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Summary. Small area estimation (SAE) plays a crucial role in the social sciences due to the 

growing need for reliable and accurate estimates for small domains. In the study of wellbeing, for 

example, policy-makers need detailed information about the geographical distribution of a range of 

social indicators. We investigate data dimensionality reduction using factor analysis models and 

implement SAE on the factor scores under the empirical best linear unbiased prediction approach. 

We contrast this approach with the standard approach of providing a dashboard of indicators, or a 

weighted average of indicators at the local level. We demonstrate the approach in a simulation study 

and a real data application based on the European Union Statistics for Income and Living 

Conditions (EU-SILC) for the municipalities of Tuscany. 

 

Keywords: Composite estimation; Direct estimation; EBLUP; Factor analysis; Factor scores; 

Model-based estimation. 

 

 

1. Introduction 

Measuring poverty and wellbeing is a key issue for policy makers requiring a detailed 

understanding of the geographical distribution of social indicators. This understanding is essential 

for the formulation of targeted policies that address the needs of people in specific geographical 

locations. Most large-scale social surveys can only provide reliable estimates at a national level. A 

relevant survey for analyzing wellbeing in the European Union (EU) is the European Union 

Statistics for Income and Living Conditions (EU-SILC). However, these data can only be used to 

produce reliable direct estimates at the NUTS (Nomenclature of Territorial

Units for Statistics) 2 level (Giusti, Masserini and Pratesi, 2015) which are generally large regions 

within a country. For example, in Italy one such NUTS 2 region is Tuscany. Hence, if the goal is to 

measure poverty and wellbeing indicators at a sub-regional level, such as NUTS 3 or LAU (Local 

Administrative Units) 2 which correspond to the Italian municipalities, the indicators may not be 

directly estimated from EU-SILC. In fact, the domains corresponding to the regions under NUTS 2 
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are so-called unplanned domains where domain membership is not incorporated in the sampling 

design, and therefore the sample size in each domain is random (and may be large or small) and in 

many cases zero. In this case, indirect model-based estimation methods, in particular small area 

estimation approaches, can be used to predict target parameters for the small domains.   

 

Small area estimation (SAE) is defined as a set of statistical procedures with the goal of producing 

efficient and precise estimates for small areas, as well as for domains with zero sample size (Rao 

and Molina, 2015). An area is defined as small, if the area is an unplanned domain and the specific 

sample size may not be large enough to provide reliable direct design-based estimates. Small areas 

can also be defined by the cross-classification of geographical areas by social, economic or 

demographic characteristics.    

 

SAE methods can be classified into two approaches: the unit-level and the area-level approach. The 

unit-level approach is used when covariates are available for each unit of the population, for 

example from census or administrative data, while the area-level approach is used when covariate 

information is known only at the area level. The use of the error-components model by Battese, 

Harter and Fuller (1988), also known as the Battese, Harter and Fuller (BHF) model, is commonly 

used for the unit-level SAE approach. In the SAE literature, estimation methods include empirical 

best linear unbiased prediction (EBLUP), empirical Bayes (EB), and hierarchical Bayes (HB). The 

EBLUP method can be used under linear mixed models, while the EB and HB methods can be used 

under generalized linear mixed models. For a review of these methodologies and their extensions 

we refer to Rao and Molina (2015).   

 

A second important issue we consider in this paper is the multidimensionality of wellbeing 

indicators. Although it is generally agreed that wellbeing is a multidimensional phenomenon 

(OECD, 2013), there is continuing debate about the suitability of combining social indicators based 

on taking their average or using a dashboard of single indicators. On the one hand, Ravallion (2011) 

argues that a single multidimensional composite indicator in the context of poverty measurement 

leads to a loss of information, and on the other hand, Yalonetsky (2012) points out that composite 

indicators are necessary when the aim is to measure multiple deprivations within the same unit 

(individual or household). For a theoretical review of statistical properties of multidimensional 

indicators obtained by multivariate statistical techniques and related problems we refer to 

Krishnakumar and Nagar (2008) and Bartholomew et al. (2008). 

 

Taking this latter view, an approach to reducing data dimensionality is to consider the 
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multidimensional phenomena as a latent variable construct measurable by a set of observed 

variables and estimated using a factor analysis model. Factor scores are estimated from a factor 

analysis model and are defined as a composite variable computed from more than one response 

variable. Indeed, factor scores provide details on each unit’s placement on the factor. When we have 

a substantive framework where a set of variables explains a latent construct, the confirmatory factor 

analysis modeling approach can be used. In the context of wellbeing measurement, a framework of 

indicators is generally provided a priori by official statistics or international organizations and thus 

are treated as fixed. The vector of unobserved variables represents a set of variables that jointly 

describe the underlying phenomenon. We note other work on the use of factor analysis modeling in 

latent wellbeing measurement to reduce data dimensionality in Ferro Luzzi, Fluckiger, and Weber 

(2008) and Gasparini et al. (2011). There are also other approaches which reduce dimensionality of 

measurement frameworks, such as the Fuzzy set approach in Lemmi and Betti (2006). Betti, 

Gagliardi, and Verma (2017) and Betti and Gagliardi (2017) discuss the variance estimation 

problem of multidimensional measures of poverty and deprivation obtained via the Fuzzy set 

approach using the jackknife method.  

 

Once factor scores are estimated from the factor analysis model, they can be used to conduct further 

statistical analysis. For instance, they can be used as dependent or independent variables of a 

regression or predictive analyses to answer particular research questions. Kawashima and Shiomi 

(2007) use factor scores in order to conduct an ANOVA analysis on high school students’ attitudes 

towards critical thinking and tested differences by grade level and gender. In addition, Bell, 

McCallum, and Cox (2003) investigated reading and writing skills where they extracted the factors 

and estimated factor scores before using them in a multiple regression analysis model. Skrondal and 

Laake (2001) note that using factor scores as dependent variables in regression modelling produces 

consistent estimates of model parameters since any measurement error from the factor analysis 

model is absorbed into the prediction error and coefficients are not attenuated (see also Fuller, 

1987). Also, as highlighted in Kaplan (2009), we can assume that the specific variances from the 

factor analysis model are very small compared to the prediction error.  

 

In the current literature on SAE of social indicators, there is a research gap on the estimation of 

multidimensional indicators. In particular, the use of factor scores and factor analysis in SAE 

models is an open area of research. This research area is important when we have to deal with data 

dimensionality in the estimation of social indicators at a local level. In this paper, we consider 

economic wellbeing as a latent variable construct with the aim of reducing the dimensionality of 

wellbeing indicators. We then implement the unit-level SAE approach on the factor scores in both a 
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simulation study and on real data from EU-SILC for the region of Tuscany, Italy.  

 

In particular, we address the problem of providing reliable small area estimation of 

multidimensional economic wellbeing phenomena starting from an established wellbeing 

measurement framework, such as the Italian Equitable and Sustainable Wellbeing framework 

(BES). As mentioned, these frameworks are already developed within countries and are commonly 

used for the measurement of the Sustainable Development Goals.   Therefore, we follow a two-step 

procedure: first latent variables are estimated based on the measurement framework via a 

confirmatory factor analysis model, and second the small area estimates along with their measures 

of uncertainty are computed via the EBLUP approach. 

 

This paper is organized as follows. In section 2, we describe the factor analysis model for reducing 

data dimensionality on a dashboard of economic wellbeing indicators. In section 3 we review the 

unit-level SAE approach according to the BHF model and present the point estimation of the 

EBLUP for small area means. In section 4, we show results of a simulation study considering factor 

scores for data dimensionality reduction and contrast our approach to the typical approach of 

averaging single univariate EBLUPs on the original variables. When averaging single univariate 

EBLUPS on the original variables, we consider both a simple average and a weighted average 

where the weights are defined by the factor loadings. Moreover, we develop a parametric bootstrap 

algorithm to estimate mean squared errors (MSE) of the EBLUP of factor score means and evaluate 

its properties. In section 5, we discuss multidimensional economic wellbeing in Italy considering 

indicators from the Italian framework BES (Equitable and Sustainable Wellbeing) 2015 (ISTAT 

2015). Also, using real data from EU-SILC 2009 for the area of Tuscany, we apply the proposed 

method and compute small area EBLUPs for factor score means and their mean squared error 

(MSE) for each Tuscany municipality (LAU 2). Finally, in section 6, we conclude with some final 

remarks and a general discussion. 

 

2. Using Factor Scores for Data Dimensionality Reduction   

In this section, we provide a general discussion on the use of factor analysis models to reduce data 

dimensionality and focus on the estimation of factor scores. Since the focus of the application in 

Section 5 is on measuring economic wellbeing based on a given substantive framework and a small 

number of single indicators, we consider here a one-factor analysis model. We acknowledge that in 

the presence of more complex multidimensional phenomena, one factor may not explain the total 

variability. Moretti, Shlomo and Sakshaug (2017) investigate the issue of multiple latent factors 

under a multivariate SAE approach.  
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2.1 Issues in Composite Indicators 

Multivariate statistical methods aim to reduce the dimensionality of a multivariate random variable 

𝒀. Formally, consider a 𝑅𝐾space, where 𝐾 denotes the number of observed variables where we want 

to represent the observations in a reduced space 𝑅𝑀with 𝑀 ≪ 𝐾. Bartholomew et al. (2008) 

suggests several multivariate statistical techniques in order to deal with data dimensionality 

reduction in the social sciences (e.g. principal component analysis, factor analysis models, multiple 

correspondence analysis, etc.). In this work, we consider the linear one-factor model, where the 

factor can be interpreted as a latent characteristic of the individuals revealed by the original 

variables. This model allows for making inference on the population, since the observable variables 

are linked to the unobservable factor by a probabilistic model to develop a composite indicator 

(Bartholomew et al., 2008).  

There is an ongoing debate about how to construct indicators which are useful for decision makers 

to inform policies. Saisana and Tarantola (2002) and Nardo et al. (2005) emphasize that composite 

indicators are important when a summary of multidimensional phenomena is needed and propose 

factor analysis models. Nardo et al. (2005) highlight that factor analysis models reduce the data 

dimensionality of a set of sub-indicators whilst keeping the maximum proportion of the total 

variability of the observed data.  

Given our focus on data dimensionality reduction from a well-established multidimensional 

wellbeing framework, the BES framework for Italy (ISTAT, 2015), the single indicators have 

already been grouped into wellbeing dimensions. One such dimension is the economic wellbeing 

dimension. Therefore, we use factor analysis models under a confirmatory approach. 

Factor scores are estimated from a confirmatory factor analysis model. They are defined as 

composite estimates providing details on a unit’s placement on the latent factor (DiStefano, Zhu and 

Mindrila, 2009). The factor scores, once estimated, are easy to interpret: they have the same 

economic interpretation of the observed responses as they are strongly linearly related to these via a 

linear model. 

 

There have been some first attempts in SAE and data dimensionality reduction using factor analysis 

(e.g. Smith et al., 2015). Here, the construction of the composite indicators was on the small area 

EBLUPs of the single indicators. In our approach, we first construct the composite indicator from 

the factor analysis model and then obtain small area estimates of the average factor score. We also 

focus on mean squared error (MSE) estimation for the estimates.  

 

2.2 The Linear One-Factor Analysis Model 
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Let us consider a 𝐾 × 1 vector of observed variables 𝒀 and we assume that they are linearly 

dependent on a factor 𝒇. Thus, we can write the following linking model (Kaplan, 2009): 

 

𝒀 = 𝚲𝒇 + 𝝐, (1) 

where 𝝐 denotes a vector 𝐾 × 1 containing both measurement and specific error, and 𝚲 is a 𝐾 × 1 

vector of factor loadings.  

 

It is assumed that: 

i) 𝐸(𝝐) = 𝟎, 

ii) 𝑉𝑎𝑟(𝝐) =  𝜣, 

iii) 𝝐 ∼ 𝑵(𝟎, 𝜣), 

iv) 𝝐’s components are uncorrelated, 

v) 𝐸(𝒇) = 0, 

vi) 𝐶𝑜𝑣(𝝐, 𝒇) = 𝟎. 

Therefore, the covariance matrix of the observed data is given by: 

 

𝚺 = 𝐶𝑜𝑣(𝒀𝒀′) = 𝚲Φ𝚲′ + 𝚯, (2) 

where Φ denotes the factor variance, and 𝚯 is a 𝐾 × 𝐾 diagonal matrix of specific variance. 

The maximum-likelihood (ML) approach is used to estimate the model parameters. ML equations 

under factor analysis models are complicated to solve, so iterative numerical algorithms are pro-

posed in the literature (see e.g. Mardia, Kent and Bibby 1979). The log-likelihood function ℓ of the 

data 𝒀 can be written as follows (Hardle and Simar, 2012): 

 

ℓ(𝒀; 𝚲, 𝚯) = −
𝑛𝐾

2
log(2𝜋) −

𝑛

2
log|𝚺| −

𝑛 − 1

2
𝑡𝑟(𝑺𝚺−1), 

(3) 

where 𝑺 denotes the sample covariance matrix. 

After the model parameters are estimated, the factor scores are also estimated. Factor scores are de-

fined as estimates of the unobserved latent variables for each unit i. For a review of estimated factor 
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scores we refer to Johnson and Wichern (1998). Using Bartlett’s method, the individual factor 

scores estimate for 𝑖 = 1, … , 𝑛 are given by (Bartholomew, Deary, and Lawn, 2009): 

 

𝑓𝑖 = �̂��̂�′�̂�−𝟏𝒚𝒊 . (4) 

Where �̂� = �̂�′�̂�−𝟏�̂� �̂� and 𝒚𝑖 denotes a K-dimensional vector of observations of K components of Y 

for 𝑖 = 1, … , 𝑛. 

Bartlett’s method produces unbiased estimates of the true factor scores (Hershberger, 2005). 

In the application presented in section 5, we also have binary dependent variables. According to 

Muthén and Muthén (2012) logistic regression is employed for binary dependent variables where 

the following transformation is applied in a single-factor model for each observed variable k: 

 

𝑙𝑜𝑔𝑖𝑡 [𝜋𝑘(𝒇)] = 𝑙𝑜𝑔
𝜋𝑘(𝒇)

1−𝜋𝑘(𝒇)
= 𝜆𝑘𝒇 , 𝑘 = 1, … , 𝐾.  

 

(5) 

where 𝜋𝑘(𝒇) denotes the probability that the dependent variable is equal to one, and 
𝜋𝑘(𝒇)

1−𝜋𝑘(𝒇)
 the 

odds. We can then write the following expression: 

 

𝜋𝑘(𝒇) =
exp (𝜆𝑘𝒇 )

1+exp (𝜆𝑘𝒇 )
,  

 

(6) 

which is monotonic in 𝒇 and with domain in the interval [0,1]. 

In the presence of binary and continuous observed variables and under a maximum likelihood 

estimation approach, the factor scores may be estimated via the expected posterior method 

described in Muthén (2012) and applied in Mplus, Version 7.4. 

 

3. Small Area Estimation using Empirical Best Linear Unbiased Prediction (EBLUP) 

A class of models for SAE is the mixed effects models where we include random area-specific 

effects in the models and take into account the between-area variation.  

 

3.1. Notation 

Let 𝑑 = 1, … , 𝐷 denote small areas for which we want to compute estimates of the target population 

parameter for each d, in our case the population mean  �̅�𝑑 of the factor score. For a sample 𝑠 ⊂ Ω of 

size 𝑛 drawn from the target population of size 𝑁, the non-sampled units, 𝑁 − 𝑛 are denoted by 𝑟. 
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Hence, 𝑠𝑑 = 𝑠⋂Ω𝑑 is the sub-sample from the small area 𝑑 of size 𝑛𝑑, 𝑛 = ∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. 

𝑟𝑑 denotes the non-sampled units for the small area 𝑑 of 𝑁𝑑 − 𝑛𝑑 dimension. 

 

3.2. Model based prediction using EBLUP 

We consider the small area estimation problem for the mean under the EBLUP approach in the BHF 

model. Focusing on the population parameter of factor score means �̅�𝑑 , 𝑑 = 1, … , 𝐷, and as the 

population mean is a linear quantity, we can write the following decomposition: 

 

�̅�𝑑 = 𝑁𝑑
−1 (∑ 𝑓𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝑓𝑑𝑖

𝑖∈𝑟𝑑

). 

 

(7) 

 

where 𝑓𝑑𝑖 is the population factor score for unit i within small area d assuming that the factor model 

is implemented on the whole population.  

  

When auxiliary variables are available at the unit level the BHF model can be used in order to 

predict the out-of-sample units. Considering the data for unit 𝑖 in area 𝑑 being (𝑓𝑑𝑖 , 𝒙𝑑𝑖
𝑇 ) where 𝒙𝑑𝑖

𝑇  

denotes a vector of 𝑝 auxiliary variables, the nested error regression model is the following: 

 

𝑓𝑑𝑖 = 𝒙𝑑𝑖
𝑇 𝜷 + 𝑢𝑑 + 𝑒𝑑𝑖, 𝑖 = 1, … , 𝑁𝐷 , 𝑑 = 1, … , 𝐷 

𝑢𝑑  ~iidN(0, 𝜎𝑢
2), 𝑒𝑑𝑖~iidN(0, 𝜎𝑒

2), independent. 

 

 

(8) 

In this model there are two error components, 𝑢𝑑 and 𝑒𝑑𝑖, the random effect and the residual error 

term, respectively. 

  

According to Royall (1970), we can write the best linear unbiased predictor (BLUP) for the mean as 

follows: 

 

�̃̅�𝑑
𝐵𝐿𝑈𝑃 = 𝑁𝑑

−1 (∑ 𝑓𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝑓𝑑𝑖

𝑖∈𝑟𝑑

). 

 

 

(9) 

Where 𝑓𝑑𝑖 = 𝒙𝑑𝑖
𝑇 �̃� + �̃�𝑑 is the BLUP of 𝑓𝑑𝑖, and �̃�𝑑 = 𝛾𝑑(𝑓�̅�𝑠 − �̅�𝑑𝑠

𝑇 �̃�) the BLUP of 𝑢𝑑. Here, 

𝑓�̅�𝑠 = 𝑛𝑑
−1 ∑ 𝑓𝑑𝑖𝑖∈𝑠𝑑

, �̅�𝑑𝑠 = 𝑛𝑑
−1 ∑ 𝑥𝑑𝑖𝑖∈𝑠𝑑

, and 𝛾𝑑 =
𝜎𝑢

2

𝜎𝑢
2+

𝜎𝑒
2

𝑛𝑑

∈ (0,1). 𝛾𝑑 is the shrinkage estimator 

measuring the unexplained between-area variability on the total variability.  
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Since in practice the variance components 𝜎𝑒
2 and 𝜎𝑢

2 are unknown, we replace these quantities by 

estimates, so we calculate the EBLUP of the mean: 

 

�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃 = 𝑁𝑑

−1 (∑ 𝑓𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝑓𝑑𝑖

𝑖∈𝑟𝑑

). 

 

(10) 

 

Where 𝑓𝑑𝑖 = 𝒙𝑑𝑗
𝑇 �̂� + �̂�𝑑 is the EBLUP of 𝑓𝑑𝑖. For details on  �̂� and �̂�𝑑 we refer to Rao and Molina 

(2015). As showed in Molina and Rao (2015), �̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃 can be also written as follows: 

 

�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃 =

𝑛𝑑

𝑁𝑑
𝑓�̅�𝑠 + (�̅�𝑑𝑝 −

𝑛𝑑

𝑁𝑑
�̅�𝑑𝑠)

𝑇

�̂� + (1 −
𝑛𝑑

𝑁𝑑
) �̂�𝑑 . 

(11) 

�̅�𝑑𝑝 denotes the means of the auxiliary variable in the population for the dth area.  

If the sample size in a small area is zero, it holds that �̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃 = �̅�𝑑𝑝�̂� = �̂̅�𝑑

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
 where �̅�𝑑𝑝 

denotes the means of the covariates in the population. 

 

3.3. Mean Squared Error Estimation 

The mean squared error (MSE) of (11) can be estimated via analytical approximations or 

resampling techniques. Prasad and Rao (1990) proposed an analytical approximation of MSE and 

González-Manteiga et al. (2008) proposed bootstrap techniques. Moreover, when large sample 

analytical approximations are available, the bootstrap might provide more accurate estimation 

alternatives to analytical approximations due to its second-order accuracy (González-Manteiga et 

al., 2008). Here, we suggest the use of a bootstrap method to estimate the MSE of (11). The 

bootstrap method proposed by González-Manteiga et al. (2008) has been adapted for the case of 

using factor score means as the dependent variable in the SAE models in order to take into account 

the variability arising from the factor analysis models. The steps are provided in appendix A and we 

evaluate our proposed algorithm via an extension to the simulation in Section 4.4. Analytical 

approximations of the MSE estimation of (11) under factor analysis models are a subject for future 

work.  

 

4  Simulation Study 

The simulation study was designed to assess the behavior of the EBLUP estimation of factor score 

means under a factor analysis model. We compare this approach with a weighted average of a 
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dashboard of standardized univariate EBLUPs calculated from the original variables. We use a 

simple average and a weighted average where the weights are obtained by the factor loadings. We 

also assess the bootstrap MSE estimation for the EBLUP of factor score means which will be used 

in the application in Section 5.  

The simulation is based on generating one population and drawing 500 simple random samples 

without replacement (SRSWOR) which is a mixture between a design- and model- based simulation 

approach where model assumptions are generally met and we mainly focus on sample variability. 

Drawing SRSWOR random samples from the population will result in the real setting of   

unplanned domains (zero sample sizes) within our small areas. Although EU-SILC may have 

complex survey designs, one important feature in the Italian EU-SILC for Tuscany is that every 

household (and hence adult in the household) has an equal inclusion probability (EPSEM) design 

and hence the simulation results based on an equal probability design are in line with the real data 

application. It is common to find in the literature other examples of simulation studies where simple 

random sampling is used to obtain unplanned domains, for example, Giusti, et al. (2013) used this 

approach when investigating a range of estimators also based on the EU-SILC. The subject of 

complex survey designs in SAE is a topic of ongoing research.  

 

4.1    Generating the population 

A single population is generated from a multivariate mixed-effects model, the natural extension of 

the BHF model (Fuller and Harter, 1987) with 𝑁 = 20,000, 𝐷 = 80, and 130 ≤ 𝑁𝑑 ≤ 420. 𝑁𝑑 is 

generated from the discrete uniform distribution, 𝑁𝑑 ∼ 𝒰(𝑎 = 130, 𝑏 = 420), with ∑ 𝑁𝑑
𝐷
𝑑=1 =

20,000 where the parameters are obtained from the Italian EU-SILC 2009 dataset used in the 

application in section 5. Here the multivariate model that we use to generate the population for the 

original variables (observed variables Y) is: 

 

𝒚𝑑𝑖 = 𝒙𝑑𝑖
𝑇 𝜷 + 𝒖𝑑 + 𝒆𝑑𝑖 , 𝑖 = 1, … , 𝑁𝐷 , 𝑑 = 1, … , 𝐷 

𝒖𝑑 ~iid𝑀𝑉𝑁(𝟎, 𝜮𝒖), 𝒆𝑑𝑖~iid𝑀𝑉𝑁(𝟎, 𝜮𝒆), independent. 

 

(12) 

𝒚𝑑𝑖 denotes a 3 × 1 vector of observed responses for unit 𝑖 belonging to area d. 

Two uncorrelated covariates are generated from the Normal distribution: 

𝑋1~𝑁(9.93,4.982), 𝑋2~𝑁(57.13,17.072). 

These parameters reflect two real variables in the Italian EU-SILC 2009 dataset: the years of 

education and age (although we use here a normal (non-truncated) distribution).  We selected K=3 

response variables from the Italian EU-SILC 2009 data: the log of income, squared meters of the 

house, and the number of rooms, and fit regression models using the covariates 𝑋1 and 𝑋2. 
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From these models, we estimate the beta coefficient matrix and standard errors to build the 

simulation population by the model in (12). The 𝜷(3 × 3) matrix of coefficients is given by: 

 

𝜷 = [
3.983 0.018 0.001
1.263 0.007 0.005
0.404 0.006 0.002

] 

 

The response vector was generated according to the following variance components, where the 

correlation was set at 0.5 as derived from the Italian EU-SILC 2009 data: 

 

𝜮𝑒 = [
0.063 0.028 0.021
0.028 0.049 0.018
0.021 0.018 0.027

]. 

 

We control the intra-class correlation 𝜌 defined as 𝜌𝑦𝑘
= 𝜎𝑢𝑦𝑘

2 /(𝜎𝑢𝑦𝑘
2 + 𝜎𝑒𝑦𝑘

2 ), for the kth component 

of Y and obtain the variance-covariance matrices of the correlated random effects. We chose three 

levels of intra-class correlations: 0.1, 0.3 and 0.8, and obtain the following matrices: 

 

𝜮𝑢
0.1 = [

0.00693 0.00306 0.00227
0.00306 0.00539 0.00200
0.00227 0.00200 0.00297

],  

𝜮𝑢
0.3 = [

0.02709 0.01195 0.00887
0.01195 0.02107 0.00782
0.00887 0.00782 0.01161

], 

𝜮𝑢
0.8 = [

0.25500 0.11112 0.08249
0.11112 0.19600 0.07275
0.08249 0.07275 0.10800

]. 

 

We first estimate the factor analysis model on the population to derive the population factor scores 

𝑓𝑖 ,  𝑖 = 1, … , 𝑁 according to (4).  These will be treated as true values in our simulation study.  

We note that although factor analysis models have been developed for multilevel structures within 

domains, it is not possible to use these models for unplanned domains given a random sample due 

to small and zero sample size domains. Thus, two-level factor analysis models in SAE is a subject 

for future work.  

 

To derive the population factor scores, we first estimate an explanatory (unrestricted) factor analysis 

model (EFA) on the whole population, allowing for all possible factors. The EFA is estimated to 

check and identify the underlying relationships between observed variables (Norris and Lecavalier, 
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2009). The EFA results show that the first factor explains a large amount of the total variability. 

Table 1 shows the estimated eigenvalues under different scenarios and Figure 1 the scree plots. The 

eigenvalue represents the variance of factor m, and measures the variance in all the variables which 

is accounted for by that factor. With a large eigenvalue for the first factor, we then fit a one-factor 

confirmatory factor analysis model (CFA) on the population and estimate the population-based 

factor scores. The CFA one-factor model provides good fit statistics: 𝑅𝑀𝑆𝐸𝐴 = 0 and 𝐶𝐹𝐼 = 1, 

𝑇𝐿𝐼 = 1 (Hu and Bentler, 1999).  

 

  Scenario 

  𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.8 

F
a
ct

o
rs

 1 2.060 2.055 2.139 

2 0.450 0.478 0.448 

3 0.440 0.450 0.402 

 

 

 

 

We now define the following ‘true’ values for each of the small areas d from our simulated 

population for 𝑖 = 1, … , 𝑁, area 𝑑 = 1, … , 𝐷, and variables 𝑘 = 1, … , 𝐾:  

 the factor score means in area d: �̅�𝑑 = 𝑁𝑑
−1 ∑ 𝑓𝑑𝑖𝑖 ,  

 simple average of the observed variable standardized means in area d: �̅�𝑑
𝑆_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

=
∑ �̅�𝑑𝑘

∗𝐾
𝑘=1

𝐾
; 

 weighted average of the observed variables standardized means in area d using the factor 
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Table 1  Eigenvalues from the EFA of the simulation population    

Figure 1 Scree plots from the EFA of the simulation population   
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loadings: �̅�𝑑
𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

=
∑ �̂�𝑘�̅�𝑑𝑘

∗𝐾
𝑘=1

∑ �̂�𝑘
𝐾
𝑘=1

 . 

�̅�𝑑𝑘
∗  denotes the standardized (mean zero and unit variance) true mean in area d and variable k where 

the standardization is obtained by subtracting the overall mean across all the areas and dividing by 

the standard deviation.  �̂�𝑘 denotes the estimated loading related to the kth variable in the population 

obtained from the above CFA.    

 

We highlight again that under factor analysis model assumptions the factor scores are strongly 

linearly related to the observed variables and have the same economic interpretation as the observed 

variables. 

 

4.2    Simulation steps 

The simulation study consists of the following steps: 

1. Draw 𝑆 = 1, … ,500 samples using simple random sampling without replacement (note that this 

results in unplanned domains with small or zero sample size);      

2. Fit the one-factor confirmatory factor analysis model on each sample and estimate the EBLUP 

of factor score means for each area d in each sample. We also calculate Horvitz-Thompson (HT) 

(Horvitz and Thompson, 1952) direct estimates of the factor score means for those areas with a 

non-zero sample size. In addition, the EBLUP for each of the original variables is also estimated 

in order to construct a simple average of the standardized small area EBLUPs and a weighted 

average using the factor loadings;  

3. As the true values are known from the simulation population, we are able to calculate the root 

mean squared error (RMSE) and the relative bias (RBIAS) for each area d for the three types of 

estimates: EBLUPs of factor score means, and the simple and weighted average of EBLUPs. 

For example, for the EBLUPs of factor score means the RMSE is:  

 

𝑅𝑀𝑆𝐸(�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃)

𝑑
= √𝑆−1 ∑(�̂̅�𝑑𝑠

𝐸𝐵𝐿𝑈𝑃 −  �̅�𝑑)
2

 

𝑆

𝑠=1

 

 

 

(13) 

and the RBIAS is: 

𝑅𝐵𝐼𝐴𝑆(�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃)

𝑑
= 𝑆−1 ∑

(�̂̅�𝑑𝑠
𝐸𝐵𝐿𝑈𝑃 −  �̅�𝑑)

 �̅�𝑑

𝑆

𝑠=1

, 

       (14) 
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4. For the overall comparison across all areas, we rank the small areas according to the estimates 

averaged across the 500 samples and compare each to the ranking in the population. We also 

examine the average of the RMSE and RBIAS across all areas.   

 

We estimate the EBLUP for each original variable separately on each of 500 samples, and then 

standardize them and construct weighted and simple averages. These are compared to the true 

values in the simulation population. The weighted mean in area d after standardizing the EBLUP 

estimates estimated on each sample s are given as follows:  

 

�̂̅�𝑑𝑠
𝐸𝐵𝐿𝑈𝑃_𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

=
∑ (�̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃∗�̂�𝑘𝑠)𝐾
𝑘=1

∑ �̂�𝑘𝑠
𝐾
𝑘=1

, 𝑑 = 1, … , 𝐷, 𝑘 = 1, … , 𝐾, 

 

(15) 

where 𝑘 denotes the kth variable and �̂�𝑘𝑠 the factor loading estimated on the sth sample for the kth 

variable, and the standardized EBLUP of the mean is calculated as follows:  �̂̅�𝑑𝑘𝑠
𝐸𝐵𝐿𝑈𝑃∗ = (�̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 −

𝑀𝑘𝑠
𝐸𝐵𝐿𝑈𝑃)/𝑆𝐷𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 where 𝑀𝑘𝑠
𝐸𝐵𝐿𝑈𝑃 = 𝐷−1 ∑  �̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃
𝑑 , and 𝑆𝐷𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 =

√(𝐷 − 1)−1 ∑  (�̂̅�𝑑𝑘𝑠
𝐸𝐵𝐿𝑈𝑃 − 𝑀𝑘𝑠

𝐸𝐵𝐿𝑈𝑃)2
𝑑 . 

 

In the following tables and figures we dropped the subscript d as we show the estimates averaged 

across all small areas. 

 

4.3    Results: factor scores versus weighted and simple averages of standardized EBLUPs 

In this section we show the main results of the simulation study. Table 2 contains the average 

eigenvalues across 500 samples under the EFA model and can be compared to Table 1 obtained 

from the simulation population. We can see that we are able to obtain good estimates for the 

eigenvalues across the samples. In parentheses we show the ratios between the sample and 

population eigenvalues. Table 3 presents the intra-class correlation coefficients estimated from the 

SAE model (averaged across 500 samples) showing that we approximate the known intra-class 

correlation coefficients as defined in the simulation population.   
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  Scenario 

  𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.8 

F
a
ct

o
rs

 1 2.058 (0.999) 2.050 (0.998) 2.135 (0.998) 

2 0.445 (0.989) 0.473 (0.990) 0.442 (0.987) 

3 0.442 (1.005) 0.455 (1.011) 0.405 (1.007) 

 

 

Scenario 

𝝆 = 𝟎. 𝟏 𝜌 = 0.3 𝜌 = 0.8 

0.108 0.325 0.795 

Table 3 Average intra-class correlation  �̂� =
�̂�𝑢

2

�̂�𝑢
2+�̂�𝑒

2 estimates across 500 samples 

 

For each of the three estimates in small area d averaged across the 500 samples, we compare the   

ranking of the small area domain estimates with the true ranking based on true area means 

according to our simulation population using a Spearman’s correlation coefficient. These are shown 

in Table 4. The EBLUPs of the factor score means show an improvement and higher correlation to 

the true means in the population compared to the averages of EBLUPs, especially for the case of  

𝜌 = 0.1.  

 Scenario 

 𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.8 

�̂̅�𝑬𝑩𝑳𝑼𝑷_𝑺_𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝒔 0.780 0.996 0.999 

�̂̅�𝑬𝑩𝑳𝑼𝑷_𝑾_𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝒔 0.793 0.996 0.998 

�̂̅�𝑬𝑩𝑳𝑼𝑷 0.986 0.997 0.999 

Table 4 Spearman's correlation estimates for the three approaches  

Table 2 Average eigenvalues across 500 samples from EFA model.  

Entries in parenthesis are ratios between the sample and population eigenvalues. 
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Figure 2 RMSE for Direct estimates and EBLUP of factor score means for small areas with 𝑛𝑑 > 0. 

 

Figure 2 shows the individual RMSE of the small areas for those areas with non-zero sample sizes. 

In line with the SAE literature the EBLUP approach produces estimates with lower variability than 

direct HT estimates. Table 5 shows the overall RMSE comparison defined in (10) across 500 

samples for the EBLUPs of factor scores, and simple and weighted standardized EBLUPs. We do 

not show the overall relative bias RBIAS across the samples and areas since the estimates are all 

unbiased. In contrast to Figure 2, Table 5 presents the minimum, mean and maximum RMSE across 

all areas including those areas that had zero sample size and hence the synthetic estimator 

�̂̅�𝑑
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

= �̅�𝑑𝑝�̂� where �̅�𝑑𝑝 denotes the means of the covariates in the population is used as the 

final estimator. The maximum values in Table 5 are generally obtained for those areas with zero or 

very small sample sizes. The larger the sample size, the smaller the RSME. The overall RMSEs for 

the EBLUP factor score means are lower than in the case of the simple and weighted averages of 

the dashboard of single EBLUPs for all levels of intra-class correlations, even after taking into 

account the extra modeling step of estimating factor scores. Hence, applying the EBLUP method on 

factor score means provides more precise estimates whilst reducing the data dimensionality of 

multiple observed variables.  

 

Approach Statistics Scenario 

  𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.8 

�̂̅�
𝑬𝑩𝑳𝑼𝑷_𝑺_𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝒔

 Min 0.590 0.247 0.083 

Mean 1.432 0.336 0.119 

Max 4.566 0.549 0.165 

�̂̅�
𝑬𝑩𝑳𝑼𝑷_𝑾_𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝒔

 Min 0.610 0.247 0.083 
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Mean 0.793 0.334 0.118 

Max 1.984 0.549 0.165 

�̂̅�𝑬𝑩𝑳𝑼𝑷 Min 0.085 0.094 0.065 

Mean 0.140 0.125 0.090 

Max 0.276 0.262 0.130 

Table 5 RMSE estimates: comparison across 500 samples for the three approaches  

 

4.4  Bootstrap MSE Estimation 

In the application, we will use the algorithm defined in Appendix A to estimate the MSE of the 

EBLUP of the factor score means using a modified parametric bootstrap which take into account the 

variability arising from the factor analysis model. We extend here the simulation for the case of the 

intra-class correlation of 0.3 to assess the properties of our proposed bootstrap MSE estimation.  

 

We compare the bootstrap RMSE according to the algorithm in Appendix A with the empirical 

RMSE (ERMSE) obtained across the 500 samples calculated as 𝐸𝑅𝑀𝑆𝐸(�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃) =

√𝑆−1 ∑ (�̂̅�𝑑𝑠
𝐸𝐵𝐿𝑈𝑃𝑆

𝑠=1 − �̅�𝑑)2. We consider the ERMSE as the “true” MSE and assess whether our 

proposed modified parametric bootstrap MSE estimator is unbiased.     

 

Figure 3 shows the ratio between the parametric bootstrap RMSE averaged across the 500 samples 

under two settings: (1) treating the factor scores as fixed, and (2) accounting for the variability of 

the factor analysis model, against the ERMSE. It can be seen that the RMSE estimated via 

parametric bootstrap without accounting for the factor model is underestimated with a relative bias 

of -34.6% across the small areas. However, the relative bias across the small areas when accounting 

for the variability in the factor analysis model is negligible at 4.0%.  

To illustrate this point further, Figure 4 presents the coverage rate comparisons of the parametric 

bootstrap estimated MSE   taking into account the factor analysis model variability and   ignoring 

the factor analysis model variability. There are significantly smaller coverage rates if we ignore the    

factor analysis model variability. The coverage rate when taking the variability into account   is 

relatively stable at 95%.   

 

Therefore, we conclude from this extension to the simulation study that treating the factor scores as 

fixed in the standard parametric bootstrap approach leads to a severe underestimation in the RMSE 

and our modified parametric bootstrap in Appendix A performs well.   
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Figure 3 Ratios between bootstrap RMSE and empirical RMSE estimated via bootstrap taking into 

account the factor analysis model variability (---) and bootstrap ignoring the factor analysis model 

variability (__). 

 

 

Figure 4 Coverage rates comparisons: bootstrap RMSE estimated taking into account the factor 

analysis model variability (---) and bootstrap ignoring the factor analysis model variability (__). 

 

4.5 Final remarks of the simulation study 

The use of factor scores provides better rankings to true values compared to weighted and simple 

averages of single variables, especially for the case of small intra-class correlations which are more 

common in real settings. Furthermore, it can be seen that factor scores provide estimates with lower 
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variability (in terms of RMSE) than weighted and simple averages of single variables for estimating 

multidimensional phenomena at the small area level. We also conclude that it is crucial to consider 

the variability arising from the factor analysis model in the parametric bootstrap MSE estimation; 

otherwise, the true MSE will be underestimated.  

Based on these results, we use the EBLUP of the factor score means approach to reduce the 

dimensionality of observed variables in a real application using the Italian 2009 EU-SILC data for 

the Tuscany region and the modified parametric bootstrap procedure for MSE calculations in 

Section 5. 

 

5 Economic Wellbeing in Tuscany: a Multidimensional Approach 

The aim of this section is to demonstrate how we can provide estimates of an economic wellbeing 

indicator following the BES guidelines for Tuscany municipalities. In our application, we use data 

from the EU-SILC 2009 and the 2001 General Census of Population and Housing. We note that the 

EU-SILC 2009 data were collected several years after the census and this is a limitation of the study 

since we assume stationarity of growth between the periods. Obviously the economic and financial 

crisis occurring in 2008 violates this assumption and further studies are needed with more current 

covariates. Nevertheless, the application is useful to demonstrate how small area estimates can be 

calculated for a multidimensional indicator. The specification of the main R functions used in this 

analysis are presented in Appendix C.  

  

5.1   Data and variables 

Income and economic resources can be seen as conditions by which an individual is able to have a 

sustainable standard of life. One of the dimensions in the Italian Equitable and Sustainable 

Wellbeing (BES) framework is dedicated to Economic Wellbeing (ISTAT 2015). It consists of ten 

single economic-related indicators (a dashboard of indicators). In this work, we focus on a subset of 

these highly correlated variables: 

 Severe material deprivation according to Eurostat; 

 Equivalized disposable income; 

 Housing ownership; 

 Housing density. 

Appendix B in Figure B1 contains the variables nomenclature for the 2009 Tuscany EU-SILC 

dataset used in our study and descriptive statistics of these study variables which are explained in 

the next sections.   

Material deprivation can be defined as the inability to afford some items considered to be desirable, 

or even necessary, to achieve an adequate standard of life. Indicators related to this are absolute 
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measures useful to analyze and compare aspects of poverty in and across EU countries (Eurostat, 

2012). According to Eurostat, material deprivation in the EU can be measured by the proportion of 

people whose living conditions are severely affected by a lack of basic resources. Technically, the 

severe material deprivation rate shows the proportion of people living in households that cannot 

afford at least four of the following nine items because of financial difficulty: 

1. Mortgage or rent payments, utility bills, hire purchase installments or other loan payments;  

2. One-week holiday away from home;  

3. A meal with meat, chicken, fish or vegetarian equivalent every second day;  

4. Unexpected financial expenses;  

5. A telephone (including mobile telephone);  

6. A color TV;  

7. A washing machine;  

8. A car;  

9. Heating to keep the home sufficiently warm. 

It can be argued that some of these indicators (e.g. 5 and 6) are nowadays less relevant than in the 

past. Nevertheless, these indicators are still used to describe the difficulties that households face in 

achieving a standard of life considered to be sufficient by society. This index is described in Table 

B3 in Appendix B. Disposable household income is the sum of gross personal income components 

plus gross income components at the household level minus employer’s social insurance 

contributions, interest paid on mortgage, regular taxes on wealth, regular inter-household cash 

transfer paid and tax on income. In order to take into account differences in household size and 

composition, we consider disposable equivalized income 𝐼𝐷𝐸  defined as follows: 

 

𝐼𝑖
𝐷𝐸 =

𝐼𝑖
𝐷

𝑛𝑖
𝐸 , 𝑖 = 1, … , 𝑁,  

 

(16) 

 

where 𝑖 = 1, … , 𝑛 denotes households, 𝐼𝑖
𝐷 is the disposable household income, 𝑛𝑖

𝐸 is the equivalized 

household size calculated in the following way (Haagenars et al., 1994): 

 

𝑛𝑖
𝐸 = 1 + 0.5 ∙ (𝐻𝑀14+ − 1) + 0.3 ∙ 𝐻𝑀13−, 

 

(17) 

where 𝐻𝑀14+ and 𝐻𝑀13+ are the numbers of household members aged 14 and over and 13 or 

younger at the end of the income reference period, respectively. This so-called ‘OECD modified 

scaling’ procedure is crucial to taking into account the economy of scales in the household. Due to 

the skewness of the variable, we use the log transformation in the factor model and SAE. The 
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histograms are in Figure B2 and descriptive statistics in Table B1 of Appendix B. Housing 

ownership is measured by a dichotomous variable (0,1) where 0 denotes that the property where the 

household lies is not owned. According to the 2009 Tuscany EU-SILC data, 73.96% of households 

own the property where they live (see Table B3 in Appendix B. Overcrowding is one of the 

indicators that National Statistics Institutes include in their wellbeing measurement frameworks.  A 

very simple indicator of housing density is given by the ratio between the number of rooms in the 

household (excluding kitchen, bathroom and rooms used for work purposes) and the household size:    

 

�̅�𝑖 =
𝑅𝑖

𝑀𝑖
 

(18) 

  

where 𝑖 is the household, 𝑀𝑖 denotes the number of people in the ith household, and 𝑅𝑖 the number 

of rooms in the household. The histogram of this variable is in Figure B3 and descriptive statistics 

are in Table B2 of Appendix B. 

  

EU-SILC is conducted yearly by ISTAT for Italy, and coordinated by EUROSTAT at the EU level.  

The survey is designed to produce accurate estimates at the national and regional levels (NUTS-2). 

Hence, for the Italian geography the survey is not representative of provinces, municipalities 

(NUTS-3 and LAU-2 levels, respectively), and lower geographical levels. The regional samples are 

based on a stratified two-stage sample design. The Primary Sampling Units (PSUs) are the 

municipalities within the provinces, and households are the Secondary Sampling Units (SSUs). The 

PSUs are stratified according to their population size and SSUs are selected by systematic sampling 

in each selected PSU. Each household has an equal probability of selection. The total number of 

households in the sample for Tuscany is 1,448.  

The 14th Population and Housing Census 2001 surveyed 1,388,252 households of persons living in 

Tuscany permanently or temporarily, including the homeless population and persons without a 

dwelling.  

 

5.2 The construction of the factor scores 

The one-factor analysis model described in section 2 is fitted, and according to the goodness-of-fit 

statistics estimated on the one-factor model solution, the Root Mean Squared Error of 

Approximation (RMSEA=0.047) and the Comparative Fit Index criteria (CFI=0.966), the model 

provides good fit (Hu and Bentler 1999). This choice can be justified also substantively as our 

variables relate to economic wellbeing according to the BES framework, which is the phenomenon 



 22 

we want to measure.  

The histogram, Q-Q plot, and box-plot of the factor scores are shown in Figure 5 as well as 

descriptive statistics in Table 6. We see evidence of a slight skewness in the factor scores likely due 

to discrete variables included in the factor analysis model. One interesting thing to note based on 

Table B4 in Appendix B is that the estimated intra-class correlation (ICC) for the factor scores is 

0.1987 which is considerably higher than the estimated ICC’s for the single study variables, thus as 

seen in the simulation study, we expect that the EBLUP of the factor scores will provide good 

rankings of the small areas compared to weighted and simple averages. 

 

 

Figure 5 Factor scores distribution graphs. 

 

Min. 1st Qu. Median Mean 3rd Qu. Max S.d. 𝐈𝐂�̂� 

-4.2630 -0.3712 0.1050 0.0034 0.4120 2.0940 0.6436 0.1987 

Table 6 Descriptive statistics of factor scores. 

 

5.3 Small area estimates 

In this application we treat municipalities as our small areas of interest. The municipalities within 

Tuscany are unplanned domains in EU-SILC and only 59 out of 287 were sampled. Sample sizes in 
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municipalities range from 0 to 135 households.  

 

First, we provide direct estimates for the small areas with 𝑛𝑑 > 0. After this, we build a SAE model 

under the BHF approach where the response variable is the factor score interpreted as the latent 

economic wellbeing construct. The exploratory variables in the model relate to the head of the 

household and are those common to both the survey and Census data. In particular, after a 

preliminary analysis of the available data we chose gender, age, year of education, household size, 

size of the flat (in squared meters), and employment status as the explanatory variables.  

 

The single EBLUPs of the dashboard indicators have been estimated to construct the simple and 

weighted averages, as was done in the simulation study. In the case of binary variables the 

following linear logistic mixed effects model was fitted (MacGibbon and Tomber 1989): 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑑𝑖) = 𝑙𝑜𝑔 (
𝑝𝑑𝑖

1 − 𝑝𝑑𝑖
) = 𝒙𝑑𝑖

𝑇 𝜷 + 𝑢𝑑 , 
(19) 

where 𝑝𝑑𝑖 is the probability that 𝑦𝑑𝑖 = 1 and 𝑢𝑑  ~iidN(0, 𝜎𝑢
2). 

 

In Figure 6 we compare the relative root mean squared error (RRMSE) of the EBLUPs of factor 

score means with the coefficients of variation of the direct estimates for the sampled areas (to the 

right of the vertical line). We also include in Figure 6 the RRMSE for the non-sampled areas where 

𝑛𝑑 = 0 (to the left of the vertical line). Here, the estimates of the MSE for the predictions are 

obtained via the modified parametric bootstrap with 𝐵 = 500 bootstrap samples as described in 

Appendix A. We can see the gain in efficiency (in terms of reduction in the RRMSE) obtained by 

the EBLUP compared to the direct estimates and in particular the RRMSE’s are below 10%. In 

addition, even when the synthetic estimators are used in those areas with zero sample sizes, we still 

obtain an RRMSE that is below 20%. We note that an estimator with an RRMSE below 20% are 

considered reliable estimates (Australian Bureau of Statistics, 2015).    
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Figure 6 RRMSE direct estimates (__) and EBLUPs (---) ordered by growing sample size. 

 

To facilitate the interpretation and provide a comparison between the different economic wellbeing 

indicators obtained from the EBLUP factor score means and the simple and weighted averages of 

the dashboard of EBLUPs, we have normalized the EBLUPs using the ‘Min-Max’ method (OECD-

JRC, 2008), with range [0,1]. For the factor score EBLUPs, the normalization (denoted with a ‘*’) 

is as follows: 

 

�̂̅�𝑑
∗𝐸𝐵𝐿𝑈𝑃 =

�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃 − min (�̂̅�𝐸𝐵𝐿𝑈𝑃)

max(�̂̅�𝐸𝐵𝐿𝑈𝑃) − min (�̂̅�𝐸𝐵𝐿𝑈𝑃)
, 𝑑 = 1, … , 𝐷, 

 

(20) 

 

where �̂̅�𝐸𝐵𝐿𝑈𝑃 = 𝑐𝑜𝑙1≤𝑑≤𝐷 �̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃. And similarly, for the simple and weighted averages of the 

dashboard of standardized EBLUPs.  

 

Table 7 shows the percentiles for the latent economic wellbeing indicator based on the normalized 

EBLUP factor scores and the normalized averages of the dashboard of EBLUPs. Figure 7 and 

Figure 8  depict the maps of the quartiles of the EBLUPs under the different approaches for the 

Tuscany region. 

 

Percentile 0% 25% 50% 75% 100% 

EBLUP 0.0000 0.5110 0.5468 0.5819 1.0000 
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Simple 0.0000 0.4297 0.5297 0.6061 1.0000 

Weighted 0.0000 0.4796 0.6006 0.7184 1.0000 

Table 7 Percentiles for the transformed latent economic wellbeing indicator based on the EBLUP of 

factor score means and simple and weighted averages 

 

 

Figure 7 Latent economic wellbeing indicator based on transformed EBLUP of factor scores means 

{1=1st quartile; 2=2nd quartile; 3=3rd quartile; 4=4th quartile} 

 

Figure 8 Latent economic wellbeing indicator based on simple and weighted averages of single 

EBLUPs {1=1st quartile; 2=2nd quartile; 3=3rd quartile; 4=4th quartile}. 

 

In the maps of Figure 7 and Figure 8 a darker color denotes a better wellbeing phenomenon. 

Looking at these figures we can draw some interesting conclusions on economic wellbeing in the 

EBLUP simple averages

1
2
3
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EBLUP weighted averages

1
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Tuscany region. 

 

The municipalities located in the Massa-Carrara province, which is based in the North of Tuscany 

(i.e. Pontremoli and Zeri municipalities), and municipalities based in Grosseto province (south of 

Tuscany), are the poorest ones. The small areas based in the Florence province are wealthy 

municipalities, as well as the ones located in the center of the region (Siena province). The lowest 

point estimates of the latent economic wellbeing indicator are estimated for Carrara and Seravezza 

municipalities, and the highest values for Firenze and Arezzo municipalities. Our results based on 

the EBLUPs of the factor scores in Figure 7 are more comparable with other SAE studies on 

welfare and poverty in Tuscany (Marchetti, Tzavidis, and Pratesi 2012; Giusti et al. 2015) compared 

to the averages of a dashboard of EBLUPs in Figure 8, though previous SAE studies consider only 

income variables rather than a composite indicator used here. This is not surprising given the low 

ICCs for each of the individual EBLUPs that form the dashboard which may result in more 

distortions on the rankings, particularly since some of the individual EBLUPs are based on discrete 

variables.   

 

5.4 Model diagnostics 

We assess the fit of the model by analyzing the level-1 and level-2 standardized residuals. In 

particular, the Q-Q plots of the residuals, shown in Figure 9 and Figure 10 show the leverage 

measures versus standardized scaled residuals from the linear model. Both figures show a presence 

of outliers in the left tail, although the factor scores distribution is approximately symmetric. Figure 

10 also shows the contour of the Cook’s distance which does not deviate much from zero and hence 

we can conclude that the outliers are not influential.  

 

Figure 9 Q-Q plots for the level-1 and level-2 residuals of the BHF model fitting. 
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Figure 10 Standardized residuals versus leverage measure. 

 

6 Conclusion and Discussion  

In this paper we evaluated a method to estimate the mean of a latent economic wellbeing indicator 

at the local level for Tuscany using factor scores to reduce data dimensionality. We focused on the 

factor scores because they can be seen as a latent economic wellbeing composite variable. The 

simulation study demonstrated that factor score means provide a better ranking of the small areas 

compared to the true population means as measured by the Spearman’s correlation coefficient, 

especially when intra-class correlations are small, which is common in real settings. The simple and 

weighted averages of univariate standardized EBLUPs also provide good rankings for the higher 

intra-class correlations that were examined. In addition, the use of factor scores provided more 

precise estimates in terms of the MSE for an estimate of a multidimensional phenomenon compared 

to the averages of the EBLUPs. The use of factor analysis models and factor scores has important 

advantages and implications in data dimensionality reduction: it avoids arbitrary weighting of single 

indicators and it generates continuous composite scores, which can be modeled using model-based 

SAE methods. Since the factor scores are strongly linearly related to the multidimensional observed 

variables, this leads to easier interpretation. 

 

Another important point studied in this paper, is the MSE estimation of EBLUPs of factor score 

means. In this work, we proposed a modification to the González-Manteiga et al. (2008) parametric 

bootstrap algorithm to account for the additional variability added to the small area estimates by 

using factor scores obtained from a factor analysis model as the dependent variable. This has been 

tested via simulation and we showed that if the variability arising from the factor analysis model is 

ignored, the MSE is underestimated and therefore biased. For more theoretical details on the 

bootstrap, we refer to González-Manteiga et al. (2008). Analytical MSE approximations are left for 
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future work.  

 

There are several areas where this work could be extended. Future work might consider other 

geographical levels, such as SLL (Sistemi Locali del Lavoro – Labor Local System), by looking at 

the flow of daily travel home/work (commuting) detected during the General Census of Population 

and Housing. Further interesting applications would involve comparisons between Italian regions in 

the North, Central, and South. 

 

Another worthwhile extension is accounting for more than one factor. When the goal is to reduce 

the dimensionality of the original data by identifying latent factors, one might face the issue of 

identifying multiple factors. Multiple latent factors can arise, particularly when we have many 

indicators referring to the same phenomenon which can be grouped substantively into subdomains. 

For example, if the goal is to study housing quality we may want to consider the following 

dimensions: type of dwelling and tenure status, housing affordability, and housing quality (e.g. 

overcrowding, housing deprivation, problems in the residential area). For multiple latent factors, we 

may have factor scores that are correlated, and hence future research should explore the use of the 

multivariate mixed effects model (Fuller and Harter, 1987). Datta, Day, and Basawa (1999) showed 

that the use of the multivariate mixed effects model might lead to gains in efficiency in terms of 

MSE for the EBLUP compared to the BHF model. Therefore, the multivariate small area estimation 

method might provide better dashboard estimates and averages if the correlation between the single 

variables is taken into account. These extensions are currently being carried out in Moretti, Shlomo 

and Sakshaug (2017).  
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Appendix A: Parametric bootstrap procedure for the EBLUPs of factor scores MSEs. 

 

Here we show the bootstrap steps for the EBLUP’s MSE. The bootstrap procedure is the one 

proposed by González-Manteiga et al. (2008) and we particularize the algorithm by taking into 

account the factor analysis model variability (in step 1). 

 

1. Draw 𝑏 = 1, … , 𝐵 simple random samples with replacement from the observed sample S and 

estimate factor analysis models to obtain factor scores. After this, the usual parametric bootstrap 

proposed by González-Manteiga et al. (2008) is run for the 𝑏 =  1 … , 𝐵 bootstraps. 

2. Fit the Battese, Harter and Fuller model to the sampled units 𝒇𝑏 = (𝒇1𝑏
′ , … , 𝒇𝐷𝑏

′ )′, and estimate 

the model parameters �̂�, �̂�𝑢
2 and �̂�𝑒

2. 

3. Generate 𝑢𝑑
∗(𝑏)

~iidN(0, �̂�𝑢
2), 𝑑 = 1, … , 𝐷, which are the bootstrap area effects. 

4. Generate the bootstrap errors for the sample units 𝑒𝑑𝑖
∗(𝑏)

~iidN(0, �̂�𝑒
2),  independently of the 𝑢𝑑

∗(𝑏)
 

and the error domain means  �̅�𝑑
∗(𝑏)

~iidN (0,
�̂�𝑒

2

𝑁𝑑
) , 𝑑 = 1, … , 𝐷. 

5. Calculate the true means for each small area of the bootstrap population as follows: 

�̅�𝑑
∗(𝑏)

=  �̅�𝑑
′ �̂� + 𝑢𝑑

∗(𝑏)
+  �̅�𝑑

∗(𝑏)
, 𝑑 = 1, … , 𝐷, 

where �̅�𝑑
′  denotes the means of the population (auxiliary variables). 

 

6. Generate the responses for the sample units by using the sample covariates vectors 𝒙𝑑𝑖, 𝑖 ∈ 𝑠𝑑: 

𝐹𝑑𝑖
∗(𝑏)

=  𝒙𝑑𝑖
′ �̂� + 𝑢𝑑

∗(𝑏)
+  𝑒𝑑

∗(𝑏)
, 𝑑 = 1, … , 𝐷. 

7. Fit the nested errors model to the bootstrap sample data 𝐹𝑑𝑖
∗(𝑏)

 and obtain the bootstrap EBLUPs 

�̂̅�𝑑
∗(𝑏)

, 𝑑 = 1, … , 𝐷. 

8. Replicate steps from 1 to 7 for 𝑏 = 1, … , 𝐵. The Monte Carlo approximation of the bootstrap 

estimator of the EBLUP is given by: 

 

𝑚𝑠𝑒(�̂̅�𝑑
𝐸𝐵𝐿𝑈𝑃) =

1

𝐵
∑ (�̂̅�𝑑

∗(𝑏)
− �̅�𝑑

∗(𝑏)
)

2

, 𝑑 = 1, … , 𝐷𝐵
𝑏=1 . 

�̅�𝑑
∗(𝑏)

 denotes the true mean and �̂̅�𝑑
∗(𝑏)

 the EBLUP for the area 𝑑 for replicate 𝑏. 

 

 

 

We run the bootstrap procedure with B=500 both in the simulation and application. 
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Appendix B: EU-SILC data study variables 

 

Here we describe the Italian EU-SILC 2009 data nomenclature and show some descriptive statistics 

on the study variables. 

 

Variable name Description 

FCOM Area code: comune (municipality) 

HOUSEHOLD CROSS-SECTIONAL WEIGHT Cross-sectional survey weight 

TOTAL DISPOSABLE HOUSEHOLD INCOME Total disposable household income 

STANZE Rooms in the flat (except: kitchen, toilet and bathroom, 

hallway, corridor, rooms used for work purposes). 

GODAB_B House ownership variable indicator 

Material deprivation variables  

IMPREV Ability to deal with unexpected expenses of €1000 

FERIE Affordability of one week per year away from home 

PASTO Affordability of a meat or chicken, or fish (or equivalent 

vegetarian) every two days 

RISADE Capacity of heating the house properly 

LAVATR Washing machine ownership 

TV TV ownership 

AUTO Car ownership 

CELL Telephone ownership 

PAGAFF Difficulties in paying the rent 

PAGBOL Difficulties in paying bills 

PAGALDEB Difficulties in paying loans or something similar 

PAGMUT Difficulties in paying the mortgage 

Figure B1. Italian EU-SILC variables nomenclature 
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Figure B2. Disposable equivalized income histogram 

 

 

Min. 1st Qu. Median Mean 3rd Qu. Max S.d. 

-24,670 12,200 17,410 20,090 23,740 190,800 13,990.88 

2.398 4.087 4.243 4.231 4.377 5.280 0.264 

Table B1. Equivalized disposable income and log equivalized disposable income descriptive 

statistics 

 

 

Figure B3. Housing density 
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Min. 1st Qu. Median Mean 3rd Qu. Max S.d. 

0.250 1.000 1.600 1.989 2.500 8.000 1.239 

Table B2.  Descriptive statistics of the housing density 

 

 

Variable Frequency % 

Material deprivation 3.94% 

House ownership 73.96% 

Table B3. Frequencies of the binary variables 

 

Variable Estimated ICC 

Factor scores 0.1987 

Disposable equivalized income 0.0019 

Room average 0.0680 

Material deprivation 0.0189 

House ownership 0.0410 

Table B4. Estimation of the ICCs of the study variables and factor scores 

 

 

Factor Eigenvalue 

1 1.791 

2 1.000 

3 0.727 

4 0.566 

 

Table B5. Eigenvalues from exploratory factor analysis model on Tuscany EU-SILC 2009 

 

  



 33 

Appendix C: Specification of the main R functions 

Here we describe the main R packages we used for the small area estimates. All the other analyses 

were programmed manually. 

 

C.1 Estimation of small area means and MSE under EBLUP approach with the “sae” package 

(Molina and Marhuenda 2015) 

 Required packages: nlme, MASS 

 Functions: eblupBHF( ) and pbmseBHF( ). 

C.2 Running Mplus models in the R environment via MplusAutomation (Muthén and Muthén, 

(2012), Hallquist and Wiley (2014)) 

 Functions: mplusObject( ), mplusModeler( ). 

C.3 Mapping using spdep, maptools, sp, Hmisc 

 Functions: readShapePoly( ), spplot( ) 
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