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ABSTRACT
We address the closure problem of the phasic effective stress tensors in the Eulerian-Eulerian and mixture models, consider-
ing suspensions of identical particles dispersed in Newtonian liquids. First, after briefly describing the modeling approaches, we
review the key mechanisms generating phasic stress and discuss the shortcomings of some constitutive expressions in reproduc-
ing important experimental observations. For dilute suspensions, these include the mixture viscosity rise with solid concentration
whilst for dense suspensions, the occurrence of particle migration and the change of mixture rheology from Newtonian to non-
Newtonian. We then use computational fluid dynamics simulations to compare results based on various stress tensor closures.
In a first case study, the simulation results of a laminar flow in a horizontal pipe of a dilute suspension of particles dispersed in a
Newtonian liquid are compared to experimental data obtained from the literature. We show that both the Eulerian-Eulerian and
mixture models can predict pressure drops accurately but only if they are coupled with suitable experimental closures for the
mixture rheology. In a second case study, we simulate the laminar flow of a dense suspension of identical particles dispersed in
a Newtonian liquid through an abrupt expansion. We show that the particle concentration profile in the upstream tube, which
develops owing to shear-induced particle migration, strongly affects the flow patterns downstream of the expansion. This migra-
tion must be modeled via an appropriate closure for the solid effective stress tensor; this allows capturing the sophisticated flow
patterns in the expansion section.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5081677

I. INTRODUCTION
Suspensions of solid particles in liquids appear in sev-

eral industries, such as pharmaceutical, health-care, food, ink,
paint, oil, and mineral (Coussot and Ancey, 1999 and Stickel
and Powell, 2005). They are also observed in nature, for
instance, in blood, magma flows, lavas, mud flows, and land-
slides (Mueller et al., 2010). The fluid dynamics of these sus-
pensions are strongly dependent on their rheology, which in
turn is dictated by the fluid flow around the particles and by
the interactions among the particles (owing, for instance, to
lubrication forces, cohesive forces, and friction). Therefore,
to design, optimize, and control industrial processing units

treating these systems, one has to acquire detailed knowledge
about their rheological behavior.

The fluid dynamic behavior of suspensions has been of
interest to two fields of research which apparently have not
interacted closely over the past decades. These fields are
suspension rheology and multiphase fluid dynamics. In the
first, researchers focus on the rheological behavior of liquid-
particle suspensions, which are regarded as effective fluids;
the systems of interest here are those in which all the phases
rapidly relax to local dynamical equilibrium and the slip veloc-
ity between the phases is small. In the second, researchers
focus on the dynamics of multiphase systems in which the
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slip velocity is significant, as in fluidized beds; in this case,
each constituent phase has to be considered separately and
constitutive equations for the stress tensor of each phase are
necessary. In this second field, the mixture rheology is rarely
studied since the mixture may not be regarded and modeled
as an effective fluid.

In general, there are mainly three key phenomena
observed by researchers in almost all suspension flows. The
first is a monotonic increase in the mixture viscosity with
solid concentration. Several theories, which date back to
Einstein (1906), have been developed to explain this occur-
rence, which has been detected for all ranges of solid con-
centration. The most accepted hypothesis maintains that,
when the particle concentration increases, the liquid stream-
lines distort more due to the presence of more particles, and
therefore the viscous dissipation in the liquid rises. The sec-
ond phenomenon is particle migration. This was first rec-
ognized in the work of Gadala-Maria and Acrivos (1980). In
it, and subsequently in many other experimental investiga-
tions, it was observed that in dense suspensions the parti-
cles migrate from regions of high to regions of low particle
concentration and/or shear. Although the physical interpre-
tation of this phenomenon is still controversial, a few the-
ories have been proposed to explain it. We will discuss this
in detail later on. The third phenomenon is the change of
rheology, from Newtonian to non-Newtonian, for suspen-
sions in which the interstitial liquid is Newtonian. The particle
concentration value at which the change appears is system-
dependent, and the cause of the phenomenon is still unclear
(Mueller et al., 2010).

To predict the motion of suspensions characterized by
the phenomena just described, researchers in both fields of
suspension rheology and multiphase fluid dynamics have tried
to develop theoretical models based on balance equations for
the mixture and for the individual constituent phases. Funda-
mentally, to understand the interactions between the intersti-
tial fluid and the particles and among the particles themselves,
one should solve concurrently the mass, linear momentum,
and energy balance equations at every point occupied by the
fluid and the Newtonian equations of motion for every par-
ticle. This approach, called Eulerian-Lagrangian, is extremely
demanding (Pan et al., 2002; Balachandar and Eaton, 2010;
Sardina et al., 2012; Oke et al., 2016; Feng et al., 2016; Gualtieri
et al., 2017; and Battista et al., 2018) and hence unsuitable for
industrial applications. This inadequacy is not just a conse-
quence of how numerically expensive solving these models is;
an additional drawback is that they do not provide directly
the information that is usually sought by process engineers
(e.g., volume fractions and granular temperature and pres-
sure); to extract this, end-users have to filter the results. So,
to reduce the computational cost and formulate models able
to yield physical quantities of direct interest, researchers have
started to treat these systems in terms of mean properties,
regarding the constituent phases as continua occupying the
entire domain and interpenetrating each other. This model-
ing approach is known as Eulerian-Eulerian (E-E) or multi-
fluid (Anderson and Jackson, 1967; Jackson, 1997; and Ishii and

Hibiki, 2010). For isothermal mixtures of identical particles,
these models are based on five balance equations: two sets of
mass and linear momentum balance equations (one per phase)
plus a pseudointernal energy balance equation for the solid
phase. Such equations are subjected to initial and boundary
conditions, the latter being assigned on the boundaries of the
flow domain.

In some systems, there is rapid relaxation between the
liquid and the disperse phase; this means that the time that
the particles require to reach local dynamical equilibrium is
far shorter than the characteristic time scale of the flow. The
ratio of the former, which represents the relaxation time of
the particles, to the latter is referred to as Stokes number.
When this number is much smaller than unity, a simplified
modeling approach, which can be rigorously derived from the
multifluid approach, can be adopted (Jackson, 2000 and Ishii
and Hibiki, 2010). In this mixture modeling approach, the sus-
pension is treated as one effective fluid, which is referred to
as mixture. The model, consequently, comprises one conti-
nuity equation and one linear momentum balance equation,
which provide the density and velocity fields of the mixture.
To obtain the volume fractions of each phase, one needs an
additional mass balance equation, which is usually written for
the solid phase. Similarly, an additional dynamical equation is
required for the velocity fields of the two constituent phases.
The latter is a force balance equation, which holds if the fluid
and solid velocity fields relax rapidly to local equilibrium. This
is normally an algebraic equation, and this is one of the rea-
sons for which the mixture model is simpler than its mul-
tifluid counterpart. The local equilibrium assumption behind
this approach is usually satisfied for mixtures of micron-sized
particles dispersed in common Newtonian liquids, which are
the systems of interest in our study. Note that in the literature
other names are also adopted for the mixture model, such as
drift-flux (Zuber, 1964), algebraic-slip (Pericleous and Drake,
1986), and diffusion (Ungarish, 2013) models.

Both E-E and mixture approaches have been used exten-
sively for modeling liquid-particle suspensions. In the chem-
ical engineering literature, some articles focus on the E-E
approach (e.g., Panneerselvam et al., 2007; Chen et al., 2009;
Ekambara et al., 2009; Hosseini et al., 2010; Wang et al., 2010;
Liu and Barigou, 2013; Qi et al., 2013; and Wang et al., 2013); in
these, each phase is normally regarded as Newtonian and the
(laminar) viscosity of the solid phase is derived via the kinetic
theory of granular flows (e.g., Jung et al., 2006a; 2006b; Jung
and Hassanein, 2008; Gidaspow and Huang, 2009; and Yilmaz
et al., 2011). Other studies, conversely, are based on the mix-
ture approach (e.g., Silva et al., 2015 and Nayak et al., 2015);
these consider the mixture as a generalized Newtonian fluid
(the behavior being Newtonian solely in the dilute limit), and
the viscosity of the mixture is normally modeled with empir-
ical or semi-empirical constitutive equations (e.g., Wu et al.,
2014; 2015; Wen et al., 2015; and Kim et al., 2016). Only few
authors have considered both modeling approaches, compar-
ing their performance (see, for instance, Fletcher and Brown,
2009 and Kaushal et al., 2012). Our work belongs to this last
category: we propose to investigate both approaches, discuss
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when they are equivalent, analyze critically the constitutive
equations on which they are based, and highlight the limita-
tions that such equations present. Our focus is on the closure
problem of the effective stress (of the constituent phases as
well as of the mixture), for this poses the most significant
challenge. The constitutive equations currently used in many
models reported in the literature—in particular, based on the
E-E approach—present some shortcomings (both in the dilute
and dense limits) that are seldom discussed but which are
important. In this article, we address them. We show that,
under certain assumptions, all of these continuum approaches
should lead to equivalent results; the key point is considering,
and modeling accurately, the physical mechanisms respon-
sible for stress generation in suspensions. We thus report
and discuss these mechanisms, showing that the deficiency
of some closures in replicating some important experimen-
tal observations arises because they disregard some essen-
tial physical mechanisms, occurring in suspensions, which
generate stress.

The article is organized as follows. In Sec. II, we briefly
present the multifluid and mixture models. In Sec. III, we first
review the mechanisms proposed in the literature as possi-
ble causes for stress generation in mixtures; this should guide
in deriving and selecting suitable closures for the phasic and
mixture effective stress tensors. Afterwards, we discuss some
of these closures, commonly used for liquid-solid suspensions,
highlighting their limitations in capturing some of the phys-
ical mechanisms discussed. As we shall see, some constitu-
tive equations for the effective stress tensors of the individ-
ual phases cannot predict a non-Newtonian behavior for the
mixture. Furthermore, for dilute suspensions, some closures
are not successful at foreseeing the mixture viscosity increase
with solid concentration, which is observed experimen-
tally and was predicted theoretically by Einstein (1906) and
Batchelor and Green (1972). Postulating that mixtures should
behave as generalized Newtonian fluids is not theoretically
justified (Massoudi et al., 1999 and Massoudi, 2008), but doing
so and employing empirical equations for the mixture viscos-
ity results to be the best way to describe the fluid dynamics
of these complex systems. In Sec. IV, we use Computational
Fluid Dynamics (CFD) simulations to test the closures previ-
ously discussed. In a first case study, we investigate the lam-
inar flow, in a horizontal pipe, of a dilute suspension of equal
particles dispersed in a Newtonian liquid, adopting the E-E
and mixture models with different closures for the effective
stress tensors. To validate the model predictions, we compare
the results to experimental data available in the literature. In a
second case, we simulate the laminar flow of a dense particle
suspension through an abrupt expansion. Our aim is compar-
ing the recirculation lengths of the vortexes generated after
the expansion obtained via CFD with those observed exper-
imentally. We show that to predict the recirculation length
correctly, one has to account for particle migration owing to
shear-induced diffusion in the upstream pipe. Since this is
related to the effective stress tensor of the solid phase (not of
the mixture), it is crucial that a suitable constitutive equation
be used for this term.

II. DESCRIPTION OF THE MODELING APPROACHES
In this section, we briefly present the evolution equa-

tions of the multifluid and mixture modeling approaches.
We focus on suspensions of equal particles dispersed in an
isothermal Newtonian liquid. Both models regard the liquid
and solid phases as interpenetrating continua, which therefore
occupy the entire flow domain at any given time. The mixture
model, as said, derives from the multifluid model; the latter is
obtained by averaging the equations of motion of the intersti-
tial liquid and of the particles. To this end, statistical, volume,
and time averaging methods can be adopted (Mazzei, 2016).
The resulting evolution equations are always very similar and
present common features. The most noteworthy is that the
process of averaging leaves behind a number of indeterminate
terms not directly related to the averaged variables but associ-
ated with details of the motion at the microscopic length scale.
These terms are represented by the effective stress tensors
of the phases and by the interaction force exchanged by the
phases. A closure problem therefore arises, which normally
cannot be solved analytically and has to be overcome by means
of empirical expressions. This is the major challenge that this
modeling method poses. The same problem, of course, affects
the mixture model since the latter is based on the multifluid
model, of which it is an approximation.

The relations for the effective stress tensors and fluid-
particle interaction force that the averaging schemes yield
have no direct use but are extremely important nevertheless;
this is because they indicate the origins of these terms and
allow understanding their physical meaning. These expres-
sions, furthermore, can be used to derive closure equa-
tions via more fundamental modeling approaches, such as the
Eulerian-Lagrangian. The mathematical form of these expres-
sions depends on the averaging method used. In this article,
we adopt the averaging scheme proposed by Jackson (1997),
which is based on “soft” volume averages. Also, the average
variables associated with the solid phase are derived by treat-
ing the particles as rigid bodies and by averaging their overall
mass and linear and angular momenta (Zhang and Prosperetti,
1994; 1997). Henceforth, when we refer to the mean value of a
(point) variable, we intend its volume-averaged value; depend-
ing on the context, the volume average can be of the fluid or
solid type.

A. Multifluid modeling approach
For liquid-solid isothermal suspensions of monodisperse

(that is, of identical) particles, the multifluid model involves a
mass balance equation and a linear momentum balance equa-
tion per phase, plus a pseudointernal energy balance equation
for the solid phase (an energy balance equation for the fluid is
not needed, being the medium isothermal). For the liquid, the
equations are

∂t(εeρe) = −∂x · (εeρe〈u〉e), (2.1)

∂t(εeρe〈u〉e) = −∂x · (εeρe〈u〉e〈u〉e) − ∂x · 〈S〉e + εeρeg − 〈 f〉p, (2.2)

where εe and ρe are the volume fraction and density of
the fluid, respectively, 〈u〉e is the mean fluid velocity, 〈S〉e is
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the fluid effective stress tensor, g is the gravitational field,
and 〈 f〉p is the force exerted by the fluid on the particles
per unit volume of suspension. This term, representing the
interaction force between the phases, has four main con-
tributors: the buoyancy, drag, virtual mass, and lift forces.
For details about these forces, we refer to the literature
(Jackson, 2000).

Equation (2.2) is unclosed because one does not usually
know how the terms 〈S〉e and 〈 f〉p relate to the average vari-
ables characterizing the flow. For the fluid-particle interaction
force, the relation given by the averaging procedure is the
following:

〈 f〉p(x, t) ≡ −
∑

r

[
ψ( |x − zr(t) |)

∫
∂Λr

k(z, t) ·σe(z, t)dsz

]
, (2.3)

where σe is the point stress tensor of the fluid, ψ is the
weighting function employed in the volume-averaging pro-
cedure, zr is the (time-dependent) position of the center of
the generic particle r, while k is the outward unit normal
to the surface ∂Λr bounding particle r. The relation above
is clearly unclosed since to evaluate its right-hand side, one
would need to know the position of the center of each par-
ticle at any given time plus the point stress tensor of the
fluid as a function of the time and space coordinates. Only
Eulerian-Lagrangian simulations would be able to give this
information.

The expression of the effective stress tensor of the fluid
is more complex (and perhaps less intuitive) and reads as
follows:

〈S〉e(x, t) ≡ εe(x, t)〈σ〉e(x, t) + n(x, t)〈A〉p(x, t)

− (1/2)∂x · [n(x, t)〈B〉p(x, t)] + εe(x, t)ρe〈ûû〉e(x, t), (2.4)

where

n(x, t)〈A〉p(x, t) ≡ a
∑

r

[
ψ( |x − zr(t) |)

∫
∂Λr

k(z, t)k(z, t) ·σe(z, t)dsz

]
,

(2.5)

n(x, t)〈B〉p(x, t) ≡ a2
∑

r

[
ψ( |x − zr(t) |)

×

∫
∂Λr

k(z, t)k(z, t)k(z, t) ·σe(z, t)dsz

]
. (2.6)

Here, 〈σ〉e is the mean value of the point stress tensor of the
fluid, n is the particle number density, 〈ûû〉e is the mean value
of the dyadic product of the fluid velocity fluctuations, while
a is the particle radius. Also these equations, of course, are
unclosed.

The first term on the right-hand side of Eq. (2.4) is present
because, before the averaging is carried out, the liquid phase
is already a fluid and is therefore already endowed with a
point stress tensor (as we shall see, no analogous term fea-
tures in the averaged linear momentum balance equation
of the solid phase). The last term on the right-hand side
of Eq. (2.4) is a Reynolds stress type of contribution, not

necessarily turbulence-related. The other two terms which
contribute to the effective stress tensor of the fluid are related
to the fluid dynamic interaction between the fluid and the par-
ticles (through the traction force exerted by the fluid on the
surface of the particles). These terms, therefore, are not only
related to the fluid phase but also directly involve the par-
ticles; for this reason, their combined contribution is some-
times referred to as particle-presence stress (Hwang and Shen,
1989). Note that we did not choose to ascribe the latter to the
effective stress tensor of the fluid; this is a direct result of
the volume averaging method adopted, which is just a formal
mathematical procedure. The particle-presence stress, there-
fore, is not part of the effective stress tensor of the solid phase.
It is also worth pointing out that this type of stress plays
an important role and should not be neglected. For instance,
as we shall discuss in more detail subsequently, the correc-
tion derived by Einstein (1906) for the mixture viscosity of
dilute suspensions arises from the particle-presence stress
tensor.

The particle phase is governed by the averaged mass and
linear momentum balance equations. These can be derived via
two averaging methods, which are often referred to as solid
averaging and particle averaging (Zhang and Prosperetti, 1994
and Jackson, 1997). In general, solid and particle averages of
equal point variables have different values; in particular, it is

εs = Vpn + O(a2/L2), (2.7)

εs〈u〉s = Vpn〈u〉p + (Vpa2/5)∂x × (n〈ω〉p) + O(a2/L2), (2.8)

in which εs is the volume fraction of solid, Vp is the parti-
cle volume, 〈u〉s and 〈u〉p are the solid and particle averages
of the particle velocities, 〈ω〉p is the particle average of the
particle angular velocities, while L is the length scale charac-
terizing the gradients of the mean fields. If we assume that
this length scale is much larger than the particle radius (this
is normally the case; furthermore, if this were not true, the
values of the averaged variables would depend on the form of
the weighting function adopted), the last terms on the right-
hand side of the equations above can be neglected. Moreover,
if 〈ω〉p has the same order of magnitude as ∂x×〈u〉e, a common
situation—in particular, for liquid-solid mixtures, the second
term on the right-hand side of Eq. (2.8) can also be neglected,
being O(a2/L2). Therefore, at this level of approximation, εs
= Vpn and the solid and particle averages of the particle veloc-
ities, as well as the equations governing their evolution, coin-
cide. Then, the averaged mass and linear momentum balance
equations read

∂t(εsρs) = −∂x · (εsρs〈u〉s), (2.9)

∂t(εsρs〈u〉s) = −∂x · (εsρs〈u〉s〈u〉s)− ∂x · 〈S〉s + εsρsg + 〈 f〉p, (2.10)

where ρs is the point density of the solid material, 〈u〉s is the
mean velocity of the particles, while 〈S〉s is the solid effective
stress tensor, defined as follows:

〈S〉s(x, t) ≡ n(x, t)〈C〉p(x, t) − (1/2)∂x · [n(x, t)〈D〉p(x, t)]

+ εs(x, t)ρs〈ûû〉s(x, t), (2.11)
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where

n(x, t)〈C〉p(x, t) ≡ a
∑

r

[
ψ( |x − zr(t) |)

∑
s,r

krs(t)frs(t)
]
, (2.12)

n(x, t)〈D〉p(x, t) ≡ a2
∑

r

[
ψ( |x − zr(t) |)

∑
s,r

krs(t)krs(t)frs(t)
]
, (2.13)

in which frs is the force exerted by particle r on the generic
particle s and krs is the outward unit normal to the surface of
particle r at its point of contact with particle s.

The first two terms on the right-hand side of Eq. (2.11),
taken together, represent the stress contribution due to direct
particle contacts; we may refer to it as particle-contact stress.
Direct particle contacts can be of two kinds: (nearly) instanta-
neous contacts forming during particle collisions and endur-
ing contacts that establish when mixtures become very dense.
The first kind gives rise to the collisional stress, which captures
the linear momentum transfer over the distance 2a present
between the centers of two colliding particles. This physical
phenomenon becomes important in dense mixtures, in which
the total volume occupied by the particles is not negligible
compared to the volume of the system containing them. The
second kind of direct particle contacts brings about the so-
called frictional stress, which, as said, is important only in
very dense mixtures. The last contributor to the solid effective
stress, which arises from the Reynolds decomposition of the
advection term in the averaged dynamical equation, is called
kinetic stress and is related to the solid velocity fluctuations ûs
(referred to as peculiar velocities in kinetic theory, Chapman
et al., 1990).

The final balance equation that needs to be considered for
the solid phase is the transport equation for the pseudointer-
nal energy of the particles; this reads

∂t
(
εsρsUs

)
= −∂x ·

(
εsρsUs〈u〉s

)
− ∂x · qs

− 〈S〉s : ∂x〈u〉s − Sc − Sv + Gd. (2.14)

Here Us ≡ 3/2Θs is the pseudointernal energy per unit mass
of solid, Θs is the granular temperature, and qs is the pseu-
dothermal heat flux. Equation (2.14) differs from the custom-
ary internal energy balance equation (Bird et al., 2007 and
Deen, 2012) because of two sink terms Sc and Sv represent-
ing pseudointernal energy degradation by inelastic collisions
and by viscous resistance to particle motion, respectively, and
a source term Gd related to the generation of particle veloc-
ity fluctuations (and therefore of pseudointernal energy). Sev-
eral physical phenomena contribute to this source term, such
as Brownian motion, mean fluid dynamic shear, fluctuating
fluid-particle forces, and turbulence, but rarely all of them
coexist. In this work, in particular, we assume that the par-
ticles are not Brownian and that the flow regime is laminar;
hence, the respective generation terms are disregarded. We
shall discuss the other two source terms (related to mean fluid
dynamic shear and fluctuating fluid-particle forces) in Sec. III.
For briefness, we do not report the expressions that the aver-
aging scheme yields for the terms featuring in Eq. (2.14); the
reader can refer, for instance, to Gidaspow (1994).

B. Mixture modeling approach
To derive the averaged mass balance equation for the

mixture, we need to add the continuity equations for the two
phases, that is, Eqs. (2.1) and (2.9). Doing so yields

∂tρm = − ∂x · (ρm〈u〉m), (2.15)

where

ρm ≡ εeρe + εsρs ; ρm〈u〉m ≡ εeρe〈u〉e + εsρs〈u〉s . (2.16)

To derive the linear momentum balance equation for the sus-
pension, we have to sum the dynamical equations for the two
phases. This yields

∂t(ρm〈u〉m) = − ∂x · (ρm〈u〉m〈u〉m) − ∂x · 〈S〉m + ρmg, (2.17)

where

〈S〉m ≡ 〈S〉e + 〈S〉s + 〈S〉d,

〈S〉d ≡ ρmωeωs(〈u〉s − 〈u〉e)(〈u〉s − 〈u〉e). (2.18)

In the equation above, ωe and ωs are the mass fractions of the
fluid and solid phases, respectively. To derive Eq. (2.17) in the
form reported, we used the relations

〈u〉e − 〈u〉m = ωs(〈u〉e − 〈u〉s),

〈u〉s − 〈u〉m = ωe(〈u〉s − 〈u〉e). (2.19)

〈S〉d is referred to as diffusion stress tensor (Manninen et al.,
1996) and arises because each phase moves at a velocity that
differs from that of the mixture.

In addition to the continuity equation for the mixture,
another mass balance equation is required to track the volume
fractions of the phases. Usually, this is written for the solid
phase. Expressing the convective flux in Eq. (2.9) in terms of
mixture velocity and using Eq. (2.19), we obtain

∂t(εsρs) = − ∂x · (εsρs〈u〉m) − ∂x · [εsρsωe(〈u〉s − 〈u〉e)]. (2.20)

The term in square brackets on the right-hand side of this
equation arises because the solid does not move at the same
velocity as the mixture. Hence, it may be interpreted as a
diffusive flux.

As observed, diffusive fluxes (of mass and linear momen-
tum) arise in Eqs. (2.17) and (2.20). These terms are unclosed
because they involve the fluid-particle slip velocity instead of
the mixture velocity. The problem of closure, however, can
be overcome if the fluid and solid velocity fields relax rapidly
to local equilibrium. In this case, an approximate equation
can be obtained for the slip velocity. In the literature, dif-
ferent derivations of this equation have been reported (see,
for instance, Manninen et al., 1996 and Jackson, 2000). In
Appendix A of this article, we obtain the equation employ-
ing a perturbation method so that the relative importance of
the various terms contributing to the slip velocity is clearly
revealed. The equation may be expressed in different forms,
which, at the order of approximation at which the equation
holds, are all equivalent; in this article, we favor the following
expression:

〈u〉s − 〈u〉e = − (1/β)[εe∂x · 〈S〉s − εs(ρs − ρm)(g − Dt〈u〉m)], (2.21)
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which clearly relates particle migration to the solid effective
stress tensor; notice that in mixtures of neutrally buoyant par-
ticles, the term involving 〈S〉s is the only one present. Above, β
is the drag force coefficient and Dt〈u〉m represents the material
derivative of the mixture velocity field.

III. THE CLOSURE PROBLEM
As discussed in Sec. II, the effective stress tensors of the

fluid and solid phases, and the force of interaction between
the phases, are the unclosed terms in the averaged dynamical
equations of the multifluid and mixture models. The closures
for the various contributions to the fluid-particle interaction
force have been discussed extensively in the literature (e.g.,
Jackson, 2000; Mazzei and Lettieri, 2007; and Marchisio and
Fox, 2013); so, they are not considered in this work. In this
section, we focus on the closures for the effective stress ten-
sors and on the shortcomings that some of these present
in predicting the rheology of liquid-solid mixtures. Before
doing so, however, we briefly review the physical mechanisms
which generate stress in the constituent phases; this insight is
necessary in the discussion that then follows.

A. Physical mechanisms responsible
for stress generation

As Eq. (2.4) reveals, the effective stress tensor of the liq-
uid phase has three contributors: the mean action of the point
fluid dynamic stress, the particle-presence stress, and the
stress generated by fluid velocity fluctuations. As discussed by
Joseph et al. (1990), the first term is closed and is equal to

εe〈σ〉e = εe〈p〉eI − µe〈γ̇〉v , (3.1)

where 〈p〉e is the mean value of the fluid pressure, I is the unit
tensor, and 〈γ̇〉v is twice the deformation rate tensor of the
following velocity field:

〈u〉v ≡ εe〈u〉e + εs〈u〉s . (3.2)

Note that this stress contribution does not involve only the
mean velocity of the fluid since 〈u〉v is related to the mean
velocity of both phases. However, for mixtures of nearly neu-
trally buoyant particles where the two velocity fields rapidly
relax, the mean velocities of the phases are equal at lead-
ing order in the Stokes number (see Appendix A), and so, at
this approximation level, 〈u〉v and 〈u〉e coincide. Notice that
these are precisely the systems for which the mixture mod-
eling approach is usually used. If the particles are not nearly
neutrally buoyant, the mixture model is still valid provided the
magnitude of the mean settling velocity is far less than that
of the phasic mean velocities; this is because—if this condi-
tion is met—the mean velocities of the phases are still equal at
leading order in the Stokes number. In any other case, the mix-
ture modeling approach should not be employed because the
phasic mean velocities differ considerably, and therefore an
effective viscosity for the mixture can no longer be introduced
(Massoudi, 2008).

The particle-presence stress arises due to the viscous dis-
sipation of the (point) kinetic energy in the liquid containing

the particles. At any solid volume fraction, these distort the
fluid streamlines and generate larger velocity gradients, which
increase viscous dissipation and in turn the effective viscosity
of the suspension. In dense mixtures, lubrication films form
between a significant number of particles; the viscous dissi-
pation that ensues is also captured by the particle-presence
stress. This last contribution makes the effective viscosity of
the suspension diverge when the solid volume fraction nears
its maximum value; however, the rate at which this occurs is
less than that observed experimentally (Marrucci and Denn,
1985), and so the dominant cause of the viscosity divergence
must be another (for instance, the enduring contacts between
particles forming close to maximum packing, which yield the
frictional part of the solid effective stress).

As Eq. (2.4) reveals, the particle-presence stress is part
of the effective stress of the fluid phase; as stressed, this is a
result that the averaging scheme yields. Notice that the same
conclusion was also reached by Zhang and Prosperetti (1997)
via ensemble averaging. In the literature, however, several
researchers have incorrectly ascribed this contribution to the
effective stress of the solid phase (see, for instance, Nott and
Brady, 1994; Morris and Boulay, 1999; and Palma et al., 2016).
Interestingly, Buyevich (1999) allocated the term related to the
viscous dissipation due to the fluid streamline distortion to the
fluid effective stress and that related to the viscous dissipation
in the lubrication films to the solid effective stress. Never-
theless, his repartition—as well as that used in many other
studies—was not rigorously justified. For more details about
this aspect, we refer to Nott et al. (2011), whose analysis is quite
thorough and rigorous.

The last contributor to the fluid effective stress is related
to the fluid velocity fluctuations. In suspensions where the
only element of randomness is given by the particle positions
(for instance, in mixtures of particles dispersed in liquids flow-
ing in laminar conditions), these fluctuations generate because
on the surface of the particles the fluid is forced to satisfy no-
slip boundary conditions. The difference between the point
velocity of the fluid and its locally averaged value is expected
to be of the order of the point relative velocity between the
fluid and the particles. Thus, in systems in which this rela-
tive velocity is small, the stress arising from the fluid velocity
fluctuations is negligible; this is the case, in particular, for mix-
tures of nearly neutrally buoyant particles in which the phasic
velocity fields rapidly relax to equilibrium.

Moving on to the solid phase, its effective stress has
solely two sources: particle velocity fluctuations and parti-
cle contacts. The latter can be (nearly) instantaneous colli-
sions or enduring contacts that establish when the suspension
becomes very dense. In liquid-solid mixtures of particles of
moderate density, collisions have negligible effect because the
lubrication films forming between approaching particles are
robust, preventing the particles from colliding. Consequently,
far from the jamming state, the collisional stress is expected to
be zero, the main source of stress being the particle velocity
fluctuations. By contrast, in denser suspensions, and in partic-
ular near the jamming state, the dominant stress source is the
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frictional stress term, which is a part of the particle-contact
stress (Jackson, 2000; Mazzei et al., 2010; Oke et al., 2015; and
Townsend and Wilson, 2017). Near the jamming state, mix-
tures behave like dense, slowly deforming granular materials.
In this article, we will primarily consider systems far from the
jamming state.

As stated before, particle velocity fluctuations have vari-
ous origins: Brownian motion, turbulence, mean fluid dynamic
shear, and fluctuating fluid-particle forces. We focus on sys-
tems of non-colloidal particles, for which Brownian fluctua-
tions are negligible, and mixtures for which turbulent effects
are absent or effectively suppressed, such as in concentrated
suspensions (Buyevich, 1999). Accordingly, the only sources of
velocity fluctuations are the mean fluid dynamic shear (which
yields the so-called shear-induced fluctuations) and the fluc-
tuating fluid-particle forces (which yield the so-called concen-
trational or pseudo-turbulent fluctuations). The latter occur
because in any mixture there inevitably appear random fluc-
tuations in particle concentration that yield fluctuations in the
fluid-particle interaction force, particularly in the drag force,
and in the effective weight of the suspension, which in turn
induce fluctuations in the velocities of the particles (and of the
fluid). This source of stress, nevertheless, is important only in
systems in which the fluid-particle relative velocity is consid-
erable, such as gas-fluidized beds or mixtures of dense parti-
cles sedimenting in liquids (here particles are far from being
nearly neutrally buoyant). In liquid-solid mixtures of nearly
neutrally buoyant particles in which the velocity fields rapidly
relax, the relative velocity is zero at leading order in the Stokes
number, and so this source of stress is negligible. Shear-
induced particle velocity fluctuations, therefore, remain the
only significant source of solid stress in these systems.

Shear-induced particle velocity fluctuations are gener-
ated by particle interactions occurring in shear flow when
adjacent mixture layers move past one another. These inter-
actions yield random particle displacements of the order of
the particle size, which result in a (non-Newtonian) particu-
late stress. One important effect of this specific stress is the
so-called shear-induced particle migration, which we briefly
discussed in Sec. I. This phenomenon was first observed and
investigated by Gadala-Maria and Acrivos (1980), who reported
that in dense suspensions particles migrate from regions of
high to regions of low mean shear. As Eq. (2.21) shows, in mix-
tures of nearly neutrally buoyant particles (where the solid and
mixture densities are almost identical), this diffusive trans-
port of particles originates from gradients in the effective
stress tensor of the solid, which, in turn, arises from the
shear-induced fluctuations in particle velocity.

B. The fluid effective stress closure problem
For the systems of interest in this work (suspensions of

nearly neutrally buoyant particles dispersed in liquids where
the phasic velocity fields rapidly relax to equilibrium), the
closure problem of the fluid effective stress tensor requires
deriving a constitutive equation for the particle-presence
stress tensor [the term involving the tensors 〈A〉p and 〈B〉p

in Eq. (2.4)]. This has been performed analytically for very
dilute suspensions of Stokesian spherical particles (i.e., par-
ticles for which the Reynolds number is vanishingly small)
by Jackson (1997) and Zhang and Prosperetti (1997). Even if
the approaches they employed are quite different, they found
equivalent results (at the level of approximation considered);
these are

n〈A〉p = εs〈p〉eI − (5/2)εsµe〈γ̇〉e − 3εsµe
[
(1/2) (∂x〈u〉e

− ∂x〈u〉Te) − ε · 〈ω〉p
]

+ O(ε2
s ), (3.3)

n〈B〉p = −(3/2)εsµeI(〈u〉e − 〈u〉p) + O(ε2
s ), (3.4)

where 〈γ̇〉e is twice the deformation rate tensor of the fluid
mean velocity field and ε is the Levi-Civita tensor. As reported,
these relations are accurate to O(εs). For the systems of inter-
est in this paper, the rotational slip velocity between the
phases is very small (that is to say, |∂x × 〈u〉e − 〈ω〉p | is very
small); so, the third term on the right-hand side of Eq. (3.3)
can be neglected. One can also disregard the contribution of
the tensor 〈B〉p since we are dealing with suspensions in which
also the linear slip velocity between the phases is very small.
In particular, at leading order in the Stokes number, it is

〈u〉e = 〈u〉v = 〈u〉m. (3.5)

So, at the level of approximation adopted, in Eq. (3.1), we
can replace 〈γ̇〉v with 〈γ̇〉e. Now, using the relations above
along with Eqs. (2.4) and (3.1) (more details can be found in
Appendix B), we find

〈S〉e = 〈p〉eI − [1 + (5/2)εs]µe〈γ̇〉e. (3.6)

In the limit of extreme dilution, shear-induced fluctuations
are absent, and so the solid effective stress tensor vanishes.
Also the diffusion stress tensor is negligible because at lead-
ing order in the Stokes number the slip velocity between the
phases is zero. Accordingly, the effective stress tensor of the
fluid coincides with that of the mixture, defined in Eq. (2.18).
Hence, we obtain

〈S〉m = 〈S〉e, 〈S〉e = 〈p〉eI − ηm〈γ̇〉e, ηm = [1 + (5/2)εs]µe, (3.7)

recovering the result obtained by Einstein (1906) for mixtures
of non-Brownian, neutrally buoyant, spherical particles dis-
persed in Newtonian fluids in laminar flow. Equation (3.7) is
closed because, being the interstitial fluid incompressible, 〈p〉e
requires no constitutive equation (the unknown fields associ-
ated with the fluid phase are the mean velocity and the mean
pressure, the fluid volume fraction being equal to 1 − εs).

The result just obtained holds for very dilute mixtures,
in which the solid volume fraction normally does not exceed
0.05. In these conditions, the fluid dynamic interactions
between spherical particles are negligible. Non-spherical par-
ticles start interacting sooner, and so for them, the validity
range of Eq. (3.7) is narrower. For semi-dilute mixtures, in
which fluid dynamic particle interactions are no longer neg-
ligible, the solid effective stress tensor can still be taken to be
vanishingly small; so, the fluid effective stress tensor is still
equal to the effective stress tensor of the mixture. The latter
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is given by Eq. (3.7), but the effective viscosity of the mixture is
no longer a linear function of εs. Usually, the following relation
is used:

ηm = [1 + Aεs + Bε2
s]µe (3.8)

with A and B taken within the ranges [1.5, 5] and [7.35, 14.1],
respectively (Mueller et al., 2010). Batchelor and Green (1972),
in particular, derived an expression for ηm analytically, find-
ing A to be consistent with the Einstein coefficient and B = 7.6.
This expression, however, is valid solely for steady pure strain-
ing motions of the suspension. For general flows, the values of
A and B are usually obtained empirically.

For spherical particles, Eq. (3.8) starts giving poor predic-
tions when εs exceeds about 0.25. This threshold value can be
far lower for non-spherical particles and is system-dependent.
For denser mixtures, the problem of closure of the effective
stress tensors of the phases and of the mixture is significantly
more complex; this is because the mixture starts display-
ing non-Newtonian behavior (often shear-thinning at mod-
erate shear rates and shear-thickening at large shear rates;
Jeffrey and Acrivos, 1976), and the cause of such a rheologi-
cal change is unclear. However, for non-Brownian particles,
several researchers (see, for instance, Gillissen and Wilson,
2018) believe that the origin of this behavior is related to the
fluid dynamics within the lubrication films between the par-
ticles, which is captured by the fluid effective stress tensor.
Various mechanisms have been suggested to explain the rheo-
logical change. Mueller et al. (2010), for instance, state that the
shear-thinning behavior stems from the large viscous dissipa-
tion rates of point kinetic energy into point internal energy
taking place within the lubrication films present among the
particles; these lead to localized overheating of the liquid,
which in turn results into a localized drop in liquid viscosity.
The overheating is larger when the average shear rate of the
mixture is larger, and this explains the shear-thinning rheo-
logical behavior. This is a compelling suggestion, but it still
has not been verified (neither experimentally nor numerically).
Another mechanism, again related to the presence of lubrica-
tion films, has been recently put forward by Vázquez-Quesada
et al. (2016). They claim that, even if at moderate shear rates
the interstitial liquid is Newtonian, at the extremely large
local shear rates present in the lubrication films, the liquid
shear-thins, leading to the shear-thinning behavior of the mix-
ture. These researchers validated this idea numerically, via
Stokesian dynamics simulations.

Both mechanisms presented are based on the notion that
the suspension effective viscosity is dominated by the kinetic
energy dissipation process taking place within the lubrication
films. This conviction is shared by many research groups and
has been used often to derive closures for the mixture effec-
tive viscosity (e.g., Frankel and Acrivos, 1967; Goddard, 1977;
Jarzebski, 1981; and Buyevich, 1999). If we accept this point of
view, then we may conclude that for mixtures in the semi-
dense regime (that is, in a range of solid volume fraction for
which particle enduring contacts are either absent or negli-
gible in effect) the effective stress tensors of the fluid and of
the mixture must be nearly equal; in particular, the effective

stress tensor of the fluid has to obey the constitutive equation
that defines shear-thinning fluids. This does not mean that the
solid effective stress tensor can be taken to be zero; experi-
mental evidence shows that in the semi-dense regime particle
migration does take place, which implies that the solid effec-
tive stress tensor cannot be vanishingly small. However, we
may expect this stress to contribute negligibly to the effective
stress of the mixture (of course, for very dense suspensions,
this is no longer true because the frictional part of the solid
effective stress is expected to play a dominant role). So, in the
semi-dense regime, we suggest this closure,

〈S〉e = 〈p〉eI − ηm( |〈γ̇〉e |)〈γ̇〉e ; ηm( |〈γ̇〉e |) = K |〈γ̇〉e |
n−1, (3.9)

where
|〈γ̇〉e | ≡ [(1/2)〈γ̇〉e : 〈γ̇〉e]1/2. (3.10)

This is the magnitude of 〈γ̇〉e (in a simple one-dimensional
shear flow, |〈γ̇〉e | is equal to the absolute value of the shear
rate). Furthermore, in Eq. (3.9), K is the consistency and n is
the power-law index; their values may be obtained experi-
mentally in simple viscometric flows and are functions of the
volume fraction of solid. Of course, ηm can be closed with
other relations, such as that of Herschel and Bulkley (1926).

In the multifluid modeling approach, in many articles, the
effective stress tensor of the fluid is assumed to be Newtonian;
the constitutive equation used therefore reads

〈S〉e = 〈p〉eI − ηe[〈γ̇〉e − (2/3)(∂x · 〈u〉e)I], (3.11)

where ηe is the fluid effective viscosity. In some studies, the
flow regime is turbulent and so an additional term is added
to the fluid effective stress tensor; here we do not report
it because in this article we are focusing on laminar flow
conditions.

If Eq. (3.11) is employed, the closure problem reduces to
finding a suitable constitutive expression for ηe. In the liter-
ature (refer, for instance, to Jung and Hassanein, 2008; Chen
et al., 2009; Gidaspow and Huang, 2009; Fan et al., 2010; Yilmaz
et al., 2011; Kaushal et al., 2012; Wang et al., 2013; and Ofei and
Ismail, 2016), the following relation is frequently adopted:

ηe = εeµe. (3.12)

We believe that this closure is incorrect and should be avoided.
As we shall discuss in Sec. III C, in the multifluid modeling
framework, the solid effective stress tensor is often closed
through constitutive equations based on the kinetic theory of
granular flows. For liquid-solid mixtures, these granular mod-
els yield a stress tensor that is considerably small, and so
the effective stress tensors of the fluid and of the mixture
are almost identical. Based on our previous discussion, this
appears to be correct. However, Eq. (3.12) must be rejected
because it predicts a decrease in viscosity as the solid con-
centration rises; also, in the semi-dense regime, it does not
predict shear-thinning behavior. When modeling turbulent
mixtures, usually a turbulent viscosity is added on the right-
hand side of Eq. (3.12). This additional term is dominant,
and this explains why, in articles where the laminar viscos-
ity is expressed via Eq. (3.12), good numerical results can be
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obtained. But this does not justify the use of an incorrect
model for the laminar part of the fluid effective stress tensor.

In some other articles (e.g., Jung and Hassanein, 2008 and
Yilmaz et al., 2011), Eq. (3.12) is employed, but the effective
stress tensor of the solid is assumed to be essentially equal
to that of the mixture (these studies do not resort to granular
kinetic theory to overcome the solid stress closure problem).
Hence, the use of Eq. (3.12) does not significantly affect the
mixture dynamics because the effective stress of the fluid is
not the dominant contributor to the mixture effective stress.
Nonetheless, in light of our previous considerations, this mod-
eling choice appears to be incorrect. In the semi-dense region,
if the non-Newtonian behavior of the mixture stems from
kinetic energy dissipation in lubrication films, then, since this
effect is captured by the particle-presence stress, the fluid
effective stress must play the dominant role.

C. The solid effective stress closure problem
As previously discussed, in the semi-dense region, the

solid effective stress is of kinetic nature and originates from
particle velocity fluctuations. Thus, to derive a constitutive
equation for the effective stress tensor of the solid, one has
to identify the causes of these fluctuations and then correctly
model their effect. In Sec. III A, we have concluded that, for
the system of interest here, the dominant cause is the mean
fluid dynamic shear, and so this is the mechanism on which to
focus.

In the literature on fluid-particle flows, an approach that
has been frequently adopted to tackle the closure problem
of the particulate stress is that of kinetic theory for gran-
ular flows (Gidaspow, 1994; Nott and Brady, 1994; and Berzi
and Fraccarollo, 2016). This modeling framework is based on
a generalization of the Boltzmann equation (Cercignani, 2012),
which was originally derived for molecular systems. For them,
the stress is Newtonian, the fluid viscosity is a function of the
temperature, which is related to the molecule velocity fluc-
tuations, and the temperature field is governed by an inter-
nal energy balance equation. This equation has one source
of internal energy, owing to the kinetic energy degradation
induced by viscous dissipation, and no sinks of internal energy.
Similarly, for fluid-particle mixtures, the stress is Newtonian,
the solid-phase viscosity depends on a granular tempera-
ture, which is related to the velocity fluctuations of the par-
ticles, and the granular temperature field is governed by a
(pseudo)internal energy balance equation. This equation was
presented in Sec. II A; see Eq. (2.14). As we said, in addition to
the usual source term mentioned for molecular systems, the
internal energy of the particle phase has two sinks and one
source. The sink Sc accounts for the internal energy degrada-
tion due to inelastic collisions; for the systems we are con-
sidering in this article, this term is negligible. The sink Sv
accounts for the internal energy degradation due to viscous
resistance to particle motion; this term cannot be disregarded.
Finally, the source term Gd accounts for the generation of par-
ticle velocity fluctuations owing to interactions between the
fluid and the particles. The principal contributors to this term

are the fluctuations induced by the mean fluid dynamic shear
and the concentrational fluctuations. For the systems we are
considering, the latter is negligible, but the former plays a
crucial role and so has to be correctly modeled.

Unfortunately, deriving an expression for Gd is very com-
plex. This has been achieved for the part related to concentra-
tional fluctuations (Koch, 1990; Buyevich, 1994; and Buyevich
and Kapbasov, 1994), but doing so for the part related to shear-
induced fluctuations is an open challenge. Accordingly, some
researchers have opted to neglect this term; the model devel-
oped by Gidaspow (1994), which is frequently used in the liter-
ature, is a prominent example. But this model was developed
primarily for gas-fluidized beds, in which shear-induced fluc-
tuations play a minor role; for liquid-particle suspensions, the
same approximation cannot be accepted. In spite of this, sev-
eral studies in the literature have employed Gidaspow’s model
(see, for instance, Chen et al., 2009; Gidaspow and Huang,
2009; Kaushal et al., 2012; Wang et al., 2013; and Ofei and Ismail,
2016). This leads to a considerable underestimation of the solid
effective stress tensor because the dominant source of parti-
cle velocity fluctuations is not accounted for, which in turn
results in an underestimation of particle migration. In some
flows (dominated by convection), this may not pose a prob-
lem, but in others, one of which we consider in Sec. IV B, it
affects significantly the model predictions.

Because of the complexity posed by the generation term
Gd, some researchers have chosen to model the solid effective
stress tensor by relying on simple, heuristic arguments. In this
case, the pseudointernal energy balance equation is no longer
included in the model. To the best of our knowledge, two
constitutive equations for the shear-induced effective stress
tensor of the solid have been advanced in the literature. The
first is that of Buyevich (1996), which reads

〈S〉s = εsρs

{
Ca2ϕ(εs)

[
(π2/4 − 1)〈γ̇〉s · 〈γ̇〉s + |〈γ̇〉s |

2I
]}

. (3.13)

Here C is a constant, 〈γ̇〉s is twice the deformation rate ten-
sor of the solid mean velocity field, and |〈γ̇〉s | is its magnitude,
defined with a relation analogous to Eq. (3.10). Furthermore,
it is

ϕ(εs) = ε2
s

[
1 + εs + ε2

s − ε
3
s

(1 − εs)3
+ 2.9

(εs/ε
?
s )3

1 − (εs/ε
?
s )

]

×

[
1 − 0.5εs

(1 − εs)3
+ 1.08

(εs/ε
?
s )3

1 − (εs/ε
?
s )

] 2

, (3.14)

where ε?s represents the maximum value that the solid vol-
ume fraction can attain when the suspension reaches packing
conditions. Buyevich obtained this equation by assuming that
the shear-induced particle fluctuations scale with |〈γ̇〉s |a (or
equivalently with |〈γ̇〉m |a, for at leading order solid and mix-
ture velocities are equal), by invoking the principle of material
frame-indifference (Truesdell, 1977) to identify the permissi-
ble form of the constitutive equation and by using heuris-
tic arguments concerning the pure shear flow of a liquid-
particle mixture. His closure predicted the fully developed
solid volume fraction profile in various viscometric flows with
satisfactory agreement with experimental data (Buyevich, 1996
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and Buyevich and Kapbsov, 1999), but it has never been
used to predict the time evolution of solid volume fraction
profiles.

The second constitutive equation for the solid effective
stress tensor was derived heuristically by Morris and Boulay
(1999) in a study aimed at investigating the influence of normal
stresses on shear-induced particle migration. This equation
reads

〈S〉s = − ηs(εs)〈γ̇〉m + ηn(εs) |〈γ̇〉m |Q. (3.15)

The first term on the right-hand side represents the viscous
shear-stress part of the solid stress tensor, which is assumed
to be Newtonian. ηs is a function of the solid volume fraction
representing the particle contribution to the suspension shear
viscosity, and 〈γ̇〉m is twice the rate of strain tensor of the mix-
ture, with |〈γ̇〉m | being its magnitude [defined with an equation
similar to Eq. (3.10)]. The second term on the right-hand side
accounts for the presence of viscous normal stresses; ηn is
a function of the solid volume fraction referred to as nor-
mal stress viscosity, whilst Q is a diagonal, anisotropic mate-
rial property tensor whose components are constant fitting
parameters. If these parameters are properly tuned, Eq. (3.15)
can predict well steady-state solid volume fraction profiles in
several viscometric flows and transient solid volume fraction
profiles in wide-gap Couette flows (Morris and Boulay, 1999).
This equation, however, presents a considerable limitation:
even if written in general tensorial form, it was derived—and
is valid only—for viscometric flows (the anisotropy of the nor-
mal stress tensor arises inasmuch as in this kind of flows the
normal stresses are different in the flow, gradient, and vortic-
ity directions). Hence, in contrast with Eq. (3.13), the validity
of Eq. (3.15) is quite limited; the equation, in particular, can-
not be employed to model generic three-dimensional flows.
Miller et al. (2009) generalized it to two-dimensional flows, but
doing so requires the introduction of additional fitting param-
eters and does not render the closure of general validity. Thus,
in this article, we adopt the constitutive equation of Buyevich
(1996), which can be used for the complex flow investigated in
Sec. IV B.

Finally, we have to mention that in many articles the
effective stress tensor of the solid phase is assumed to be
Newtonian; therefore, it is closed as follows:

〈S〉s = [〈p〉s − κs(∂x · 〈u〉s)]I − ηs[〈γ̇〉s − (2/3)(∂x · 〈u〉s)I]. (3.16)

Here 〈p〉s is the solid effective pressure and κs and ηs are
the solid effective dilatational and shear viscosities, respec-
tively. Various constitutive expressions for these quantities
have been advanced in the literature, most of them being
based on a generalization of the mathematical theory of gran-
ular gases. The model developed by Gidaspow (1994), in partic-
ular, is often employed. Nevertheless, in the light of the above
considerations, we conclude that, for the systems of interest in
this work, a Newtonian closure is unsuitable. Furthermore, as
said before, since Gidaspow’s model neglects the contribution
of shear-induced particle velocity fluctuations to the effective
stress of the solid, this is grossly underestimated.

D. Final remarks on the multifluid modeling
approach closure problem

Based on what we have discussed, if we subscribe to the
view that, in suspensions far from the jamming state, the mix-
ture effective stress is dominated by the kinetic energy dis-
sipation process occurring in the interstitial fluid, then it is
reasonable to assume that the effective stress tensors of the
fluid and of the mixture should be nearly identical. We thus
believe that the correct closure for 〈S〉e should be that given
in Eqs. (3.7) and (3.8), for dilute suspensions, and Eq. (3.9), for
semi-dense suspensions. For the solid effective stress tensor,
no empirical closures are available, and, among the few theo-
retical ones, that of Buyevich (1996) seems to be the only one of
general validity (that of Morris and Boulay, 1999, conversely, is
valid solely for simple viscometric flows). This is, accordingly,
the only viable closure for complex, non-viscometric flows; we
stress, nevertheless, that more validation work is necessary to
test its accuracy. In the literature, various authors have used
Eqs. (3.11) and (3.12) to close 〈S〉e and Eq. (3.16) to close 〈S〉s
(e.g., Chen et al., 2009; Gidaspow and Huang, 2009; Kaushal
et al., 2012; Wang et al., 2013; and Ofei and Ismail, 2016). We
believe that doing so is incorrect because (a) the dependence
of the mixture viscosity on solid volume fraction is erroneously
modeled, ηm decreasing with εs, (b) the non-Newtonian rhe-
ology observed in semi-dense suspensions is not captured,
and (c) the effective solid stress closure does not account
for the effect of shear-induced particle velocity fluctua-
tions and accordingly underestimates shear-induced particle
migration.

E. The mixture effective stress closure problem
The constitutive expressions presented above overcome

the closure problem for the effective stress tensors of the
fluid and solid phases in multifluid models. These equations,
however, solve also the closure problem of the mixture effec-
tive stress, insofar as this is given by the sum of the fluid,
solid, and diffusion stress tensors. The first two are now
closed, whereas the third does not require closure. Natu-
rally, in this implementation of the mixture model, all the
issues affecting the stress closures in the multifluid model
affect as well the mixture model. The two models, conse-
quently, are equivalent (provided, of course, that the con-
ditions on which the latter is based are fulfilled—the Stokes
number, in particular, has to be much less than unity) and
accordingly yield the same predictions and share the same
limitations.

IV. NUMERICAL SIMULATIONS
In this section, we use a commercial computational fluid

dynamics code to solve the multifluid and mixture model
equations, with some of the constitutive equations just dis-
cussed, to describe the behavior of mixtures of particles
(assumed to be monodisperse) for which both modeling
approaches apply. To validate the results of the simula-
tions, we use experimental data from the literature. To this
end, we consider two model systems, well characterized
experimentally, for which both rheological data and flow
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characteristics are provided. The first is the laminar flow of
a dilute suspension in a horizontal pipe; here the validation
is conducted in terms of pressure drop. The second is the
flow of a dense suspension through an abrupt axisymmetric
expansion; here the validation is performed in terms of recir-
culation length downstream of the expansion. In the first flow,
the focus is on the closures for the fluid and mixture effec-
tive stress tensors because these significantly influence pres-
sure drops through pipes; the second flow, conversely, focuses
on the closure for the solid effective stress tensor, insofar
as this affects the shear-induced particle migration and in
turn the solid volume fraction radial profile at the expansion
inlet, which strongly influences the resulting recirculation
lengths.

A. Laminar flow of a dilute suspension in a pipe
As model system, we select the flow of phosphate

slurries in horizontal pipes investigated experimentally by Fam
et al. (1987). The suspension is assumed to consist of monodis-
perse particles with radius a = 5 µm and density ρs = 2650
kg/m3 dispersed in water (density ρe = 997 kg/m3 and viscos-
ity µe = 0.001 Pa s). The flow is laminar. The pipe diameter is
D = 2 mm, and in the experimental apparatus, the pipe was
long enough to let the velocity profile fully develop. Because
simulating the development of the velocity profile along the
entire pipe is computationally too demanding (timewise), we
simulate the flow in a pipe of length 10D, at the inlet of which
we assume the velocity profile to be fully developed. The sed-
imentation velocity of the particles is so small that along the
real pipe the vertical motion of the particles induced by grav-
ity is negligible. Also, in the real pipe, shear-induced parti-
cle migration does not occur, insofar as the time scale of
this phenomenon is far larger than the mean residence time
of the mixture in the real pipe. As the suspensions consid-
ered in this work are dilute (solid volume fraction up to ca.
7%), this is expected, shear-induced particle migration usu-
ally being significant only at quite higher concentrations of
solid. Consequently, the particle uniform distribution present
at the inlet of the pipe is retained throughout the entire real
pipe.

The rheological characterization of the mixture shows
that, despite being dilute, this has non-Newtonian behavior
with yield stress. As stated in the work of Fam et al. (1987),
this is due to the irregular shape of the particles and to
their polydispersity. In the simulations, we assume that the
particles are spherical and all identical, taking into account
their real properties solely through the mixture rheology.
Fam et al. fitted the model of Herschel and Bulkley (1926)
to the mixture viscosity, reporting the corresponding rheo-
logical parameters (consistency, power-law index and yield
stress) as functions of the solid concentration. We can thus
use this experimental data to model the rheology of the
suspension.

Our objective is predicting the pressure drop through the
pipe, or equivalently the Fanning friction factor, adopting both
the multifluid and mixture modeling approaches and differ-
ent closures for the fluid, solid, and mixture effective stress
tensors and validating the results with the experimental data
provided by Fam et al. (1987). The cases considered in the simu-
lations are reported in Table I. The CFD code we use is Fluent
17.2, in which we implement the required closures by means
of User Defined Functions (UDFs); these include the expres-
sions of Batchelor and Green (1972) and Herschel and Bulkley
(1926) for the suspension viscosity, that of Buyevich (1996) for
the solid effective stress tensor, and the closure of Mazzei and
Lettieri (2007) for the mean fluid-particle drag force per unit
volume of suspension. As Table I indicates, in some simula-
tions, we also use the model of Gidaspow (1994), based on
an extension of granular kinetic theory, to express the solid
effective stress tensor; this is built-in in the software, and
so no UDF is required for it. The parameters and constitu-
tive equations adopted in this model are listed in Table II. We
use a three-dimensional computational domain and, after a
preliminary mesh-independence study, we select a structured
grid with 244 260 hexahedral elements for the simulations. A
fully developed parabolic velocity profile and a uniform solid
volume fraction profile are considered as boundary condi-
tions at the inlet of the pipe. The walls are assumed no-slip,
and the pressure at the exit of the pipe is assumed to be
atmospheric.

TABLE I. Combinations of modeling approaches and constitutive equations used in the CFD simulations of the laminar flow of a dilute suspension in a pipe.

Eulerian–Eulerian model

Case Fluid stress closure Solid stress closure

E1 Equations (3.11) and (3.12) Equation (3.16) + Gidaspow (1994)
E2 Equations (3.11) and (3.12) Equations (3.13) and (3.14)—Buyevich (1996)
E3 Equations (3.11) and (3.12) Solid stress tensor set to zero
E4 Equation (3.9) + Herschel and Bulkley (1926) with experimental parameters Solid stress tensor set to zero

Mixture model

Case Mixture stress closure Solid stress closure

M1 Equations (3.11) and (3.12) Equation (3.16) + Gidaspow (1994)
M2 Equation (3.7) + Batchelor and Green (1972) Solid stress tensor set to zero
M3 Equation (3.9) + Herschel and Bulkley (1926) with experimental parameters Solid stress tensor set to zero
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TABLE II. Parameters and constitutive equations adopted in the model of Gidaspow
(1994), based on granular kinetic theory, to close the solid effective stress tensor.

Parameter/constitutive equation Value/name

Granular temperature at the pipe inlet 10−4 m2/s2

Coefficient of restitution 0.90
Maximum solid packing 0.63
Solid pressure Lun et al. (1984)
Granular viscosity Gidaspow (1994)
Granular bulk viscosity Lun et al. (1984)
Granular thermal conductivity Gidaspow (1994)

The results of the simulations, for a solid volume fraction
of 4.23%, are compared with the experimental data of Fam
et al. (1987) in Fig. 1. This reports the Fanning friction factor,
which is related to the pressure drop through the pipe, as a
function of a generalized Reynolds number. The definitions of
these parameters, particularly for the Reynolds number, are
quite involved; so, for briefness, we do not report them. They
can be found in the work of Fam et al. (1987).

First of all, we notice that cases E1 and M1, which are
based on the same closures, yield the same results. This is
expected, when the assumptions whereon the mixture model
is derived are fulfilled. Cases E4 and M3 also give nearly equal
results; we ascribe the small difference between their values
to the different numerical implementation of the two models
in the code. Cases E1 and M1 yield exactly the same results
because these adopt default closures—and so one does not
have to modify the code to implement the constitutive equa-
tions. The predictions of the multifluid and mixture models
coincide, when default closures are used.

Cases E1, E2, and E3 also yield equal results. These sim-
ulations differ in the closure adopted for the solid effec-
tive stress tensor. However, the pressure drop is significantly
affected solely by the fluid effective stress because the mixture

FIG. 1. Fanning friction factor versus (generalized) Reynolds number for the lam-
inar flow of mine tailing in a horizontal pipe. Experimental data from the work of
Fam et al. (1987).

stress is dominated by the kinetic energy dissipation process
occurring in the interstitial fluid. The effective stress of the
solid is mainly responsible for shear-induced particle migra-
tion, which in the flow being investigated does not take place
(this is confirmed by the numerical results, which indicate that
the solid concentration is uniform). Hence, in this flow prob-
lem, the solid effective stress plays a negligible role. This is why
these three cases (E1, E2, and E3) yield identical predictions. In
the light of this, in the other cases considered, we set the solid
effective stress tensor to zero.

When the fluid effective stress tensor is closed with
Eqs. (3.11) and (3.12), the pressure drop through the pipe is
underestimated. This is because Eq. (3.12) underestimates the
viscosity of the mixture, which is modeled as a decreasing
function of the solid volume fraction. Albeit the suspension
is dilute, for most points, the error is significant. In turbulent
flow simulations, this issue would not reveal itself because tur-
bulent viscosity would dominate the laminar one, but this does
not justify the use of an incorrect closure.

Case M2 is based on the constitutive equation of
Batchelor and Green (1972), where the mixture viscosity
increase with solid concentration is captured. The predicted
pressure drop is indeed higher than that obtained in the cases
considered before. However, this theoretical expression does
not correctly describe the rheology of the mixture, and conse-
quently the numerical results are still incorrect. Experimental
evidence reveals that the suspension is non-Newtonian and
behaves like a shear-thinning fluid with yield stress. So, to
recover the correct pressure drop values, one must employ an
empirical constitutive equation that correctly describes this
behavior. This is performed in cases E4 and M3, for which the
results closely agree with the experimental data. In case E4,
we use the equation of Herschel and Bulkley (1926), with the
experimental values of Fam et al. (1987) for the parameters fea-
turing in it, to close the fluid effective stress tensor, whilst in
case M3 the same expression is used for the mixture effective
stress tensor.

All the findings reported above refer to a single solid vol-
ume fraction (this is radially uniform and equal to 4.23% at
the pipe inlet and remains uniform throughout the pipe). To
investigate the effect of this variable, we run additional simu-
lations for suspensions with a solid volume fraction of 6.73%,
for which experimental data are also available. The cases con-
sidered in the simulations are those shown in Table I, with
the exception of E2 and E3, because these give equal pre-
dictions to E1. Table III reports the results of the simulations,
which refer to a mean inlet mixture velocity of 0.33 m/s; the

TABLE III. Comparison of experimental and numerical pressure drops in Pa/m for two
solid volume fractions and an average inlet mixture velocity of 0.33 m/s. Re(4.23%)
= 158 and Re(6.73%) = 68.

εs(%) E1 M1 M2 M3 E4 Experiments

4.23 2484 2484 2903 10 255 10 216 9 800
6.73 2420 2420 3119 28 691 28 192 28 128
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Reynolds number values for εs = 4.23% and 6.73% are 158 and
68, respectively.

The experiments reveal that the pressure drop increases
significantly with solid concentration. This trend is not cap-
tured in cases E1 and M1 because in these the fluid effective
viscosity (which is essentially equal to the mixture effective
viscosity) is modeled with Eq. (3.12), where it decreases with
the solid volume fraction. Case M2, in which the fluid effec-
tive viscosity is closed with the equation of Batchelor and
Green (1972), does capture the trend, but the results consid-
erably underestimate the pressure drop, insofar as the closure
does not reflect correctly the viscosity rise with solid volume
fraction. Only cases M3 and E4 accurately capture trend and
pressure drop values, for in these the constitutive equation for
the fluid (and mixture) effective viscosity properly describes
the rheology of the suspension, being based on experimen-
tal data. The deviation between numerical and experimental
results is, in such cases, within 5%. Note also that, for both
solid concentrations, the simulation results are equal for cases
E1 and M1 and nearly so for cases M3 and E4. The reason
for this was discussed before and has to do with numerical
implementation.

This analysis just conducted reveals that in laminar
flows of dilute suspensions with complex rheological behavior
(caused, for instance, by the irregular shape of the particles or
the polydispersity of the particle size) it is essential that the
effective viscosity of the mixture be correctly modeled. This
usually requires the use of empirical closures, which, in the
multifluid modeling approach, can also be employed to model
the effective viscosity of the fluid. In these systems, the solid
effective stress has no prominent role. In dense suspensions,
conversely, this term, responsible for shear-induced particle
migration, may not be dominant but is no longer negligible, as
we shall see in Sec. IV B.

B. Laminar flow of a dense suspension through
an abrupt expansion

As a more sophisticated system, we simulate the flow of
a dense suspension through an abrupt expansion. An abrupt
change in the flow cross section leads to high gradients in
velocity and recirculation patterns; this makes such a flow
a popular benchmark problem for comparing theory and
experiment, in both laminar and turbulent regimes (refer, for
instance, to Mollicone et al., 2017; 2018). To validate the model
predictions, we compare our results with the experimental
data available in the work of Moraczewski et al. (2005). They
provide rheometry data and values of the recirculation length
after the expansion for two types of mixtures of neutrally
buoyant particles. The first consists of polymethyl methacry-
late (PMMA) particles with average radius a = 42.5 µm and
density ρs = 1180 kg/m3 dispersed in a liquid with viscosity
µe = 0.023 Pa s, whilst the second consists of polystyrene par-
ticles with a = 128 µm and ρs = 1045 kg/m3 suspended in two
different liquids, one with µe = 0.03 Pa s and the other three
times as viscous. All of the suspensions are slightly shear-
thinning, their viscosity being well described by Eq. (3.9).

The tube diameters upstream and downstream of the expan-
sion are D1 = 0.476 cm and D2 = 1.910 cm, respectively,
resulting in a 1:4 expansion. The lengths of the upstream and
downstream tubes are, respectively, 128D1 and 80D2. In the
upstream tube, the characteristic velocity of the first mixture
is in the range of 3-26 cm/s, while that of the second mixture
is in the range of 11-22 cm/s. The characteristic velocities in
the downstream tube are 1/16 of the values just reported. The
Stokes number is in the range of 10−5–10−4 for the first mixture
and about 10−4 for the second mixture.

Simulating the entire experimental setup is very demand-
ing computationally. Note that, even if the flow investigated
is steady, the numerical implementation in the CFD code of
some closures (in particular, that of Buyevich) requires us
to run a number of simulations in transient conditions; this
was also true for the system considered in Sec. IV A. This
increases even more the computational time. So, in the sim-
ulations, we reduce the length of both upstream and down-
stream tubes, setting them to 5D1 and 10D2, respectively. Nev-
ertheless, doing so poses a problem regarding the boundary
conditions because, whilst the axial velocity and solid vol-
ume fraction profiles are known at the inlet of the actual
tube (the profiles are uniform), they are unknown at the loca-
tion where our computational domain begins (that is, at the
inlet section of the shortened upstream tube). These bound-
ary conditions should be obtained by solving the flow along
the entire upstream tube; having decided not to do this, we
must find a different way forward. Since the Reynolds num-
ber in the upstream tube has unit order of magnitude, the
real upstream tube is sufficiently long for the velocity pro-
file to fully develop. Therefore, with reasonable accuracy, in
our simulations, we can assume a parabolic velocity profile
at the inlet of the domain. Doing the same for the solid vol-
ume fraction boundary condition, however, is not necessarily
correct, insofar as the development length of the solid con-
centration profile is much longer than that for the mixture
velocity. This is due to the large time scale of the shear-
induced particle migration process in the inlet tube, which
strongly depends on the mean solid concentration as well as
the particle/tube radius ratio. Moraczewski et al. (2005) ran
experiments over broad ranges for these parameters; in some,
the solid concentration profile at the end of the upstream tube
was fully developed, whereas in others it was still developing.
To overcome this impasse, in the simulations, we consider two
limiting cases. In one, we assume that no particle migration
occurs so that the solid concentration profile at the inlet of the
domain is uniform; in the other, we assume that shear-induced
particle migration has enough time to let the concentration
profile fully develop. The fully developed profile may be deter-
mined analytically, from the steady-state solution of the linear
momentum balance equation for the suspension flow in a cir-
cular tube. The solution is reported in the work of Buyevich
and Kapbsov (1999). This solves the boundary condition issue.
By considering these limiting cases, we can investigate how
shear-induced particle migration in the upstream tube affects
the flow characteristics in the expansion region. As stated
in the work of Moraczewski et al. (2005), this phenomenon

Phys. Fluids 31, 013302 (2019); doi: 10.1063/1.5081677 31, 013302-13

© Author(s) 2019

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

dictates the major features of the flow after the expansion. For
experimental conditions in which the concentration profile is
only partly developed, the experimental results (in terms of
recirculation length after the expansion) are expected to lie
between the numerical predictions for the limiting cases just
mentioned.

As shown in Sec. IV A, the multifluid and mixture mod-
eling approaches are equivalent, provided they employ the
same closures. Thus, here we use only the latter. To close the
mixture effective stress tensor, we use Eq. (3.9) because, as
revealed by experiments, the mixture behaves as a generalized
Newtonian fluid. The values of the parameters in the closure
are obtained by fitting Eq. (3.9) to the experimental data of
Moraczewski et al. (2005). The model also requires a constitu-
tive equation for the solid effective stress tensor. While in the
upstream tube the closures of Buyevich (1996) and Morris and
Boulay (1999) are both applicable (since here the flow is simple
shear), in the region after the expansion, only the former can
be used (since here the flow is no longer viscometric). So, in
the simulations, we must use Buyevich’s relation. Conversely,
to determine (analytically) the inlet boundary condition for the
solid volume fraction, one may use either closure. The steady-
state solid concentration profiles they yield are very similar,
and the slight difference between them does not affect the
simulation results significantly. Thus, to be consistent, here
we report only the results of the simulations based on the
boundary conditions obtained with the equation suggested by
Buyevich (1996).

In the recirculation region after the expansion, the flow
pattern is dictated by convection, because, as the scaling anal-
ysis of Moraczewski et al. (2005) indicates, the convective time
scale is far shorter than the time scale of shear-induced par-
ticle migration. To verify this, we simulate each case study
twice, once accounting for the solid effective stress tensor
and once neglecting it (by setting it to zero). We remind that,
as Eq. (2.21) reveals, for suspensions of neutrally buoyant par-
ticles this term is the only cause of particle migration. Thus,
if in the expansion region shear-induced particle migration is
really negligible, the results of each simulation pair should be
identical.

In light of the considerations above, the cases consid-
ered in the simulations, in terms of combinations of inlet
boundary conditions and constitutive equations, are reported
in Table IV. These are used to simulate the flow of the sus-
pensions described before for different solid volume fractions
(from 40% to 50%) and Reynolds numbers, with the latter

defined as ρe(D2/2)U/〈ηm〉, where U represents the mean
velocity of the mixture in the downstream tube and 〈ηm〉 rep-
resents the value of the mixture viscosity (at a given solid
concentration) averaged over the shear rate variable. Since the
mixtures are only mildly shear-thinning, these averages are
quite close to the value of the consistency [denoted as K in
Eq. (3.9)].

For the shortened geometry, after a grid study, we select
a hexahedral grid with 258 880 cells. The walls of the tubes
are assumed no-slip, and the pressure at the exit section is
assumed to be atmospheric. The aim of the simulations is
reproducing the recirculation length xR after the expansion; in
the simulations, we take this to be the axial distance between
the expansion and the further edge of the last computational
cell in which the axial mixture velocity component is negative.
Figure 2 shows a schematic of the flow system, along with the
velocity field (magnitude and streamlines) for one of the cases
simulated.

Figure 3 reports the normalized recirculation length xR/h,
where h represents the difference between the large and small
tube radii, as a function of the flow Reynolds number for a
suspension of particles with a mean radius and volume frac-
tion of 42.5 µm and 40%, respectively. The sets of simula-
tion results presented refer to the cases given in Table IV. All
the simulations are able to capture the increase in recircula-
tion length with the Reynolds number. As expected, cases M1
and M2, as well as M3 and M4, give equal results, confirming
that in the expansion region shear-induced particle migra-
tion has no effect on the flow pattern. The difference between
the predictions of cases (M1, M2) and (M3, M4), conversely,
clearly highlights the strong influence that shear-induced par-
ticle migration occurring in the upstream tube does have on
the flow pattern developed after the expansion. The experi-
mental results lie between those of these two pairs of cases,
indicating that the flow investigated does not fully develop in
the upstream tube. This is in agreement with the estimation
made by Moraczewski et al. (2005) based on the experimental
formula of Hampton et al. (1997).

As revealed theoretically by Nott and Brady (1994) and
observed experimentally by Hampton et al. (1997), the length
required by the solid concentration profile to fully develop
decreases considerably when a mixture becomes denser.
Thus, one expects that at higher concentrations the assump-
tion of having a fully developed solid concentration profile at
the inlet of the computational domain should be more likely
met. To investigate this, we simulate the motion of the same

TABLE IV. Combinations of inlet boundary conditions and constitutive equations used in the CFD simulations of the laminar
flow of a dense suspension through an abrupt expansion.

Case Solid concentration at the expansion inlet Solid stress closure

M1 Uniform Solid stress tensor set to zero
M2 Uniform Equations (3.13) and (3.14)—Buyevich (1996)
M3 Fully developed Solid stress tensor set to zero
M4 Fully developed Equations (3.13) and (3.14)—Buyevich (1996)
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FIG. 2. Flow system schematic. The mixture velocity field (in terms of magnitude
and streamlines) refers to case M4 and a suspension of particles with an aver-
age radius and volume fraction of 42.5 µm and 40%, respectively. The Reynolds
number is equal to 0.15.

mixture (particles with a mean radius of 42.5 µm) for two addi-
tional mean solid volume fractions, namely, 48% and 50%.
Figure 4 presents the results, including those obtained for the
volume fraction of 40%. The values of the Reynolds number
corresponding to the three volume fractions, from the lowest
to the highest, are 0.70, 0.02, and 0.02. At higher solid concen-
tration, the simulations predict the recirculation length quite
accurately, when the fully developed concentration profile is
considered at the computational domain inlet—this indicates
that in the related experiments this profile is fully developed
(or nearly so). The results confirm that in the expansion region
shear-induced particle migration is negligible; so, the solid
effective stress tensor can be set to zero without altering the
results.

In the cases considered in Fig. 4, we observed that for εs
= 0.40 the predictions of cases M3 and M4 do not match the
experimental result, and we ascribed this mismatch to the fact
that in the related experiment the solid concentration profile

FIG. 3. Normalized recirculation length versus Reynolds number for a suspension
of particles with an average radius and volume fraction of 42.5 µm and 40%,
respectively. Experimental data from the work of Moraczewski et al. (2005).

FIG. 4. Normalized recirculation length versus solid volume fraction for a mixture
of particles with a mean radius of 42.5 µm. The values of the Reynolds number
corresponding to the three volume fractions, from the lowest to the highest, are
0.70, 0.02, and 0.02. Experimental data from the work of Moraczewski et al. (2005).

is not fully developed. The length required by the solid con-
centration profile to fully develop is also a strong decreasing
function of the particle/tube radius ratio; so, the mismatch
should be smaller for a suspension, flowing in the same tube, of
equal solid concentration but bigger particles. To investigate
this, we simulate the flow of the second suspension described
at the beginning of this section, which involves particles with
a mean radius of 128 µm, at volume fractions of solid equal to
40%, 45%, and 50%. The corresponding values of the Reynolds
number are 0.1, 0.04, and 0.004, respectively. The simulations
are based on case M3: the inlet boundary condition adopts
the fully developed solid concentration profile and the solid
effective stress tensor is set to zero. This is justified in the
light of the previous considerations: case M4 would give equal
results to case M3, while cases M1 and M2 would give poor
predictions, which would become poorer as the suspension
becomes denser. The results are shown in Fig. 5. The model

FIG. 5. Normalized recirculation length versus solid volume fraction for a mixture
of particles with a mean radius of 128 µm. The values of the Reynolds number
corresponding to the three volume fractions, from the lowest to the highest, are 0.1,
0.04, and 0.004. Experimental data from the work of Moraczewski et al. (2005).
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predicts the recirculation length quite accurately for all the
cases considered—including that for εs = 0.40—confirming the
validity of our expectations.

V. CONCLUSIONS
In this article, after having briefly described the multi-

fluid and mixture modeling approaches, we focused on the
problem of closure of the effective stress tensors of the fluid,
solid, and mixture phases. We first presented the (unclosed)
expressions of these tensors generated by the (soft volume)
averaging scheme, considering the contributors featuring in
them and discussing their origin and physical meaning. Subse-
quently, we reviewed the mechanisms yielding stress, examin-
ing their relevance for liquid-particle suspensions and debat-
ing their allocation between the phasic stress tensors. With
this insight, we discussed a number of closures commonly
adopted for these tensors, highlighting the shortcomings that
some of these present in reproducing key traits of these sys-
tems, namely, the rise in mixture viscosity and the change
in mixture rheology from Newtonian to non-Newtonian with
solid concentration and the particle migration induced by
nonuniform shear. Finally, in the light of the considerations
made, we made some recommendations about how the clo-
sure problem should be overcome for suspensions far from the
jamming state. In multifluid models, the effective stress tensor
of the fluid can be taken to be equal to that of the mixture [in
the sense clarified in Sec. III B when referring to Eq. (3.9)]. To
describe the rheology of the latter accurately, one often has
to use empirical closures, especially for suspensions that are
concentrated, polydisperse, or made of highly non-ideal parti-
cles (e.g., non-spherical or cohesive). The solid effective stress
tensor must also be modeled accurately, for it has a strong
bearing on particle migration. Its closure poses a consider-
able problem because it is hard to obtain both experimentally
and theoretically; the only constitutive equation of general
validity appears to be that derived, through simple heuristic
arguments, by Buyevich (1996). This has been successful at
capturing the process of shear-induced particle migration in a
number of simple stationary viscometric flows but still needs
to be thoroughly tested in transient conditions. The equa-
tions just discussed solve the closure problem in the mixture
model as well because this is merely an approximation of the
multifluid model.

In the second part of the paper, to support the ideas pre-
sented in the first part, we simulated the behavior of dilute
and dense mixtures using the multifluid and mixture model-
ing approaches and some of the closures formerly reviewed,
validating the results against experimental data available in
the literature. We showed the equivalence of the two mod-
eling approaches, when these use the same closures (and, of
course, provided the assumptions on which the mixture model
is based are satisfied). We confirmed the inadequacy of treat-
ing the fluid and solid phases as Newtonian continua, regard-
ing the fluid viscosity as proportional to the fluid volume frac-
tion and closing the solid effective stress tensor with expres-
sions based on a generalization—intended for gas-fluidized
suspensions—of granular kinetic theory. Numerical results and

experimental data agreed only when the complex rheology of
the suspensions considered was accurately modeled empir-
ically and the solid effective stress tensor was closed with
relations that correctly captured the shear-induced particle
migration process. In flows where this has sufficient time to
act, its influence on the flow pattern can be considerable, as
the second case study investigated clearly revealed.
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APPENDIX A: DERIVATION OF EQ. (2.21)
VIA A PERTURBATION METHOD

In this appendix, using a perturbation method, we derive
Eq. (2.21) of the main article; this equation yields the slip
velocity between the fluid and solid phases in the mixture
model.

The equations required in the derivation are those gov-
erning the evolution of the linear momentum fields of the fluid
and solid phases, that is, Eqs. (2.2) and (2.10) of the main article.
To lighten the notation, we express these equations as follows:

ρe∂t(εeue) = −ρe∂x · (εeueue) − ∂x · Se + εeρeg − fp, (A1)

ρs∂t(εsus) = −ρs∂x · (εsusus) − ∂x · Ss + εsρsg + fp. (A2)

The angular brackets representing volume averaging have
been omitted, and the densities have been regarded as con-
stants. These equations are unclosed. In the passages below,
to be concrete, we adopt specific closures for the phasic effec-
tive stress tensors and the fluid-particle interaction force, but
the final result, Eq. (2.21), is of general validity. This is because
what counts in the mathematical derivation are the relative
magnitudes of the terms present in the equations, which we
assume to be independent of the closures used.

To express the effective stress tensor of the fluid, we
assume that the medium is Newtonian; accordingly, the con-
stitutive equation is

Se ≡ peI + τe, τe = − ηe[γ̇e − (2/3)(∂x · ue)I], γ̇e ≡ ∂xue + ∂xuT
e,

(A3)

where pe is the fluid pressure, I is the identity tensor, τe is the
deviatoric part of the fluid stress tensor, ηe is the effective vis-
cosity of the fluid, and γ̇e is twice the fluid rate of deformation
tensor. This closure does not account for the bulk viscosity
contribution, which is usually negligible.

To express the effective stress tensor of the solid, we also
assume that the medium is Newtonian; hence, the constitutive
equation is

Ss ≡ psI + τs, τs = − ηs[γ̇s − (2/3)(∂x · us)I], γ̇s ≡ ∂xus + ∂xuT
s ,

(A4)

where ps is the solid pressure, τs is the deviatoric part of the
solid stress tensor, ηs is the effective viscosity of the solid, and
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γ̇s is twice the solid rate of deformation tensor; also in this
instance, we have neglected the bulk viscosity contribution,
its role being usually minor.

To model the fluid-particle interaction force, we employ
the constitutive equation below, which accounts for the buoy-
ancy, drag, virtual mass, and lift forces,

fp = −εs∂x · Se + β(ue − us)

+ εsρeζ[(Dtue − Dtus) − (∂x × ue) × (ue − us)]. (A5)

The first term on the right-hand side is the buoyancy force.
Various definitions can be adopted for it (refer, for instance, to
Jackson, 2000); the most popular considers only the isotropic
part of Se, the force being equal to −εs∂xpe, but we think that
the definition used above should be favored.

The second term on the right-hand side of Eq. (A5) is
the drag force, β denoting the drag force coefficient. Several
expressions for it are available in the literature; for briefness,
we do not report any of them here. The interested reader can
refer, for instance, to Jackson (2000) and Mazzei and Lettieri
(2007).

The final term on the right-hand side of Eq. (A5) is the
sum of the virtual mass and lift forces; ζ represents their coef-
ficients, which are assumed to be equal, so that the resultant
force satisfies the principle of frame indifference (Drew and
Passman, 1998). Often, ζ is assumed to be equal to 1/2. This
value holds solely at low solid concentration; for moderately
denser systems, Zuber (1964) suggested that ζ = (1 + 3εs)/2.

The substantial derivatives featuring in the virtual mass
force expression represent the local acceleration of the two
phases and are defined as follows:

Dtue ≡ ∂tue + ue · ∂xue, Dtus ≡ ∂tus + us · ∂xus. (A6)

Using the continuity equations, we may express the linear
momentum balance equations in Lagrangian form; if Eq. (A5)
is adopted as closure, we obtain

∂tue = −ue · ∂xue − (1/εeρe)∂x · Se + g
+ (1/εeρe)

{
εs∂x · Se − β(ue − us)

− εsρeζ[(Dtue − Dtus) − (∂x × ue) × (ue − us)]
}

(A7)

and

∂tus = −us · ∂xus − (1/εsρs)∂x · Ss + g
− (1/εsρs)

{
εs∂x · Se − β(ue − us)

− εsρeζ[(Dtue − Dtus) − (∂x × ue) × (ue − us)]
}
. (A8)

As we can see, this equation contains a term related to the
fluid effective stress tensor; this enters the equation through
the constitutive equation used for the buoyancy force.

Our aim is deriving an algebraic equation that relates the
fluid-particle slip velocity to variables which are either known
or that may be calculated using the equations of the mix-
ture model. To this end, let us subtract Eq. (A8) from Eq. (A7).

This gives

∂t(ue − us) = −(ue · ∂xue − us · ∂xus)

−γ {[(ρs − ρe)/ρsρe]∂xpe − (1/εsρs)∂xps }

−γ {[(ρs − ρe)/ρsρe]∂x · τe − (1/εsρs)∂x · τs }

−αβγ(1/εsρs)(ue − us)

+αζγ(ρe/ρs)(∂x × ue) × (ue − us), (A9)

where
α ≡ 1 + εsρs/εeρe, γ ≡ 1/[1 + (ρe/ρs)αζ]. (A10)

To derive the algebraic equation mentioned above, we use
a perturbation method (Lin and Segel, 1988 and Bush, 1992).
The first step is scaling Eq. (A9). To do so, we introduce the
variables

τ ≡t/tc, x̄ ≡ x/xc, ūe ≡ ue/ue,c

ūs≡us/us,c, p̄e ≡ pe/pe,c, p̄s ≡ ps/ps,c.
(A11)

These have been scaled by dividing the original variable by an
appropriate characteristic quantity. The scales of the depen-
dent variables are selected so as to render the order of mag-
nitude of the scaled variables equal to unity, whilst the scales
of the independent variables are selected so as to render the
order of magnitude of the derivatives of the scaled dependent
variables equal to unity.

The volume fractions of fluid and solid, along with α,
β, γ, and ζ , are variables and thus should be scaled; how-
ever, to simplify the analysis, we treat them as parameters.
This does not invalidate the results. We do the same also for
the effective viscosities of the two phases. Using the dimen-
sionless variables introduced above, we now write Eq. (A9) in
dimensionless form as

∂τ [ūe − (us,c/ue,c)ūs] = −(tc/τC,e)[ūe · ∂x̄ūe − (u2
s,c/u

2
e,c)ūs · ∂x̄ūs]

− (tc/τP,e)∂x̄p̄e + (tc/τP,s)∂x̄p̄s

− (tc/τV,e)∂x̄ · τ̄e + (tc/τV,s)∂x̄ · τ̄s

− (tc/τR)[ūe − (us,c/ue,c)ūs] + (tc/τL)(∂x̄ × ūe)

× [ūe − (us,c/ue,c)ūs], (A12)

where
τ̄e ≡ (xc/µeue,c)τe, τ̄s ≡ (xc/µsus,c)τs. (A13)

Moreover, in Eq. (A12), the characteristic times of the vari-
ous processes involved in the system dynamics arise naturally;
these are given by

τC,e ≡ xc/ue,c, τC,s ≡ (ue,c/us,c)τC,e,

τP,e ≡ (1/γ)[ρs/(ρs − ρe)](ρeu2
e,c/pe,c)τC,e,

τP,s ≡ (1/γ)(u2
e,c/u

2
s,c)(εsρsu2

s,c/ps,c)τC,e,

τV,e ≡ (1/γ)[ρs/(ρs − ρe)]ReeτC,e,

τV,s ≡ (1/γ)(u2
e,c/u

2
s,c)εsResτC,e, τR ≡ (1/γ)εsρs/αβ,

τL ≡ (1/γ)(1/αζ )τC,e, Ree ≡ ρeue,cxc/µe, Res ≡ ρsus,cxc/µs.

(A14)

In Eq. (A12), tc is the time scale of the dominant process, i.e.,
of the process having the shortest characteristic time (and
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thus being the fastest in making the system evolve). If we
assume that this is the fluid-particle drag, tc coincides with
the relaxation time τR. Then, Eq. (A12) becomes

∂τ [ūe − (us,c/ue,c)ūs] = −(τR/τC,e)[ūe · ∂x̄ūe − (u2
s,c/u

2
e,c)ūs · ∂x̄ūs]

− (τR/τP,e)∂x̄p̄e + (τR/τP,s)∂x̄p̄s

− (τR/τV,e)∂x̄ · τ̄e + (τR/τV,s)∂x̄ · τ̄s

− [ūe − (us,c/ue,c)ūs] + (τR/τL)(∂x̄ × ūe)

× [ūe − (us,c/ue,c)ūs]. (A15)

Let us assume that initially the order of magnitude of the
velocity of both phases is the same. In this case, at least ini-
tially, the velocity scales ue ,c and us ,c coincide. We also see,
from Eq. (A14), that all the characteristic times, with the excep-
tion of the relaxation time, are proportional to τC ,e. So, we can
write the equation above in the following form:

∂τ (ūe − ūs) = −ϕ(ūe · ∂x̄ūe − ūs · ∂x̄ūs) − ϕνP,e∂x̄p̄e

+ϕνP,s∂x̄p̄s − ϕνV,e∂x̄ · τ̄e + ϕνV,s∂x̄ · τ̄s

− (ūe − ūs) + ϕνL(∂x̄ × ūe) × (ūe − ūs) (A16)

where

ϕ ≡ τR/τC,e, νP,e ≡ τC,e/τP,e, νP,s ≡ τC,e/τP,s,

νV,e ≡ τC,e/τV,e, νV,s ≡ τC,e/τV,s, νL ≡ τC,e/τL. (A17)

The parameter ϕ is far less than unity, and as a consequence, it
is natural to seek a solution of Eq. (A16) in the form of a power
series in this parameter. We therefore write

f(x̄,τ;ϕ) = f0(x̄,τ) + f1(x̄,τ)ϕ + f2(x̄,τ)ϕ2 + · · · , (A18)

where f represents any dependent variable present in the
model (such as the phasic velocities, pressures, and deviatoric
stress tensors). By substituting this series into Eq. (A16) and
equating coefficients of equal powers of ϕ, we obtain a set of
equations. The first reads

∂τ (ūe,0 − ūs,0) = − (ūe,0 − ūs,0). (A19)

This shows that the slip velocity decreases monotonically
toward zero. The characteristic time of this process is, of
course, the relaxation time (which is equal to one in dimen-
sionless form). After a time of order τR has elapsed, the term
ūe,0 − ūs,0 will have decreased so much in magnitude as to be
comparable to at least one of the terms present on the right-
hand side of Eq. (A16). From this moment onward, the system
will evolve much more slowly, with a time scale equal to the
shortest characteristic time among those featuring in Eq. (A12)
(the relaxation time has to be excluded, naturally). We take
this to be the time scale characterizing convection; in most
flows, this assumption is correct (notice, however, that the
final result of the analysis remains valid if the dominant pro-
cess is different). Hence, a temporal boundary layer is present.
Outside this region, Eq. (A16) is incorrectly scaled since here
the time scale characterizing the evolution of the system is the

convection time; that is, tc ≡ τC ,e. The properly scaled equation
thus becomes

ϕ∂τ (ūe − ūs) = −ϕ(ūe · ∂x̄ūe − ūs · ∂x̄ūs) − ϕνP,e∂x̄p̄e

+ϕνP,s∂x̄p̄s − ϕνV,e∂x̄ · τ̄e + ϕνV,s∂x̄ · τ̄s

− (ūe − ūs) + ϕνL(∂x̄ × ūe) × (ūe − ūs). (A20)

In this equation, we have continued to assume the velocity
scales to be equal. This is justified because, as the system
relaxes, the slip velocity tends to vanish.

By substituting the series in Eq. (A18) into the equation
above and equating coefficients of equal powers of ϕ, we
obtain a set of equations. The first of these is

ūs,0 = ūe,0. (A21)

We thus see that, if the relaxation time is the short-
est time characterizing the system, then at leading order
the particles move at the same velocity as the fluid (notice
that, in the case considered, the local particle terminal
velocity is negligible compared to the local fluid velocity).
Notice that, while Eq. (A19) predicts that the mean fluid
and particle velocities become equal to a time-independent
value (the local equilibrium value), Eq. (A21) predicts that
these velocities are merely equal, permitting them to be
time-dependent (they indeed are since convection, as well
as the other processes, makes them evolve in time). The
second equation of the expansion takes the following
form:

ūe,1 − ūs,1 = −∂τ (ūe,0 − ūs,0) − (ūe,0 · ∂x̄ūe,0 − ūs,0 · ∂x̄ūs,0)

−νP,e∂x̄p̄e,0 + νP,s∂x̄p̄s,0 − νV,e∂x̄ · τ̄e,0

+νV,s∂x̄ · τ̄s,0 + νL(∂x̄ × ūe,0) × (ūe,0 − ūs,0). (A22)

In light of Eq. (A21), this reduces to

ūe,1 − ūs,1 = −νP,e∂x̄p̄e,0 + νP,s∂x̄p̄s,0

−νV,e∂x̄ · τ̄e,0 + νV,s∂x̄ · τ̄s,0. (A23)

Note that the lift force does not feature in the equation
above because the closure used for it involves the slip veloc-
ity between the phases, which is zero when the leading con-
tributions of the velocity fields are adopted. However, other
expressions for this force are available; if a closure that does
not feature the slip velocity were employed, the lift force
would appear in Eq. (A23).

We do not derive higher-order equations. The leading-
order approximation of the slip velocity is what we are after;
this relation reads

ūe − ūs = −ϕ (νP,e∂x̄p̄e,0 − νP,s∂x̄p̄s,0

+νV,e∂x̄ · τ̄e,0 − νV,s∂x̄ · τ̄s,0) + O(ϕ2). (A24)

Considering that

f0(x̄,τ) = f(x̄,τ;ϕ) + O(ϕ), (A25)
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where f represents any dependent variable present in the
model (in particular, the phasic effective pressures and devi-
atoric stress tensors), Eq. (A24) can be equivalently written as

ūe − ūs = −ϕ(νP,e∂x̄p̄e − νP,s∂x̄p̄s

+νV,e∂x̄ · τ̄e − νV,s∂x̄ · τ̄s) + O(ϕ2). (A26)

To manipulate this equation, we scale the suspension linear
momentum balance equation, Eq. (2.17), outside the temporal
boundary layer. The result is

[εeρe/(ρs − ρm)](νP,e∂x̄p̄e + νV,e∂x̄ · τ̄e)

+ εs(νP,s∂x̄p̄s + νV,s∂x̄ · τ̄s)

= (ρm/ρs){[εeρs/(ρs − ρm)]νGḡ − γDτ ūm } + O(ϕ2), (A27)
where

ūm ≡ um/ue,c, νG ≡ τC,e/τG,

τG ≡ ue,c/ge, ge ≡ γ[(ρs − ρe)/ρs]g (A28)

and where ḡ denotes the gravitational field versor. One
can regard ge as an effective gravitational field, which
accounts for the effects of the buoyancy force, which
reduces the action of gravity, and the virtual mass force;
τG then represents the time scale characterizing the effec-
tive gravitational field, that is, the time that this field
requires to vary the solid velocity by an amount having
the same order of magnitude as that of the scale of the
fluid velocity field. Combining Eqs. (A26) and (A27) gives

ūe − ūs = ϕαεe
{
νP,s∂x̄p̄s + νV,s∂x̄ · τ̄s − νGḡ

+γ[(ρs − ρm)/εeρs]Dτ ūm
}

+ O(ϕ2). (A29)

The equation above is expressed in dimensionless form; if we
now switch back to dimensional variables, we obtain Eq. (2.21)
of the main article.

APPENDIX B: FURTHER INFORMATION
ABOUT THE DERIVATION OF EQ. (3.6)

In this appendix, we offer a few additional details about
the derivation of Eq. (3.6) of the main manuscript. The starting
point is Eq. (2.4), which defines the fluid effective stress ten-
sor. This equation features four terms. The first, as reported
by Joseph et al. (1990), is equal to

εe〈σ〉e = εe〈p〉eI − µe〈γ̇〉v . (B1)

Notice that this expression is valid in general, as long as the
particles are rigid and the fluid is incompressible. Obtain-
ing general closures for the other three terms is extremely
complex; however, here we are interested in very dilute sus-
pensions of Stokesian particles, that is, particles for which
the Reynolds number is vanishingly small. As discussed in
Sec. III A, for suspensions where the point relative velocity
between the fluid and the particles is small, the stress stem-
ming from the fluid velocity fluctuations is negligible. But this
is exactly the case for Stokesian particles, for which, there-
fore, the last term on the right-hand side of Eq. (2.4) is taken
to be zero. We are thus left with the terms representing the
particle-presence stress. To determine these, one has to cal-
culate the integrals featuring in Eqs. (2.5) and (2.6); to do this,

one first has to obtain the point stress tensor of the fluid,
σe(x, t). For very dilute mixtures, as fluid dynamic interac-
tions among particles may be neglected, finding an analytical
expression for this tensor field is possible—as long as the par-
ticles are Stokesian (so that the flow around the particles is
creeping). The solution was given by Nadim and Stone (1991)
and Leal (1992), and employed by Jackson (1997) to deter-
mine the tensors n〈A〉p and n〈B〉p. Their expressions are given
in Eqs. (3.3) and (3.4). For suspensions in which the linear
and rotational relative velocities between the phases are very
small, as in the systems of interest in this paper, the contribu-
tion of the tensor n〈B〉p can be neglected, while the last term
on the right-hand side of Eq. (3.3) can be taken to be zero.
Therefore, the particle-presence stress tensor results to be
equal to

n〈A〉p = εs〈p〉eI − (5/2)εsµe〈γ̇〉e. (B2)
To find the fluid effective stress tensor, we use Eq. (2.4), where
only the terms in Eqs. (B1) and (B2) survive; in the former, using
Eq. (3.5), we replace 〈γ̇〉v with 〈γ̇〉e. This yields

〈S〉e = εe〈p〉eI − µe〈γ̇〉e + εs〈p〉eI − (5/2)εsµe〈γ̇〉e

= 〈p〉eI − [1 + (5/2)εs]µe〈γ̇〉e. (B3)

We have thus recovered the result reported in Eq. (3.6) of
the main manuscript. As seen, the Einstein correction to the
mixture viscosity stems from the particle-presence stress ten-
sor, in particular, from the tensor n〈A〉p. Zhang and Pros-
peretti (1997) reached exactly the same result via ensemble
averaging.
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