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Development and evaluation of an optimal composite estimator in spatial 

microsimulation small area estimation 

 

Revised Manuscript 

 

Abstract 

A range of data are of geographic interest but are not available at small area level from existing 

data sources. Small area estimation (SAE) offers techniques to estimate population parameters 

of target variables to detailed scales based on relationships between those target variables and 

relevant auxiliary variables. The resulting indirect small area estimate can deliver a lower mean 

squared error compared to its direct survey estimate given that variance can be reduced 

markedly even if bias increases. Spatial microsimulation SAE approaches are widely utilised 

but only beginning to engage with the potential of composite estimators that use a weighted 

combination of indirect and direct estimators to reduce further the mean squared error of the 

small area estimate compared to an indirect SAE estimator alone. This paper advances these 

approaches by constructing for the first time in the microsimulation literature an optimal 

composite estimator for such SAE approaches in which the combining weight is calculated 

from the mean squared errors of the two estimators, thus optimising the reduction in MSE of 

the resulting small area estimates. This optimal composite estimator is demonstrated and 

evaluated in a model-based simulation study and application based on real data. 

 

 

Keywords: Small area estimation; calibration; expansion estimator; synthetic estimator; 

variance; composite estimation. 

 

 

1. Introduction 

Many social phenomena of interest to policy makers and scholars are known to be spatially 

heterogeneous, desired to be measured and understood at detailed spatial scales, but frequently 

unavailable at small area level from existing Census, administrative or commercial data sources 

– income, wellbeing, diet and exercise, attitudes, and so on. Existing large-scale sample survey 

data often do contain variables related to those phenomena but are not designed to be 

representative at a small geographical level and are expensive to conduct (Moretti et al., 2019; 

Buil-Gil et al., 2019). Therefore, the issue of unplanned domains arises where the problem of 

small or zero sample sizes exists at the small area level of interest. In this context direct design-

based estimators such as the well-known Horvitz-Thompson estimator (Horvitz and 

Thompson, 1952) are limited given that for area with small sample sizes they provide large 

variability in estimates and that and in small areas with zero sample size they cannot be used 

(Rao and Molina, 2015).  

 

In response, indirect small area estimation (SAE) techniques have been used to produce small 

area estimates where direct estimators are either not viable or unreliable. SAE offers techniques 

to estimate target parameters to detailed scales based on relationships between target variables 

and relevant covariates and their application to the same covariates at small area level. Rao and 

Molina (2015) provide a helpful review. SAE methods can be classified into two broad groups: 

spatial microsimulation and regression-based approaches (Whitworth, 2013; Rahman and 

Harding, 2017). Within regression-based approaches a range of modelling strategies have been 

adopted including ecological (Ipsos MORI, 2015), univariate mixed-effect (Battese et al, 

1988), multivariate mixed-effect (Datta et al, 1999), M-Quantile (Marchetti et al, 2012) and 

Bayesian (Maiti, 2005). Three main spatial microsimulation approaches exist based on the 
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optimal reweighting of all survey respondents to the target small area profile – iterative 

proportional fitting (IPF) (Ballas et al, 2005) and generalized regression (GREGWT) (Singh 

and Mohl, 1996) and the combinatorial optimisation approach by Williamson et al (1998). 

Similarities exist between these approaches and it is indeed possible to consider them simply 

as alternative forms of either integer or non-integer reweighting approaches.  

 

Irrespective of the SAE approach adopted all have the potential to counter the two fatal 

limitations of direct survey estimation to small area level – to deliver small area estimates in 

contexts with zero survey sample size and to reduce markedly the variance around the indirect 

small area estimates compared to the direct small area estimates. However, as with all synthetic 

estimators this process introduces bias into the indirect small area estimates, in contrast to the 

unbiased direct estimates (Berg and Fuller, 2009; Griffiths, 1996).  

 

A natural way to tackle the trade-off between bias and variance in small area estimators is to 

construct weighted composite estimators between an unbiased (but with larger variability) 

direct estimator and a biased (but with smaller variability) synthetic estimator. These offer the 

potential to reduce further the mean squared error (MSE) of the small area estimate – the key 

metric of estimate quality that takes into account both bias and variance – compared to an 

indirect SAE estimator alone.  

 

Such composite estimators are relatively widely used in regression-based SAE approaches 

(Rao and Molina, 2015). Within the popular spatial microsimulation SAE approaches, 

however, understanding and practice around the potential benefits of composite estimators is 

largely absent. Moretti and Whitworth (2019b) recently presented and evaluated a sample-size-

dependent composite estimator, first introduced by Drew et al. (1982), into a spatial 

microsimulation SAE setting. In a sample-size-dependent approach, for each target small area 

the weighting attached to the direct and indirect sides respectively of the composite estimator 

are derived based on the sample size in that small area: as the small area sample size increases 

the weighting attached to the direct survey estimator relative to the indirect spatial 

microsimulation SAE estimator increases as the variability around that direct estimator 

becomes smaller, and vice versa. This was an important first attempt in the development of 

composite small area estimation within spatial microsimulation approaches. However, sample-

size-dependent composite estimators are limited in that they do not take into account the size 

of the between-area variability relative to the within-area variability (Drew et al., 1982; Rao 

and Molina, 2015). As such, sample-size-dependent estimators are not well suited to contexts 

with high levels of between-area variation given that they are unable to capture this variation.  

 

In contrast, optimal composite estimators can be used to overcome these limitations of 

neglecting the local variation with sample-size-dependent approaches. In addition, optimal 

composite estimators helpfully base the weighting attached to the direct and indirect sides of 

the composite estimator on the key metric of real interest to optimising the balance between 

bias and variance in the final small area estimates – the mean squared error. This is because in 

an optimal composite approach that key weighting between the direct and indirect sides of the 

composite estimator is based not on the survey sample size of each target area – which acts as 

an imperfect proxy for the real estimation interest in minimisation of the MSE – but instead 

explicitly on the actual MSEs of those direct and indirect estimators themselves (Rao and 

Molina, 2015; Schaible, 1978).  

 

This article develops the first presentation and evaluation of a small area optimal composite 

estimator in the literature of spatial microsimulation framework. The focus in this article is on 
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the iterative proportional fitting (IPF) spatial microsimulation approach, though the principles 

are applicable more broadly across the different spatial microsimulation SAE methods. The 

remainder of the article is structured as follows. In Section 2 the notation used and direct survey 

approaches are briefly outlined before turning to the exposition of the IPF approach to SAE. In 

Section 3 the composite estimators are described beginning with the sample-size-dependent 

composite estimator and next the optimal composite estimator. Section 4 provides the results 

of the simulation study evaluating the comparative performance of the optimal and sample-

size-dependent composite estimators in terms of the key MSE performance metric that takes 

into account both the bias and the variance of the resulting estimates. Section 5 offers an applied 

application based on European Social Survey (ESS) data. Section 6 provides a summary and 

discussion on future research directions.   

 

2. Small Area Estimation problem of the Population Mean 

2.1 Notation 

Given a random sample 𝑠 ⊂ 𝛺 of size 𝑛 drawn from the target finite population 𝛺 of size 𝑁 let 

us denote by 𝑑 = 1,… , 𝐷 the small areas for which we want to compute the small area 

estimates. 𝑁 − 𝑛 are the non-sampled units and these are denoted by 𝑟, hence 𝑠𝑑 = 𝑠⋂𝛺𝑑 is 

the sub-sample from the small area 𝑑 of size 𝑛𝑑, 𝑛 = ∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. 𝑟𝑑 denotes the 

non-sampled units in small area 𝑑 with 𝑁𝑑 − 𝑛𝑑 dimension. 

 

The mean for the population 𝛺 of the variable Y for area d is given by the following: 

 

�̅�𝑑 = 𝑁𝑑
−1∑𝑦𝑑𝑖

𝑁𝑑

𝑖=1

, 

 

(1) 

 

with 𝑦𝑑𝑖 denoting the value of variable Y for ith unit from dth area.  

 

2.2 Horvitz-Thompson estimator  

A design-unbiased direct estimator to estimate (1) is the Horvitz-Thompson estimator also 

known as the expansion estimator (Horvitz and Thompson, 1952). This is given by: 

 

�̂̅�𝑑
𝐷𝑖𝑟 =

∑ 𝑦𝑑𝑖𝑤𝑑𝑖𝑖∈𝑠𝑑

∑ 𝑤𝑑𝑖𝑖∈𝑠𝑑

  
(2) 

with 𝑤𝑑𝑖 = 𝜋𝑑𝑖
−1 where 𝜋𝑑𝑖 denotes the first-order inclusion probability of ith unit from dth area 

in 𝑠𝑑. A measure of uncertainty of (2) can be its variance since the estimator is unbiased 

(Cochran, 1977; Särndal et al., 1992; Rao and Molina, 2015). This is denoted by 𝑉𝑎𝑟(�̂̅�𝑑
𝐷𝑖𝑟) 

and 𝑉𝑎�̂�(�̂̅�𝑑
𝐷𝑖𝑟) is its estimate in the remainder of the paper.  

 

Due to the unplanned domains problem 𝑛𝑑 may be too small in order to be able to compute 

reliable estimates of (2) using �̂̅�𝑑
𝐷𝑖𝑟. Where 𝑛𝑑 is equal to zero then �̂̅�𝑑

𝐷𝑖𝑟 is in addition not 

viable. In both circumstances indirect estimation techniques that use auxiliary variables are 

instead needed (Rao and Molina, 2015). 

 

2.2 Small Area Estimator based on the Iterative Proportional Fitting algorithm 
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As outlined earlier, one such indirect small area estimator that uses auxiliary variables in this 

context is the iterative proportional fitting (IPF) algorithm. IPF is widely understood and 

utilised within the spatial microsimulation family of SAE methods (Ballas et al., 2005; Ballas 

et al., 2007; Anderson, 2007). and is one of several calibration algorithms based on the 

minimisation of different distance functions (Deville and Särndal, 1992).   

 

IPF is a reweighting technique used to adjust survey contingency tables of individual 

characteristics to fit known margins of constraints (usually Census totals) at the small area 

level. IPF can therefore be considered as a survey weights calibration problem (Deville and 

Särndal, 1992; Creedy, 2003; Whitworth, 2013; Moretti and Whitworth, 2019b). For each small 

area, the result of the algorithm is that survey individuals are fractionally reweighted across the 

selected constraint variables such that they come to represent a synthetic micro-population of 

each target small area based on its population profile across the constraint variables. For each 

small area, therefore, tailored weighted are calculated such that their sum equals the small 

area’s population total and the weighted total of the categories across the various auxiliary 

constraint variables approximates or equals the equivalent actual totals (typically provided by 

the Census data). An estimate of the target parameter can then be obtained as the weighted 

combination (usually, but not necessarily, mean or total) of the target outcome variable in the 

sample based on the final IPF weights.  

 

In order to introduce the IPF algorithm the notation adopted in Kolenikov (2014) is used. Here, 

𝑤𝑖 denotes the initial weight (this can be the design-weight) for 𝑖 ∈ 𝑠𝑑. The calibration problem 

is area-specific such that the IPF algorithm needs to be applied in each area. The IPF algorithm 

generates calibrated weights denoted by 𝑤𝑖
∗ for 𝑖 ∈ 𝑠𝑑 that satisfy the calibration equation given 

by ∑ 𝑤𝑖
∗𝒙𝑖𝑖∈𝑠𝑑 = ∑ 𝒙𝑖𝑖∈𝛺𝑑 = 𝑿𝑑, where 𝒙𝑖 is a vector of auxiliary variables for 𝑑 = 1,… , 𝐷. In 

particular, 𝑤𝑖
∗ minimises a distance function in the case of IPF between {𝑤𝑖

∗; 𝑖 ∈ 𝑠𝑑} and 

{𝑤𝑖; 𝑖 ∈ 𝑠𝑑}. The constrained optimisation problem is given by the following (Deville and 

Särndal, 1992; Chen and Shen, 2015): 

 

𝑚𝑖𝑛: ∑ [𝑤𝑖 ln (
𝑤𝑖
𝑎𝑖
) − 𝑤𝑖 + 𝑎𝑖]

𝑖∈𝑠𝑑

,

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑤𝑖𝒙𝑖
𝑖∈𝑠𝑑

= ∑ 𝒙𝑖
𝑖∈𝛺𝑑

= 𝑿𝑑 .
 

(3) 

 

It is noted that (3) does not have closed-solution, due to the non-linear distance function, and 

the IPF algorithm is employed to estimate the final calibrated weights. 

 

The steps of the algorithm as follows: 

1. Initialize the iteration counter 𝑡 ← 0 and the weights as 𝑤𝑖
0,𝑣 ← 𝑤𝑖; 

2. Increment the iteration counter 𝑡 ← 𝑡 + 1, thus updating the weights as 𝑤𝑖
𝑡,0 ← 𝑤𝑖

𝑡−1,𝑣
; 

3. Update the weights through the calibration variables 𝑣 = 1,… , 𝑝: 

𝑤𝑖
𝑡,𝑣 = {

𝑤𝑖
𝑡,𝑣−1 𝑇(𝑿𝑣)

∑ 𝑤𝑙
𝑡,𝑣−1𝑥𝑣𝑙𝑙∈𝑠

, 𝑥𝑣𝑖 ≠ 0

𝑤𝑖
𝑡,𝑣−1, 𝑥𝑣𝑖 = 0

. 

4. If the discrepancies between ∑ 𝑤𝑖
𝑡,𝑝𝑥𝑣𝑖∈𝑠  (i.e. the sample weighted totals) and 𝑇(𝑿𝑣) are 

within a priori defined tolerance for all 𝑣 = 1,… , 𝑝, then declare convergence and the 

algorithm goes to step 6, otherwise return to step 2; 



5 

 

5. The weights 𝑤𝑖
𝑡,𝑝

 are the final calibrated weights and are denoted by 𝑤𝑖
𝑡,𝑝 = 𝑤𝑖

∗. 

 

The variables used for calibration are usually categorical variables in real data applications, 

therefore we define the following vector: 

𝒙𝑖
′ = (𝛿1𝑖

(1), … , 𝛿𝐹1𝑖
(1), 𝛿1𝑖

(2), … , 𝛿1𝑖
(𝑝), … , 𝛿𝐹𝑝𝑖

(𝑝)), 

where 𝑙 = 1,… , 𝑝 denotes the lth  control variable and 𝛿𝑘𝑖
(𝑙) = 1 if I is in the category k of lth  

control variable. 𝐹𝑙 is the number of categories of the lth  control variable. Anderson (2007) 

suggests that 𝑅 = 20 is ample to satisfy convergence of the algorithm and we follow this 

cautious advice, though noting that others suggest that fewer iterations may be sufficient 

(Ballas et al., 2005; Lovelace and Dumont, 2016). In terms of the survey calibration problem 

framed in formula (3) this means that weights are found that minimise  the distance function 

given the benchmark constraints. This point is also discussed in Lovelace and Dumont (2016). 

The IPF estimator is defined as follows: 

 

�̂̅�𝑑
𝐼𝑃𝐹 =

∑ 𝑤𝑑𝑖
∗𝑛

𝑖=1 𝑦𝑖
∑ 𝑤𝑑𝑖

∗𝑛
𝑖=1

,      𝑑 = 1,… , 𝐷, 𝑖 = ,1… , 𝑛, 
(4) 

where 𝑤𝑑𝑖
∗  denotes the calibrated survey weight for unit ith from area dth. Note that 𝑦𝑖 appears 

for 𝑖 = 1,… , 𝑛; this means that �̂̅�𝑑
𝐼𝑃𝐹 belongs to the class of synthetic SAE estimators (Rao and 

Molina, 2015). Of course, considering the case of small 𝑛𝑑, �̂̅�𝑑
𝐼𝑃𝐹 is more efficient than �̂̅�𝑑

𝐷𝑖𝑟 if 

the auxiliary variables used in the calibration problem are sufficiently related to the target 

variable 𝑌 (Fuller, 2002 and Moretti and Whitworth, 2019b).  

 

Calibration estimators are known to be model-assisted by which is meant that it is only 

necessary that the population is reasonably well described by an assumed model in order for 

that model to be valid for use, this is a property of model-assisted estimators (Särndal et al., 

1992; Espuny-Pujol, et al., 2018). Nonetheless, if the model assumptions fail then the gains in 

efficiency of the IPF estimator compared to a design-based direct estimator may be small. 

Interestingly, as discussed in Hedlin, et al. (2001) simply because a model-assisted estimator 

satisfies the property just discussed it may still produce poor estimates. Naturally, the property 

is not a substitute for a careful model search, particularly in cases where there are outliers or 

highly variable data (Hedlin, et al., 2001). Biases are expected to grow where model 

assumptions are not met and this needs to be taken into account when producing estimates 

(Griffiths, 1996; Berg and Fuller, 2009; Moretti and Whitworth, 2019a; Moretti and 

Whitworth, 2019b). In this work, we consider a linear model that relates 𝑦𝑖𝑑 to a set of 

covariates Kott (1990) where the use of this model is considered in model-assisted estimators 

(Kott, 1990; Moretti and Whitworth, 2019a; Deville, and Särndal, C.E., 1992). In particular, 

since in small area estimation we aim to consider between area variation the Battese, Harter, 

Fuller model (Battese et al, 1988) is used and given as follows: 

 

𝑦𝑑𝑖 = 𝒙𝑑𝑖
𝑇 𝜷 + 𝑢𝑑 + 𝑒𝑑𝑖, 𝑖 = 1,… ,𝑁𝐷 , 𝑑 = 1,… , 𝐷, 

𝑢𝑑  ~𝑁(0, 𝜎𝑢
2), 𝑒𝑑𝑖~𝑁(0, 𝜎𝑒

2𝑏𝑑𝑖
−1), independent, 

 

 

(5) 

where 𝒙𝑑𝑖
𝑇  denotes a 𝑝 × 1 column vector of auxiliary variables, 𝜷 denotes the regression 

coefficients. 𝑢𝑑 is the random effect independent to the error term denoted by 𝑒𝑑𝑖. 𝑏𝑑𝑖 refers to 

the heteroskedasticity weights, and it is assumed that these are function of the auxiliary 



6 

 

variables, i.e. 𝑏𝑑𝑖 = 𝑏(𝒙𝑑𝑖), if the error are homoskedastic then 𝑏𝑑𝑖 = 1 (see also González-

Manteiga, et al., 2008). 

Like all indirect estimates, IPF estimates is affected by both bias and variance. As such, the 

mean squared error (MSE) is the appropriate measure of estimator performance as it takes into 

account both bias and variance. A validated approach to estimate the MSE (4) in a spatial 

microsimulation context has been proposed in Moretti and Whitworth (2019a) using a 

parametric bootstrap algorithm. This will be adopted in this paper and is summarised in the 

Appendix. Evaluations on the role of the model in IPF context have been proposed in the 

literature, for example in Moretti and Whitworth (2019a). In this latter paper, it is shown that 

if the errors follow a distribution approximately normally distributed or slightly skewed, then 

the bias returned by the IPF estimator is negligible (tending to zero). However, heteroskedastic 

errors might have an important impact on the estimator (Gujarati and Porter, 2009) and this is 

explored in section 4.  

 

3 Composite Estimators 

As noted above, synthetic SAE estimators such as IPF offer the potential to markedly reduce 

the variance and overall MSE of small area estimates compared to direct survey estimates in 

contexts where there are small or zero sample sizes across small areas. In turn, composite 

estimators that take a weighted combination of direct and synthetic (e.g. IPF) estimators offer 

potential to reduce MSE further still by drawing increased on the direct estimator as small area 

sample sizes increase and that direct estimator thus becomes more accurate and precise, and 

vice versa. Given that the focus of this article is on the original development of an optimal 

composite estimator for spatial microsimulation SAE, this section outlines both that composite 

estimator and, firstly, the sample-size-dependent composite estimator against which it will be 

evaluated empirically. 

 

3.1 Sample-size-dependent composite estimator  

A sample-size-dependent composite estimator can be defined as follows (Griffiths, 1996; Drew 

et al, 1982; Moretti and Whitworth, 2019b): 

�̂̅�𝛿,𝑑
𝑆𝑆𝐷 = 𝛾𝛿,𝑑

𝑆𝑆𝐷 �̂̅�𝑑
𝐷𝑖𝑟 + (1 − 𝛾𝛿,𝑑

𝑆𝑆𝐷)�̂̅�𝑑
𝐼𝑃𝐹, 𝑤𝑖𝑡ℎ 𝛾𝛿,𝑑

𝑆𝑆𝐷 =

{
 

 1 𝑖𝑓  
𝑛𝑑
𝑛
≥ 𝛿 (

𝑁𝑑
𝑁
)

(
1

𝛿
)
𝑛𝑑/𝑛

𝑁𝑑/𝑁
 𝑖𝑓 

𝑛𝑑
𝑛
< 𝛿 (

𝑁𝑑
𝑁
)
, 

(6) 

 

where 𝛿 ≥ 0 and 0 ≤ 𝛾𝛿,𝑑
𝑆𝑆𝐷 ≤ 1. It can be seen that �̂̅�𝛿,𝑑

𝑆𝑆𝐷 depends on the coefficient 𝛿: when 𝛿 

increases the effect of borrowing strength from the related small areas increases thus increasing 

the weighting within the composite estimator that is attached to synthetic IPF estimator and, 

equivalently, decreasing the weighting attached to the direct estimator (Drew et al, 1982).  

 

3.2 Optimal composite estimator 

As pointed in Drew et al. (1982), sample-size-dependent composite estimators were originally 

developed to deal with small areas for which the sample sizes are large enough such that direct 

estimators for small areas with sample sizes exceeding the expected sample sizes meet some 

reliability requirements. Furthermore, sample-size-dependent estimators do not take into 

account for the between-area heterogeneity, (Rao and Molina, 2015) therefore, if this variable 

is large the sample-size-dependent estimator might not be efficient. 

 

In contrast, in an optimal composite estimator the weighting of the direct and synthetic 

components is defined as a function of the MSE of those respective components. As such, given 
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that minimisation of the MSE is built into its construction optimal composite estimators are in 

their nature built around the optimisation of performance in the final estimates. An optimal 

composite estimator of (1) can be defined as follows: 

 

�̂̅�𝑑
𝑂𝑝𝑡 = 𝛾𝑑

𝑂𝑝𝑡�̂̅�𝑑
𝐷𝑖𝑟 + (1 − 𝛾𝑑

𝑂𝑝𝑡)�̂̅�𝑑
𝐼𝑃𝐹,    (7) 

where 0 ≤ 𝛾𝑑
𝑂𝑝𝑡 ≤ 1. 𝛾𝑑

𝑂𝑝𝑡
 is the optimal weight obtained by minimising the design mean 

squared error of �̂̅�𝑑
𝑂𝑝𝑡

. Assuming that the covariance term 𝐸(�̂̅�𝑑
𝐷𝑖𝑟 − �̅�𝑑)(�̂̅�𝑑

𝐼𝑃𝐹 − �̅�𝑑) is small 

relative to 𝑀𝑆𝐸(�̂̅�𝑑
𝐼𝑃𝐹) we approximate the optimal weight as follows (Schaible, 1978): 

𝛾𝑑
𝑂𝑝𝑡 ≈

𝑀𝑆�̂�(�̂̅�𝑑
𝐼𝑃𝐹)

[𝑀𝑆�̂�(�̂̅�𝑑
𝐷𝑖𝑟) + 𝑀𝑆�̂�(�̂̅�𝑑

𝐼𝑃𝐹)]
. 

  (8) 

Note that since �̂̅�𝑑
𝐷𝑖𝑟 is an unbiased estimator of �̅�𝑑 it is usually assumed that 𝑀𝑆�̂�(�̂̅�𝑑

𝐷𝑖𝑟) ≈

𝑉𝑎�̂�(�̂̅�𝑑
𝐷𝑖𝑟) (Rao and Molina, 2015). An estimator of the mean squared error of �̂̅�𝑑

𝑂𝑝𝑡
, denoted 

by 𝑀𝑆𝐸(�̂̅�𝑑
𝑂𝑝𝑡) can be given by the following (Schaible, 1978): 

 

𝑀𝑆�̂�(�̂̅�𝑑
𝑂𝑝𝑡) = 𝛾𝑑

𝑂𝑝𝑡𝑀𝑆�̂�(�̂̅�𝑑
𝐷𝑖𝑟) = (1 − 𝛾𝑑

𝑂𝑝𝑡)𝑀𝑆�̂�(�̂̅�𝑑
𝐼𝑃𝐹).    (9) 

4 Simulation study 

Having set out the small area estimators in Section 3, Section 4 presents results from a 

simulation study into their relative performance. Specifically, the simulation study evaluates 

the performance of our new optimal composite spatial microsimulation estimator given by (6) 

against the sample-size-dependent composite estimator introduced recently into the literature 

(Moretti and Whitworth, 2019b). Moreover, some initial investigations of an MSE estimator 

of the optimal composite estimator are presented. This is important in order to provide a good 

measure of uncertainty of the estimator. The simulation study is a model-based simulation 

study since model assumptions are relevant to the performance of the IPF and composite small 

area estimators. 

 

4.1 Simulation study design and population generation 

For the simulation study 𝑆 = 1,000 populations are generated from the model given in 5. 

 

In order to motivate the use of composite estimators we introduce a mild level of 

heteroskedasticity in the population. Heteroskedasticity is common in real data applications 

where for many different reasons users may face to violations of homoscedastic errors such 

that the variance of 𝑒𝑑𝑖 may not be constant anymore (Gujarati and Porter, 2009). A moderate 

level of heteroskedasticity is introduced in the simulation by fixing 𝑏𝑑𝑖
𝜆 = 1/𝑥𝑑𝑖

𝜆  for 𝜆 = 1/2 

following González-Manteiga et al. (2008) in order to produce IPF biased estimate 

 

The simulation is based on an unbalanced population using the following parameters chosen 

according to Moretti et al. (2018):  

 𝑁 = 20,000, 𝐷 = 80, and 130 ≤ 𝑁𝑑 ≤ 420. 𝑁𝑑, 𝑑 = 1,… , 𝐷 is generated from the 

discrete Uniform distribution (𝑑𝑈𝑛𝑖𝑓), 𝑁𝑑 ∼ 𝑑𝑈𝑛𝑖𝑓(130, 420), with ∑ 𝑁𝑑
𝐷
𝑑=1 = 20,000; 

 𝒙𝑑𝑖 = (1  𝑥𝑑𝑖1  𝑥𝑑𝑖2)
𝑇, with 𝑥𝑑𝑖1 ∼ 𝑑𝑈𝑛𝑖𝑓(145, 459), and 𝑥𝑑𝑖2 ∼ 𝑑𝑈𝑛𝑖𝑓(55, 345), 

 𝜷 = (17.97 0.36 −0.03)𝑇, 
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 𝜎𝑢
2 = −

𝜌

𝜌−1
𝜎𝑒
2 and 𝜎𝑒

2 = 297.71 with 𝜌 ∈ {0.05, 0.10, 0.20, 0.50, 0.70} 

where, 𝜌 =
𝜎𝑢
2

𝜎𝑢
2+𝜎𝑒

2 denotes the intra-class correlation coefficient that partitions the total variance 

into that which is between-areas and that which is within-areas. The level of the intra-class 

correlation coefficient is relevant in SAE contexts since the variability of small area estimators 

depend on this coefficient. The simulation study below is for this reason conducted across 

multiple levels of intra-class correlation coefficient (see e.g. Moretti et al, 2019; Moretti and 

Whitworth, 2019a). In the social sciences, the intra-class correlation coefficient does not 

usually assume such large values. In medical or agricultural applications, however, it can 

reaches higher values such as these (see. e.g. Koo and Li, 2016; Pleil, et al, 2018). The two 

auxiliary variables have categories defined as follows in order to identify the constraints used 

in the IPF algorithm:  

145 ≤ 𝑥1𝑖 ≤ 224.20,   224.20 < 𝑥1𝑖 ≤ 380.70, 380.70 < 𝑥1𝑖 ≤ 459, 

55 ≤ 𝑥2𝑖 ≤ 126.30, 126.30 < 𝑥2𝑖 ≤ 272.10,   272.10 < 𝑥2𝑖 ≤ 345. 

 

4.2 Simulation steps 

The simulation steps are as follows: 

1. Generate the responses 𝑦𝑑𝑖𝑠 according to model (5) for 𝑠 = 1,… , 𝑆, (𝑆 = 1,000) with 

parameters as described above; 

2. Draw a stratified random sample (simple random sample without replacement selection 

in each area 𝑑) from each simulated population, with 𝑛𝑑~𝑑𝑈𝑛𝑖𝑓(7, 21) and 𝑛 = ∑ 𝑛𝑑𝑑 =
1129 (the average sampling fraction is 𝑓�̅� = 0.05); 

3. Estimate �̅�𝑑 via the IPF-based estimator given in (4) and the Horvitz-Thompson 

estimator given in (2). These are denoted by  �̂̅�𝑑𝑠
𝐼𝑃𝐹 and  �̂̅�𝑑𝑠

𝐷𝑖𝑟; 

4. Estimate �̅�𝑑 via the composite estimators given by (6) and (7). These are denoted by 

 �̂̅�𝑑𝑠
𝑆𝑆𝐷 and  �̂̅�𝑑𝑠

𝑂𝑝𝑡
 respectively; 

5. The results are evaluated using two quality measures where �̂̅�𝑑𝑠 denotes any estimate 

of �̅�𝑑𝑠 .  
 

The empirical root mean square error (RMSE) offers an overall measure of estimate quality 

taking into account both variance and bias: 

 

Empirical Root Mean Squared Error 

𝑅𝑀𝑆𝐸(�̂̅�𝑑 ) = √
1

𝑆
∑(�̂̅�𝑑𝑠  − �̅�𝑑𝑠)

2

 ,

𝑆

𝑠=1

 

(10) 

 

Relative Bias 

Relative bias (RB) is related to the accuracy of an estimator. 

 

4.3 Results 
This section presents the main results of the simulation study. The section looks firstly at the 

results for our proposed original optimal composite estimator for spatial microsimulation 

approaches to SAE that is the central interest of the article. The section turns next to the results 

𝑅𝐵(�̂̅�𝑑 ) =
1

𝑆
∑

�̂̅�𝑑𝑠 

�̅�𝑑𝑠

𝑆

𝑠=1

− 1. 
      (11) 
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of the comparison between the optimal composite estimator and the sample-size-dependent 

composite estimator. The section concludes with preliminary evaluations on an MSE estimator 

of the optimal composite estimator.  

 

4.3.1 Optimal composite estimator 

Table 1 shows the performance of the small area optimal composite estimator  �̂̅�𝑑
𝑂𝑝𝑡

 compared 

to the IPF estimator  �̂̅�𝑑
𝐼𝑃𝐹 in terms of relative bias and empirical root mean squared error. The 

median has been chosen as a robust central tendency measure across the small areas (Chambers 

et al., 2011; Giusti et al., 2013). 

 

It can be seen that when the intra-class correlation is small the IPF estimator is not biased: the 

bias across the small areas is negligible for both 𝜆 = 0.2 and 𝜆 = 0.5 cases. However, when 

the intra-class correlation increases to 𝜌 = 0.5 and 𝜌 = 0.7 the bias of the IPF estimator 

increases. The biases are slightly larger when heteroskedasticity increases to 𝜆 = 0.5 as 

compared to 𝜆 = 0.2. 

 

These scenarios motive the analysis to develop an optimal composite estimator between the 

direct and IPF estimators in order to explore its potential to reduce this bias seen when the IPF 

alone is used. Table 1 shows that the optimal composite estimator is indeed able to produce 

estimates with lower bias than the IPF estimator alone. Naturally, when the intra-class 

correlation is small and the IPF estimator is relatively unbiased then then performance gap 

between the IPF estimator and the optimal composite estimator is modest. However, as the 

intra-class correlation increases and the bias of the IPF estimator becomes larger this is not the 

case with the optimal composite estimator which continues to produce more precise (variance) 

and accurate (bias) estimates by giving more weight to the unbiased direct estimates at these 

points. These results can be seen particularly clearly when 𝜌 = 0.5 and 𝜌 = 0.7. 

 

<Table 1 about here> 

 

4.3.2 Comparisons between optimal composite estimator and sample-size-dependent 

estimator 

Having evaluated the performance of our optimal composite estimator against the IPF estimator 

alone, Table 2 turns next to the comparison of the optimal composite estimator and the sample-

size-dependent composite estimator recently introduced to the spatial microsimulation small 

area estimation literature (Moretti and Whitworth, 2019b). The first two rows of Table 2 show 

the relative bias and the empirical root mean squared error of the optimal composite estimator 

( �̂̅�𝑑
𝑂𝑝𝑡

). The remaining rows of Table 2 show the relative bias and empirical root mean squared 

error of the sample-size-dependent estimator ( �̂̅�𝑑,𝛿=𝛿∗
𝑆𝑆𝐷 ) at different levels of weightings to 

combine its direct and synthetic components, 𝛿∗ = {0.2, 0.5,
2

3
, 1, 1.2, 2, 2.5, 3, 3.5, 4, 4.5, 5}. 

 

<Table 2 about here> 

 

Looking across Table 2 it can be seen that the optimal composite estimator performs better than 

the sample-size-dependent estimator in all scenarios across these key performance metrics. As 

one would hope from an optimal composite estimator it is indeed optimal in the sense that there 

is no scenario in which the combination of estimated root mean square error and relative bias 

is superior in the sample-size-dependent estimator than the combination obtained from the 

optimal composite estimator. The smallest estimated root square error that can be obtain from 
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the sample-size-dependent composite estimator estimates is when  𝛿 = 5. However, the 

relative bias returned at this point by that sample-size-dependent composite estimator is larger 

than that of the optimal composite estimator. This is due to the fact that when 𝛿 increases more 

weight is attached to the biased IPF estimator within that sample-size-dependent estimator.  

 

4.3.3 On the MSE of  �̂̅�𝒅
𝑶𝒑𝒕

 

Here we present the results of a preliminary attempt to provide a measure of uncertainty of the 

optimal composite estimator.  

Table 3 shows the evaluation of the MSE estimator of the optimal composite estimator, denoted 

by 𝑅𝑀𝑆�̂�( �̂̅�𝑑
𝑂𝑝𝑡 ) estimated via (8). The results are presented in terms of root mean squared 

error. The first line of Table 3 is about the empirical root mean squared error (the true), the 

second line contains its estimate and the third line shows the bias of 𝑅𝑀𝑆�̂�( �̂̅�𝑑
𝑂𝑝𝑡 ). 

 

<Table 3 about here> 

 

It can be seen that, estimator 𝑀𝑆�̂�( �̂̅�𝑑
𝑂𝑝𝑡 ), given in (8), returns good estimates of the empirical 

mean squared error of  �̂̅�𝑑
𝑂𝑝𝑡

, the bias across the small areas is small. However, in some cases 

the mean squared error is slightly overestimated, i.e. for 𝜆 = 0.2 with 𝜌 = {0.05, 0.5, 0.7} and 

𝜆 = 0.5 with 𝜌 = {0.05, 0.1, 0.7}, in the other cases it is slightly underestimated. More 

investigations on this will be object of future work particularly considering resampling 

techniques also. 

 

5 Application 

Section 4 has evaluated findings of a simulation study across different small area estimators 

and found our proposed composite estimator for spatial microsimulation SAE to deliver the 

best levels of performance in terms both of the minimisation of bias and variance around the 

final estimates as well as the solid estimation of the mean squared error. To aid understanding 

and dissemination of the optimal composite estimator in such contexts Section 5 presents an 

application based on real data using Italian data from the European Social Survey (ESS). 

 

5.1 The data 

Data from Italy in the 8th round of the ESS are used in this application. ESS samples are 

representative of all persons aged 15 and over resident within private households in each 

country, regardless of their nationality, citizenship or language. The sampling design for Italy 

is a two domain design. The first sampling domain consists of the nine biggest municipalities 

within Italy. For these municipalities a one-stage sampling design is used where a total of 770 

individuals are sampled using simple random stratified sampling where the sample size 

allocation is proportional to the target population in the strata. The second sampling domains 

consist of all other municipalities and here a two-stage sampling design is used. In the first 

stage 163 municipalities are selected as Primary Sampling Units (PSUs) by stratified sample 

based on the crossing of NUTS-1 geographies and demographic profile of the surveyed 

population (4 classes). The allocation of the PSU sample to the strata is proportional to target 

population within the strata. In the second stage 29 individuals are selected from each sampled 

municipality using a simple random sampling. The survey documentation states that reliable 

statistical inference is not advised at regional (NUTS-2) level (European Social Survey, 2017) 

due to small survey sample sizes at these smaller area geographies. Hence, a small area 

estimation problem exists for users wishing spatial granularity in ESS indicators.  
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5.2 A optimal composite estimate of trust 

This application of the optimal composite estimator focuses on the small area estimation of 

political trust in Italy. As discussed in André (2014) political trust is an important issue in 

contemporary representative democracy not only in and of itself but also given that it can 

support wider social trust, foster associational life and play an important role in the efficient 

implementation of policies.  

 

André (2014) discusses the ways in which political trust can be considered a multidimensional 

phenomenon such that multiple dimensions need to be considered in any measurement of the 

latent concept. In terms of suitable indicators André (2014) suggests the following questions 

of the ESS round 8 data: “Using this card, please tell me on a score of 0-10 how much you 

personally trust each of the institutions I read out. 0 means you do not trust an institution at all, 

and 10 means you have complete trust”: 

 parliament 

 the legal system 

 the police 

 politicians 

 political parties 

 the European Parliament 

 United Nations.  

 

These responses make up the observed target variables for our application. For the purposes of 

this application these indicators are brought together using principal components analysis 

(PCA) into a set of non-correlated linear combinations. It is noted that other multivariate 

statistical analysis techniques may alternatively be used to handle this multi-dimensionality but 

this is both beyond and not the purpose in this application. Only one of the components 

produced from the PCA carry an eigenvalue above 1 and this first component alone explains 

64.3% of the total variance across these indicators. This first component is therefore taken as 

the target outcome measure of the multi-dimensional latent concept of political trust for the 

purposes of this application.  

 

The target parameter of this application is the mean of the trust indicator and the aim is to 

produce reliable estimate at the regional (NUTS-2) level in Italy that the ESS survey document 

advises cannot reliably be delivered directly. As such, although these twenty Italian regions are 

not ‘small areas geographically they retain the core SAE problem of being unplanned domains 

in ESS data given that the survey sampling strategy was designed with reliable statistical 

inference viable only at higher level geographies and not possible to this spatial scale.  

 

In this application the mean of the political trust score is estimated to regional level using our 

proposed optimal composite estimator (6) combining the direct estimator (2) and the IPF 

estimator (4). The auxiliary variables used as constraints to provide IPF estimates are the 

following: marital status, age, citizen of Italy, level education (EISCED scale), employment 

status (working or not), currently enrolled in a course (school or university). It will be 

remembered that the variance of the direct estimator and the MSE of the IPF estimator are 

needed in order to provide the optimal small area estimates since seek to balance for the large 

variability but zero bias of the direct estimates and the bias but smaller variability from the IPF 

estimates. These are referred to as measures of uncertainty here. The MSE must be considered 

for the IPF estimator since this takes into account both variance and bias (𝑀𝑆𝐸 = 𝑉𝐴𝑅 +
𝐵𝐼𝐴𝑆2) (see Rao and Molina, 2015). The variance of the direct estimator is estimated according 

to Särndal et al. (1992), the mean squared error (MSE) of the small area IPF estimator is 
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estimated via parametric bootstrap according to Moretti and Whitworth (2019a) and the MSE 

of the optimal composite estimator is calculated according to formula (7). 

 

Figure 1 compares the performance of three estimators in producing these regional estimates 

of political trust: the direct estimator, the IPF estimator alone, and our proposed optimal 

composite estimator combined the two with optimal weights. It can be seen from Figure 1 that 

the optimal composite and IPF estimators both provide better performance than the direct 

estimator for regions with smaller survey sample sizes (towards the left of Figure 1). As regions 

survey sample sizes increase the performance of the direct estimator naturally improves as its 

variance decreases. The performance of the IPF estimator remains roughly stable, however, 

such that the direct estimator begins to outperform the IPF estimator at larger survey sample 

sizes. For the optimal composite estimator, in contrast, this always performs better than both 

the direct estimator and the IPF estimator across all region survey same sizes. These evaluations 

are necessary in order to evaluate the quality of the small area estimates as from guideline from 

official statistical institutes, in fact, MSE and variance estimates are considered as measures of 

statistical quality; we refer to Statistics Canada (2009) for details on this topic in official 

statistics. Furthermore, it is crucial to remind that as from ESS guidelines, reliable statistical 

inference is not advised at regional (NUTS-2) level for Italy (European Social Survey, 2017). 

 

<Figure 1 about here> 

 

In order to evaluate the quality of the small area estimates these can be compared to the direct 

estimates that are design-unbiased (but with large variance). Thus, according to the small area 

estimation literature e.g. Moretti and Whitworth (2019b) and Brown et al. (2001) we can 

estimate simple bivariate linear regression models where the direct estimate denotes the 

dependent variable and the IPF or optimal estimate denote the independent variable. Here the 

estimates of the regression coefficients are the following  �̂�0 = 0.44, �̂�1 = 0.30 and �̂�0 =

0.01, �̂�1 = 1.02 for the IPF and optimal composite estimates, respectively. These demonstrate 

that the optimal composite estimates both display relatively little bias in an absolute sense and 

display markedly less bias than the IPF estimates. These results are in line with the simulation 

study findings.  

 

Figure 2 shows the maps of the mean regional estimates of the political trust indicator for both 

the IPF estimator (left) and the optimal composite estimator (right). 

 

<Figure 2 about here> 

 

Figure 2 shows noticeable variability in the regional estimates of political trust between 

different Italian regions. The highest levels of political trust are estimated across the northern 

regions including Lombardia, Trentino Alto Adige and Friuli Venezia Giulia, though with 

some northern exceptions such as Valle d’Aosta, Liguria and Veneto. In the centre of Italy high 

levels of trust can generally be seen, particularly in Tuscany and Umbria. Across southern 

regions high levels of trust are estimated in Molise and Basilicata and medium levels in Sicilia 

and Calabria. As noted in Fazio et al. (2017), these maps highlights that the geographical 

distribution of political trust across Italy is more complex than the simplistic the North–South 

divide that is often used to describe Italy.  

 

Although the estimates are, as one would expect, broadly comparable between the IPF and 

optimal composite estimators there remain several points of important difference such as in 

Lazio, Puglia and Sicilia. This highlights the importance of the choice of estimator not only to 
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its performance in terms of minimisation of bias and variance as has been the focus above but 

also in terms of its implications for the central point estimates themselves. 

With this application, we can show that we are able to provide reliable regional estimates of 

the phenomenon of interest, with a smaller uncertainty than the direct and IPF estimates. IPF 

estimates, due to their possible small area biases, are not always reliable. Thus, by constructing 

optimal small area estimates, it is possible to produce more reliable small area estimates for 

every region (see Figure 1). 

 

6 Conclusion 

Spatial microsimulation approaches to small area estimation are widely practised by research 

and policy analysts in order to estimate new indicators at finer spatial resolution in order to 

enhance our spatial understanding of societies and policy interventions. As with any synthetic 

estimator, however, bias is introduced. Whilst regression-based SAE approaches have for some 

time made use of the potential for composite estimators to help optimise the balance between 

bias and variance minimisation this is largely neglected within spatial microsimulation SAE 

approaches despite their widespread use and popularity.  

 

The potential of the sample-size-dependent composite estimator to improve the quality of 

spatial microsimulation approaches to small area estimation has recently been proposed and 

evaluated positively in the literature (Moretti and Whitworth, 2019b). Whilst an important 

contribution, such sample-size-dependent composite estimators suffer from neglecting 

between-area variation. Therefore, if there is a large heterogeneity between small areas, 

sample-size-dependent estimators might not be much more efficient compared to direct design-

based estimators. The present article builds on that recent advance by pushing further the 

quality of such approaches through its original development and empirical evaluation of 

optimal composite estimators within a spatial microsimulation SAE framework for the first 

time in the SAE literature under microsimulation approaches. Unlike sample-size-dependent 

composite estimators, optimal composite estimators are so named because the key weighting 

between the direct and synthetic parts of the estimator is derived explicitly from the 

minimisation of their respective variance and bias as is desired in order to maximise the 

performance of the estimator overall.  

 

After having set out the notation of our proposed composite estimator in this context, the 

article’s empirical findings show that the optimal composite estimator produced superior 

performance to either the direct, IPF or sample-size-dependent estimator across all levels of 

intra-class correlation coefficient, heteroskedasticity and small are survey sample size. The bias 

of the composite estimator is close to zero in all the scenarios examined and that a mean squared 

error estimate based on an expression in Schaible (1978) successfully approximates the actual 

empirical mean squared error. Taken together the results offer strong evidence to suggest that 

widely used spatial microsimulation approaches to SAE should give strong consideration to 

instead utilising that spatial microsimulation approach as the synthetic element alongside a 

direct estimator within a larger optimal composite estimator. Of course, if the sample size in 

the small area is zero then direct estimation techniques cannot be applied and researchers need 

to rely on the synthetic IPF estimator. This is common to all the small area estimation 

techniques available in the literature. For more details on this we refer to Rao and Molina 

(2015) where this point is discussed in the regression-based small area estimation context. 

 

Future research could usefully focus on new methods (e.g. via resampling techniques) to 

estimate the mean squared error of the optimal composite estimator. In addition, further work 

could explore the performance of the proposed optimal composite estimator under a wider 
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range of different scenarios in terms of dimensions such as data size and normality, failures in 

model assumptions, spatial variability of the auxiliary variables and non-linear outcome 

variables. Other interesting extensions of this work would be applications of the optimal 

composite estimator to other spatial microsimulation techniques as well as alongside 

regression-based techniques in order to offer comparative methodological evidence for SAE 

practitioners around the performance implications of different synthetic specifications within 

optimal composite SAE estimators. 
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Appendix: Mean Squared Error of the Small Area IPF Estimator by Moretti and 

Whitworth (2019a) 

 

The algorithm steps for the bootstrap MSE for IPF are listed below for 𝑏 = 1, … , 𝐵 bootstrap 

replications where the symbol * is used to denote the bootstrap quantities and for 𝑑 = 1,… , 𝐷 

small areas: 

 

1. Fit model (5) to the observed sample data, denoted by 𝑠, and estimate the model 

parameters. The estimates are denoted by  �̂�, �̂�𝑢
2, �̂�𝑒

2; 

2. Generate the bootstrap area effects 𝑢𝑑
∗(𝑏)

~
𝑖𝑖𝑑
𝑁(0, �̂�𝑢

2);  

3. Generate the bootstrap residual error term 𝑒𝑑𝑖
∗(𝑏)

~
𝑖𝑖𝑑
 𝑁(0, �̂�𝑒

2), independently of 𝑢𝑑
∗(𝑏)

, for 

every unit 𝑖 in the sample in area 𝑑, for the sample units, 𝑖 ∈ 𝑠𝑑; 

4. Calculate the true population means for each small area of the bootstrap population as 

follows: 

�̅�𝑑
∗(𝑏) = �̅�𝑑,𝑝𝑜𝑝

𝑇 �̂� + 𝒖𝑑
∗(𝑏) ,  

where �̅�𝑑,𝑝𝑜𝑝 denotes the means of the known population auxiliary variables for each area 𝑑. 

These may be taken, for instance, from the census or administrative data. 

5. Generate the bootstrap data as follows, 𝑖 ∈ 𝑠𝑑: 

 𝑦𝑑𝑖
∗(𝑏) = 𝒙𝑑𝑖

𝑇 �̂� + 𝒖𝑑
∗(𝑏) + 𝒆𝑑𝑖

∗(𝑏),          

6. Compute the IPF estimator on  𝑦𝑑𝑖
∗(𝑏)

 and obtain the IPF estimates on the bootstrap data 

 �̂̅�𝑑
𝐼𝑃𝐹∗(𝑏)

; 

7. Repeat steps 2. through 6. for 𝑏 = 1,… , 𝐵 for each area 𝑑 = 1,… , 𝐷.  

An estimator of 𝑀𝑆𝐸( �̂̅�𝑑
𝐼𝑃𝐹) is given by the following Monte Carlo approximation: 

𝑀𝑆�̂�𝑏𝑜𝑜𝑡( �̂̅�𝑑
𝐼𝑃𝐹) = 𝐵−1∑( �̂̅�𝑑

𝐼𝑃𝐹∗(𝑏) − �̅�𝑑
∗(𝑏))

2
𝐵

𝑏=1

. 
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