Forecasting National Medal Totals at the Summer Olympic Games Reconsidered
Nicolas Scelles, Wladimir Andreff, Liliane Bonnal, Madeleine Andreff, Pascal Favard

Dr Nicolas Scelles, Manchester Metropolitan University (corresponding author)
Manchester Metropolitan University Business School,
All Saints Campus, Oxford Road
Manchester, M15 6BH
UK
N.Scelles@mmu.ac.uk

Prof Wladimir Andreff, University Paris 1 Panthéon Sorbonne
Centre d’Economie de la Sorbonne, Maison des Sciences Economiques
106-112 bd de l’Hôpital
75642 Paris Cedex 13
France
andreff@club-internet.fr

Prof Liliane Bonnal, University of Poitiers
Université de Poitiers, UFR Sciences Economiques, Bâtiment A1
2 rue Jean Carbonnier
TSA 81100 – 86073 Poitiers Cedex 9
France
liliane.bonnal@univ-poitiers.fr

Mrs Madeleine Andreff, University Paris-Est Marne-la-Vallée
UFR de Sciences Economiques et de Gestion, Université Paris-Est Marne-la-Vallée
Rue Galilée, Bâtiment Bois de l’Etang
77454 Champs-sur-Marne Cedex 02
France
madandreff@gmail.com

Prof Pascal Favard, University of Tours
UFR de Droit, Economie et Sciences Sociales, Université de Tours
50 avenue Jean Portalis, Les deux Lions
BP 0607 – 37206 Tours Cedex 03
France
pascal.favard@univ-tours.fr

Funding
This work was funded by the French Observatory of the Sports Economy, Ministry for Sports.

Conflict of interest
None

Acknowledgements
The authors would like to thank the French Observatory of the Sports Economy, French Ministry for Sports, for having funded this research. They also want to thank the participants of the 11th Conference of the European Sport Economics Association in Gijon, Spain, for their feedback on the presentation of the paper. In particular, they thank Prof David Forrest and Dr Juan de Dios Tena for their feedback on the full paper. The authors also want to thank the editors and the referee for their very helpful comments. Errors are their own.
Abstract:

Objective. This paper aims at explaining national medal totals at the 1992-2016 Summer Olympic Games (n = 1289 observations) and forecasting them in 2016 (based on 1992-2012 data) and 2020 with a set of variables similar to previous studies, as well as a regional (sub-continents) variable not tested previously in the literature in English. Method. Econometric testing not only resorts to a Tobit model as usual but also to a Hurdle model. Results. Most variables have a significant impact on national team medal totals; it appears to be negative for most regions other than North America except Western Europe and Oceania (not significant). Then, two models (Tobit and Hurdle) are implemented to forecast national medal totals at the 2016 and 2020 Summer Olympics. Conclusion. Both models are complementary for the 2016 forecast. The 2020 forecast is consistent with Olympic Medals Prediction (2020), although some striking differences are found.

Keywords: Tobit regression, Hurdle regression, sport performance.
The 2020 Summer Olympic Games will take place in Tokyo. Consistent with what happens before each Olympics edition, predictions about the national team medal totals have been made, based on the latest observed sporting results (Olympic Medals Predictions, 2019). The problem with such predictions is that they do not inform about the socioeconomic, political and sporting determinants explaining why such sporting results are supposed to come out. In the academic literature, a number of research works have attempted to explain medal win distribution at Summer Olympics with models that encapsulate the aforementioned types of variables. In a similar vein, this paper aims at explaining previous national team medal totals at the 1992-2016 Summer Olympic Games (n = 1289 observations) with a similar set of variables though including the test of a regional variable which has not been taken on board in the literature in English so far, although Andreff, Andreff and Poupaux (2008) tested it in an article in French aiming at forecasting medal totals at the 2008 Beijing Olympics. Another objective is to work out econometric testing not only resorting to a Tobit model as usual but also to a Hurdle model. Two models (Tobit and Hurdle) are then implemented in such a way as to forecast national team medals totals at the 2016 (based on the results from 1992-2012) and 2020 (based on the results from 1992-2016) Summer Olympics.

The article reads as follows: first, a literature review enables to identify potential explanatory variables; second, a new model, and its variants, is presented; third, the results of our explanatory models are exhibited for the 1992-2016 period; fourth, derived forecasting models are tested over the same period of time; fifth, forecasts for the 2016 Summer Olympic Games are provided; sixth, estimated forecasts for the 2020 Summer Olympic Games are exhibited and then compared with estimates published in Olympic Medals Predictions as of January 28, 2020. The last section concludes.

**Literature Review**

Explaining Summer Olympics medal win distribution and, consequently, national medal
totals is not a brand new train of thought. This kind of exercise started as early as in the 1970s though an important step forward was achieved in 2004. That year, Bernard and Busse (2004), comparing the different econometric methodologies, came up with the conclusion that a Tobit model always delivers better results. Then it became standard to estimate an explanatory model of medal wins distribution with a Tobit (e.g. Andreff et al., 2008; Forrest, Sanz & Tena, 2010; and so on) and, since Bernard and Busse geared their article towards prediction as well, the Tobit regression turned out to be the hard core methodology in forecasting national medals totals.

Bernard and Busse (2004), working with panel data on the 1960–96 Summer Games, first estimated a model which explains a nation’s share in the total number of medals. Probit and Tobit regressions were used. The hypothesis that medal winning should be proportional to population was econometrically rejected. Interestingly, per capita income and population were found to have very similar and significant effects at the margin on the production of Olympic medals. This suggests that total GDP is the best predictor of national Olympic performance. The model was then used to predict the number of medals won by Australia in 2000, and the result was only slightly different from the observed total. Bernard and Busse concluded that forced mobilisation of resources by governments can also play a role in medal total - an argument that probably applies in retrospect to past Soviet and Eastern European Olympic performances too.

Fully in tune with Bernard and Busse, Andreff et al. (2008) modelling took on board GDP per capita, population, a host effect and a political regime variable delineating more precise sub-samples among the post-communist economies than in Bernard-Busse’s article. An additional regional variable was supposed to capture different sports specialisation in different regions (sub-continents) of the world economy, namely NAM (North America), AFN (North Africa), AFS (Sub-Saharan Africa), LSA (Latin and South America), EAST (Eastern Europe),
*WEU* (Western Europe), *OCE* (Oceania), *MNE* (Middle East), and *ASI* (Asia). The dependent variable, in contrast with Bernard-Busse, was national medal totals rather than a country share (percentage) in the total medal distribution. It appeared that adding a variable standing for the number of medals won by each country at the previous Olympics (in \( t-4 \) for the Olympics in \( t \)) markedly improved the censored Tobit econometric results, as already shown by Bernard-Busse; the underlying rationale is that, to a non-negligible extent, past Olympic successes are predictors of current Olympic performances. This was a useful lesson for those running models with a view to forecasting forthcoming national medals totals. Notice that GDP per capita and population are four year lagged (values taken in \( t-4 \)) with the underlying assumption that a given span of time is required to prepare an Olympic team, here assessed to be four years; put otherwise, as soon as the \( t-4 \) Olympics are over, each national team starts preparing for the \( t \) Olympics. By the same token, some inertia is introduced this way into the model which may avoid explosive variations when it is used for forecasting. Interestingly, compared to *WEU*, the regional variable unveils a significant positive impact for *AFS*, *NAM* and *OCE*, no significant impact for *LSA* and a significant negative impact for *AFN*, *ASI*, *EAST* and *MNE*. Despite this variable being significant, it has not been used since Andreff *et al.* (2008), maybe because this article is in French and, as such, not taken into account in the literature reviews conducted by authors focusing on papers in English.

Andreff *et al.* (2008) published their article prior to the 2008 Beijing Olympics. Andreff (2009) compared their forecasts with actual medals, finding that Andreff *et al.* (2008) predicted correctly 70% of the medals with a 95% interval confidence and even 88% with a two medals error margin. Andreff (2009) identified doping as the explanation for those countries for which forecasts were not accurate.

Forrest *et al.* (2010) adapted the Bernard-Busse model to include two new covariates, namely the level of public expenditure on recreational, cultural and religious affairs (including
sport) in each country provided by the United Nations (UN) and whether future hosts of the Games have such a great incentive to raise their performance standards that this is already reflected in their achievements in the current Olympiad. Both variables have a significant positive impact on the shares of medals for the 1992 to 2004 Olympics. The authors then attempted to forecast national team medal totals at the 2008 Beijing Olympics. To do so, they made subjective, judgemental adjustments, for example that the extra medals attributable to the old way of doing things for the post-communist economies will fade away over time, which is confirmed ‘objectively’ by Forrest, McHale, Sanz and Tena (2015, 2017) and Noland and Stahler (2016, 2017).

Vagenas and Vlachokyriakou (2012) looked at the predictors of medal totals at the 2004 Olympics. They tested two new variables, namely the impact of having hosted the Games four years earlier and the number of participant athletes per country. For both variables, they found a significant positive impact. Also introducing a new variable, Vagenas and Palaiothodorou (2019) exhibited empirical evidence contrary to the hypothesis of climatic impact on Olympic performance, in particular no superiority of temperate climate nations shows up from a Tobit testing on six Summer Games (1996-2016). Leeds and Leeds (2012), Trivedi and Zimmer (2014) and Lowen, Deaner and Schmidt (2016), looking at the impact of gender (for the first two) or gender inequalities (for the latter), did not find any significant result.

Blais-Morisset, Boucher and Fortin (2017) attempted to explain a nation medals total for the 1992 to 2012 Olympics. The chosen dependent variable is discrete, and drives the authors to estimate a Poisson model and then a negative binomial model, including a Zinb (zero inflated negative binomial) model specification rather than a Tobit as in most previous studies. Similar to Forrest et al. (2010), the authors tested the impact of the level of public expenditure on recreational, cultural and religious affairs. They found that it is a better indicator of Olympic performances than GDP per capita. The authors interpret their result as
public investment in sports being a better targeted governmental policy tool in view to gaining a nation’s successes at the Olympics. Extremely topical and interesting, such result is to be taken with a pinch of salt due to a serious limitation. Indeed, it has been found with a sample of 53 nations that is roughly one quarter of all participating nations in the last Olympics.

Compared to the aforementioned studies, Celik and Gius (2014), studying the 1996-2008 Olympics, used a different dependent variable: instead of the number (or the share in total) of national medal totals at the end of the Games, they subtracted those medals stripped off from athletes ex post disqualified for doping. Otherwise, their model was basic with population, GDP per capita, host effect and the number of medals awarded at the previous Games, the latter improving the forecast of national medal totals once cleaned from disqualifications.

Otamendi and Doncel (2018) raised the issue of whether the medal win distribution is better anticipated by forecasting models or by sports experts who have a deep knowledge of the different Olympic sport disciplines. They compared five expert predictions published in the press with three forecasting models respectively used for the 2010 Vancouver Winter Olympics (Otamendi & Doncel, 2014a), the 2012 London Summer Olympics (Otamendi & Doncel, 2014b) and the 2014 Sochi Winter Games (Andreff, 2013). Relying on indicators to test the performance of a forecast such as a ratio of exactly predicted results, Pearson, Kendall and Spearman correlations adjusting the forecast of ex ante statistical distribution to the ex post observed one, the authors concluded that sports experts’ predictions are more accurate as regard the detailed medal distribution within a given sport discipline while econometric models perform better when it comes to medal wins distribution across participating nations. Otamendi and Doncel (2018)’s final comment suggests that expert forecasts are more to be used by sport punters whereas econometric forecasts are more useful for designing public sport policies. The latter is the outlook of the modelling adopted below.

**Data and Methodology**
What is intended here is to compare from a forecasting perspective the results of estimating a Tobit and a Hurdle model, in panel with random effects for both. Data have been gathered for all Games from Barcelona 1992 up to Rio de Janeiro 2016 (n = 1289 observations).

**Variables**

First of all, the dependent variable $\text{Mapdisq}_{i,t}$ is, for nation $i$ in year $t$, a corrected number of medal wins which may not be equal to the actual number of medals won and publicised right after ending the Games. $\text{Mapdisq}_{i,t}$ is a national medals total after deducting all ex post medals lost due to (often doping) disqualifications of nation $i$’s athletes. Data are from https://en.wikipedia.org/wiki/Summer_Olympic_Games, the Summer Olympics Wikipedia English site which links to web pages of different Games where tables are found regarding medals totals, medallists’ disqualifications, and medals’ reallocations; references to IOC official data are reported so that double-checking can be done. It is worth noting that a better assessment and accounting of the doping impact on Olympic performances would require information about the number of all doped (including non-detected) athletes which would enable to use doping as an explanatory variable instead of using it as an alleviation of the dependent variable. Such information has no chance to be unveiled in any foreseeable future (Andreff, 2019). Therefore, doping remains a non-observable – and widely unobserved variable in view to explaining and forecasting national medal totals so far.

Turning now to other variables, six basic explanatory variables significant in Bernard and Busse (2004) and Andreff et al. (2008) works are kept as our model’s hard core:

1/ $N_{i,t-4}$ stands for population in participating country $i$ four years earlier than year $t$ Olympics. Data are collected from the World Bank:

https://data.worldbank.org/indicator/SP.POP.TOTL, and the variable logarithm is used in estimating our model variants.

2/ $(Y/N)_{i,t-4}$ stands for gross domestic product (GDP) per inhabitant in nation $i$ four years
earlier than year $t$ Olympics and is assumed to capture its level of economic development, differentiating rich/developed and poor/developing countries.

These first two variables are taken four years earlier under the assumption that nation $i$ needs to mobilise economic and demographic resources four years in advance to prepare its Olympic team and have it ready for the year $t$ Olympics. In the background, the rationale is that human and economic resources need to be available from the starting point of the national Olympic team’s preparation for the next Games that we assume to start up right after the end of previous Games, *i.e.* four years earlier.

Data are constant purchasing power parity Gross Domestic Product, in 2011 million US international dollars and data is collected from the CEPII database called CHELEM open on the DBnomics site: https://db.nomics.world/CEPII/CHELEM-GDP, except for Puerto Rico (absent in the database). For the latter country, constant PPP GDP has been found in the World Bank database.

3/ *Host$_i$,* is a dummy variable supposed to capture a host country effect on medal wins and is equal to 1 for host countries and equal to 0 for other participating nations.

4/ *Political Regime$_{p,i}$* is a dummy that differentiates among participating nations between former socialist centrally-planned economies, *i.e.* Central Eastern European countries (*CEEC*), that have joined the European Union, then all other (post-)communist economies (*POSTCOM*), and capitalist market economies (*CAPME*) which all other countries in the world are assumed to be. However, in most recent studies (Forrest *et al.*, 2015, 2017; Noland & Stahler, 2016, 2017) post-communist transition economies did benefit much less from their outlier$^3$ situation than at the dawn of transition period or before it, when Soviet-style sports were very much supported by the state to win medals. Consequently, the *Political Regime$_{p,i}$* variable classifies all participating nations into three country groups:

*CEEC*: 11 post-communist nations which joined the EU (Bulgaria, Croatia, the Czech
Republic⁴, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, and Slovenia).

**POSTCOM**: 23 other (post-)communist nations which are not EU members (Albania, Armenia, Azerbaijan, Belarus, Bosnia-Herzegovina, China, Cuba, Georgia, Kazakhstan, Kosovo, Kyrgyzstan, Laos, Macedonia, Moldova, Mongolia, Montenegro, People’s Republic of (North) Korea, Russia, Serbia⁵, Tajikistan, Ukraine Uzbekistan, and Vietnam).

**CAPME**: capitalist market economies, without differentiation, assuming that all other participating nations are such economies; this country group is taken as the reference.

5/ **Regions**, a dummy which classifies each nation into one of the nine following country classes: NAM (North America), AFN (North Africa), AFS (Sub-Saharan Africa), LSA (Latin and South America), EAST (Eastern Europe), WEU (Western Europe), OCE (Oceania), MNE (Middle East), and ASI (Asia). Following up Andreff et al. (2008), this variable is assumed to be a proxy for nations’ cultural and regional specialisation in some given sports disciplines, common to several countries in a same region in the world⁶.

6/ Medal totals four years earlier \( M_{i,t-4} \) is the actual number of medals won by nation \( i \) at previous Games net of ex post disqualifications. This variable is taken on board to make our model ergodic and because it improves more than slightly medal win forecasts (Bernard & Busse, 2004; Celik & Gius, 2014); it is introduced only in forecasting variants of the model.

Beyond these six variables, three other variables have been tested to check whether their explanatory power makes it worth including them in our model: the number of participating athletes per national team; hosting the Games four years later; and having hosted the Games four years earlier.

1/ \( NA_{i,t} \) stands for the number of participating athletes in each national team \( i \), the rationale being that countries fielding more athletes are more likely to win medals. Data are drawn from the Wikipedia site:

For each Olympic Games from 1992 to 2016. It is first tested as a continuous variable. Then it is tested as a discrete variable $RNA_{i,d,t}$ which splits the number of participating athletes into four classes (from 0 to 9 athletes, from 10 to 49 athletes, from 50 to 149 athletes, and 150 athletes and over), for two reasons. For the one, from an analytical standpoint, marginal return to the number of participating athletes may not be constant.

Making the variable discrete enables dropping a constant return assumption. On the other hand, such discrete variable enables having some information about the potential number of participating athletes that can be used when forecasting national medals totals at the next Games without knowing ex ante the exact number that each national team will actually field.

Notice that athlete selection in the host country’s Olympic team obeys specific criteria (lower sporting performance requirements) with ensuing consequence that a nation fields a bigger number of athletes when it hosts the Games than otherwise. Obviously the two variables - host country and number of participating athletes - are linked. Three different models are required to disentangle them, taking on board respectively: 1/ the host country effect alone (model 1 below); 2/ only the number of participating athletes as a continuous variable (model 2 below); and 3/ the two variables together while considering the four athlete classes – a discrete variable (model 3 below, used for forecasting).

A second variable $Host\ in\ 4\ years_{i,t}$ stands for the impact on a nation $i$’s Olympic performance of its knowledge that it will be hosting the next Games four years later. The underlying assumption is that, being the next organising host country, this nation’s athletes will start up training and preparing themselves in advance with the objective of achieving very high level Olympic performances when they will benefit from the host effect. Usually, the Games are awarded to a city/country about seven years in advance ($t-7$), thus an early preparation of the Olympic team may be beneficial in terms of medal wins as early as in the next Games in $t-4$. Such effect was mentioned, for example, when explaining why the British
team was so much successful (47 medals) at the 2008 Beijing Olympics. Maennig and Wellbrock (2008) tested a so-called “Great Britain will host the 2012 Olympics” variable as significantly positive.

3/ A third and last variable Host 4 years ago is for having hosted the Games four years earlier, the rationale being that the investment made in view to winning many medals during the Games hosted in \( t \) should still affect positively the host country’s Olympic performance four years later in \( t+4 \). The intuition is as follows: intensively preparing and training athletes to win more medals when a nation is hosting the Games in \( t \) may have lasting beneficial effects up to the next Games when the nation is no longer the host country. Thus the Host 4 years ago variable is equal to 1 for a nation \( i \) when it had been the previous Games organising country. For instance, taking Great Britain as an example, hosting the 2012 London Games translates in our models into Host in 4 years = 1 for 2008, Host = 1 for 2012 and Host 4 years ago = 1 for 2016.

**Tobit and Hurdle Modelling**

As mentioned previously, we have estimated both Tobit and Hurdle models. The use of a Tobit model is justified by the large mass points at zero medal (Bernard & Busse, 2004; Forrest *et al.*, 2017). As noted by Forrest *et al.* (2017), the data are therefore treated as subject to censoring, which is intuitive because some countries come closer than others to winning a medal, for example they win some fourth-places, yet the performances of all of them are recorded as zero. In their article, these authors choose to use a Tobit model for three reasons. First, this facilitates comparison with Bernard and Busse (2004). Second, it is hard to think of theoretical reasons why the Tobit model would be inappropriate since it appeared to them plausible that the same mechanisms (resources) would drive both whether a country would win medals and how many it would win if it did. Third, their focus was to be on individual sports with comparisons across them based on medal shares rather than medal counts to
control for the different numbers of medals available in each sport at each Games; therefore, a

count model such as Poisson would make comparisons across sports not straightforward.

By contrast with Forrest et al. (2017), we are not interested in individual sports with
comparisons across them and use medal counts. Therefore, we can also test a model that
explicitly accounts for the discrete nature of the dependant variable, i.e. the number of medals
(Blais-Morisset et al., 2017). As suggested by Blais-Morisset et al. (2017), a count model
such as Poisson can be used. This is in particular possible when the dependant variable takes
discrete values that are quite low, as this is the case for most countries regarding the number
of medals won at the Olympic Games. Poisson models have the particularity to assume that
the expected value and variance of the random variable are equal. Such hypothesis is
relatively constraining and not realistic in our case since there is a strong heterogeneity across
countries. In order to account for this heterogeneity, a negative binomial model is considered,
which generalises the Poisson model by introducing in the expected value an unobserved
individual effect. Given that the number of countries winning no medal is quite important, a
Zinb model could have been chosen, consistent with Blais-Morisset et al. (2017). However,
such model assumes that the zero observations have two different origins (Hu, Pavlicova &
Nunes, 2011): “structural” (e.g. a country does not take part in the Olympic Games) and
“sampling” (e.g. a country takes part and scores zero medal at the Olympic Games). This
model is not appropriate for our research since the focus is on countries having taken part in
the Olympic Games.

Eventually a Hurdle model is estimated. Contrary to the Zinb model, it does not assume
that the zero observations have two different origins (Hu et al., 2011). Similar to the Tobit
model, the Hurdle model accounts for the probability of winning no medal and for the number
of medals; its advantages compared to the Tobit model are that it distinguishes between two
equations (medal(s) or not then number of medals for countries winning at least one medal,
only the second equation being released later in the results) and explicitly accounts for the
discrete nature and the asymmetric distribution of the dependent variable. It remains to
observe whether this translates in forecasts that are more accurate. Thus, all regressions are
estimated with both Tobit and Hurdle models, tested in panel with random effects, in which
\( \text{Mapdisq}_{i,t} \) is the number of medals won by country \( i \) at the Games organised in \( t \).

For the Tobit model, the general specification is:

\[
\text{Mapdisq}_{i,t}^* = X_{i,t} \Theta + u_i + \epsilon_{i,t},
\]

where \( u_i \sim N(0, \sigma^2_u) \) and \( \epsilon_{i,t} \sim N(0, \sigma^2_e) \), and \( \text{Mapdisq}_{i,t} = \begin{cases} \text{Mapdisq}_{i,t}^* & \text{if } \text{Mapdisq}_{i,t}^* > 0 \\ 0 & \text{if } \text{Mapdisq}_{i,t}^* \leq 0. \end{cases} \)

For the Hurdle model, the general specification for the part related to the count process is:

\[
\chi_i, t = \exp(X_{i,t} \Theta + \tau_{i,t} u_i),
\]

with: \( \text{Mapdisq}_{i,t} \sim \text{Poisson}(\chi_{i,t}) \); \( X_{i,t} | u_i \sim \text{Gamma}(\exp(g_{i,t})) \); \( u_i \sim N(0, \sigma^2_u) \).

Depending on the set of explanatory variables selected, \( X_{i,t} \Theta \) is defined by:

\[
c + \alpha \ln N_{i,t-4} + \beta \ln \left( \frac{Y}{N} \right)_{t-4} + \gamma \text{Host}_{i,t} + \sum_p \delta_p \text{PoliticalRegime}_{p,i} \\
+ \sum_r \rho_r \text{Regions}_{r,i} + \lambda \text{Host in 4 years}_{i,t} + \mu \text{Host 4 years ago}_{i,t} (1)
\]

\[
c + \alpha \ln N_{i,t-4} + \beta \ln \left( \frac{Y}{N} \right)_{t-4} + \sum_p \delta_p \text{PoliticalRegime}_{p,i} + \sum_r \rho_r \text{Regions}_{r,i} \\
+ \nu \text{NA}_{i,t} (2)
\]

It is worth noting that the number of participating athletes affects the impact of the three
hosting variables, which loose statistical significance when taken on board together with the
number of participating athletes. This explains why the three hosting variables are not
included in Model (2). Table 1 presents summary descriptive statistics for the covariates
included in the models (n = 1289 observations).

Table 1
Results of Explanatory Models

The results obtained with both Tobit and Hurdle models show that most variables have a significant impact on the medal totals (Table 2): the impact is positive for population and GDP per capita four years earlier, the two specific post-communist political regimes, the usual host effect, hosting the Games four years later, having hosted the Games four years earlier, the number of participating athletes; it is negative for most regions other than North America except Western Europe and Oceania (not significant).

Table 2

Results of Forecasting Models

The number of participating athletes cannot be directly used in forecasting models since the number of participants in each national Olympic squad is not known yet. However, the importance of this variable as a medal win determinant leads us to take it on board in forecasting models though in a different manner: the variable is made discrete by means of grouping data into four classes corresponding to a number of athletes between 0 and 9, 10 and 49, 50 and 149, 150 and more. Although the number of participating athletes per nation is not known yet, its evolution across the different Olympics editions does not induce a change of class for any given country with the four above-defined classes; thus a discrete variable for the number of participating athletes (noted RNA below) would fit with forecasting models. Compared to the above explanatory models, the two forecasting models encompass one more explanatory variable: the medal totals four years earlier.

\[ X_{i,t} \Theta \text{ is defined by:} \]

\[
c + \alpha \ln N_{i,t-4} + \beta \ln \left( \frac{Y}{N} \right)_{t-4} + \gamma \text{Host}_{i,t} + \sum_p \delta_p \text{PoliticalRegime}_{p,i} \\
+ \sum_r \rho_r \text{Regions}_{r,i} + \sum_d t_{\text{nd}} \text{RNA}_{i,d,t} + \theta \text{Maqdisq}_{i,t-4} \\
+ \lambda \text{Host in 4 years}_{i,t} + \mu \text{Host 4 years ago}_{i,t} \quad (3)
\]
The results show that medal totals four years earlier and the different participating athlete classes compared to the class from 0 to 9 athletes have a significant positive impact on medals totals, with an increasing coefficient for the participating athlete classes (Table 3). Compared to the explanatory models, GDP per capita and having hosted the Games four years earlier cease to be significant in the Hurdle model, while fewer political regime and regions dummies are significant in the Tobit model. An explanation is that these four variables are correlated with the medal totals four years earlier, i.e. the variable added in the forecasting models, with it capturing their impact. For GDP per capita, an additional explanation is that it mainly impacts whether a country wins medal(s) or not (rather than the number of medals for countries with at least one medal), i.e. an information provided by the equation not released for the Hurdle model. In the Tobit model, having hosted the Games four years earlier has a significant negative impact. An explanation is that the medal totals four years earlier overestimate the medal total in t for the country having hosted the Games four years earlier. This overestimation is counterbalanced by the dummy variable capturing the fact that the country hosted the Games four years earlier, explaining its significant negative impact.

Table 3

**Forecasting National Medals Totals at the 2016 Rio Olympics**

Running the two forecasting models based on the results obtained for the 1992-2012 period (not displayed in the paper but available upon request) with the already known data pertaining to the 2016 Games, it appears that they perform well: they are able to predict between 82.3% (Tobit model) and 87.5% (Hurdle model) of overall medal wins with a 95% confidence interval (Table 4). Extending beyond the confidence interval by a two medals error margin, between 91.1% (Tobit model) and 93.2% (Hurdle model) of the distributed medal totals are correctly predicted. The Hurdle model performs better than the Tobit model with a 95% confidence interval. Nevertheless, in a number of cases, its confidence interval is larger and
leads to consider a forecast as accurate while this would not be the case with the confidence interval of the Tobit model. This is less frequently the case the other way round, meaning that the Hurdle model is more likely to present a better percentage independently of whether its exact forecasts are better than the Tobit model or not. To try to control for this issue, we calculated what would have been the rate of right forecasts for the Hurdle model with the 95% confidence interval of the Tobit model. Interestingly, the results of the Hurdle model remain better than the Tobit model (87.0% of the distributed medal totals correctly predicted with a 95% confidence interval, 92.2% when the confidence interval is extended by a two medals error margin). Given that the latter is the standard forecasting model since Bernard and Busse (2004) and a Hurdle model has never been tested to forecast national medals totals at Olympic Games, finding that the Hurdle model performs better with a 95% confidence interval is an important contribution to the forecasting literature.

Table 4

With a view to optimise forecasts, it is worth investigating further the differences between the Hurdle and the Tobit models, as well as what works better with one model or the other. If the Hurdle model performs better with a 95% confidence interval, this is not the case for the rate of exact forecasts. Indeed, the Hurdle model forecasts correctly 21.9% of the numbers of medals vs. 43.2% for the Tobit model. More exactly, the Tobit model performs better when it comes to forecast which countries end with 0 medal (69.2% vs. 21.5% for the Hurdle model), while the Hurdle model performs better when it comes to forecast which countries end with 1 medal and more (22.4% vs. 10.6%, including the host country Brazil for the Hurdle model). These elements highlight that both models are complementary.

**Forecasting National Medals Totals at the 2020 Tokyo Olympics**

Now when forecasting models are run for the 2020 Games they come out with the predictions shown in Table 5. First, it is worth noting that our models forecast exactly the
same set of top 13 countries as the one found in Olympic Medals Predictions (2020). Nevertheless, the respective country rankings and number of medals reveal some differences. Both forecasts converge on the United States ending first with a large margin and China ending second. The most striking differences between modelled forecasts and Olympic Medals Predictions show up for Russia (-16 medals in models) and France (+19 to +27).

   Medal totals for France heavily depend on whether the variables having hosted the Games four years earlier and hosting the Games four years later (since France is going to host the Games in 2024) are taken on board or not. When they are removed from the models, the forecast for France is 42 or 43 medals, that is a lower medal total than for Japan and Germany. A key factor determining the medal total for France in 2020 would be whether preparing an Olympic team for 2024 had been engaged as soon as in 2017, *i.e.* when Paris was awarded hosting the 2024 Games, and whether such preparation would have a positive impact as early as in 2020.

Table 5

**Conclusion**

This paper aimed at explaining previous national team medal totals at the 1992-2016 Summer Olympic Games (*n* = 1289 observations) with a set of variables similar to previous studies, though including the test of a (significant) regional variable which was not taken on board in the literature in English so far. Another objective was to work out econometric testing not only resorting to a Tobit model as usual but also to a Hurdle model. Two explanatory models were then implemented in such a way as to forecast national team medals totals at the 2016 and 2020 Summer Olympics. Forecasting national team medal totals at the 2016 Summer Olympics shows that the Hurdle model performs better than the Tobit model with a 95% confidence interval, questioning the relevance of using (only) the latter that became standard since Bernard and Busse (2004) and, as such, making an important
contribution to the literature. Forecasting national team medal totals at the 2020 Summer Olympics provides results that are consistent with Olympic Medals Predictions (2020), although some striking differences are found.

---

**FOOTNOTES**

1 Now, WADA (World Anti-Doping Agency) and its national agencies can ask anti-doping tests during ten years after the Games. Consequently, the final actual outcome of the Games is definitively stabilised only in t + 10 (in 2026 as regard the 2016 Rio Games), and disqualifications may happen at any moment meanwhile.

2 According to WADA published data, only between 0% and 1.9% of all tested athletes are found positive (doped), depending on which sport discipline they compete in.

3 Communist countries were outliers in the following sense: for instance the GDR, the USSR, etc., were winning much more Olympic medals than non-communist countries with comparable GDP per capita and population.

4 Czechoslovakia as regard data for 1992, before the split with Slovakia in 1993.

5 Republic of Serbia-Montenegro from 1992 to 2006, before the split with Montenegro.

6 As, for instance, sprint in North America, Jamaica and the Caribbean, marathon and long distance running in Ethiopia, Kenya and Eastern Africa, weightlifting in Bulgaria, Turkey, Azerbaijan, Iran, etc.

7 The equation related to the probability (Probit model) of not winning one medal and the associated estimations are not reported in this article. The Probit part and the negative binomial model are assumed to be uncorrelated.

8 Results for the first equation in the Hurdle model are available upon request.
REFERENCES


Olympic Medals Predictions (2020). Olympic Predictions. Available at
http://olympicmedalspredictions.com/.


## TABLE 1

Summary descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of medals</td>
<td>4.96</td>
<td>13.53</td>
<td>0</td>
<td>121</td>
</tr>
<tr>
<td>Population in millions (t-4)</td>
<td>33.12</td>
<td>124.10</td>
<td>0.01</td>
<td>1350.70</td>
</tr>
<tr>
<td>GDP per capita in K$ (t-4)</td>
<td>14.84</td>
<td>17.70</td>
<td>0.07</td>
<td>125.65</td>
</tr>
<tr>
<td>Host country</td>
<td>0.01</td>
<td>0.07</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Number of athletes</td>
<td>57.94</td>
<td>100.81</td>
<td>1</td>
<td>646</td>
</tr>
</tbody>
</table>

Political regime

- **CAPME**
  - Mean: 0.83
  - Standard deviation: 0.38
  - Minimum: 0
  - Maximum: 1

- **CEEC**
  - Mean: 0.06
  - Standard deviation: 0.24
  - Minimum: 0
  - Maximum: 1

- **POSTCOM**
  - Mean: 0.11
  - Standard deviation: 0.32
  - Minimum: 0
  - Maximum: 1

Sub-continent

- **North America**
  - Mean: 0.05
  - Standard deviation: 0.23
  - Minimum: 0
  - Maximum: 1

- **North Africa**
  - Mean: 0.03
  - Standard deviation: 0.16
  - Minimum: 0
  - Maximum: 1

- **Sub-Saharan Africa**
  - Mean: 0.25
  - Standard deviation: 0.43
  - Minimum: 0
  - Maximum: 1

- **Asia**
  - Mean: 0.15
  - Standard deviation: 0.35
  - Minimum: 0
  - Maximum: 1

- **Latin and South America**
  - Mean: 0.15
  - Standard deviation: 0.36
  - Minimum: 0
  - Maximum: 1

- **Eastern Europe**
  - Mean: 0.14
  - Standard deviation: 0.35
  - Minimum: 0
  - Maximum: 1

- **Western Europe**
  - Mean: 0.11
  - Standard deviation: 0.31
  - Minimum: 0
  - Maximum: 1

- **Middle East**
  - Mean: 0.08
  - Standard deviation: 0.27
  - Minimum: 0
  - Maximum: 1

- **Oceania**
  - Mean: 0.05
  - Standard deviation: 0.21
  - Minimum: 0
  - Maximum: 1
## TABLE 2

Estimation results of four explanatory models

<table>
<thead>
<tr>
<th></th>
<th>Model (1) - Hurdle</th>
<th>Model (1) - Tobit</th>
<th>Model (2) - Hurdle</th>
<th>Model (2) - Tobit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coef</td>
<td>s.d.</td>
<td>coef</td>
<td>s.d.</td>
</tr>
<tr>
<td>Constant</td>
<td>-9.481</td>
<td>***</td>
<td>-125.377</td>
<td>***</td>
</tr>
<tr>
<td>Population in log (t-4)</td>
<td>0.558</td>
<td>***</td>
<td>6.602</td>
<td>***</td>
</tr>
<tr>
<td>GDP per capita in log (t-4)</td>
<td>0.243</td>
<td>***</td>
<td>3.456</td>
<td>***</td>
</tr>
<tr>
<td>Host country in 4 years</td>
<td>0.359</td>
<td>***</td>
<td>9.352</td>
<td>***</td>
</tr>
<tr>
<td>Host country t</td>
<td>0.519</td>
<td>***</td>
<td>17.817</td>
<td>***</td>
</tr>
<tr>
<td>Host country 4 years ago</td>
<td>0.303</td>
<td>***</td>
<td>11.104</td>
<td>***</td>
</tr>
<tr>
<td>Number of athletes/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEEC</td>
<td>1.134</td>
<td>***</td>
<td>11.419</td>
<td>7.46</td>
</tr>
<tr>
<td>POSTCOM</td>
<td>1.020</td>
<td>***</td>
<td>14.298</td>
<td>5.73</td>
</tr>
<tr>
<td>North Africa</td>
<td>-1.385</td>
<td>***</td>
<td>-20.733</td>
<td>***</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>-0.886</td>
<td>***</td>
<td>-18.859</td>
<td>***</td>
</tr>
<tr>
<td>Asia</td>
<td>-1.510</td>
<td>***</td>
<td>-22.291</td>
<td>***</td>
</tr>
<tr>
<td>Latin and South America</td>
<td>-1.169</td>
<td>***</td>
<td>-16.422</td>
<td>***</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>-0.926</td>
<td>**</td>
<td>-15.448</td>
<td>**</td>
</tr>
<tr>
<td>Western Europe</td>
<td>-0.047</td>
<td></td>
<td>-6.117</td>
<td>4.93</td>
</tr>
<tr>
<td>Middle East</td>
<td>-1.335</td>
<td>***</td>
<td>-20.464</td>
<td>***</td>
</tr>
<tr>
<td>Oceania</td>
<td>0.735</td>
<td></td>
<td>-4.859</td>
<td>6.86</td>
</tr>
<tr>
<td>( g_{i,t} )</td>
<td>-3.374</td>
<td>***</td>
<td></td>
<td>-3.341</td>
</tr>
<tr>
<td>( \sigma^2_u )</td>
<td>0.350</td>
<td>***</td>
<td>164.685</td>
<td>***</td>
</tr>
<tr>
<td>Observations total</td>
<td>554</td>
<td></td>
<td>1289</td>
<td></td>
</tr>
<tr>
<td>Observations non censored</td>
<td>554</td>
<td></td>
<td>554</td>
<td></td>
</tr>
</tbody>
</table>

Notes: *** significant at the 1% level; ** 5% level; * 10% level; c: test statistics associated to the comparison of the models with and without taking into account panel; coef for coefficient and s.d. for standard deviation.
TABLE 3  
Estimation results of two forecasting models

<table>
<thead>
<tr>
<th></th>
<th>Model (3) - Hurdle</th>
<th></th>
<th>Model (3) - Tobit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coef s.d.</td>
<td>coef s.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-3.725 *** 0.92</td>
<td>-22.507 *** 4.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population in log (t-4)</td>
<td>0.231 *** 0.04</td>
<td>0.700 *** 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per capita in log (t-4)</td>
<td>0.067</td>
<td>0.05</td>
<td>0.569 ** 0.28</td>
<td></td>
</tr>
<tr>
<td>Host country in 4 years</td>
<td>0.336 *** 0.10</td>
<td>8.864 *** 2.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host country t</td>
<td>0.366 *** 0.11</td>
<td>12.520 *** 2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host country 4 years ago</td>
<td>-0.050</td>
<td>0.11</td>
<td>-4.760 ** 2.08</td>
<td></td>
</tr>
<tr>
<td>Number of medals (t-4)</td>
<td>0.016 *** 0.00</td>
<td>0.897 *** 0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athletes [10,50[</td>
<td>0.510 ** 0.23</td>
<td>5.126 *** 0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athletes [50,150[</td>
<td>0.989 *** 0.24</td>
<td>7.394 *** 0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 athletes and more</td>
<td>1.559 *** 0.27</td>
<td>9.314 *** 1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEEC</td>
<td>0.490 * 0.27</td>
<td>0.390 1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSTCOM</td>
<td>0.538 ** 0.22</td>
<td>1.828 * 1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>-0.844 *** 0.28</td>
<td>-2.101 * 1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>-0.246</td>
<td>0.25</td>
<td>-1.749 * 1.04</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>-0.618 *** 0.21</td>
<td>-1.719 * 0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin and South America</td>
<td>-0.742 *** 0.22</td>
<td>-2.705 *** 0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>-0.386</td>
<td>0.26</td>
<td>-1.890 1.35</td>
<td></td>
</tr>
<tr>
<td>Western Europe</td>
<td>-0.009</td>
<td>0.18</td>
<td>-1.205 0.90</td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td>-0.520 ** 0.24</td>
<td>-1.373 1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>0.288</td>
<td>0.29</td>
<td>-1.772 1.39</td>
<td></td>
</tr>
<tr>
<td>$g_{t,t}$</td>
<td>-3.408 *** 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_u$</td>
<td>0.115 *** 0.03</td>
<td>26.68 *** 1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations total</td>
<td>529</td>
<td>1232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations non censored</td>
<td>529</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *** significant at the 1% level; ** 5% level; * 10% level; c: test statistics associated to the comparison of the models with and without taking into account panel; coef for coefficient and s.d. for standard deviation.
### TABLE 4
Forecast of Olympic medals for the 2016 Rio Games

<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of medals Rio 2016</th>
<th>Model (3) - Hurdle</th>
<th>Model (3) - Tobit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forecast</td>
<td>Lower CI</td>
<td>Upper CI</td>
</tr>
<tr>
<td>United States</td>
<td>121</td>
<td>105</td>
<td>94</td>
</tr>
<tr>
<td>China</td>
<td>70</td>
<td>106</td>
<td>95</td>
</tr>
<tr>
<td>Great Britain</td>
<td>67</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>Russia</td>
<td>55</td>
<td>70</td>
<td>63</td>
</tr>
<tr>
<td>France</td>
<td>42</td>
<td>38</td>
<td>34</td>
</tr>
<tr>
<td>Germany</td>
<td>42</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Japan</td>
<td>41</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>Australia</td>
<td>29</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>Italy</td>
<td>28</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Canada</td>
<td>22</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Brazil</td>
<td>19</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>18</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>18</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>New Zealand</td>
<td>18</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Spain</td>
<td>17</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

**Rate of right forecasts for 2016**

<table>
<thead>
<tr>
<th>All countries (192)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CI to 95% (+ or -2)</td>
<td>88.5% (93.2%)</td>
<td>83.9% (90.6%)</td>
</tr>
<tr>
<td>Exact forecasts (+ or -1)</td>
<td>21.9% (77.1%)</td>
<td>43.2% (74.5%)</td>
</tr>
<tr>
<td>Exact forecasts 0 medal (107 countries)</td>
<td>21.5%</td>
<td>69.2%</td>
</tr>
<tr>
<td>Exact forecasts non 0 medal (85 countries)</td>
<td>22.4%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Countries with at least 3 medals (56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI to 95% (+ or -2)</td>
<td>64.3% (76.8%)</td>
<td>50% (69.6%)</td>
</tr>
<tr>
<td>Exact forecasts (+ or -1)</td>
<td>8.9% (37.5%)</td>
<td>8.9% (30.4%)</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval.
<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of medals Rio 2016</th>
<th>Forecast</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>Forecast</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>121</td>
<td>139</td>
<td>127</td>
<td>151</td>
<td>115</td>
<td>111</td>
<td>119</td>
</tr>
<tr>
<td>China</td>
<td>70</td>
<td>77</td>
<td>68</td>
<td>86</td>
<td>70</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>Great Britain</td>
<td>67</td>
<td>57</td>
<td>52</td>
<td>62</td>
<td>64</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>Russia</td>
<td>55</td>
<td>55</td>
<td>49</td>
<td>61</td>
<td>55</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>France</td>
<td>42</td>
<td>59</td>
<td>54</td>
<td>64</td>
<td>51</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>Germany</td>
<td>42</td>
<td>45</td>
<td>41</td>
<td>49</td>
<td>42</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Japan</td>
<td>41</td>
<td>47</td>
<td>42</td>
<td>52</td>
<td>53</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>Australia</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>38</td>
<td>29</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>Italy</td>
<td>28</td>
<td>29</td>
<td>25</td>
<td>33</td>
<td>29</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>Canada</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>24</td>
<td>25</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>28</td>
<td>22</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Brazil</td>
<td>19</td>
<td>13</td>
<td>9</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19</td>
<td>20</td>
<td>17</td>
<td>23</td>
<td>20</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>18</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>New Zealand</td>
<td>18</td>
<td>14</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Spain</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Denmark</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Hungary</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Kenya</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Cuba</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>17</td>
<td>14</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Jamaica</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Poland</td>
<td>11</td>
<td>14</td>
<td>10</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Sweden</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Ukraine</td>
<td>11</td>
<td>16</td>
<td>13</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval.