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Abstract: 

Objective. This paper aims at explaining national medal totals at the 1992-2016 Summer 

Olympic Games (n = 1289 observations) and forecasting them in 2016 (based on 1992-2012 

data) and 2020 with a set of variables similar to previous studies, as well as a regional (sub-

continents) variable not tested previously in the literature in English. Method. Econometric 

testing not only resorts to a Tobit model as usual but also to a Hurdle model. Results. Most 

variables have a significant impact on national team medal totals; it appears to be negative for 

most regions other than North America except Western Europe and Oceania (not significant). 

Then, two models (Tobit and Hurdle) are implemented to forecast national medal totals at the 

2016 and 2020 Summer Olympics. Conclusion. Both models are complementary for the 2016 

forecast. The 2020 forecast is consistent with Olympic Medals Prediction (2020), although 

some striking differences are found. 

 

Keywords: Tobit regression, Hurdle regression, sport performance. 
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The 2020 Summer Olympic Games will take place in Tokyo. Consistent with what 

happens before each Olympics edition, predictions about the national team medal totals have 

been made, based on the latest observed sporting results (Olympic Medals Predictions, 2019). 

The problem with such predictions is that they do not inform about the socioeconomic, 

political and sporting determinants explaining why such sporting results are supposed to come 

out. In the academic literature, a number of research works have attempted to explain medal 

win distribution at Summer Olympics with models that encapsulate the aforementioned types 

of variables. In a similar vein, this paper aims at explaining previous national team medal 

totals at the 1992-2016 Summer Olympic Games (n = 1289 observations) with a similar set of 

variables though including the test of a regional variable which has not been taken on board in 

the literature in English so far, although Andreff, Andreff and Poupaux (2008) tested it in an 

article in French aiming at forecasting medal totals at the 2008 Beijing Olympics. Another 

objective is to work out econometric testing not only resorting to a Tobit model as usual but 

also to a Hurdle model. Two models (Tobit and Hurdle) are then implemented in such a way 

as to forecast national team medals totals at the 2016 (based on the results from 1992-2012) 

and 2020 (based on the results from 1992-2016) Summer Olympics. 

The article reads as follows: first, a literature review enables to identify potential 

explanatory variables; second, a new model, and its variants, is presented; third, the results of 

our explanatory models are exhibited for the 1992-2016 period; fourth, derived forecasting 

models are tested over the same period of time; fifth, forecasts for the 2016 Summer Olympic 

Games are provided; sixth, estimated forecasts for the 2020 Summer Olympic Games are 

exhibited and then compared with estimates published in Olympic Medals Predictions as of 

January 28, 2020. The last section concludes. 

Literature Review 

Explaining Summer Olympics medal win distribution and, consequently, national medal 
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totals is not a brand new train of thought. This kind of exercise started as early as in the 1970s 

though an important step forward was achieved in 2004. That year, Bernard and Busse (2004), 

comparing the different econometric methodologies, came up with the conclusion that a Tobit 

model always delivers better results. Then it became standard to estimate an explanatory 

model of medal wins distribution with a Tobit (e.g. Andreff et al., 2008; Forrest, Sanz & 

Tena, 2010; and so on) and, since Bernard and Busse geared their article towards prediction as 

well, the Tobit regression turned out to be the hard core methodology in forecasting national 

medals totals.  

Bernard and Busse (2004), working with panel data on the 1960–96 Summer Games, first 

estimated a model which explains a nation’s share in the total number of medals. Probit and 

Tobit regressions were used. The hypothesis that medal winning should be proportional to 

population was econometrically rejected. Interestingly, per capita income and population were 

found to have very similar and significant effects at the margin on the production of Olympic 

medals. This suggests that total GDP is the best predictor of national Olympic performance. 

The model was then used to predict the number of medals won by Australia in 2000, and the 

result was only slightly different from the observed total. Bernard and Busse concluded that 

forced mobilisation of resources by governments can also play a role in medal total - an 

argument that probably applies in retrospect to past Soviet and Eastern European Olympic 

performances too. 

Fully in tune with Bernard and Busse, Andreff et al. (2008) modelling took on board GDP 

per capita, population, a host effect and a political regime variable delineating more precise 

sub-samples among the post-communist economies than in Bernard-Busse’s article. An 

additional regional variable was supposed to capture different sports specialisation in different 

regions (sub-continents) of the world economy, namely NAM (North America), AFN (North 

Africa), AFS (Sub-Saharan Africa), LSA (Latin and South America), EAST (Eastern Europe), 



 

5 

 

WEU (Western Europe), OCE (Oceania), MNE (Middle East), and ASI (Asia). The dependent 

variable, in contrast with Bernard-Busse, was national medal totals rather than a country share 

(percentage) in the total medal distribution. It appeared that adding a variable standing for the 

number of medals won by each country at the previous Olympics (in t-4 for the Olympics in t) 

markedly improved the censored Tobit econometric results, as already shown by Bernard-

Busse; the underlying rationale is that, to a non-negligible extent, past Olympic successes are 

predictors of current Olympic performances. This was a useful lesson for those running 

models with a view to forecasting forthcoming national medals totals. Notice that GDP per 

capita and population are four year lagged (values taken in t-4) with the underlying 

assumption that a given span of time is required to prepare an Olympic team, here assessed to 

be four years; put otherwise, as soon as the t-4 Olympics are over, each national team starts 

preparing for the t Olympics. By the same token, some inertia is introduced this way into the 

model which may avoid explosive variations when it is used for forecasting. Interestingly, 

compared to WEU, the regional variable unveils a significant positive impact for AFS, NAM 

and OCE, no significant impact for LSA and a significant negative impact for AFN, ASI, EAST 

and MNE. Despite this variable being significant, it has not been used since Andreff et al. 

(2008), maybe because this article is in French and, as such, not taken into account in the 

literature reviews conducted by authors focusing on papers in English. 

Andreff et al. (2008) published their article prior to the 2008 Beijing Olympics. Andreff 

(2009) compared their forecasts with actual medals, finding that Andreff et al. (2008) 

predicted correctly 70% of the medals with a 95% interval confidence and even 88% with a 

two medals error margin. Andreff (2009) identified doping as the explanation for those 

countries for which forecasts were not accurate. 

Forrest et al. (2010) adapted the Bernard-Busse model to include two new covariates, 

namely the level of public expenditure on recreational, cultural and religious affairs (including 
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sport) in each country provided by the United Nations (UN) and whether future hosts of the 

Games have such a great incentive to raise their performance standards that this is already 

reflected in their achievements in the current Olympiad. Both variables have a significant 

positive impact on the shares of medals for the 1992 to 2004 Olympics. The authors then 

attempted to forecast national team medal totals at the 2008 Beijing Olympics. To do so, they 

made subjective, judgemental adjustments, for example that the extra medals attributable to 

the old way of doing things for the post-communist economies will fade away over time, 

which is confirmed ‘objectively’ by Forrest, McHale, Sanz and Tena (2015, 2017) and 

Noland and Stahler (2016, 2017). 

Vagenas and Vlachokyriakou (2012) looked at the predictors of medal totals at the 2004 

Olympics. They tested two new variables, namely the impact of having hosted the Games four 

years earlier and the number of participant athletes per country. For both variables, they found 

a significant positive impact. Also introducing a new variable, Vagenas and Palaiothodorou 

(2019) exhibited empirical evidence contrary to the hypothesis of climatic impact on Olympic 

performance, in particular no superiority of temperate climate nations shows up from a Tobit 

testing on six Summer Games (1996-2016). Leeds and Leeds (2012), Trivedi and Zimmer 

(2014) and Lowen, Deaner and Schmidt (2016), looking at the impact of gender (for the first 

two) or gender inequalities (for the latter), did not find any significant result. 

Blais-Morisset, Boucher and Fortin (2017) attempted to explain a nation medals total for 

the 1992 to 2012 Olympics. The chosen dependent variable is discrete, and drives the authors 

to estimate a Poisson model and then a negative binomial model, including a Zinb (zero 

inflated negative binomial) model specification rather than a Tobit as in most previous 

studies. Similar to Forrest et al. (2010), the authors tested the impact of the level of public 

expenditure on recreational, cultural and religious affairs. They found that it is a better 

indicator of Olympic performances than GDP per capita. The authors interpret their result as 
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public investment in sports being a better targeted governmental policy tool in view to gaining 

a nation’s successes at the Olympics. Extremely topical and interesting, such result is to be 

taken with a pinch of salt due to a serious limitation. Indeed, it has been found with a sample 

of 53 nations that is roughly one quarter of all participating nations in the last Olympics. 

Compared to the aforementioned studies, Celik and Gius (2014), studying the 1996-2008 

Olympics, used a different dependent variable: instead of the number (or the share in total) of 

national medal totals at the end of the Games, they subtracted those medals stripped off from 

athletes ex post disqualified for doping. Otherwise, their model was basic with population, 

GDP per capita, host effect and the number of medals awarded at the previous Games, the 

latter improving the forecast of national medal totals once cleaned from disqualifications. 

Otamendi and Doncel (2018) raised the issue of whether the medal win distribution is 

better anticipated by forecasting models or by sports experts who have a deep knowledge of 

the different Olympic sport disciplines. They compared five expert predictions published in 

the press with three forecasting models respectively used for the 2010 Vancouver Winter 

Olympics (Otamendi & Doncel, 2014a), the 2012 London Summer Olympics (Otamendi & 

Doncel, 2014b) and the 2014 Sochi Winter Games (Andreff, 2013). Relying on indicators to 

test the performance of a forecast such as a ratio of exactly predicted results, Pearson, Kendall 

and Spearman correlations adjusting the forecast of ex ante statistical distribution to the ex 

post observed one, the authors concluded that sports experts’ predictions are more accurate as 

regard the detailed medal distribution within a given sport discipline while econometric 

models perform better when it comes to medal wins distribution across participating nations. 

Otamendi and Doncel (2018)’s final comment suggests that expert forecasts are more to be 

used by sport punters whereas econometric forecasts are more useful for designing public 

sport policies. The latter is the outlook of the modelling adopted below.  

Data and Methodology 
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What is intended here is to compare from a forecasting perspective the results of estimating 

a Tobit and a Hurdle model, in panel with random effects for both. Data have been gathered 

for all Games from Barcelona 1992 up to Rio de Janeiro 2016 (n = 1289 observations).  

Variables 

First of all, the dependent variable Mapdisqi,t is, for nation i in year t, a corrected number 

of medal wins which may not be equal to the actual number of medals won and publicised 

right after ending the Games. Mapdisqi,t is a national medals total after deducing all ex post 

medals lost due to (often doping) disqualifications of nation i’s athletes1. Data are from 

https://en.wikipedia.org/wiki/Summer_Olympic_Games, the Summer Olympics Wikipedia 

English site which links to web pages of different Games where tables are found regarding 

medals totals, medallists’ disqualifications, and medals’ reallocations; references to IOC 

official data are reported so that double-checking can be done. It is worth noting that a better 

assessment and accounting of the doping impact on Olympic performances would require 

information about the number of all doped (including non-detected) athletes which would 

enable to use doping as an explanatory variable instead of using it as an alleviation of the 

dependent variable. Such information has no chance to be unveiled in any foreseeable future 

(Andreff, 2019). Therefore, doping remains a non-observable – and widely unobserved2 – 

variable in view to explaining and forecasting national medal totals so far. 

Turning now to other variables, six basic explanatory variables significant in Bernard and 

Busse (2004) and Andreff et al. (2008) works are kept as our model’s hard core: 

1/ N i,t-4 stands for population in participating country i four years earlier than year t 

Olympics. Data are collected from the World Bank: 

https://data.worldbank.org/indicator/SP.POP.TOTL, and the variable logarithm is used in 

estimating our model variants. 

2/ (Y/N)i,t-4 stands for gross domestic product (GDP) per inhabitant in nation i four years 

https://en.wikipedia.org/wiki/Summer_Olympic_Games
https://data.worldbank.org/indicator/SP.POP.TOTL
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earlier than year t Olympics and is assumed to capture its level of economic development, 

differentiating rich/developed and poor/developing countries. 

These first two variables are taken four years earlier under the assumption that nation i 

needs to mobilise economic and demographic resources four years in advance to prepare its 

Olympic team and have it ready for the year t Olympics. In the background, the rationale is 

that human and economic resources need to be available from the starting point of the national 

Olympic team’s preparation for the next Games that we assume to start up right after the end 

of previous Games, i.e. four years earlier.  

Data are constant purchasing power parity Gross Domestic Product, in 2011 million US 

international dollars and data is collected from the CEPII database called CHELEM open on 

the DBnomics site: https://db.nomics.world/CEPII/CHELEM-GDP, except for Puerto Rico 

(absent in the database). For the latter country, constant PPP GDP has been found in the 

World Bank database.  

3/ Hosti,t is a dummy variable supposed to capture a host country effect on medal wins and 

is equal to 1 for host countries and equal to 0 for other participating nations.  

4/ Political Regimep,i is a dummy that differentiates among participating nations between 

former socialist centrally-planned economies, i.e. Central Eastern European countries 

(CEEC), that have joined the European Union, then all other (post-)communist economies 

(POSTCOM), and capitalist market economies (CAPME) which all other countries in the 

world are assumed to be. However, in most recent studies (Forrest et al., 2015, 2017; Noland 

& Stahler, 2016, 2017) post-communist transition economies did benefit much less from their 

outlier3 situation than at the dawn of transition period or before it, when Soviet-style sports 

were very much supported by the state to win medals. Consequently, the Political Regimep,i 

variable classifies all participating nations into three country groups: 

CEEC: 11 post-communist nations which joined the EU (Bulgaria, Croatia, the Czech 

https://db.nomics.world/CEPII/CHELEM-GDP
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Republic4, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, and Slovenia). 

POSTCOM: 23 other (post-)communist nations which are not EU members (Albania, 

Armenia, Azerbaijan, Belarus, Bosnia-Herzegovina, China, Cuba, Georgia, Kazakhstan, 

Kosovo, Kyrgyzstan, Laos, Macedonia, Moldova, Mongolia, Montenegro, People’s Republic 

of (North) Korea, Russia, Serbia5, Tajikistan, Ukraine Uzbekistan, and Vietnam). 

CAPME: capitalist market economies, without differentiation, assuming that all other 

participating nations are such economies; this country group is taken as the reference. 

5/ Regionsr,i is a dummy which classifies each nation i into one of the nine following 

country classes : NAM (North America), AFN (North Africa), AFS (Sub-Saharan Africa), LSA 

(Latin and South America), EAST (Eastern Europe), WEU (Western Europe), OCE (Oceania), 

MNE (Middle East), and ASI (Asia). Following up Andreff et al. (2008), this variable is 

assumed to be a proxy for nations’ cultural and regional specialisation in some given sports 

disciplines, common to several countries in a same region in the world6. 

6/ Medal totals four years earlier Mi,t-4 is the actual number of medals won by nation i at 

previous Games net of ex post disqualifications. This variable is taken on board to make our 

model ergodic and because it improves more than slightly medal win forecasts (Bernard & 

Busse, 2004; Celik & Gius, 2014); it is introduced only in forecasting variants of the model.  

Beyond these six variables, three other variables have been tested to check whether their 

explanatory power makes it worth including them in our model: the number of participating 

athletes per national team; hosting the Games four years later; and having hosted the Games 

four years earlier. 

1/ NAi,t stands for the number of participating athletes in each national team i, the rationale 

being that countries fielding more athletes are more likely to win medals. Data are drawn 

from the Wikipedia site: 

https://en.wikipedia.org/wiki/2016_Summer_Olympics#Participating_National_Olympic_Co

https://en.wikipedia.org/wiki/2016_Summer_Olympics#Participating_National_Olympic_Committees
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mmittees for each Olympic Games from 1992 to 2016. It is first tested as a continuous 

variable. Then it is tested as a discrete variable RNAi,d,t which splits the number of 

participating athletes into four classes (from 0 to 9 athletes, from 10 to 49 athletes, from 50 to 

149 athletes, and 150 athletes and over), for two reasons. For the one, from an analytical 

standpoint, marginal return to the number of participating athletes may not be constant. 

Making the variable discrete enables dropping a constant return assumption. On the other 

hand, such discrete variable enables having some information about the potential number of 

participating athletes that can be used when forecasting national medals totals at the next 

Games without knowing ex ante the exact number that each national team will actually field.  

Notice that athlete selection in the host country’s Olympic team obeys specific criteria 

(lower sporting performance requirements) with ensuing consequence that a nation fields a 

bigger number of athletes when it hosts the Games than otherwise. Obviously the two 

variables - host country and number of participating athletes - are linked. Three different 

models are required to disentangle them, taking on board respectively: 1/ the host country 

effect alone (model 1 below); 2/ only the number of participating athletes as a continuous 

variable (model 2 below); and 3/ the two variables together while considering the four athlete 

classes – a discrete variable (model 3 below, used for forecasting).  

2/ A second variable Host in 4 yearsi,t  stands for the impact on a nation i’s Olympic 

performance of its knowledge that it will be hosting the next Games four years later. The 

underlying assumption is that, being the next organising host country, this nation’s athletes 

will start up training and preparing themselves in advance with the objective of achieving 

very high level Olympic performances when they will benefit from the host effect. Usually, 

the Games are awarded to a city/country about seven years in advance (t-7), thus an early 

preparation of the Olympic team may be beneficial in terms of medal wins as early as in the 

next Games in t-4. Such effect was mentioned, for example, when explaining why the British 

https://en.wikipedia.org/wiki/2016_Summer_Olympics#Participating_National_Olympic_Committees
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team was so much successful (47 medals) at the 2008 Beijing Olympics. Maennig and 

Wellbrock (2008) tested a so-called “Great Britain will host the 2012 Olympics” variable as 

significantly positive.  

3/ A third and last variable Host 4 years agoi,t stands for having hosted the Games four 

years earlier, the rationale being that the investment made in view to winning many medals 

during the Games hosted in t should still affect positively the host country’s Olympic 

performance four years later in t+4. The intuition is as follows: intensively preparing and 

training athletes to win more medals when a nation is hosting the Games in t may have lasting 

beneficial effects up to the next Games when the nation is no longer the host country. Thus 

the Host 4 years agoi,t variable is equal to 1 for a nation i when it had been the previous 

Games organising country. For instance, taking Great Britain as an example, hosting the 2012 

London Games translates in our models into Host in 4 yearsi,t = 1 for 2008, Host = 1 for 2012 

and Host 4 years agoi,t = 1 for 2016. 

Tobit and Hurdle Modelling 

As mentioned previously, we have estimated both Tobit and Hurdle models. The use of a 

Tobit model is justified by the large mass points at zero medal (Bernard & Busse, 2004; 

Forrest et al., 2017). As noted by Forrest et al. (2017), the data are therefore treated as subject 

to censoring, which is intuitive because some countries come closer than others to winning a 

medal, for example they win some fourth-places, yet the performances of all of them are 

recorded as zero. In their article, these authors choose to use a Tobit model for three reasons. 

First, this facilitates comparison with Bernard and Busse (2004). Second, it is hard to think of 

theoretical reasons why the Tobit model would be inappropriate since it appeared to them 

plausible that the same mechanisms (resources) would drive both whether a country would 

win medals and how many it would win if it did. Third, their focus was to be on individual 

sports with comparisons across them based on medal shares rather than medal counts to 
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control for the different numbers of medals available in each sport at each Games; therefore, a 

count model such as Poisson would make comparisons across sports not straightforward. 

By contrast with Forrest et al. (2017), we are not interested in individual sports with 

comparisons across them and use medal counts. Therefore, we can also test a model that 

explicitly accounts for the discrete nature of the dependant variable, i.e. the number of medals 

(Blais-Morisset et al., 2017). As suggested by Blais-Morisset et al. (2017), a count model 

such as Poisson can be used. This is in particular possible when the dependant variable takes 

discrete values that are quite low, as this is the case for most countries regarding the number 

of medals won at the Olympic Games. Poisson models have the particularity to assume that 

the expected value and variance of the random variable are equal. Such hypothesis is 

relatively constraining and not realistic in our case since there is a strong heterogeneity across 

countries. In order to account for this heterogeneity, a negative binomial model is considered, 

which generalises the Poisson model by introducing in the expected value an unobserved 

individual effect. Given that the number of countries winning no medal is quite important, a 

Zinb model could have been chosen, consistent with Blais-Morisset et al. (2017). However, 

such model assumes that the zero observations have two different origins (Hu, Pavlicova & 

Nunes, 2011): “structural” (e.g. a country does not take part in the Olympic Games) and 

“sampling” (e.g. a country takes part and scores zero medal at the Olympic Games). This 

model is not appropriate for our research since the focus is on countries having taken part in 

the Olympic Games. 

Eventually a Hurdle model is estimated. Contrary to the Zinb model, it does not assume 

that the zero observations have two different origins (Hu et al., 2011). Similar to the Tobit 

model, the Hurdle model accounts for the probability of winning no medal and for the number 

of medals; its advantages compared to the Tobit model are that it distinguishes between two 

equations (medal(s) or not then number of medals for countries winning at least one medal, 
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only the second equation being released later in the results) and explicitly accounts for the 

discrete nature and the asymmetric distribution of the dependent variable. It remains to 

observe whether this translates in forecasts that are more accurate. Thus, all regressions are 

estimated with both Tobit and Hurdle models, tested in panel with random effects, in which 

Mapdisqi,t is the number of medals won by country i at the Games organised in t. 

For the Tobit model, the general specification is: 

𝑀𝑎𝑝𝑑𝑖𝑠𝑞𝑖,𝑡
∗ =  𝑋𝑖,𝑡 +  𝑢𝑖  + 𝜖𝑖,𝑡, 

where ui ~ N (0,σ2
u) and εi,t  ~ N (0,σ2

ε), and Mapdisqi,t = {
𝑀𝑎𝑝𝑑𝑖𝑠𝑞

𝑖,𝑡
∗ 𝑖𝑓 𝑀𝑎𝑝𝑑𝑖𝑠𝑞

𝑖,𝑡
∗ > 0

0 𝑖𝑓 𝑀𝑎𝑝𝑑𝑖𝑠𝑞
𝑖,𝑡
∗ ≤ 0.

 

For the Hurdle model, the general specification for the part related to the count process7 is: 

𝜒𝑖,𝑡 = 𝑒𝑥𝑝(𝑋𝑖,𝑡 + 𝜏𝑖,𝑡𝑢𝑖), 

with: Mapdisqi,t ~ Poisson(𝜒𝑖,𝑡); 𝜒𝑖,𝑡|𝑢𝑖 ~ Gamma(exp(𝑔𝑖,𝑡)); ui   ~  N (0,σ2
u). 

Depending on the set of explanatory variables selected, 𝑋𝑖,𝑡 is defined by: 

𝑐 +  𝛼 ln 𝑁𝑖,𝑡−4 +  𝛽ln (
𝑌

𝑁
)

𝑡−4
+  𝛾𝐻𝑜𝑠𝑡𝑖,𝑡  +  ∑ 𝛿𝑝𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑅𝑒𝑔𝑖𝑚𝑒𝑝,𝑖

𝑝

+ ∑ 𝜌𝑟

𝑟

𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑟,𝑖 +  𝜆𝐻𝑜𝑠𝑡 𝑖𝑛 4 𝑦𝑒𝑎𝑟𝑠𝑖,𝑡  +  𝜇𝐻𝑜𝑠𝑡 4 𝑦𝑒𝑎𝑟𝑠 𝑎𝑔𝑜𝑖,𝑡 (𝟏) 

𝑐 +  𝛼 ln 𝑁𝑖,𝑡−4 +  𝛽ln (
𝑌

𝑁
)

𝑡−4
 +  ∑ 𝛿𝑝𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑅𝑒𝑔𝑖𝑚𝑒𝑝,𝑖

𝑝

+ ∑ 𝜌𝑟

𝑟

𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑟,𝑖 

+ 𝜈𝑁𝐴𝑖,𝑡 (𝟐) 

It is worth noting that the number of participating athletes affects the impact of the three 

hosting variables, which loose statistical significance when taken on board together with the 

number of participating athletes. This explains why the three hosting variables are not 

included in Model (2). Table 1 presents summary descriptive statistics for the covariates 

included in the models (n = 1289 observations). 

Table 1 
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Results of Explanatory Models 

The results obtained with both Tobit and Hurdle models show that most variables have a 

significant impact on the medal totals (Table 2): the impact is positive for population and 

GDP per capita four years earlier, the two specific post-communist political regimes, the usual 

host effect, hosting the Games four years later, having hosted the Games four years earlier, 

the number of participating athletes; it is negative for most regions other than North America 

except Western Europe and Oceania (not significant).  

Table 2 

Results of Forecasting Models 

The number of participating athletes cannot be directly used in forecasting models since 

the number of participants in each national Olympic squad is not known yet. However, the 

importance of this variable as a medal win determinant leads us to take it on board in 

forecasting models though in a different manner: the variable is made discrete by means of 

grouping data into four classes corresponding to a number of athletes between 0 and 9, 10 and 

49, 50 and 149, 150 and more. Although the number of participating athletes per nation is not 

known yet, its evolution across the different Olympics editions does not induce a change of 

class for any given country with the four above-defined classes; thus a discrete variable for 

the number of participating athletes (noted RNA below) would fit with forecasting models. 

Compared to the above explanatory models, the two forecasting models encompass one more 

explanatory variable: the medal totals four years earlier. 

𝑋𝑖,𝑡 is defined by: 

𝑐 +  𝛼 ln 𝑁𝑖,𝑡−4 +  𝛽ln (
𝑌

𝑁
)

𝑡−4
+  𝛾𝐻𝑜𝑠𝑡𝑖,𝑡  +  ∑ 𝛿𝑝𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝑅𝑒𝑔𝑖𝑚𝑒𝑝,𝑖

𝑝

+ ∑ 𝜌𝑟

𝑟

𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑟,𝑖 + ∑ 𝑛𝑑

𝑑

𝑅𝑁𝐴𝑖,𝑑,𝑡 + 𝜃𝑀𝑎𝑞𝑑𝑖𝑠𝑞𝑖,𝑡−4

+  𝜆𝐻𝑜𝑠𝑡 𝑖𝑛 4 𝑦𝑒𝑎𝑟𝑠𝑖,𝑡  +  𝜇𝐻𝑜𝑠𝑡 4 𝑦𝑒𝑎𝑟𝑠 𝑎𝑔𝑜𝑖,𝑡 (𝟑) 
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The results show that medal totals four years earlier and the different participating athlete 

classes compared to the class from 0 to 9 athletes have a significant positive impact on medals 

totals, with an increasing coefficient for the participating athlete classes (Table 3). Compared 

to the explanatory models, GDP per capita and having hosted the Games four years earlier 

cease to be significant in the Hurdle model, while fewer political regime and regions dummies 

are significant in the Tobit model. An explanation is that these four variables are correlated 

with the medal totals four years earlier, i.e. the variable added in the forecasting models, with 

it capturing their impact. For GDP per capita, an additional explanation is that it mainly 

impacts whether a country wins medal(s) or not (rather than the number of medals for 

countries with at least one medal), i.e. an information provided by the equation not released 

for the Hurdle model8. In the Tobit model, having hosted the Games four years earlier has a 

significant negative impact. An explanation is that the medal totals four years earlier 

overestimate the medal total in t for the country having hosted the Games four years earlier. 

This overestimation is counterbalanced by the dummy variable capturing the fact that the 

country hosted the Games four years earlier, explaining its significant negative impact. 

Table 3 

Forecasting National Medals Totals at the 2016 Rio Olympics 

Running the two forecasting models based on the results obtained for the 1992-2012 period 

(not displayed in the paper but available upon request) with the already known data pertaining 

to the 2016 Games, it appears that they perform well: they are able to predict between 82.3% 

(Tobit model) and 87.5% (Hurdle model) of overall medal wins with a 95% confidence 

interval (Table 4). Extending beyond the confidence interval by a two medals error margin, 

between 91.1% (Tobit model) and 93.2% (Hurdle model) of the distributed medal totals are 

correctly predicted. The Hurdle model performs better than the Tobit model with a 95% 

confidence interval. Nevertheless, in a number of cases, its confidence interval is larger and 
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leads to consider a forecast as accurate while this would not be the case with the confidence 

interval of the Tobit model. This is less frequently the case the other way round, meaning that 

the Hurdle model is more likely to present a better percentage independently of whether its 

exact forecasts are better than the Tobit model or not. To try to control for this issue, we 

calculated what would have been the rate of right forecasts for the Hurdle model with the 95% 

confidence interval of the Tobit model. Interestingly, the results of the Hurdle model remain 

better than the Tobit model (87.0% of the distributed medal totals correctly predicted with a 

95% confidence interval, 92.2% when the confidence interval is extended by a two medals 

error margin). Given that the latter is the standard forecasting model since Bernard and Busse 

(2004) and a Hurdle model has never been tested to forecast national medals totals at Olympic 

Games, finding that the Hurdle model performs better with a 95% confidence interval is an 

important contribution to the forecasting literature. 

Table 4 

With a view to optimise forecasts, it is worth investigating further the differences between 

the Hurdle and the Tobit models, as well as what works better with one model or the other. If 

the Hurdle model performs better with a 95% confidence interval, this is not the case for the 

rate of exact forecasts. Indeed, the Hurdle model forecasts correctly 21.9% of the numbers of 

medals vs. 43.2% for the Tobit model. More exactly, the Tobit model performs better when it 

comes to forecast which countries end with 0 medal (69.2% vs. 21.5% for the Hurdle model), 

while the Hurdle model performs better when it comes to forecast which countries end with 1 

medal and more (22.4% vs. 10.6%, including the host country Brazil for the Hurdle model). 

These elements highlight that both models are complementary. 

Forecasting National Medals Totals at the 2020 Tokyo Olympics 

Now when forecasting models are run for the 2020 Games they come out with the 

predictions shown in Table 5. First, it is worth noting that our models forecast exactly the 
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same set of top 13 countries as the one found in Olympic Medals Predictions (2020). 

Nevertheless, the respective country rankings and number of medals reveal some differences. 

Both forecasts converge on the United States ending first with a large margin and China 

ending second. The most striking differences between modelled forecasts and Olympic 

Medals Predictions show up for Russia (-16 medals in models) and France (+19 to +27). 

Medal totals for France heavily depend on whether the variables having hosted the Games 

four years earlier and hosting the Games four years later (since France is going to host the 

Games in 2024) are taken on board or not. When they are removed from the models, the 

forecast for France is 42 or 43 medals, that is a lower medal total than for Japan and 

Germany. A key factor determining the medal total for France in 2020 would be whether 

preparing an Olympic team for 2024 had been engaged as soon as in 2017, i.e. when Paris 

was awarded hosting the 2024 Games, and whether such preparation would have a positive 

impact as early as in 2020. 

Table 5 

Conclusion 

This paper aimed at explaining previous national team medal totals at the 1992-2016 

Summer Olympic Games (n = 1289 observations) with a set of variables similar to previous 

studies, though including the test of a (significant) regional variable which was not taken on 

board in the literature in English so far. Another objective was to work out econometric 

testing not only resorting to a Tobit model as usual but also to a Hurdle model. Two 

explanatory models were then implemented in such a way as to forecast national team medals 

totals at the 2016 and 2020 Summer Olympics. Forecasting national team medal totals at the 

2016 Summer Olympics shows that the Hurdle model performs better than the Tobit model 

with a 95% confidence interval, questioning the relevance of using (only) the latter that 

became standard since Bernard and Busse (2004) and, as such, making an important 
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contribution to the literature. Forecasting national team medal totals at the 2020 Summer 

Olympics provides results that are consistent with Olympic Medals Predictions (2020), 

although some striking differences are found. 

FOOTNOTES 

1 Now, WADA (World Anti-Doping Agency) and its national agencies can ask anti-doping 

tests during ten years after the Games. Consequently, the final actual outcome of the Games is 

definitively stabilised only in t + 10 (in 2026 as regard the 2016 Rio Games), and 

disqualifications may happen at any moment meanwhile. 

2 According to WADA published data, only between 0% and 1.9% of all tested athletes are 

found positive (doped), depending on which sport discipline they compete in.  

3 Communist countries were outliers in the following sense: for instance the GDR, the 

USSR, etc., were winning much more Olympic medals than non-communist countries with 

comparable GDP per capita and population. 

4 Czechoslovakia as regard data for 1992, before the split with Slovakia in 1993.  

5 Republic of Serbia-Montenegro from 1992 to 2006, before the split with Montenegro.  

6 As, for instance, sprint in North America, Jamaica and the Caribbean, marathon and long 

distance running in Ethiopia, Kenya and Eastern Africa, weightlifting in Bulgaria, Turkey, 

Azerbaijan, Iran, etc.  

7 The equation related to the probability (Probit model) of not winning one medal and the 

associated estimations are not reported in this article. The Probit part and the negative 

binomial model are assumed to be uncorrelated. 

8 Results for the first equation in the Hurdle model are available upon request. 
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TABLES 

TABLE 1 

Summary descriptive statistics 

 Mean Standard deviation Minimum Maximum 

Number of medals 4.96 13.53 0 121 

Population in millions (t-4) 33.12 124.10 0.01 1350.70 

GDP per capita in K$ (t-4) 14.84 17.70 0.07 125.65 

Host country 0.01 0.07 0 1 

Number of athletes 57.94 100.81 1 646 

Political regime     

CAPME 0.83 0.38 0 1 

CEEC 0.06 0.24 0 1 

POSTCOM 0.11 0.32 0 1 

Sub-continent      

North America 0.05 0.23 0 1 

North Africa 0.03 0.16 0 1 

Sub-Saharan Africa 0.25 0.43 0 1 

Asia 0.15 0.35 0 1 

Latin and South America 0.15 0.36 0 1 

Eastern Europe 0.14 0.35 0 1 

Western Europe 0.11 0.31 0 1 

Middle East 0.08 0.27 0 1 

Oceania 0.05 0.21 0 1 
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TABLE 2 

Estimation results of four explanatory models 

 Model (1) - Hurdle Model (1) - Tobit Model (2) - Hurdle Model (2) - Tobit 

 coef  s.d. coef  s.d. coef  s.d. coef  s.d. 

Constant -9.481 *** 0.93 -125.377 *** 11.89 -6.108 *** 0.87 -62.923 *** 9.25 

Population in log (t-4) 0.558 *** 0.04 6.602 *** 0.59 0.364 *** 0.04 2.678 *** 0.43 

GDP per capita in log (t-4) 0.243 *** 0.06 3.456 *** 0.69 0.165 *** 0.05 2.156 *** 0.55 

Host country in 4 years  0.359 *** 0.11 9.352 *** 2.16       

Host country t 0.519 *** 0.11 17.817 *** 2.16       

Host country 4 years ago 0.303 *** 0.10 11.104 *** 2.16       

Number of athletes/10       0.034 *** 0.00 1.101 *** 0.06 

CEEC 1.134 *** 0.41 11.419 
 

7.46 0.952 *** 0.31 5.644  4.47 

POSTCOM 1.020 *** 0.33 14.298 ** 5.73 0.875 *** 0.25 10.349 *** 3.49 

North Africa -1.385 *** 0.41 -20.733 *** 6.80 -0.947 *** 0.33 -8.979 ** 4.32 

Sub-Saharan Africa -0.886 *** 0.33 -18.859 *** 4.73 -0.458 * 0.27 -6.472 ** 3.05 

Asia -1.510 *** 0.30 -22.291 *** 5.02 -0.957 *** 0.24 -8.860 *** 3.09 

Latin and South America -1.169 *** 0.32 -16.422 *** 4.89 -0.872 *** 0.25 -7.899 *** 3.04 

Eastern Europe -0.926 ** 0.40 -15.448 ** 7.18 -0.678 ** 0.31 -8.800 ** 4.33 

Western Europe -0.047 
 

0.28 -6.117 
 

4.93 -0.024  0.22 -7.165 ** 3.03 

Middle East -1.335 *** 0.34 -20.464 *** 5.10 -0.839 *** 0.27 -7.751 ** 3.30 

Oceania 0.735 
 

0.46 -4.859 
 

6.86 0.390  0.35 -7.591 * 4.52 

𝑔𝑖,𝑡 -3.374 *** 0.24 
   

-3.341 *** 0.24    

σ2
u 0.350 *** 0.06 164.685 *** 23.67 0.355 *** 0.06 51.907 *** 8.36 

Observations total 554   1289   554   1289   

Observations non censored    554      554   

Notes: *** significant at the 1% level; ** 5% level; * 10% level; c: test statistics associated to the comparison of 

the models with and without taking into account panel; coef for coefficient and s.d. for standard deviation. 
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TABLE 3 

Estimation results of two forecasting models 

 Model (3) - Hurdle Model (3) - Tobit 

 coef  s.d. coef  s.d. 

Constant -3.725 *** 0.92 -22.507 *** 4.57 

Population in log (t-4) 0.231 *** 0.04 0.700 *** 0.19 

GDP per capita in log (t-4) 0.067 

 

0.05 0.569 ** 0.28 

Host country in 4 years 0.336 *** 0.10 8.864 *** 2.02 

Host country t 0.366 *** 0.11 12.520 *** 2.03 

Host country 4 years ago -0.050  0.11 -4.760 ** 2.08 

Number of medals (t-4) 0.016 *** 0.00 0.897 *** 0.02 

Athletes [10,50[  0.510 ** 0.23 5.126 *** 0.67 

Athletes [50,150[ 0.989 *** 0.24 7.394 *** 0.87 

150 athletes and more 1.559 *** 0.27 9.314 *** 1.15 

CEEC 0.490 * 0.27 0.390 

 

1.40 

POSTCOM 0.538 ** 0.22 1.828 * 1.07 

North Africa -0.844 *** 0.28 -2.101 * 1.29 

Sub-Saharan Africa -0.246 

 

0.25 -1.749 * 1.04 

Asia -0.618 *** 0.21 -1.719 * 0.97 

Latin and South America -0.742 *** 0.22 -2.705 *** 0.96 

Eastern Europe -0.386 

 

0.26 -1.890 

 

1.35 

Western Europe -0.009 

 

0.18 -1.205 

 

0.90 

Middle East -0.520 ** 0.24 -1.373 

 

1.07 

Oceania 0.288 

 

0.29 -1.772 

 

1.39 

𝑔𝑖,𝑡 -3.408 *** 0.25 
   

σ2
u 0.115 *** 0.03 26.68 *** 1.66 

Observations total 529   1232   

Observations non censored    529   

Notes: *** significant at the 1% level; ** 5% level; * 10% level; c: test statistics associated to the comparison of 

the models with and without taking into account panel; coef for coefficient and s.d. for standard deviation. 
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TABLE 4 

Forecast of Olympic medals for the 2016 Rio Games 

  Model (3) - Hurdle Model (3) - Tobit 

Countries Number of medals Rio 2016 Forecast Lower CI Upper CI Forecast Lower CI Upper CI 

United States 121 105 94 115 99 95 102 

China 70 106 95 117 89 86 93 

Great Britain 67 48 43 53 56 51 61 

Russia  55 70 63 77 69 66 71 

France 42 38 34 42 36 34 38 

Germany 42 47 42 51 44 42 46 

Japan 41 43 38 48 48 43 53 

Australia 29 37 31 43 35 31 38 

Italy 28 29 25 33 29 28 31 

Canada 22 19 15 23 21 19 24 

South Korea 21 29 25 32 31 29 33 

Brazil 19 19 15 23 33 28 38 

Netherlands 19 20 17 23 22 20 23 

Azerbaijan 18 11 8 13 10 8 13 

Kazakhstan 18 10 8 13 11 9 13 

New Zealand 18 13 9 17 14 10 17 

Spain 17 18 15 22 20 18 22 

Rate of right forecasts for 2016   

All countries (192)   

CI to 95% (+ or -2) 88.5% (93.2%) 83.9% (90.6%) 

Exact forecasts (+ or -1) 21.9% (77.1%) 43.2% (74.5%) 

Exact forecasts 0 medal (107 countries) 21.5% 69.2% 

Exact forecasts non 0 medal (85 countries) 22.4% 10.6% 

Countries with at least 3 medals (56)   

CI to 95% (+ or -2) 64.3% (76.8%) 50% (69.6%) 

Exact forecasts (+ or -1) 8.9% (37.5%) 8.9% (30.4%) 

Note: CI = confidence interval. 
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TABLE 5 

Forecast of Olympic medals for the 2020 Tokyo Games 

  Model (3) - Hurdle Model (3) - Tobit 

Countries Number of medals Rio 2016 Forecast Lower CI Upper CI Forecast Lower CI Upper CI 

United States 121 139 127 151 115 111 119 

China 70 77 68 86 70 67 73 

Great Britain 67 57 52 62 64 62 67 

Russia  55 55 49 61 55 53 57 

France 42 59 54 64 51 46 55 

Germany 42 45 41 49 42 40 44 

Japan 41 47 42 52 53 49 58 

Australia 29 33 27 38 29 26 32 

Italy 28 29 25 33 29 27 31 

Canada 22 20 17 24 25 23 27 

South Korea 21 24 21 28 22 20 24 

Brazil 19 13 9 16 15 10 20 

Netherlands 19 20 17 23 20 19 22 

Azerbaijan 18 12 10 15 18 16 20 

Kazakhstan 18 12 9 15 18 16 20 

New Zealand 18 14 10 18 18 15 21 

Spain 17 18 15 21 19 17 21 

Denmark 15 9 7 11 14 12 16 

Hungary 15 17 14 20 16 14 18 

Kenya 13 12 10 15 12 10 14 

Uzbekistan 13 8 5 10 14 12 15 

Cuba 11 13 10 17 14 11 17 

Jamaica 11 10 7 12 10 8 13 

Poland 11 14 10 17 13 11 15 

Sweden 11 13 10 15 13 11 15 

Ukraine 11 16 13 20 14 12 16 

Note: CI = confidence interval. 


