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Abstract 

This article deals with the use of sample size dependent composite estimators in spatial 

microsimulation approaches for small area estimation. This approach has been applied to 

regression-based small area estimation approaches but never to our knowledge to spatial 

microsimulation approaches. In this paper, we extend the iterative proportional fitting (IPF) 

spatial microsimulation technique to small area composite estimators. Using a simulation 

study, we show both the impact of sample size and the gains from composite estimation to the 

mean squared error of IPF-based composite estimators. The target variable used is a binary 

variable reporting good health or bad health. 

 

Keywords: Small area estimation; spatial microsimulation; IPF; composite estimator; 

synthetic estimator. 

 

1. Introduction 

 

A wide range of social phenomena such as fear of crime, wellbeing, social exclusion or even 

income in many contexts are spatially heterogeneous, of interest to policy makers and analysts, 

yet unavailable at small area level from either census or administrative sources that might offer 

robust data at that small area scale. Whilst such data are often available from large-scale 

surveys, providing an invaluable source of rich understanding at larger spatial unit such as the 

country or regional level, such surveys are not designed to be representative at small area level, 

and the data collection costs of doing so would be prohibitively high. The problem of 

unplanned domains thus arises whereby one faces the limitation or small or zero survey sample 

size at the small area level (Rao and Molina, 2015). In this case the use of the direct design-

based estimators using only the sample survey units, such the Horvitz-Thompson estimator 

(Horvitz and Thompson, 1952), provides a large variability in the estimates or, in zero sample 

size small areas, no estimation possibility (Rao and Molina, 2015).  

 

This is a significant limitation of direct estimators from large-scale surveys down to small area 

level both analytically and for policy makers. Small area understanding continues to be – 

indeed, is increasingly – wanted and demanded by different policy and analysts for at least 

three key purposes: in a static sense to simply understand the differential nature of small areas 

across a larger territory (typically a nation); in a dynamic sense in terms of how the nature of 

small areas across such characteristics change over time; and in a policy sense to assess how 

small areas respond to policy interventions, whether directly spatially targeted or indirectly 

spatially affecting (Pratesi and Salvati, 2016).   
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In this context, small area estimation (SAE) techniques that make use of area auxiliary data 

from the Census or other administrative data have shown that they offer the ability to overcome 

the estimation problem by borrowing strength from related areas and auxiliary variables to 

produce reliable estimates at small area level from large-scale sample survey data (Rao and 

Molina, 2015). Whilst terminology varies, previous methodological reviews group SAE 

methodologies into two broad approaches – spatial microsimulation and regression-based 

statistical modelling – and each with methodological variants within it (Whitworth, 2013; 

Marshall, 2010). Whilst each methodological approach varies in its application, common 

across all approaches is the desire to use the relationships seen in the sample survey between 

explanatory variables and the target outcome variable in order to estimate a target population 

parameters (such as means, totals, etc.) of that outcome variable. 

 

Associated primarily with social and survey statisticians, regression-based SAE approaches 

extend the simple within-sample predictive approach to the small area level out-of-sample 

situation. We refer to Rao and Molina (2015) for a helpful review. A range of model specifications 

have been adopted including ecological (Ipsos MORI, 2015), mixed-effect (Battese et al, 

1988), multivariate mixed-effect (Datta, et al 1999) and M-Quantile (Marchetti et al, 2012) 

models. Associated mainly with the discipline of quantitative geography, three main spatial 

microsimulation approaches in contrast involve either the optimal reweighting – iterative 

proportional fitting (Ballas et al, 2005) and generalized regression (Singh and Mohl, 1996) – 

or the optimal selection – combinatorial optimisation (Williamson, et al, 1998) – of sample 

survey cases to fit to the small area profile. 

 

Although small area estimation has been demonstrated to provide acceptably precise estimates 

from large-scale sample survey data down to the at the small area level, the bias of small area 

estimates should be carefully taken into account. The threat of bias diminishes however as the 

small area sample size increases, offering the potential for well informed composite estimators 

to enhance the small area estimation by combining the indirect small area estimator with the 

direct sample survey estimator with gradually shifting weights towards the direct estimate as 

the sample size in the target small area increases. The efficiency of a composite estimator here 

is measured in the standard way by the reduction in the mean square error (MSE), hence taking 

into account both bias and variance in the estimation, compared to the variance of a direct 

estimator when can be calculated simultaneously. Although the opportunities afforded by 

composite estimation are utilised within regression-based approaches to small area estimation 

(Rao and Molina, 2015) they have ever been explored within any of the spatial microsimulation 

approaches, despite those approaches continuing to be widely used utilised to generate small 

area estimates for both practitioner and academic users. This article rectifies that gap by 

exploring the potential viability of, and gains from, well informed composite estimation within 

the popular iterative proportional fitting (IPF) spatial microsimulation approach to small area 

estimation, also referred to under the name of Structure PREserving Estimation (SPREE) 

(Zhang and Giusti, 2016) or raking (Deville et al, 1993) within the small area estimation 

literature (see Purcell and Kish, 1980 for theoretical aspects). 
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IPF is a deterministic reweighting technique used to adjust contingency tables to fit known 

margins of constraints at the small areal level – the small area totals of the identified set of 

explanatory variables typically derived from census data. The result is that survey individuals 

are reweighted across the selected constraint variables such that they come to represent a 

synthetic micro-population that is fitted to the characteristics of the small area as seen across 

the constraint totals. By doing so, the IPF algorithm delivers a set of reweighted survey cases 

where the number of weighted individuals in total and in the specified categories of the 

constraint fits to the profile of each target small area, with each small area naturally having its 

own tailored set of reweights specific to its particular small area profile across the constraints. 

IPF can therefore be considered as a survey weights calibration problem (see Creedy, 2003). 

 

The statistical properties of IPF are known and studied in the literature (Ballas et al., 2005; 

Ballas et al., 2007; Anderson, 2007). Interestingly, Agresti (2002) notes that IPF algorithm can 

be formulated as a log-linear iterative model fitting problem, noting however that if the log-

linear expectation function underlying this procedure is violated then the IPF estimators may 

be biased (Berg and Fuller, 2009 and Griffiths, 1996). Hence, although composite estimators 

offer promise to enhance the performance of spatial microsimulation approaches to small area 

estimation such as IPF, as well as many regression-based small area estimation techniques, 

particular attention needs to be paid to the use of such composite estimators due to the possible 

bias arising from such synthetic small area estimators. This issue has however never before to 

our knowledge been explored empirically in the literature. Griffiths (1996) introduces the 

problem theoretically, drawing attention to and offering an importance discussion of the 

general problem. Whilst this therefore provides an important touch point to the issue that work 

leaves many open questions and does not provide any empirical insights or conclusions around 

the viability, potential and specification of composite estimators in IPF frameworks in response 

to its important identification of the problem.  

 

This long overdue empirical progress is the focus of the discussion presented below. In Section 

2 the general SAE problem of the population mean as a target parameter via direct estimation 

and IPF is introduced, as is the general framework for the derivation of sample size dependent 

composite estimators. In Section 3 the results of a simulation study are presented and discussed, 

comparing the performance of the direct estimate and IPF with two composite estimators of 

those direct and indirect (i.e. IPF) estimators combined. We conclude our work with a general 

discussion in Section 4. 

 

2. Small Area Estimation Problem of the Population Mean 

This section describes the general small area estimation problem of the population mean, 

introducing the direct Horvitz-Thompson estimator (Horvitz and Thompson, 1952) and the 

synthetic IPF reweighting algorithm before moving on to outline the general framework to the 

composite estimation conducted in the simulations.  

 

2.1. Notation 

Let 𝑑 = 1,… , 𝐷 denote the small areas for which we want to compute the small area estimates. 

A sample 𝑠 ⊂ 𝛺 of size n is drawn from the target finite population 𝛺 of size 𝑁. 𝑁 − 𝑛 are 
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non-sampled units and these are denoted by 𝑟, hence 𝑠𝑑 = 𝑠⋂𝛺𝑑 is the sub-sample from the 

small area 𝑑 of size 𝑛𝑑, 𝑛 = ∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. rd denotes the non-sampled units for 

small area d of 𝑁𝑑 − 𝑛𝑑 dimension. 

 

Here we are interested in estimating the population mean �̅�𝑑 of a variable Y for area d given 

by: 

�̅�𝑑 = 𝑁𝑑
−1∑𝑌𝑑𝑖

𝑁𝑑

𝑖=1

, 

 

(1) 

Where 𝑌𝑑𝑖 denotes the value of variable Y for unit i in area d. 

 

2.2. Direct Estimation 

A direct estimator such as the Horvitz-Thompson estimator (HT), also known as the expansion 

estimator, offers a well known method to estimate population target parameters. This estimator 

is given by (Horvitz and Thompson, 1952): 

 

�̂̅�𝑑
𝐷𝑖𝑟𝑒𝑐𝑡 = 𝑁𝑑

−1∑𝑤𝑑𝑖𝑦𝑑𝑖
𝑖∈𝑠𝑑

 
(2) 

where 𝑤𝑑𝑖 = 𝜋𝑑𝑖
−1 denotes the sampling weight, and 𝜋𝑑𝑖 is the first-order inclusion probability 

of ith unit from dth area in 𝑠𝑑.  

 

2.3. Synthetic estimator: calibrated weights under IPF algorithm 

Unfortunately, when the SAE problem arises, estimator (2) may return large variability in the 

estimates due to the small 𝑛𝑑. Furthermore, it is not possible to obtain small area estimates to 

those small area with zero survey sample size. IPF offers a way forwards in to the small area 

estimation in this context. As noted above, the goal of this method is to calculate new 

(calibrated) weights satisfying the following calibration equation (Deville and Särndal, 1992): 

 

∑𝑤𝑖𝒙𝑖 = ∑ 𝒙𝑖
𝑖∈𝛺𝑑𝑖∈𝑠

= 𝑇(𝑿𝑑), 
(3) 

where 𝒙𝑖 denotes a vector of auxiliary information for unit i. This can be viewed as an 

optimisation problem where the calibration equation (3) is the constraint (Deville and Särndal, 

1992). However, the calibration problem is here framed in the IPF context. From a 

computational point of view, as highlighted in Kolenikov (2014), the algorithm to perform 

survey weights calibration under consists of an outer cycle and an inner cycle. The first cycle 

checks the convergence, meaning whether the calibration equation given by (3) is satisfied, and 

the second one iterates over the variables used for calibration (constraint variables), 

reweighting the survey cases in order to fit the aggregated small area profile on those 

constraints. The steps can be understood as follows (Kolenikov, 2014): 

1. Initialize the iteration counter 𝑡 ← 0 and the weights as 𝑤𝑖
0,𝑝 ← 𝑤𝑖. 
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2. Increment the iteration counter 𝑡 ← 𝑡 + 1, thus updating the weights as 𝑤𝑖
𝑡,0 ← 𝑤𝑖

𝑡−1,𝑝
. 

3. Update the weights through the calibration variables 𝑣 = 1,… , 𝑝: 

 

𝑤𝑖
𝑡,𝑣 = {

𝑤𝑖
𝑡,𝑣−1 𝑇(𝑿𝑣)

∑ 𝑤𝑙
𝑡,𝑣−1𝑥𝑣𝑙𝑙∈𝑠

, 𝑥𝑣𝑖 ≠ 0

𝑤𝑖
𝑡,𝑣−1, 𝑥𝑣𝑖 = 0

. 

4. If the discrepancies between ∑ 𝑤𝑖
𝑡,𝑝𝑥𝑣𝑖∈𝑠  (i.e. the sample weighted totals) and 𝑇(𝑿𝑣) 

are within a priori defined tolerance for all 𝑣 = 1,… , 𝑝, then declare convergence and 

the algorithm goes to step 6, otherwise return to step 2. 

5. The weights 𝑤𝑖
𝑡,𝑝

 are the final calibrated weights and are denoted by 𝑤𝑖
𝑡,𝑝 = 𝑤𝑖

∗. 

 

The variables used for calibration are usually categorical variables in real applications, 

therefore, 

𝒙𝑖
′ = (𝛿1𝑖

(1), … , 𝛿𝐹1𝑖
(1), 𝛿1𝑖

(2), … 𝛿1𝑖
(𝑝), … , 𝛿𝐹𝑝𝑖

(𝑝)), 

 

where 𝑙 denotes the lth  control variable and 𝛿𝑘𝑖
(𝑙) = 1 if I is in the category k of lth  control 

variable. 𝐹𝑙 is the number of categories of the lth  control variable. Anderson (2007) suggests 

that 𝑅 = 20 leads to satisfying indicator values. This algorithm is area-specific and therefore 

needs to be iterated for each small area 𝑑 = 1,… , 𝐷. 

 

The IPF-based estimator can therefore be defined by the following formula: 

 

�̂̅�𝑑
𝐼𝑃𝐹 =

∑ 𝑤𝑑𝑖
∗𝑛

𝑖=1 𝑦𝑖
∑ 𝑤𝑑𝑖

∗𝑛
𝑖=1

,      𝑑 = 1,… , 𝐷. 
(4) 

where 𝑤𝑑𝑖
∗  denotes the calibrated survey weight for unit ith from area dth. 

 

 

2.4. Composite Estimators 

However, estimators built under IPF may be biased. This is not unique to IPF but is an 

inevitable issue in all small area synthetic estimators given the nature of the estimation 

problem. As stressed in Rao and Molina (2015), the possible bias arising from a synthetic 

estimator and the large variability (small survey sample size) or non-estimation (zero sample 

size) of a direct estimator can be balanced by composite estimators between the two, choosing 

a suitable weight in the interval [0,1] for their combination.  

 

There are a vast number of estimators in SAE that have composite form (Rao and Molina, 

2015). Two flexible and commonly used sample size dependent composite estimators are 

outlined below with each obtained as a linear combination between the direct estimator and the 

IPF-based estimator described in Sections 2.2 and 2.3. These are defined as follows (Griffiths, 

1996 and Drew, et al, 1982): 
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�̂̅�𝑑
𝐶1 = 𝛾𝑑

𝐶1�̂̅�𝑑
𝐷𝑖𝑟𝑒𝑐𝑡 + (1 − 𝛾𝑑

𝐶1)�̂̅�𝑑
𝐼𝑃𝐹,   𝑤𝑖𝑡ℎ  𝛾𝑑

𝐶1 =
𝑛𝑑
𝑁𝑑
, (5) 

�̂̅�𝛿,𝑑
𝐶2 = 𝛾𝛿,𝑑

𝐶2 �̂̅�𝑑
𝐷𝑖𝑟𝑒𝑐𝑡 + (1 − 𝛾𝛿,𝑑

𝐶2 )�̂̅�𝑑
𝐼𝑃𝐹, 𝑤𝑖𝑡ℎ 𝛾𝛿,𝑑

𝐶2 =

{
 

 1 𝑖𝑓  
𝑛𝑑
𝑛
≥ 𝛿 (

𝑁𝑑
𝑁
)

(
1

𝛿
)
𝑛𝑑/𝑛

𝑁𝑑/𝑁
 𝑖𝑓 

𝑛𝑑
𝑛
< 𝛿 (

𝑁𝑑
𝑁
)
, 

(6) 

 

where 𝛿 ≥ 0. In Section 4, the efficiency of �̂̅�𝛿𝑑
𝐶2 for specific values of 𝛿 is explored. Of course, 

0 ≤ 𝛾𝑑
𝐶1 ≤ 1 𝑎𝑛𝑑  0 ≤ 𝛾𝛿,𝑑

𝐶2 ≤ 1. Estimator �̂̅�𝛿,𝑑
𝐶2 with 𝛾𝑑

𝐶2 is evaluated in Pratesi and Salvati 

(2008) using a regression-based small area estimator, but not in the context of a composite 

spatial microsimulation approach. It can be seen that both composite estimators borrow 

strength from other small areas. In particular, �̂̅�𝛿,𝑑
𝐶2 depends on 𝛿: when 𝛿 increases the effect 

of borrowing strength from related small areas increases, therefore increasing the weighting 

within the composite estimator that is attached to synthetic IPF estimator and, equivalently, 

decreasing the weighting attached to the direct estimator (Drew, et al, 1982).  

 

 

3. Simulation study 

In this context, the challenge and original contribution of the simulation results presented below 

is to explore the viability and impact of alternatively specified composite estimators on the 

performance of the small area estimation relative to that of either the direct or synthetic IPF 

estimators alone. Performance is assessed in terms both of bias and mean squared error (MSE) 

– taking into account both bias and variance. The following values of 𝛿 are explored, 𝛿 =

{0.2,
1

2
,
2

3
, 0.9, 1, 1.5, 2, 2.5, 10}, with larger values of 𝛿 denoting a higher weighting to the 

synthetic IPF estimator relative to the direct estimator within the composite given the same 

small area survey sample size. 

 

3.1. Generating the population 

This simulation study is quasi design-based, as defined within the classificatory work on types 

of simulation approaches in small area estimation (Münnich, 2014). In particular, the universe 

is a finite population further generated from the 2011 Census Microdata Individual 

Safeguarded Sample (Office for National Statistics, 2015) generated by extracting a stratified 

sample with simple random sample selection in each stratum (area). This population has the 

following dimensions: 650 ≤ 𝑁𝑑 ≤ 1000 with 𝑁 = 247807 and 𝐷 = 300 small areas. This 

is the population from which the simulation samples are drawn. This creates a more realistic 

unbalanced population for the simulation and also the population dimension 𝑁 facilitates the 

computations in the simulation which can be intense with very large populations. 

 

The target variable Y in the survey data is a binary variable denoting if the survey individual 

reports good general health or bad general health. The covariates used as constraint variables 
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in the small area estimation are age and the number of individuals in the household with long-

standing illness/disability. The target parameter at the small area level is therefore the 

proportion of people in a bad health and the true value in the population is calculated as  

 

𝑝𝑑 = 𝑁𝑑
−1∑𝑌𝑑𝑖

𝑁𝑑

𝑖=1

, 

 

(7) 

where: 

𝑌𝑑𝑖 = {
0 𝑖𝑓
1 𝑖𝑓

𝑖 ℎ𝑎𝑠 𝑔𝑜𝑜𝑑 ℎ𝑒𝑎𝑙𝑡ℎ
𝑖 ℎ𝑎𝑠 𝑏𝑎𝑑 ℎ𝑒𝑎𝑙𝑡ℎ

. 

 

3.2. Simulation steps 

 

The simulation follows the following four steps: 

1) From the simulated population select 𝑆 = 500 simple random samples with without 

replacement selection in each area 𝑑. Sample sizes are drawn in each area according 

to a uniform distribution as follows: 

𝑛𝑑 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(10, 80),  

2) Estimate small area proportions for D=300 small areas via IPF, direct and two 

composite estimators as above for each sample s. These estimates are denoted by 

�̂�𝑑𝑠
𝐷𝑖𝑟𝑒𝑐𝑡, �̂�𝑑𝑠

𝐼𝑃𝐹, �̂�𝑑𝑠
𝐶1

, and �̂�𝑑𝑠,𝛿=𝛿∗
𝐶2 ; 

3) As the true values are known from the generated population, estimate the following 

quality measures for each area d for the different types of estimates. For example, 

for �̂�𝑑
𝐼𝑃𝐹 these are given by: 

 

Mean Squared Error 

𝑀𝑆𝐸(�̂�𝑑
𝐼𝑃𝐹) = 𝑆−1∑(�̂�𝑑𝑠

𝐼𝑃𝐹 − 𝑝𝑑)
2,

𝑆

𝑠=1

 

(8) 

Root Mean Squared Error 

𝑅𝑀𝑆𝐸(�̂�𝑑
𝐼𝑃𝐹) = √𝑆−1∑(�̂�𝑑𝑠

𝐼𝑃𝐹 − 𝑝𝑑)2 ,

𝑆

𝑠=1

 

(9) 

Relative Root Mean Squared Error 

𝑅𝑅𝑀𝑆𝐸(�̂�𝑑
𝐼𝑃𝐹) =

𝑅𝑀𝑆𝐸(�̂�𝑑
𝐼𝑃𝐹)

�̂�𝑑
𝐼𝑃𝐹 , 

(10) 

Bias 

𝐵𝐼𝐴𝑆(�̂�𝑑
𝐼𝑃𝐹) = 𝑆−1∑(�̂�𝑑𝑠

𝐼𝑃𝐹 − 𝑝𝑑),

𝑆

𝑠=1

 

(11) 
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Relative Bias 

Contribution of Bias to MSE 

4) These quality measure estimates can then be averaged across small areas to provide 

summary statistics. In tables and figures in Section 4.3 the subscript d is dropped as 

a result. 

 

3.3. Results 

 

The results of the simulation study are shown in this section. As outlined above, the focus is to 

assess the performance of the direct, synthetic IPF and variously specified composite estimators 

in terms of bias and MSE as a function of 𝑛𝑑. 

 

For each of the 300 small areas Figure 1 shows the relative root mean squared error (× 100) 

(RRMSE%) of the direct (solid line) and IPF estimates (dashed line). RRMSE% offers a useful 

summary measure of the performance of the estimator considering bias and variance. 

 

Figure 1 is ordered by the survey sample size of the small areas: the small area with the lowest 

survey sample size is shown to the far left of Figure 1 (sample size of 10) whilst the small area 

with the largest survey sample size is shown to the far right of Figure 1 (sample size of 80). To 

aid the reader, labelling along the horizontal axis shows the small area survey sample size of 

each small area. 

 

[Insert Figure 1 here] 

 

In line with SAE literature, Figure 1 highlights, as expected, that the RRMSE% of the direct 

estimator decreases as the sample size increases whereas the RRMSE% of the IPF estimates, 

in contrast, seems to be independent of the survey sample size. As a consequence, as measured 

by RRMSE% there is a gain in performance of the IPF estimator over the direct estimator when 

the sample size is relatively small, but these performance gains gradually diminish and then 

disappear entirely as the sample size increases and the RRMSE% of the direct estimates 

gradually falls accordingly. As expected, when sample sizes are sufficiently large (around 𝑛𝑑 =

60 with 𝑓𝑑 =
𝑛𝑑

𝑁𝑑
= 0.07 in this example) then the direct estimator provides small area estimates 

of equivalent or similar performance to the IPF estimates according to these analyses of 

RRMSE%.  

 

𝑅𝐵(�̂�𝑑
𝐼𝑃𝐹) = 𝑆−1∑

�̂�𝑑𝑠
𝐼𝑃𝐹

𝑝𝑑

𝑆

𝑠=1

− 1, 
     (12) 

𝐶𝐵(�̂�𝑑
𝐼𝑃𝐹) =

[𝐵𝐼𝐴𝑆(�̂�𝑑𝑠
𝐼𝑃𝐹)]2

𝑀𝑆𝐸(�̂�𝑑𝑠
𝐼𝑃𝐹)

. 
     (13) 
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The aim of this paper is to explore empirically for the first time the potential for composite 

estimators within spatial microsimulation small area estimation techniques such as IPF. The 

findings presented in Figure 1 indicate that there are, in a general sense, potential performance 

gains from composite estimators in these small area estimation contexts. A key resulting step 

of the paper is next to move beyond this general finding and to instead assess empirically the 

more precise way in which alternative specification(s) of those composite estimators exploit 

that potential performance gain.  

 

To analyse this issue,  

Table 1 compares four quality measures from the direct and IPF estimates with those from the 

composite estimators: composite estimator 1 as shown above in (5) as well as nine alternatively 

weighted specifications of composite estimator 2 as shown in (6) above. As noted above, these 

specifications of composite estimator 2 vary according to the value given to the key δ 

parameter, with larger values of δ giving a higher weighting within the composite estimator to 

the synthetic IPF estimator relative to the direct estimator. For each estimator four quality 

measures are presented in  

Table 1: the relative mean squared error (RMSE); the relative root mean squared error as a 

percentage of the estimate proportion(RRMSE%); relative bias of the estimate as a percentage 

of the estimate proportion (RB%); and the percentage contribution of bias to the overall mean 

squared error (MSE) of the estimate that takes into account in a rounded fashion both the bias 

and variance of the estimate (CB%). For each summary measure the values presented in  

Table 1 are averages of the individual values calculated for each of the 300 small areas within 

the simulation.  

 

It can be seen that by using IPF, �̂�𝐶1 and �̂�𝐶2 it is possible to provide higher performance in 

the small area estimation compared to the direct estimates that unbiased but sometimes with 

high variance. The extent to which is the case varies and the bias introduced needs to be 

evaluated carefully: IPF and �̂�𝐶1 provide slightly biased estimates for some areas, severely 

biased estimates for other areas and a high bias contribution to the MSE. Given that it is based 

on a more complex set of weighting options, composite estimator �̂�𝐶2 gives more flexibility 

and, often, better performance in terms of the trade-off between bias and variability. When 𝛿 

increases it can be seen that RMSE and RRMSE% gradually decrease, but at the same time 

that the contribution of bias to the MSE becomes larger, although in many instances CB% 

remains relatively small. Evaluating across  

Table 1 suggests that we can optimise these trade-offs and the resulting performance of the 

small area estimation using a composite estimator and, more specifically, when δ is in the set 

 {
2

3
, 0.9, 1, 1.5, 2} within the specification of composite estimator 2. Within this set of 𝛿 the 

composite estimators produce a relatively small MSE – and certainly smaller MSE than the 

direct estimator – alongside a relatively small bias contribution to the MSE as well (even if 

naturally in excess of the unbiased direct estimator). Further details on the RMSE and bias for 

each area about each composite estimator are presented in Appendix A, again ordered by 

growing sample size. 
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[Insert Table 1 here] 

 

Whilst Table 1 provides summary averages of these metrics, Figure 2 offers a visual overview 

of the full distribution of RMSE values across the 300 small areas within the simulation across 

all the estimation approaches. It is clear that composite estimators offer performance gains 

compared to both the direct estimator and synthetic IPF estimator when assessing the median, 

interquartile range of full range of the RMSE. Some composite specifications also perform 

better than others. Whilst to some extent the view of what constitutes the trade-off remains a 

subjective judgement of the researcher, values of δ in the set {
2

3
, 0.9, 1, 1.5, 2} appear sensible. 

 

[Insert Figure 2 here] 

 

Figure 3 shows the behaviour of the weights from the various composite estimators ordered by 

growing sample size. To aid the reader, the legend in Figure 3 is ordered according to the order 

that the lines appear on the figure looking from left to right. Figure 1 above shows the tendency 

of the IPF estimator to drift towards the direct estimator as the survey sample size in the small 

areas increases. As expected, Figure 3 highlights that the pace of this tendency varies across 

the different composite estimators dependent upon the value of δ within each composite given 

that this differently controls the relative weighting between the direct and synthetic IPF 

components.  

At one extreme, it can be seen that composite estimator 2 with a δ value of 0.2 always equals 

the direct estimator, and can be seen as a horizontal line at value 1 across the top of Figure 3; 

as Table 1 demonstrates this estimator has very low bias, but relatively high variance. At the 

other extreme four composite estimators – composite estimator 1 plus the three composite 

estimate returned by estimator 2 with the largest values of δ – never converge with the direct 

estimator across these survey sample sizes given the greater weighting attached to the synthetic 

IPF estimates within these composites. This lies behind the increased levels of bias seen within 

these estimators in Table 1. For composite estimators in between these two extreme positions 

the composite estimates do reach a point where they converge with the direct estimates, with 

the question being the pace at which this convergence occurs as the survey sample size 

increases.   

 

[Insert Figure 3 here] 

 

 

Table 2 shows in further detail the absolute small area survey sample size (𝑛𝑑) and the sampling 

fraction (𝑓𝑑 = 𝑛𝑑/𝑁𝑑) of each of the composite estimators at the point that the composite 

estimator becomes weighted entirely towards the direct estimator such that the composite and 

direct estimator become equivalent. 

 

[Insert Table 2 here] 
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Table 3 below focuses squarely on the issue of bias by validating the true population values 

against the different types of estimates – the direct estimates (shown in the top row), the IPF 

estimates (row two) and the various composite estimates (remaining rows). Two alternative 

forms of external validation are presented in Table 3: Spearman’s rank correlation (column 

one) as well as linear regression between the two. Whilst the correlation offers a single 

summary of fit around the line of best fit the regression goes further by enabling an 

understanding both of the extent to which the two distributions share a common intercept at 

the origin – such that �̂�0 equals zero – and produce a slope coefficient (�̂�1) of one.   

 

These validation measures suggest firstly that there are three estimators that validate less well 

against the true value: the IPF synthetic estimator, composite estimator 1, and composite 

estimator 2 with 𝛿 values of around 2.5 and above. Composite estimators with 𝛿 values between 

the range {0.2, 0.5,
2

3
, 0.9, 1} validate well on these metrics in contrast. Spearman’s rank 

correlation estimates return very good ranking for the estimates given by composite estimator 

2 with 𝛿 = {0.2, 0.5,
2

3
, 0.9, 1,1.5,2,2.5}. 

 

[Insert Table 3 here] 

 

Looking back across the various analyses presented above suggests that composite estimators 

can lead to substantial performance gains compared to either direct or synthetic IPF estimators 

and that the specification of the 𝛿 value and its interaction with the small area survey sample 

sizes available in the survey data are key. Taken together, in these simulations the value of 𝛿 

that optimises the trade-off between the direct and synthetic parts of the composite estimator – 

and, in turn, the trade-off between variability and bias within the composite estimation – lies 

in the range [
2

3
, 2]. 

 

4. Discussion 

This paper focuses for the first time in the literature on empirical assessments of the viability 

and specification of composite estimators in IPF, a widely used spatial microsimulation 

approach to small area estimation. This need is motivated by the fact that in a small area context 

direct estimators, whilst unbiased, are typically hamstrung either by large variability (where 

small area survey sample sizes are small) or non-viability (where there is zero sample size for 

a small area). Composite estimators offer the potential to optimise the trade-off between bias 

and variance through the well designed combination of direct and synthetic components, yet 

this has remained a neglected fact of spatial microsimulation research despite its clear promise.  

 

Using simulation based on 2011 Census Microdata Individual Safeguarded Sample for the UK 

the paper assesses empirically the performance of alternatively specified composite estimators 

with both the direct and synthetic IPF estimators across a range of key statistical performance 

measures. The original analyses presented demonstrate for the first time in the literature that 

the performance of IPF small area estimation can be enhanced by the incorporation of the IPF 
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estimator into a composite estimator in order to more effectively trade-off the balance between 

variance and bias that exist within any estimation process. Of course, the variable used in the 

simulation study needs to be seen as an example. In real data, there may be variables less or 

more spatially correlated than general health status. The role of the spatial correlation and intra-

class correlation in the presented estimators needs to be evaluated empirically carefully. 

Particularly, this is a topic of ongoing research that we are pursuing in a regression-based small 

area estimation framework. Moreover, in real data applications, problematic distributions may 

arise, such as income distributions. These are known to have outliers and being skewed. The 

role of outliers here needs to be investigated.  

 

Furthermore, by sensitivity testing findings across multiple specifications of the composite 

estimator the analyses enhance understanding of behaviour of the key 𝛿 value that is specified 

in the composite measures, and how this and how this 𝛿 value interacts with the small area 

survey sample size. This 𝛿 controls the relative weighting of those direct and synthetic 

competent elements, enabling more or less borrowing of strength from other small areas within 

the synthetic part of the composite. Of interest is the pace at which the different values of 𝛿 

specified affect the pace at which the composite estimator converges with the direct estimator 

as the small area survey sample size increases – and hence as the direct estimator becomes 

increasingly reliable – and the impacts of these differing convergence rates on the performance 

of each composite estimator specification. The original empirical analyses presented highlight 

that the choice of 𝛿 is decisive is maximising performance of such composite indicators in IPF-

based indicators as measured by MSE through the trade-off of bias and variance in the 

composite estimator, given the small area survey sample sizes in the dataset in use. Taking into 

account the range of analyses presented above, a good value of 

𝛿 in these simulations look to fall in the range [
2

3
, 2]. 

 

It is important that data users first check the reliability of small area direct estimates, which 

may not be reliable for many areas in case of large-scale national sample surveys. This is due 

to the unplanned domains phenomenon. Thus, indirect estimators should be used. In this paper, 

we focused on an IPF-based estimator that may return biased estimates for some small areas. 

There is a literature on internal validation of small area IPF-based estimators which readers 

may follow, e.g. Rahman and Harding (2017). Beside this validation, we suggest that users 

perform an initial exploratory bias diagnostic of the small area IPF-based estimates by simply 

plotting the IPF estimates against the direct estimates; these are known to be design-unbiased. 

Summary statistics, such as the Spearman’s ranking correlation coefficient, may be helpful and 

crucial at this stage. Unfortunately, the bias of IPF estimates may depend on many factors (e.g. 

the very small sample sizes, availability of covariates, spatial correlation of covariates). This 

is a topic of our current research in the model-based small area estimation framework, where 

we aim to study different scenarios. Since in real data users may not have access to a large 

number of auxiliary information, especially for very confidential data on income and social 

exclusion, the small area biases may be unavoidable. Therefore, composite estimators, in 

particular, �̂̅�𝛿,𝑑
𝐶2 with 𝛿 ∈ [

2

3
, 2], provide good strengths to deal with this issue. Again, 

considering users’ needs (trade-of between variance and bias) different values of 𝛿 can be used. 
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We suggest to start with a moderate value of 𝛿, as in our study, and always investigate the bias 

diagnostic against the direct estimates (to check the bias of the composite estimates). This type 

of investigation is common in regression-based small area estimation; we refer to Brown et al. 

(2001) for details on this.  

We also would like to stress that the evaluated composite estimators are sample size dependent 

so the weights 𝛾𝑑 do not depend on the models behind IPF estimator. Other composite 

estimators, such as based on the mean squared error of IPF, may be constructed, but this is a 

topic of future research.  

 

It is noted that study out-of-sample areas are not incorporated in the simulation, thus 𝑛𝑑 > 0. 

One can argue that in real data some small areas may show 𝑛𝑑 = 0. Whilst we note this 

limitation of the present its empirical contributions remain, and two responses are possible. 

Firstly, it is the case very often that complex large-scale surveys do contain both large 

variability in the direct estimates and non-zero small area sample sizes, even if this in part 

depends on how ‘small’ one defined these sub-regional geographical units to be. Secondly, 

survey samples size is a foundational data constraint that presents a shared challenge across all 

small are estimation, reflecting in a more general sense the extreme case of zero small area 

survey sample sizes in which the composite estimator collapses into the synthetic part only.  

 

Taken together, this first empirical assessment in the literature of the viability and specification 

of composite estimators to enhance spatial microsimulation approaches to small area estimation 

offers valuable original insights to enhancing the performance of these key and widely used 

estimation methodologies. It is hoped that this both alerts analysts and practitioners to the 

benefits of composite estimators when conducting such work and stimulates further much 

needed research efforts into the conditions affecting the good specification of those composite 

estimators. Further interesting work could usefully explore the relevance of composite 

estimation to other types of spatial microsimulation approaches to small area estimation, further 

analyses around other specifications of composite estimator than those assessed here, and the 

estimation of MSE for the proposed composite estimator.  
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Appendix A 

 

[Insert Figure A1 here] 

 

 

 

[Insert Figure A2 here] 
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Figure 1 RRMSE% of direct estimates (__) and IPF estimates (---).  

 

 

 

Table 1: Summary averages of RMSE, RRMSE%, RB%, and CB% from the direct, IPF and 

composite estimates across the 300 small areas simulated 
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Sample size

 RMSE RRMSE% RB% CB% 

�̂�𝑫𝒊𝒓𝒆𝒄𝒕 0.029 54.25 - - 

�̂�𝑰𝑷𝑭 0.018 34.45 13.18 93.22 

�̂�𝑪𝟏 0.017 33.06 12.43 90.15 

�̂�𝜹=𝟎.𝟐
𝑪𝟐  0.029 54.25 0.14 0.19 

�̂�𝜹=𝟎.𝟓 
𝑪𝟐  0.027 49.11 0.97 0.91 

�̂�𝜹=𝟐/𝟑
𝑪𝟐  0.025 45.95 1.68 2.15 

�̂�𝜹=𝟎.𝟗 
𝑪𝟐  0.023 41.94 2.71 4.78 

�̂�𝜹=𝟏
𝑪𝟐  0.022 40.38 3.05 6.22 

�̂�𝜹=𝟏.𝟓 
𝑪𝟐  0.019 34.19 4.70 15.22 

�̂�𝜹=𝟐
𝑪𝟐  0.016 29.91 6.50 26.56 

�̂�𝜹=𝟐.𝟓 
𝑪𝟐  0.015 27.97 7.84 37.98 

�̂�𝜹=𝟏𝟎 
𝑪𝟐  0.017 31.12 11.85 85.03 
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Figure 2 Box-plots of RMSE estimates. 

 

 
Figure 3 The behaviour of the weights within composite estimators across different small 

area survey sample sizes.  
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 �̂�𝑪𝟏  �̂�𝜹
𝑪𝟐 

𝜹 - 0.2 0.5 2/3 0.9 1 1.5 2 2.5 10 

𝒏𝒅 
never always 

26 36 49 49 77 
never never never 

𝒇𝒅 = 𝒏𝒅/𝑵𝒅 0.03 0.05 0.05 0.07 0.1 

Table 2: 𝑛𝑑 and 𝑛𝑑/𝑁𝑑 such that the weight becomes 1 thus the composite estimator is equal 

to the direct estimator. 

 

 

 Spearman �̂�𝟎 �̂�𝟏 

�̂�𝑫𝒊𝒓𝒆𝒄𝒕 1.00 0.00 1.00 

�̂�𝑰𝑷𝑭 0.53 0.04 0.25 

�̂�𝑪𝟏 0.60 0.29 0.04 

�̂�𝜹=𝟎.𝟐
𝑪𝟐  0.96 0.00 0.99 

�̂�𝜹=𝟎.𝟓 
𝑪𝟐  0.99 0.00 1.01 

�̂�𝜹=𝟐/𝟑
𝑪𝟐  0.98 0.00 1.02 

�̂�𝜹=𝟎.𝟗 
𝑪𝟐  0.97 0.00 1.05 

�̂�𝜹=𝟏
𝑪𝟐  0.96 0.00 1.06 

�̂�𝜹=𝟏.𝟓 
𝑪𝟐  0.93 -0.01 1.17 

�̂�𝜹=𝟐
𝑪𝟐  0.90 -0.01 1.29 

�̂�𝜹=𝟐.𝟓 
𝑪𝟐  0.87 -0.02 1.42 

�̂�𝜹=𝟏𝟎 
𝑪𝟐  0.65 -0.08 1.52 

Table 3: External validation of direct, IPF-based and composite estimates 
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Figures in Appendix A 

 

 
Small area 

Figure A1 RMSE of composite estimates (__) and direct estimates (---). 
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Small area 

Figure A2 Ratios between composite estimates and true values. 
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