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Abstract

We review the mathematical modeling of fluidized suspensions with focus on the Eulerian (or multifluid)
approach. After a brief survey of different modeling approaches adopted for multiphase flows, we discuss
the Eulerian equations of motion for fluidized suspensions of a finite number of monodisperse particle
classes, obtained by volume averaging. We present the problem of closure for the stress tensors and the
interaction forces between the phases and report some of the constitutive relations used for them in the
literature. Finally, we explain briefly the population balance modeling approach, which allows handling
suspensions of particles continuously distributed over any of their properties of interest.
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I Introduction

Fluidized beds are granular systems of solid particles subjected to a vertical upward flow of fluid. They have
been used in several industrial processes for almost a century. The reason for their popularity is simple: the
fluid flow, above a threshold value, suspends the particles, because the interaction force between these and
the fluid overcomes the particle weight; in this “fluidized” condition, the bed acts as a highly efficient mixer,
provides high mass and heat transfer rates (thereby rendering the temperature of the system nearly uniform)
and is able to operate continuously without expensive repairing costs. Moreover, the large surface-to-volume
ratio for the solid phase considerably enhances the rate of chemical reactions. These benefits have rendered
fluidized beds the technology of choice in a large number of key industrial processes, such as fluid catalytic
cracking (FCC), food processing, coal combustion and biomass gasification.

The characteristic length of industrial fluidized beds usually varies between few to several meters (Ismail
et al., 2016; Massoudi et al., 2017; Zhao et al., 2017); nevertheless, the fluid dynamics of fluidized powders
are affected by processes taking place at many length scales, the smallest being shorter than the particle size.
This complexity renders fluidized beds difficult to model; for this reason, historically, their design was based
on a practical approach that relied on pilot plans and experimental observations (refer, for instance, to Leva,
1959). It should be mentioned, however, that in the first processes in which fluidized beds were employed,
the required plant performance was either not important (such as in FCC plants) or easily achievable (such as
in roasting and drying). Later, owing to the low plant efficiency in more demanding applications, researchers
endeavored to find more reliable methods to predict the dynamics of fluidized suspensions. The motivation
was also that the empirical correlations obtained from pilot plants suffered from lack of general validity, and
therefore in most cases they could not assist in the design of beds with new geometries, configurations of heat
exchanger tubes or repartitions of the feed over several entry points. To overcome these problems, a few of
which we reported as examples, one should understand the theory underlying the fluid dynamics of fluidized
suspensions. Pilot plants are not a convenient alternative, since they are expensive, time-consuming and not
always helpful for scale up calculations.

Theoretical models for fluidized powders (and more in general multiphase flows) started to appear in the
1960s, when scientists began to use the conservation laws of mass, momentum and energy for these systems.
The influential textbook Transport Phenomena by Bird et al. (1960), one of the earliest in this area, prompted
the first attempts to develop fluid dynamic models based on transport equations. Anderson & Jackson (1967)
were one of the first to use this approach to model fluidized beds. Starting from the continuity and dynamical
equations for single-phase, incompressible fluids and from the Newtonian equations for rigid-body motion,
they derived averaged balance equations for the fluid and particle phases by applying a formal mathematical
process of volume averaging. Subsequently, other researchers, such as Whitaker (1969), Drew (1971) and
Drew & Segel (1971), adopted the same approach to better understand the complex behavior of multiphase
systems. Of course, at that time solving the governing equations was impossible, and so theoretical modeling
was not viewed as a viable way to design real industrial units. It took almost two decades for the researchers
working in this field to realize that the mathematical theory of multiphase flows could be a useful design tool,
since faster computer processors and advanced numerical methods to integrate partial differential equations
had in the meantime become available, making the models numerically solvable.

The late 1970s and early 1980s were the years in which the results of the first numerical simulations of
granular flows appeared in the literature (Pritchett et al., 1978; Gidaspow & Ettehadieh, 1983; Gidaspow
et al., 1986). These pioneering studies showed that computational fluid dynamics (CFD) is a powerful tool
for understanding the physics of multiphase flows, and this increased quite rapidly the interest of the research
community in this numerical approach. It is worth mentioning that other rigorous formulations of multiphase
equations of motion were also developed at the same time, see, for instance, Buyevich (1971), Hinch (1977),
Nigmatulin (1979), Drew (1983) and Jenkins & Savage (1983). After almost three decades, today, in the field
of fluidization, CFD has become a nearly irreplaceable tool to predict many of the macroscopic phenomena
encountered in particulate systems, having significantly assisted to understand fluid-solid interactions.

Recently, this macroscopic tool has found other counterparts, such as the Lattice Boltzmann Method and
the Discrete Element Method. These are able to tackle the same problem (i.e., the fluid dynamic description
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of fluidized suspensions) at smaller scales (the mesoscale and microscale, respectively). In the next section,
we briefly overview some of these modeling approaches.

II A brief overview of fluidized bed modeling

Computational methods are able to offer useful information about the physical behavior of multiphase flows.
These flows, as said, feature a multitude of length and time scales. While in theory a model could capture all
of them, giving a fluid dynamic description of the system down to the smallest detail, doing so is impractical,
extremely demanding computationally and often unnecessary. Thus, several modeling approaches have been
developed that, by separating the scales, reduce the complexity of the multiscale problem. For the particulate
phase, two main modeling strategies are possible: treating the phase as a continuum or treating each particle
individually. The former approach results in transport equations similar to those that govern the dynamics of
single-phase media and is called Eulerian modeling approach, while the latter preserves the discrete nature of
the particulate phase and is referred to as Lagrangian modeling approach. As we discuss below, each of these
approaches presents advantages and disadvantages.

The most fundamental level of modeling, which in principle could capture all the length and time scales
characterizing a fluid-particle system, is referred to as Eulerian-Lagrangian and considers the fluid phase as
a continuum (Eulerian) and the solid phase as a population of particles (Lagrangian). In models of this kind,
the continuity and Navier-Stokes equations are to be satisfied at every point occupied by the interstitial fluid,
and the Newtonian equations for translation and rotation are solved for each particle. This approach models
the fluid phase around the particles at a length scale far smaller than the particle size. One therefore obtains
the distributions of fluid pressure and velocity over the surface of the particles, and hence can determine the
interaction force between the fluid and the particles (see, for instance, Pan et al., 2002 and Feng et al., 2016).
The considerable advantage of this “fully resolved” approach is that there is no closure problem regarding the
interaction force between the phases. Moreover, since the particles are considered individually, the equations
describing their motion feature no granular stress; therefore, the closure problem for this term, which arises
in macroscopic models and is extremely complex, is absent. However, in spite of such benefits, this modeling
strategy is excessively demanding computationally and, at present, is still not viable for describing industrial
fluidized beds. Furthermore, the detailed information that this approach yields is not of direct use to process
engineers and requires filtering to deliver observables of interest, such as volume fractions, mean velocities,
granular temperature and granular pressure.

To overcome the problem just mentioned and decrease the computational costs, it is more convenient to
treat all the phases as continua. This modeling approach, called Eulerian-Eulerian or multifluid, is based on
a formal mathematical procedure of averaging and is able to predict the evolution of the observables directly.
The dynamic description of the system is considerably reduced, but the information that usually is of interest
in engineering applications can be captured with sufficient detail. The main drawback of this approach is that
the averaged transport equations are unclosed, because the averaging process generates terms which are still
related to the dynamics of the system at length scales smaller than that characterizing the mean fields. These
terms are the stress tensors of the phases and the interaction force between the phases. Constitutive equations
for them cannot be obtained analytically, with the exception of relatively simple limiting cases; thus, in most
flows, empirical or semi-empirical relations must be adopted. In the following sections of this article, we will
discuss in more detail the derivation of the multifluid averaged equations and the closure problem, presenting
some of the constitutive equations used to close Eulerian-Eulerian models.

A hybrid method between the Eulerian-Lagrangian and the Eulerian-Eulerian also exists. Called discrete
particle modeling (DPM) approach or also hybrid Eulerian-Lagrangian modeling approach, this modeling
strategy uses averaged transport equations for the interstitial fluid phase and rigid-body Newtonian equations
for the particles. The closure problem related to the solid-phase stress is therefore eliminated; however, those
related to the (average) fluid-phase stress and to the interaction force between the phases remain. This is what
distinguishes these hybrid models from the Eulerian-Lagrangian models previously described (in which no
closure problem arises). In the latter, for instance, the overall force exerted by the fluid on each particle can
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be determined by integrating over the particle surface the local traction related to the fluid velocity gradients,
which the model rigorously captures. Therefore, the fluid-particle interaction force is closed. Conversely, in
the hybrid models the force is related to the slip velocity between the average fluid velocity and the velocity
of the particle center of mass and is obtained by means of empirical relations. The hybrid modeling approach
is significantly less demanding computationally than the Eulerian-Lagrangian and has been used extensively
to simulate fluidized powders (Tsuji et al., 1993; Hoomans et al., 1996; Xu & Yu, 1997; Ouyang & Li, 1999;
Kafui et al., 2002; Lu et al., 2005; Zhu et al., 2008; Di Renzo et al., 2011; He et al., 2012; Wang et al., 2013;
Deen et al., 2014; Schneiderbauer et al., 2015, 2016).

Among the modeling approaches discussed, the Eulerian-Eulerian is the most suitable for industrial scale
fluidized beds, insofar as it is the least demanding computationally and provides directly – that is, without the
need of filtering – information about measurable variables, such as void fraction and granular pressure, that
are of interest to end-users. Owing to the limitations that most computer processors still present, Lagrangian
models are unlikely to replace Eulerian ones in the near future. Lagrangian models, however, are extremely
valuable in research; yielding detailed information about the dynamics of multiphase flows at the mesoscopic
and microscopic length scales, they can significantly help to derive and improve continuous models through
the derivation of accurate closure relations. To do so, nevertheless, one needs to link shorter-scale models to
larger-scale ones, extracting information from the former to overcome closure problems in the latter. This is
far from simple and still an open challenge.

III Averaged equations of motion for fluid-particle systems

In this section, we describe the averaged balance equations for mass and linear momentum for fluidized beds.
We assume that the system is isothermal and that the flow is laminar; therefore, we do not consider equations
for energy and turbulence. The general form of the transport equations is valid for other types of multiphase
systems, not just fluidized beds; what renders the equations specific to a particular system (e.g., fluid-solid or
fluid-fluid) is the constitutive relations adopted to close the equations.

Three averaging methods are commonly adopted to derive the averaged balance equations: ensemble, or
statistical, averaging (e.g., Sangani & Didwania, 1993; Zhang & Prosperetti, 1994; Marchioro et al., 1999),
time averaging, which includes Reynolds averaging and density-weighted time (Favre) averaging (e.g., Ishii
& Mishima, 1984; Gidaspow, 1994; Ishii & Takashi, 2010) and volume averaging (e.g. Anderson & Jackson,
1967; Nigmatulin, 1979; Hwang & Shen, 1989; Jackson, 1997). Each of these methods has advantages and
disadvantages; as a discussion of this aspect exceeds the scope of this article, we refer the interested reader to
Jackson (2000). It is worth mentioning that different averaging schemes might lead to different, but similar,
evolution equations, which present common features. For example, similar equations obtained from volume
averaging can be obtained with ensemble and time averaging (refer, for instance, to Gidaspow, 1994, Zhang
& Prosperetti, 1994, Drew & Passman, 1998 and Brilliantov & Poschel, 2004). If the average values given by
different techniques are equal, the system is said to be ergodic, but not all systems enjoy this feature. Further
information about this is found in Jackson (2000).

In this review, we focus on the volume averaging method. In this method, observables are computed over
spatial domains that are large enough to contain a statistically-significant number of particles, but which are
small compared with the length scale of variation of the observables. The mathematical tool that one can use
to obtain these averages is called “weighting function”. This is a monotonically decreasing continuous scalar
function of the radial distance r from the point x in which the averaged value is to be calculated. It is positive
for any r, has continuous derivatives of any order and is normalized in such a way that:∫

Ωx

ψ(|x− z|)dz = 4π

∫ ∞
0

ψ(r)r2dr = 1 (III.1)

where Ωx is the spatial domain occupied by the system of interest (assumed to extend to infinity), ψ(|x− z|)
is the weighting function, x and z are generic spatial points, and r is the distance between such points. This
function identifies an “averaging volume” Vx outside which the values of the variable being averaged do not
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affect significantly that of the mean variable. This volume Vx can be taken to be that of a sphere with radius
equal to the length scale characterizing the spatial decay of the weighting function (i.e., the length over which
the weighting function decreases significantly). Using this function, one can define fluid-phase and particle-
phase volume averages (Anderson & Jackson, 1967; Jackson, 1997).

The volume fraction of fluid and the fluid-phase volume average of a point variable ζ(x, t) calculated in
x at time t are defined as follows:

ε(x, t) ≡
∫
Λe

ψ(|x− z|)dz ; 〈ζ〉e(x, t) ≡
1

ε(x, t)

∫
Λe

ζ(z, t)ψ(|x− z|)dz (III.2)

where Λe is the domain occupied by the fluid phase at time t.

The number density of particles of class Sr and the particle-phase volume average of a particle property
ζr(t) calculated in x at time t are defined as follows:

nr(x, t) ≡
∑
Sr

ψ(|x− zr(t)|) ; 〈ζ〉rp(x, t) ≡
1

nr(x, t)

∑
Sr

[
ζr(t)ψ(|x− zr(t)|)

]
(III.3)

where zr(t) is the position occupied at time t by the center of mass of a generic particle of solid phase Sr.
The subscript p in 〈ζ〉rp indicates that this is a particle-phase volume average, while the superscript r indicates
that the average refers to solid phase Sr. The volume fraction φr(x, t) of this particle class can be calculated
(with good approximation; see Jackson, 1997) with the following relation:

φr(x, t) ≈ nr(x, t)Vr (III.4)

where Vr is the volume of a particle of solid phase Sr.

Extending the work of Jackson (2000) and Owoyemi et al. (2007), we now derive the averaged equations
of motion for a fluid-particle system of ν solid phases; below, we use the indices r and s to specify the type of
phase and the indices e and p to specify the type of volume average.

A Fluid phase

As said before, the volume-averaged equations of motion include only the continuity and linear momentum
equations, since the system is assumed to be isothermal. The starting point is writing the continuity equation
for the fluid phase at the microscopic scale, which is written in terms of fluid “point” velocity. This equation
for an incompressible fluid reads:

∂x · u = 0 (III.5)

where u(x, t) denotes the fluid point velocity vector. Here, we restrict the treatment to incompressible fluids
for simplicity (although generalizing the analysis is not particularly complex); in many fluidized beds, even
if the fluidizing medium is a gas, this approximation is acceptable. If we apply the volume averaging scheme
to Eq. III.5, we obtain:

ε〈∂x · u〉e = 0 (III.6)

Even if correct, this equation is not practical. What we are after is an equation governing the evolution of the
volume-averaged fluid velocity 〈u〉e. Clearly, Eq. III.6 is not such an equation, because, instead of featuring
the divergence of the volume-averaged velocity field, it features the volume average of the divergence of the
point velocity field. To obtain an evolution equation in terms of 〈u〉e, we manipulate Eq. III.6 employing the
following mathematical relations:

ε〈∂x · ζ〉e = ∂x · (ε〈ζ〉e)−
ν∑
r=1

∑
Sr

∫
∂Λr

k(z, t) · ζ(z, t)ψ(|x− z|)dsz (III.7)
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ε〈∂tζ〉e = ∂t(ε〈ζ〉e) +
ν∑
r=1

∑
Sr

∫
∂Λr

k(z, t) · u(z, t)ζ(z, t)ψ(|x− z|)dsz (III.8)

where ζ(x, t) is an arbitrary vector or tensor point variable (in Eq. III.8 it can also be a scalar variable), Λr is
the region of Euclidean space occupied by a generic particle of phase Sr at time t and k(x, t) is the outward
unit normal to the surface ∂Λr bounding Λr. If we replace ζ with u in Eq. III.7 and ζ with unity in Eq. III.8
and add the two equations, we obtain:

∂tε+ ∂x · (ε〈u〉e) = 0 (III.9)

This is the continuity equation which we sought. This is similar to the continuity equation for a single-phase
compressible fluid with the fluid density replaced by the fluid volume fraction.

The volume-averaged linear momentum balance equation for the fluid can be obtained similarly; we first
write the microscopic balance equation, which reads:

ρe

[
∂tu+ ∂x · (uu)

]
= ∂x · T + ρeg (III.10)

in which ρe is the (constant) fluid density, T (x, t) is the point fluid stress tensor and g is the gravity vector.
We then multiply both sides of this equation by the weighting function and integrate the result with respect to
the variable z over the region of physical space occupied by the fluid. This procedure leads again to a form of
the transport equation featuring volume averages of differential operators acting on point variables. To obtain
the equation in terms of differential operators acting on mean fields, we use again Eqs. III.7 andIII.8, setting
ζ ≡ uu in Eq. III.7 and ζ ≡ u in Eq. III.8, to treat the left-hand side of Eq. III.10, and ζ ≡ T in Eq. III.7 to
treat the right-hand side. The result is:

ρe

[
∂t(ε〈u〉e) + ∂x · (ε〈uu〉e)

]

= ∂x · (ε〈T 〉e) + ερeg −
ν∑
r=1

∑
Sr

∫
∂Λr

k(z, t) · T (z, t)ψ(|x− z|)dsz (III.11)

As we can see, in the averaged equation an extra term appears on the right-hand side. This is the sum over
all particle classes of the average resultant traction forces exerted by the fluid on the particles of each class.
The exterior summation is over all particle classes and the term:∑

Sr

∫
∂Λr

k(z, t) · T (z, t)ψ(|x− z|)dsz (III.12)

is the average resultant force exerted by the fluid on the particles of class r. To determine this force, one first
calculates the mean resultant force exerted by the fluid on a generic particle belonging to the particle class r
(this is given by the integral in the equation above) and then sums this force over all the particles of the class
considered. To find the mean resultant force over a single particle, one first weights the differential traction
forces acting on each differential region dsz of the particle surface using the values of the weighting function
corresponding to each region and then sums the (infinite number of) contributions. The term in Eq. III.12 is
therefore the interaction force between the fluid phase and the rth solid phase, which couples the dynamical
equation of the fluid to that of each particle class.

We can manipulate the interaction force in Eq. III.12 to provide more insight into the linear momentum
exchange between the particles and the fluid. To do so, we expand the weighting function in a Taylor series
about the center zr(t) of a generic particle of phase Sr. This yields:

∀ z ∈ ∂Λr : ψ(|x− z|) = ψ(|x− zr|)

− k(z) ·
[
∂xψ(|x− zr|)

]
rr + (1/2)k(z)k(z) ··

[
∂x∂xψ(|x− zr|)

]
r2r −O(r3r) (III.13)
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in which rr is the radius of the particles of phase Sr. We know that the particle radius is far smaller than the
radius of the averaging volume Vx and therefore, with acceptable error, we may truncate the Taylor series at
the second-order term. Thus, using Eq. III.13, we approximate the force in Eq. III.12 as:

nr 〈f 〉
r
p − ∂x · (nr 〈A〉

r
p) + (1/2)∂x∂x ·· (nr 〈B〉

r
p) (III.14)

in which:

nr(x, t)〈f 〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)

∫
∂Λr

k(z, t) · T (z, t)dsz

]
(III.15)

nr(x, t)〈A〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)rr

∫
∂Λr

k(z, t)k(z, t) · T (z, t)dsz

]
(III.16)

nr(x, t)〈B〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)r2r

∫
∂Λr

k(z, t)k(z, t)k(z, t) · T (z, t)dsz

]
(III.17)

The quantities defined above are the components of a vector, a second-order tensor and a third-order tensor,
respectively. The force in Eq. III.12 is obtained by first weighting the differential traction forces exerted on
the infinitesimal surface elements of the fluid-particle interface using the values of the weighting function at
the locations of the elements, and then by summing such contributions. The force in Eq. III.15, conversely,
is obtained by first computing the forces acting on the whole surface of each particle, then by weighting them
using the values of the weighting function at the particle centers, and finally by summing such contributions.
This second average interprets better the fluid-particle interaction force and fulfills the principle of action and
reaction, as we will see in Section B (when we deal with the solid phases); this is why we prefer to operate in
terms of this average force, and of the additional contributions present in Eq. III.14.

As we see in Eq. III.11, the convective term features the average of the dyadic product of point velocities;
this quantity is not equal to the dyadic product of the average velocities. We find it convenient to decompose
this term as follows:

〈uu〉e ≈ 〈u〉e〈u〉e + 〈ûû〉e (III.18)

in which hatted variables denote the deviations of point variables from their respective average values. The
above relation is not exact, being valid only when there is separation of scales between the microscopic and
macroscopic descriptions of the flow. We now use Eqs. III.14 andIII.18 in Eq. III.11 to obtain the final form
of the linear momentum balance equation for the fluid phase; this reads:

ρe

[
∂t(ε〈u〉e) + ∂x · (ε〈u〉e〈u〉e)

]
= ∂x · 〈S〉e −

ν∑
r=1

(nr 〈f 〉
r
p) + ερeg (III.19)

in which:

〈S〉e ≡ ε〈T 〉e +
ν∑
r=1

[
nr 〈A〉

r
p − (1/2)∂x · (nr 〈B〉

r
p)
]
− ερe〈ûû〉e (III.20)

is called fluid-phase effective stress tensor. This term is unclosed and obtaining an analytical closure is very
complex; this has been done only for extremely dilute systems of monodisperse Stokesian particles (see, for
instance, Jackson 1997). We will discuss the closure problem in Section IV.

B Solid phases

For any arbitrary particle property ζr(t) associated with particles of a generic solid phase Sr, the following
mathematical relation holds:
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nr 〈ζ̇〉
r

p = ∂t(nr 〈ζ〉
r
p) + ∂x · (nr 〈vζ〉

r
p) (III.21)

in which the dot is a time derivative and 〈vζ〉rp(x, t) is the average of the product of ζr(t) and of the velocity
vector vr(t) of the particle center. To obtain the volume-averaged continuity equation for the rth solid phase,
we use the equation above, setting ζr ≡ 1. This yields:

∂tnr + ∂x · (nr 〈v〉
r
p) = 0 (III.22)

This equation is similar to the continuity equation of a single-phase compressible fluid, with the fluid density
replaced by the particle number density.

The equation of motion for the generic solid phase Sr can be obtained from Newton’s second law written
for the generic particle r of the phase considered. This equation reads:

ρrVr v̇r(t) =

∫
∂Λr

k(z, t) · T (z, t)dsz +
ν∑
s=1

∑
Ss

f rs(t) + ρrVr g (III.23)

in which ρr is the density of the particles of phase Sr, Vr is the volume of each of these particles and v̇r(t)
is the acceleration of the particle center of mass. The surface integral on the right-hand side of the equation is
the overall force exerted by the fluid on the particle. f rs(t) is the force exerted on the r particle by the generic
s particle of phase Ss when they collide. This force vanishes when r and s refer to the same particle, and is
non-zero only if particles r and s are in direct contact.

To average the equation above, we multiply both sides of the equation by ψ(|x− zr|) and sum over all
the particles of phase Sr; after, to treat the left-hand side of the resulting equation, we use Eq. III.3, setting
ζr ≡ v̇r, while to treat the right-hand side we use Eq. III.21, setting ζr ≡ vr and using the relation reported
below, whose proof is left to the reader:

∑
Sr

[
ψ(|x− zr(t)|)

ν∑
s=1

∑
Ss

f rs(t)

]
=

ν∑
s=1

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

f rs(t)

]
(III.24)

Doing so yields the averaged linear momentum balance equation for the solid phase Sr; the equation reads:

ρrVr

[
∂t(nr 〈v〉

r
p) + ∂x · (nr 〈vv〉

r
p)

]

= nr 〈f 〉
r
p + nrρrVrg +

ν∑
s=1

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

f rs(t)

]
(III.25)

The first term on the right-hand side is the fluid-particle interaction force – which also features, with opposite
sign, in Eq. III.19. This force fulfills the action-and-reaction principle, as it should. The final term combines
the resultant forces arising from the particle-particle contacts among particles that belong to the same phase
(s = r) and to different phases (s 6= r). These contributions are conceptually different, insofar as the former
is a self-interaction term that represents the stress internal to the phase under examination, while the latter is
a contact force acting between the Eulerian solid phases. To let the collisional solid stress tensor associated
with phase Sr appear explicitly in Eq. III.25, we need to manipulate the equation further. We first consider
the following double sum over the particles r and s of the rth phase:∑

Sr

∑
Sr

[
ψ(|x− zrs(t)|)f rs(t)

]
(III.26)

where zrs(t) is the position vector of the point of mutual contact between the rigid particles r and s. Because
zrs = zsr, this double sum is zero. Also, for the action-and-reaction principle, it is f rs = − f sr. Now, if
we expand ψ(|x− zrs|) around zr, we obtain:
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∑
Sr

[
ψ(|x− zr(t)|)

∑
Sr

f rs(t)

]
≈ ∂x ·

[
nr 〈M 〉

r
p − (1/2)∂x · (nr 〈N 〉

r
p)

]
(III.27)

in which:

nr(x, t)〈M 〉
r
p(x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)rr

∑
Sr

[
krs(t)f rs(t)

]}
(III.28)

nr(x, t)〈N 〉
r
p(x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)r2r

∑
Sr

[
krs(t)krs(t)f rs(t)

]}
(III.29)

where krs(t) denotes the versor of the vector zrs(t)− zr(t).

We then define the following second-order tensor, which appears in the bracket on the right-hand side of
Eq. III.27, as the collisional stress tensor of the rth particle phase:

〈C〉rp ≡ nr 〈M 〉
r
p − (1/2)∂x · (nr 〈N 〉

r
p) (III.30)

This term accounts for the transfer of linear momentum at collisions between particles of phase Sr over their
center-to-center distance 2rr and is important (usually dominant) in dense suspensions.

We now consider the contact forces acting between r particles of phase Sr and s particles of phase Ss.
This term reads:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

f rs(t)

]
(III.31)

One may be tempted to regard it as an interaction force between phases Sr and Ss. If this interpretation was
correct, the action-and-reaction principle should hold and the condition below should be satisfied:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

f rs(t)

]
=−

∑
Ss

[
ψ(|x− zs(t)|)

∑
Sr

f sr(t)

]
(III.32)

This equation is not always fulfilled, inasmuch as even if f rs = −f sr, it isψ(|x− zr|) 6= ψ(|x− zs|). The
condition is met only for rr → 0 and rs → 0. We conclude that the force in Eq. III.31 cannot be regarded
as the interaction force between phases Sr and Ss, but must include an additional part that does not satisfy
the action-and-reaction principle. To obtain this force, we expand ψ(|x− zrs|) about the point zr, retaining
only the first three terms of the expansion. Doing so allows us to write:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

f rs(t)

]
≈ nr 〈f 〉

rs
p + ∂x ·

[
nr 〈P 〉

rs
p − (1/2)∂x · (nr 〈Q〉

rs
p )

]
(III.33)

in which

nr(x, t)〈f 〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zrs(t)|)

∑
Ss

f rs(t)

}
(III.34)

nr(x, t)〈P 〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)rr

∑
Ss

[
krs(t)f rs(t)

]}
(III.35)

nr(x, t)〈Q〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)r2r

∑
Ss

[
krs(t)krs(t)f rs(t)

]}
(III.36)
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Continuity equation – Fluid phase

∂tε+ ∂x · (ε〈u〉e) = 0

Continuity equation – Particle phase r

∂tφr + ∂x · (φr 〈v〉
r
p) = 0

Dynamical equation – Fluid phase

ρe

[
∂t(ε〈u〉e) + ∂x · (ε〈u〉e〈u〉e)

]
= ∂x · 〈S〉e −

ν∑
r=1

nr 〈f〉
r
p + ερeg

Dynamical equation – Particle phase r

ρr

[
∂t(φr 〈v〉

r
p) + ∂x · (φr 〈v〉

r
p〈v〉

r
p)
]

= ∂x · 〈S〉rp + nr 〈f〉
r
p +

ν∑
s 6=r=1

nr 〈f〉
rs
p + φrρrg

Table 1: Eulerian-Eulerian averaged equations of motion for a system of ν particle classes.

We define the following second-order tensor:

〈D〉rsp ≡ nr 〈P 〉
rs
p − (1/2)∂x · (nr 〈Q〉

rs
p ) (III.37)

as the collisional stress tensor related to the momentum transferred at collisions between phases Sr and Ss.
Finally, the effective stress tensor of phase Sr can be defined as:

〈S〉rp ≡ 〈C〉
r
p +

ν∑
s 6=r=1

〈D〉rsp − nrρrVr 〈v̂ v̂〉
r
p (III.38)

The first two terms, taken together, represent the (total) collisional stress tensor, while the last represents the
kinetic stress tensor. This terms arises from the Reynolds decomposition of the convection term featuring in
the averaged linear momentum balance equation.

Knowing the expressions for the components of the effective stress tensor of phase Sr, we can write the
averaged linear momentum balance equation for it as follows:

ρrVr

[
∂t(nr 〈v〉

r
p) + ∂x · (nr 〈v〉

r
p〈v〉

r
p)

]
= ∂x · 〈S〉rp + nr 〈f 〉

r
p +

ν∑
s 6=r=1

nr 〈f 〉
rs
p + nrρrVrg (III.39)

In this equation, the interaction forces between the phases (represented by the second and third terms on the
right-hand side) satisfy the action-and-reaction principle. Table 1 reports, in absolute notation, the multifluid
equations of motion just derived.

IV The closure problem

As we discussed in the previous section, the effective stress tensors of the fluid and solid phases, as well as
the interaction force between the fluid and each solid phase and between each pair of solid phases, which are
present in the dynamical equations of the multifluid model, are unclosed. This is because the relations which
define these terms involve point variables and not volume averaged variables. So, in a macroscopic modeling
context, these relations have no practical use, because they cannot be solved.

To overcome the closure problem, one has to derive expressions relating the unclosed terms to the mean
variables. This can be done either using purely theoretical expressions or semi-empirical ones. The former
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are usually prohibitive to obtain, with the exception of few comparatively simple limiting cases; accordingly,
Eulerian-Eulerian models heavily rely on semi-empirical relations. These are not always extremely accurate,
but are able to capture the essential physics of the system and describe it with a reasonable level of accuracy
(for most practical applications).

In this section, we first discuss some closures for the effective stress tensors of the fluid and solid phases.
We then consider the fluid-particle interaction forces, with emphasis on the buoyancy and drag forces (which
usually play a dominant role). We finally present some closures for the particle-particle interaction force. For
simplicity, from now on we do not report the angular brackets that imply averaging.

A Effective stress

The effective stress tensors of all phases (fluid phase included) in general are complex to model. Researchers
usually adopt the simplest functional form for them, namely the Newtonian closure, even if evidence clearly
indicates that more elaborate relations are required (Jackson, 1997, 2000). Assuming that both fluid and solid
phases behave as Newtonian fluids, we can write:

Se = −
[
pe −

(
κe −

2

3
µe

)
trDe

]
I + 2µeDe ; Sr =−

[
pr −

(
κr −

2

3
µr

)
trDr

]
I + 2µrDr (IV.1)

in which pe, pr, κe, κr, µe and µr are the effective pressure, dilatational viscosity and shear viscosity of the
fluid and of the rth solid phase, respectively, I is the unit tensor, andDe andDr are the rate of deformation
(or strain) tensors, defined as:

De ≡
1

2

(
∂xue + ∂xu

T
e

)
; Dr ≡

1

2

(
∂xvr + ∂xv

T
r

)
(IV.2)

The Newtonian closures have been widely employed for several fluidization regimes, being able to reproduce
satisfactorily many experimental results, especially for powders far from maximum packing.

As we see from Eqs. IV.1, the closure problem now reduces to deriving suitable constitutive expressions
for the pressure, dilatational viscosity and shear viscosity of each phase. For the fluid phase, one can assume
that the interstitial fluid is incompressible, as we did in Section III; then, no constitutive equation is required
for pe. The dilatational viscosity is usually assumed to be zero, whilst it is assumed that µe = εµ̄e, where µ̄e
is the shear viscosity of the interstitial fluid.

For the solid phases, constitutive expressions for pressure, dilatational viscosity and shear viscosity have
been derived from the kinetic theory of granular gases (Gidaspow, 1994; Brilliantov & Poschel, 2004), which
is a generalization of the mathematical theory of dense non-uniform gases (Chapman & Cowling, 1970). As
for a molecular gas, granular pressure and viscosity are functions of a granular temperature. For solid phase
Sr, this is defined as Θr ≡ (2/3)Ur, whereUr is the pseudointernal energy per unit mass, which is governed
by the following pseudointernal energy balance equation:

ρr

[
∂t
(
φrUr

)
+ ∂x ·

(
φrUrvr

)]
=− ∂x · qr + Sr ·· ∂xvr +Gd,r − Sv,r − Sc,r (IV.3)

where qr represents a pseudothermal heat flux,Gd,r(x, t) is a source term representing generation of particle
velocity fluctuations by fluctuating fluid-particle forces, Sv,r(x, t) is a sink term representing the dampening
of such fluctuations by the viscous resistance to particle motion, whilst Sc,r(x, t) is a sink term representing
energy degradation caused by inelastic collisions. qr is modeled using the Fourier law, writing:

qr =− kr∂xΘr (IV.4)

where kr is the granular thermal conductivity of the rth solid phase. Closures for this term, which are based
on the kinetic theory of granular gases, can be found in the literature. For instance, Gidaspow et al. (1992)
suggested the following relation:
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kr =
150ρrsr (πΘr)

1/2

384gr (1 + er)

[
1 + (6/5)φrgr (1 + er)

]2
+ 2φ2

rρrsrgr (1 + er)(Θr/π)1/2 (IV.5)

where sr denotes the particle diameter, er the coefficient of restitution for particle collisions and gr the radial
distribution function for the rth solid phase. An example of such a function, which was developed by Iddir &
Arastoopour (2005), reads:

gr =
[
1− (φ/φmax)

]−1

+ (3sr/2)
ν∑
s=1

(φs/ss) (IV.6)

in which ss is the particle diameter for phase s, φ is the total solid volume fraction and φmax is the maximum
solid compaction (which is often taken to be equal to 0.63).

Constitutive equations are also required for the source and sink terms in Eq. IV.3; for briefness, we do not
report them here, referring instead to the literature (for instance, Syamlal et al., 1993, Gidaspow, 1994, Fan
& Zhu, 1998 and Jackson, 2000).

The granular kinetic theory also has been adopted by several researchers to derive closures for the solid
pressure. For instance, Lun et al. (1984) suggested the following expression:

pr =

[
1 + 2

ν∑
s=1

(srs/sr)
3φsgrs(1 + ers)

]
φrρrΘr (IV.7)

in which ers is the coefficient of restitution for collisions between particles belonging to phases Sr and Ss,
and where the following definitions are given:

srs ≡ (sr + ss)/2 ; grs ≡ (srgs + ssgr)/(sr + ss) (IV.8)

For the solid-phase dilatational and shear viscosities, there are many constitutive equations available. Those
suggested by Gidaspow (1994), which are often employed, are:

κr = (4/3)φ2
rρrsrgr (1 + er)(Θr/π)1/2 (IV.9)

µr =
10ρrsr (πΘr)

1/2

96gr (1 + er)

[
1 + (4/5)φrgr (1 + er)

]2
+ (4/5)φ2

rρrsrgr (1 + er)(Θr/π)1/2 (IV.10)

Using the kinetic theory framework to derive constitutive equations for fluidized suspensions makes physical
sense, because granular gases resemble molecular gases in many ways. However, the similarity breaks down
for dense suspensions, and therefore, in the dense limit, closures based on the kinetic theory are expected to
fail. In (granular) kinetic theory, particles are assumed to be smooth and spherical, and collisions to be binary
and instantaneous. These assumptions are valid in dilute systems, in which the transfer of linear momentum
is translational and collisional. In dense systems, particles undergo enduring contacts (which usually involve
several neighbors) and momentum transfer is primarily frictional. In this “frictional flow regime”, granular
kinetic theory is clearly inadequate.

To model the solid stress tensor in the frictional flow regime, researchers normally resort to empirical or
phenomenological models based on the theory of soil mechanics. One assumes that the solid phase acts as a
solid body below a critical value of the magnitude of the stress tensor; above this threshold value (referred to
as yield stress), the solid phase is assumed to behave as a fluid, which therefore flows under shear. Usually,
in these flow conditions, the frictional stress tensor is expressed as follows:

S?r =− p?rI + 2µ?rDr (IV.11)

where the star indicates that the quantity refers to the frictional flow regime. So, two quantities are required
to close the problem: frictional pressure and frictional viscosity. Srivastava & Sundaresan (2003) suggested
the so-called “Princeton model” for the frictional pressure:
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p?r = φrp
? , p? =


0 for φr ≤ φfr

A(φr − φfr)
B(φmax − φr)C for φfr < φr ≤ φmax

10D(φr − φfr)
E for φr > φmax

(IV.12)

where φfr denotes the critical frictional solid packing (the solid volume fraction threshold value at which the
powder enters the frictional flow regime). In the relation for p? given on the second line, which was proposed
by Johnson & Jackson (1987), A, B and C are constants with typical values of 0.05, 2 and− 5, respectively.
In the relation for p? given on the last line, which was suggested by Syamlal et al. (1993), the coefficients D
andE are very large, with typical values of 25 and 10, respectively. Many other constitutive equations for the
frictional pressure have been proposed; for these, the reader is referred to the literature.

The expression used for the frictional shear viscosity in the Princeton model is based on soil mechanics
(Tardos, 1997; Jackson, 2000) are reads:

µ?r =
p?r sinϑr

2
√
I2(Dr) + Θr/s

2
r

(
ν∑
s=1

φs

)−1

, I2(Dr) ≡
1

2

[
(trDr)

2 − trD2
r

]
(IV.13)

in which ϑr is the angle of internal friction of the rth solid phase, while I2(Dr) is the second invariant of the
rate of deformation tensor of the rth solid phase. If only one solid phase is present and the contribution of the
term involving the granular temperature is negligible, this equation simplifies to that originally proposed by
Schaeffer (1987). For other constitutive equations, we refer to the literature.

Often, in the frictional flow regime, the kinetic and collisional stress contributions, modeled via granular
kinetic theory, are summed to the frictional stress to deliver the total stress, although the first two are usually
negligible compared to the third.

B Fluid-particle interaction force

The fluid-particle interaction force can be divided into five main contributors:

• Buoyancy force, whose definition for fluid-particle systems is not unique and will be discussed.

• Local fluid acceleration force, which is parallel to the mean acceleration of the fluid and is present only
when a specific definition for the buoyancy force is adopted.

• Drag force, which acts in the direction of the fluid-particle slip velocity (i.e., the fluid velocity relative
to an observer moving with the same local mean velocity as the particles).

• Virtual mass force, which is parallel to the relative acceleration between the phases.

• Lift force, which is normal to the slip velocity.

Among these contributors, usually the buoyancy and drag forces are dominant.

B.I Buoyancy force

There are three different definitions for the buoyancy force:

• The first regards the force to be equal to the weight of the fluid displaced by the particles. This is in line
with the Archimedes principle; therefore, we call this classical definition. The force per unit volume of
suspension then takes the form:

nrf
?
B,r ≡− φrρeg (IV.14)
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• The second definition relates the force to the effective stress tensor of the fluid phase; per unit volume
of suspension, it is:

nrf
•
B,r ≡ φr∂x · Se (IV.15)

• The third definition, often encountered in the literature, retains solely the isotropic part of the effective
fluid stress tensor; the closure therefore takes the form:

nrf
◦
B,r ≡− φr∂xpe (IV.16)

These expressions, of course, lead to different values of the buoyancy force; this is perfectly fine, because we
are free to define a force as we wish. What is important is that the total fluid-particle interaction force nrf r,
which has objective physical meaning, is calculated correctly. Consequently, modelers who adopt different
definitions of the buoyancy force also need to adopt different expressions for the complementary force that
makes up the overall fluid-particle interaction force. Therefore, for instance, if one opts to employ Eq. IV.16,
the contribution of the deviatoric part of Se in Eq. IV.15 has to be included in the complementary force; this
contribution, therefore, is still present, but is regarded as part of the complementary force.

B.II Local fluid acceleration force

If the classical definition of buoyancy force is employed, the complementary force to the (total) fluid-particle
interaction force must include a term known as local fluid acceleration force (this term is absent otherwise).
Per unit volume of suspension, this force is given by:

nrf
?
A,r ≡ φrρeDe

tue , De
tue ≡ ∂tue + ue · ∂xue (IV.17)

De
tue is the material (or substantial) derivative relative to a Lagrangian observer that moves with the locally

averaged velocity of the fluid.

B.III Drag force

The drag force is defined as the fluid-particle interaction force component that is parallel to the slip velocity
between the phases. In general, it reads:

nrfD,r ≡ βr (ue − vr) (IV.18)

where βr is the drag coefficient for the rth solid phase. We now present some of the expressions suggested in
the literature for βr, written so that the associated drag force is consistent with the classical definition of the
buoyancy force. To obtain the value of βr consistent with the buoyancy force definition IV.15, one needs to
multiply the expressions for βr given here by ε (Mazzei & Lettieri, 2007).

Ergun & Orning (1949) advanced the empirical correlation below, initially developed for pressure drops
through packed beds and later used for uniform fluid beds:

βr = 150
µeφr(1− ε)

(εsr)
2

+ 1.75
ρeφr |ue − vr|

εsr
(IV.19)

This equation was developed, and has been extensively verified, for fixed beds (in which the void fraction is
low, close to 0.40); however, Gidaspow (1994) suggests using this closure for void fraction values up to 0.80.
For larger values, he suggests using the expression of Wen & Yu (1966), which is one of the most popular in
the literature; this closure reads:

βr =
3

4
CD(Rer)

ρeφr |ue − vr|
sr

ε−2.70 (IV.20)
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where:

Rer ≡
ρeε|ue − vr|sr

µe
; CD(Rer) =


(
24/Rer

)(
1 + 0.15Re0.687r

)
for Rer < 1000

0.44 for Rer ≥ 1000
(IV.21)

Here, Rer denotes the Reynolds number associated with the particles of solid phase Sr. The expression for
the coefficient CD was advanced by Schiller & Naumann (1935).

In Eq. IV.20, the exponent α in the voidage function ε−α is constant. Di Felice (1994) suggested that α
should be a function of Rer. The empirical expression that he proposed is:

α(Rer) = 2.70− 0.65 exp
[
− (1/2)(1.50− log10 Rer)

2
]

(IV.22)

As we see, for very small and very large values of the Reynolds number, α approaches 2.70. However, in the
intermediate region, the deviation from 2.70 is significant. For instance, the exponent reaches a minimum
value of 2.05 for Rer ≈ 32.

The Richardson & Zaki (1954) equation is very accurate at describing the expansion of uniform fluidized
beds of non-cohesive particles. The closures reported above, however, are inconsistent with it. To overcome
this limitation, Mazzei & Lettieri (2007) derived an expression that is consistent with it over the entire range
of fluid-dynamic regimes and for any value of the void fraction. This closure, which for vary small and very
large values of Rer reduces to the Wen & Yu (1966) equation, can be expressed as per Eq. IV.20, where the
exponent in the voidage function is given by:

α(ε,Rer) =− (1/ ln ε) ln


[
0.63 + 4.80(Rer/ε

γ)−1/2
]2

(
0.63 + 4.80Re−1/2

r

)2 ε2(1−γ)

 (IV.23)

in which:

γ(ε,Rer) =
4.80 + 2.40 · 0.175(Rer/ε

γ)3/4

1 + 0.175(Rer/εγ)3/4
(IV.24)

For a detailed discussion about this closure and how its results compare with the other constitutive equations
reported above, we refer to Mazzei & Lettieri (2007).

B.IV Virtual mass force

The acceleration of a body immersed in a fluid leads to the acceleration of the latter. This results into a force,
called virtual mass force, that has the following form:

nrfV,r ≡ φrρeCV (φr)(D
e
tue −Dr

tvr) (IV.25)

whereDe
t (·) andDr

t (·) are the material derivatives associated with the fluid and rth solid phase, respectively.
The virtual mass coefficient CV (φr) for a single sphere immersed in an infinite fluid is equal to 1/2 (Maxey
& Riley, 1983). This value is also used for very dilute mixtures of spherical particles (for instance, see Zhang
& Prosperetti, 1994, who obtained this value for inviscid flows). CV (φr), however, in general depends on the
shape of the particles and on the volume fraction of the solid phase; in particular, the coefficient is expected
to be an increasing function of the latter. For moderate values of the particle volume fraction, Zuber (1964)
suggested the following linear relation:

CV (φr) = (1 + 3φr)/2 (IV.26)

The virtual mass force plays an important role when the density of the fluid is comparable with or larger than
that of the disperse phase; in gas-fluidized beds, therefore, it is negligible.
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B.V Lift force

When an object moves in a fluid which is in shearing flow, it experiences a force transverse to the direction of
relative motion. This lift force is equal to:

nrfL,r ≡ φrρeCL(φr)(ue − vr) × (∂x × ue) (IV.27)

The lift coefficient CL(φr) also depends on the particle shape and on the volume fraction of the solid phase.
For very dilute mixtures of spherical particles, CL(φr) is also taken to be 1/2. This is because the sum of the
virtual mass and lift forces has to satisfy the principle of material objectivity (Drew & Passman, 1998); each
force taken individually does not, but their sum does if CL(φr) = CV (φr).

B.VI Other forces

Other contributions to the fluid-particle force are present; for a comprehensive overview, the reader can refer
to Drew & Passman (1998). The expression for them are usually for a single particle in an infinite fluid. The
Faxen force, the elastic force (Foscolo & Gibilaro, 1984, 1987; Mazzei et al., 2006) and a history-dependent
force analogous to that of Basset for single particles (Basset, 1888) are examples of such forces.

C Particle-particle interaction force

If several monodisperse particle classes are present in a fluidized suspension, each of them exchanges linear
momentum with all the others through particle collisions (and friction, if the suspension is dense). This force
is usually modeled as a particle-particle “drag force”, assuming that it is parallel to the slip velocity between
each pair of particle classes. One thus write:

nrf rs ≡ ζrs(vs − vr) (IV.28)

where nrf rs is the force exerted by phase s on phase r per unit volume of suspension (see Table 1) and ζrs
is the particle-particle drag coefficient for the two particle classes involved. Gidaspow et al. (1985) advanced
the following expression for ζrs:

ζrs = Crs(1 + ers)

[
φrφsρrρs(sr + ss)

2

ρrs
3
r + ρss

3
s

]
|vs − vr| (IV.29)

which is based on granular kinetic theory calculations (and so cannot describe accurately the particle-particle
interactions in dense suspensions). In this equation, it is:

Crs ≡
3Φ

1/3
rs + (φr + φs)

1/3

4
[
Φ

1/3
rs − (φr + φs)

1/3

] (IV.30)

where:

Φrs ≡ (1− srs)
[
Φr + (1− Φr)Φs

]
(1−Xrs) + Φr for Xrs ≥

Φr

Φr + (1− Φr)Φs

Φrs ≡
[
(Φr − Φs) + (1− srs)(1− Φr)Φs

][
Φr + (1− Φr)Φs

]Xrs

Φr

+ Φs otherwise (IV.31)

In the relations above, Φr and Φs are the particle volume fractions at maximum packing for phases r and s,
respectively; moreover:

Xrs ≡
φr

φr + φs
; srs ≡

(
ss
sr

)1/2
if sr ≥ ss and srs ≡

(
sr
ss

)1/2
otherwise (IV.32)
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Another popular closure is that of Syamlal (1987), which reads:

ζrs =
3

4
(1 + ers)

(
1 +

π

4
Frs

)[
φrφsρrρsgrs(sr + ss)

2

ρrs
3
r + ρss

3
s

]
|vs − vr| (IV.33)

where Frs is a coefficient of friction for phases r and s. In the equation above, the constitutive equation used
for the radial distribution function is that of Lebowitz (1964), which is given by:

gr = (1/ε)

[
1 + (3sr/2ε)

ν∑
s=1

(φs/ss)

]
; grs ≡ (srgs + ssgr)/(sr + ss) (IV.34)

Being based on the kinetic theory of granular gases, Eqs. IV.29 andIV.33 are not valid for dense suspensions,
and in particular in the frictional flow regime. Nonetheless, sometimes they are used also in these conditions,
when the system approaches the maximum packing limit. Doing so is incorrect. Notice that, in a system that
is nearly packed, particles of different size may not segregate; Eqs. IV.29 andIV.33, however, do not prevent
segregation from occurring, because the drag coefficient ζrs does not diverge in the dense limit. To overcome
the problem, as suggested by Gera et al. (2004), one can add, to the expressions for ζrs given above, the term
Ψp?, where p? is given by Eq. IV.12 and Ψ is a coefficient whose value should be obtained empirically. This
term ensures that, when a powder approaches maximum packing, the particle-particle drag increases enough
to make the solid phases r and s move at the same velocity, as if they were one phase. This prevents particle
segregation. Gera et al. (2004) set Ψ equal to 0.30, but this value has no general validity.

V Population balance modeling

The Eulerian equations of motion presented in Section III are based on the assumption that all the particles in
the suspension are identical. All the particles, in particular, must have the same size, and this cannot change
in time. This is a significant limitation of this modeling approach, because in real systems particles can grow,
shrink, aggregate and break, and new particles may form. This means that the particles do not have the same
size, and their particle size distribution (PSD) changes in space and time, its evolution reflecting the physical
and chemical processes taking place in the system. Capturing this evolution, consequently, is necessary for a
more realistic description of multiphase systems. A powerful modeling approach that offers this capability is
the population balance modeling approach.

Let us consider a population of particles in which the state of each particle is characterized by its velocity
in real space v and its size s (additional variables can be considered, but for simplicity we restrict the analysis
to these two). The state of the entire particle population is described by the so-called number density function
(NDF), which we denote as f(v, s,x, t). This function is defined so that f(v, s,x, t)dvdsdx represents the
expected (in a statistical sense) number of particles located at time t in the volume dx about the point x with
velocity in the range dv about the velocity v with size in the range ds about the size s. So, knowing the NDF
is equivalent to knowing (in a statistical sense) the state of the entire particle population in any spatial point of
physical space and at any time.

The population balance equation governs the evolution of the NDF. There are two main ways of deriving
it. In the first, one begins from the microscopic description of the particulate system and obtains the equation
via statistical averaging; details about this rigorous, but quite complex, approach can be found in (Marchisio
& Fox, 2013). The other derivation method is heuristic and consists in writing a continuity statement for the
NDF in the phase space of one particle (this space, in our case, has six dimensions: three in real space, three
in velocity space and one in size space). Here, we follow this second method.

Let us define the six-dimensional vector r ≡ (x,v, s). The first three components of r are those ofx, the
three immediately after are those of v and the final one coincides with s. We find it convenient to regard the
vector r as the position vector of one particle in the abstract six-dimensional space in which such a particle
moves. Let us now consider three arbitrary fixed control volumes, one in real space, one in velocity space and
one in size space; we denote them as Λx, Λv and Λs, respectively; the corresponding control volume in phase
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space is Λr ≡Λx∪Λv∪Λs. We now aim to write a number balance equation for the particle population over
this six-dimensional control volume. The number of particles that accumulate in it per unit time is:

ACC = ∂t

∫
Λr

f dr =

∫
Λr

∂tf dr (V.1)

The net number of particles entering Λr per unit time is:

IN −OUT =−
∫
∂Λr

nr · ṙf dsr =−
∫
Λr

∂r · f ṙdr (V.2)

in which ṙ and ∂r are the particle velocity and the nabla operator in phase space, respectively, nr is the unit
vector normal to the hypersurface bounding Λr directed outwards and dsr is an infinitesimal surface element
on ∂Λr. We have used the Gauss theorem to turn the surface integral into a volume integral.

If Gr denotes the net number of particles generated per unit volume of phase space (owing, for instance,
to particle collisions, aggregation, breakage or nucleation), we can write:

GEN =

∫
Λr

Grdr (V.3)

The processes modeled through this generation term are regarded as instantaneous (no process, of course, is
instantaneous, but these processes have characteristic times that are so shorter than those characterizing the
evolution of the NDF that we can regard them as instantaneous).

The difference between the accumulation (Eq. V.1) and convection (Eq. V.2) terms, must be equal to the
generation term. Thus, we can write:∫

Λr

(∂tf + ∂r · f ṙ −Gr)dr = 0 (V.4)

Because the integration volume Λr is arbitrary and the integrand is (assumed to be) continuous, we conclude
that the integrand must be equal to zero; accordingly, it is:

∂tf =− ∂r · f ṙ + Gr (V.5)

This is the population balance equation (PBE). If we let v̇ and ṡ denote the particle velocity in velocity space
and size space (the first coincides with the particle acceleration in real space and the second with the particle
growth in real space), respectively, we can write the equation above as:

∂tf =− ∂x · fv − ∂v · f v̇ − ∂s(f ṡ) + Gr (V.6)

Solving the PBE allows determining the NDF evolution. The equation, nonetheless, can be solved only if it is
closed; by closed we mean that all the terms present in the equation, such as the generation term, are known
functions of the NDF. Deriving these closures is quite complex, especially for the generation term; for details
about the closure problem, we refer to Ramkrishna (2000) and Marchisio & Fox (2013).

When the PBE is closed, it can be solved, but doing so is extremely difficult and demanding, because in
general it is a nonlinear, integral, partial differential, functional equation in several dimensions. Therefore,
one does not usually attempt to solve it, using the equation to extract solely the information about the system
behavior which is of interest in the application at hand. Often one is interested only in few integral properties
of the NDF; called moments, these might be important because they relate to the product quality or because
they are easy to measure and monitor. The idea behind the so-called method of moments is deriving evolution
equations for the moments of interest by integrating out the coordinates v and s from the PBE. Doing so is
not complex; nevertheless, usually the evolution equations that one obtains are unclosed (even if the PBE is
closed), because for any given set of moments that a modeler wishes to track, the set of evolution equations
for these moments involves moments external to the set considered. Because of this problem, the method of
moments, in its original formulation, has been seldom used.
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To overcome the closure problem, one may assume a functional form for the NDF and use the evolution
equations for the moments to determine the parameters that are left unspecified in the expression adopted for
the density function. Let us clarify this concept. In the method of moments, one renounces to solve the PBE,
solving instead a number of evolution equations for the moments of interest of the NDF. These equations
permit calculating the moments of interest in every point of the system at every time, but they do not permit
determining the NDF, because an infinite number of density functions can yield the same set of moments (as
long as the set is finite). This leaves the NDF largely undetermined, and so we are free (to a certain extent) to
choose the functional form of the density function arbitrarily and then use the moment evolution equations to
determine the details which we have left unspecified. The various moment methods differ in the choice of the
functional form assumed for the NDF.

The quadrature methods of moments are examples of this approach; they overcome the closure problem
by assuming that the NDF has the following functional expression:

f(v, s,x, t) =

ν∑
r=1

nr(x, t)δ
[
v − vr(x, t)

]
δ
[
s− sr(x, t)

]
(V.7)

This is a quadrature formula, in which ν is the number of nodes, vr(x, t) and sr(x, t) are the rth quadrature
nodes and nr(x, t) is the rth quadrature weight. This formula represents the particle population by means of
ν solid phases, the rth having number density nr(x, t) and being made up of particles with velocity vr(x, t)
and size sr(x, t). The difference between this representation and that used in Section III is that here the size
of each particle class is not fixed, but varies in time and real space. The 3ν parameters nr(x, t), vr(x, t) and
sr(x, t) are determined using the evolution equations of 3ν moments. For details about how this is done, we
refer the interested reader to Marchisio & Fox (2013).

VI Conclusions

We presented several strategies for modeling fluidized beds. Some of these describe in detail the dynamics of
of the system, but are too expensive computationally to be of any use in practical applications – in particular
those of industrial relevance. The Eulerian-Eulerian modeling approach, conversely, is based on equations
that can be solved at reasonable computational cost and that can deliver observables of direct interest to most
end-users. We derived the volume-averaged balance equations for mass and linear momentum for fluidized
mixtures made up of ν particle classes. We then addressed the closure problem, presenting some constitutive
equations that modelers adopt to express the effective stress of each phase and the interaction forces between
the phases. We concluded the paper by introducing the population balance modeling approach, which allows
describing systems where the particles are continuously distributed over the size (or any other property that
characterizes the particle state), and in which the size is free to vary owing to continuous and discontinuous
processes, such as chemical reaction, growth, aggregation and breakage.
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