariate bootstrap method to the well-known corn and soy bean data of the 

LANDSAT data that was used in Battese et al. (1988) comparing the multivariate and 

univariate models. LANDSAT comprises survey and satellite data for corn and soy beans for 

12 Iowa counties, obtained from the 1978 June Enumerative Survey of the U.S. Department 

of Agriculture and from land observatory satellites during the 1978 growing season. The data 

file consists of 𝑛 = 37 observations, 𝐷 = 12 areas, and the following variables: 

 CornHec: hectares of corn (𝑌1); 

 SoyBeansHec: hectares of soy beans (𝑌2); 

 CornPix: number of pixels of corn in sample segment within county (𝑥1); 

 SoyBeansPix: number of pixels of soy beans in sample segment within county (𝑥2). 
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As shown, the county means of number of pixels per segment of corn and soy beans, from 

satellite data, for 12 counties in Iowa are also used where we have the population size, sample 

size, and means of these auxiliary variables. These data files can be downloaded from Molina 

and Marhuenda (2015). In order to provide better modeling fit we applied Box-Cox family 

transformations (Box and Cox, 1964) to the response variables. 

------------------------------------------  

Insert Figure 5 about here  

------------------------------------------ 

------------------------------------------  

Insert Figure 6 about here  

------------------------------------------ 

Figure 5 and Figure 6 show the RMSE of the univariate and multivariate EBLUPs where the 

small areas are ordered by growing sample sizes. It can be seen that the multivariate bootstrap 

algorithm provides estimates with smaller variability than the univariate case as was 

confirmed in the simulation study. The model diagnostics show good model fitting in both 

cases. 

 

6. Conclusion 

In this paper we proposed the use of parametric bootstrap for estimating MSEs for vectors of 

means of small domains under a multivariate mixed effects model for unit-level SAE. The 

multivariate SAE is more appropriate than the univariate SAE in the case of correlated 

responses. Indeed, in this case, multivariate mixed effects models may lead to more reliable 

estimates than the univariate BHF model. This, of course, needs to be taken into account 

when estimating the MSE and hence we have proposed the parametric bootstrap for the 

MEBLUP. In the simulation study we assessed empirically the behaviour of our approach for 
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estimating the MSE and in particular the bias. Our results are in line with the literature and no 

bias is shown.  

Although this paper focuses on vectors of means as the target inferential parameter, this 

bootstrap procedure can be extended to other quantities in a multivariate setting. Non-

parametric bootstrap procedures could be studied in future work, and comparisons between 

the two methodologies would be useful for practitioners. Normality assumptions can be 

relaxed according to Hall and Maiti (2006). Furthermore, hybrid bootstrap MSE estimators 

should be considered. González-Manteiga et al. (2008a) studied hybrid bootstrap MSE 

estimators which are second-order unbiased. Other interesting extensions to this paper may 

involve the study of robustness to non-normality. 
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Appendix: Specification of the R functions used 

Here we describe the main R packages (and functions) that we used to conduct the simulation 

study and application. 

1. Estimation of small area means and bootstrap MSE under the univariate BHF model: 

‘sae’ R package (Molina and Marhuenda, 2015): 

 Required packages: nlme, MASS, 

 Functions: eblupBHF( ) and pbmseBHF( ). 

2. Estimation of the multivariate mixed effects model parameters (𝜮𝑒, 𝜮𝑢, 𝜷) described in 

(3): ‘mlmmm’ R package (Yucel, 2010): 

 Function: mlmmm.em. 
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Tables and Figures 

 

Estimator Mean Median IQR SD RBIAS% 

𝒎𝒔𝒆𝑷𝑹(�̂̅�𝟏
𝑬𝑩𝑳𝑼𝑷) 18.42 18.04 7.48 4.29 2.32% 

𝒎𝒔𝒆∗(�̂̅�𝟏
𝑬𝑩𝑳𝑼𝑷) 18.29 17.90 7.14 4.26 -0.20% 

𝒎𝒔𝒆𝑷𝑹(�̂̅�𝟐
𝑬𝑩𝑳𝑼𝑷) 14.03 13.34 7.28 4.31 6.31% 

𝒎𝒔𝒆∗(�̂̅�𝟐
𝑬𝑩𝑳𝑼𝑷) 14.09 13.41 7.27 4.34 3.45% 

Table 1 Descriptive statistics and relative bias of the Prasad-Rao and bootstrap 

estimators for univariate EBLUP MSE across small areas, 𝑬𝑴𝑺𝑬(�̂̅�𝟏
𝑬𝑩𝑳𝑼𝑷) = 𝟏𝟕. 𝟗𝟖, 

𝑬𝑴𝑺𝑬(�̂̅�𝟐
𝑬𝑩𝑳𝑼𝑷) = 𝟏𝟐. 𝟕𝟓, for 𝝆𝒆 = −𝟎. 𝟕 and 𝝆𝒖 =  𝟎. 𝟑. 

 

Correlation 

structure 

Performance 

measure 

EBLUP MEBLUP 

  𝒀𝟏 𝒀𝟐 𝒀𝟏 𝒀𝟐 

𝝆𝒆 = −𝟎. 𝟕, 

𝝆𝒖 = 𝟎. 𝟑  

EMSE 17.98 12.75 16.26 (-9.25) 10.62 (-17.63) 

𝒎𝒔𝒆∗ 17.90 13.41 16.34 (-9.40) 11.12 (-17.48) 

𝑹𝑩𝑰𝑨𝑺(𝒎𝒔𝒆∗)% -0.20% 3.45% -0.06% 1.50% 

𝝆𝒆 = 𝟎. 𝟕, 

𝝆𝒖 = 𝟎. 𝟑 

EMSE 17.27 12.64 17.43 (1.10%) 12.06 (-6.25%) 

𝒎𝒔𝒆∗ 18.07 13.38 17.88 (-1.41) 12.21 (-.9.00%) 

𝑹𝑩𝑰𝑨𝑺(𝒎𝒔𝒆∗)% 3.56% 6.41% 1.72% 2.55% 



24 

 

Table 2 Empirical mean squared error, bootstrap MSE, relative bias median results 

across the small areas: EBLUP and MEBLUP estimates – parametric bootstrap. (𝜟𝒌 

shown in parenthesis). 

 

 

Figure 1 Relative bias of univariate EBLUPs’ MSEs of 𝒀𝟏 estimated via Prasad-Rao 

approximation and parametric bootstrap for 𝝆𝒆 = −𝟎. 𝟕 and 𝝆𝒖 = 𝟎. 𝟑, ordered by 

increasing 𝑵𝒅. 
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Figure 2 Relative bias of univariate EBLUPs’ MSEs of 𝒀𝟐 estimated via Prasad-Rao 

approximation and parametric bootstrap for 𝝆𝒆 = −𝟎. 𝟕 and 𝝆𝒖 = 𝟎. 𝟑, ordered by 

increasing 𝑵𝒅. 

 

 

Figure 3 Bootstrap MSEs 𝒀𝟏: comparison between EBLUP and MEBLUP 𝝆𝒆 = −𝟎. 𝟕 

and 𝝆𝒖 = 𝟎. 𝟑, ordered by increasing 𝑵𝒅. 
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Figure 4 Bootstrap MSEs 𝒀𝟐: comparison between EBLUP and MEBLUP 𝝆𝒆 = −𝟎. 𝟕 

and 𝝆𝒖 = 𝟎. 𝟑 ordered by increasing 𝑵𝒅.  

 

 

Figure 5 Bootstrap RMSEs corn: comparison between EBLUP (---) and MEBLUP (__).  
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Figure 6 Bootstrap RMSEs soy beans: comparison between EBLUP (---) and MEBLUP 

(__).  
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