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The differential equations used to model biological neurons and the chemical kinetics involved 
in synaptic excitation and inhibition have been well-established for a number of decades. For 
the first time, this paper presents mathematical and computational models of a neuronal binary 
oscillator half-adder, a neuronal Set-Reset (SR) flip-flop and a simple neuronal clocking circuit, 
which have all been shown to be noise resistant. In modern computers, the half-adder is the basic 
component to perform logic, the SR flip-flop is used to store memory and clocking circuits are 
used to synchronize components in parts of the computer. These novel circuits will provide the 
world with neuronal assays that can measure the functionality of the neurons and hence provide 
more information than is available with current technology. The authors are not proposing to 
build conventional computers with these components (they would be too slow to be practical) 
but the simple circuits could be used to measure the functionality of diseased circuits which are 
subjected to certain drugs. Neurological conditions research into Alzheimer’s disease, epilepsy 
and Parkinson’s disease, for example, would all benefit from this research. These assays for 
neuronal degradation could have major implications for the National Center for the Replacing, 
Reducing and Refining the use of animals for scientific testing – otherwise known as the NC3R 
agenda.
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1. Introduction

In 2018, the UK government working with a panel of experts from academia and business published the
Blackett Review [Peplow, 2018], an article written by experts in the field for non-experts. The article
highlights the importance of simulation utilizing computational and mathematical modeling of complex
systems in both the public and private sectors. The review demonstrates how modeling increases efficiency
and quality whilst reducing the need for physical prototypes and testing. The manufactured products
resulting from the research presented in this paper will be neuronal assays. These in vitro assays are
simulated as part of the design process and this should help greatly with the creation of a physical prototype.
On the micro-level (the smallest components), neurons and synapses are modeled using well-established
differential equations. On the meso-level (how the components are connected together), novel neuronal
circuitry is described in this paper for the first time. On the macro-level (properties of the system as a
whole), neuronal circuits will behave as half adders, SR flip-flops and simple clocking circuits - the basic
components of modern computers.

In 2009, Borresen and Lynch [Borresen, 2009; Lynch, 2012] first proposed the principle of binary oscil-
lator computing. Shortly afterwards, the authors demonstrated binary threshold oscillator logic including
circuits for a half adder, a full adder, a seven-input full adder and a 2 × 2 bit binary multiplier [Borresen,
2012]. They were also able to demonstrate a working threshold oscillator SR flip-flop which was extremely
noise resistant. The authors were able to construct simple mathematical models to demonstrate a binary
oscillator half-adder using biophysically simplified coupled Fitzhugh-Nagumo equations using a sigmoidal
transfer function which is often used in neural networks. Figure 1 shows the schematics and input and out-
put for binary half adders which are the basic building blocks for logic operations in modern computers.
Figure 1(a) shows the logic circuit for a binary half-adder comprising of two inputs A and B, two outputs S
(sum) and C (carry), an exclusive or (XOR) gate and an AND gate. Figure 1(b) shows the truth table for
the half-adder which is used to add two bits (A and B) together. Figure 1(c) shows a schematic of a binary
oscillator half adder comprising of two inputs A and B, two outputs S and C, and two oscillators O1 (acts
as an XOR gate for the sum) and O2 (acts as an AND gate for the carry). Note that in our simulations,
oscillator O1 has a lower threshold than oscillator O2. Figure 1(d) shows the time series of the binary
oscillator half-adder. Comparison with the truth table in Figure 1(b) shows that it is functioning correctly.
Output S corresponds to units and output C represents tens, an oscillation represents a binary one and
no oscillation is zero. Looking down the columns, if A and B are off then S and C are not oscillating and
there is no output (0+0=0). If either A or B is oscillating then the threshold of oscillator O1 is reached
and that oscillator fires, whereas the threshold of oscillator O2 is not reached and so does not fire (0+1=1
or 1+0=1). Looking at the final column, if both inputs are on, then S and C are oscillating, the thresholds
of both oscillators are achieved, both start to oscillate but oscillator O2 inhibits oscillator O1, preventing
it from firing (1+1=10).

Figure 2 shows the schematics and input and output for binary Set Reset (SR) flip-flops which are
used to store memory in modern computers. Figure 2(a) shows the logic circuit for a binary SR flip-flop
comprising of two inputs R and S, two outputs Q and Q̄, and two NOR gates. Figure 2(b) shows the truth
table for the SR flip-flop. Figure 2(c) shows a schematic of a binary oscillator SR flip-flop comprising of two
inputs R and S, two outputs Q and Q̄, and two oscillators O1 and O2 which act as a pair of cross-coupled
NOR or NAND gates. Figure 2(d) shows the time series of the binary oscillator SR flip-flop. Comparison
with the truth table in Figure 2(b) shows that it is functioning correctly.

There are two major advantages in using threshold oscillators over transistor-based logic and memory
circuits. In the first case, for logic circuits, the processing power of threshold oscillator circuits can be
doubled with a linear increase in components. Much like the human brain, the power comes from the high
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Fig. 1. Binary half adders. (a) Schematic of a logic circuit for a binary half adder, where A and B are inputs, S (sum) and
C (carry) are outputs. (b) Truth table for a binary half adder. (c) Schematic of a binary oscillator half adder. The green arrows
depict excitatory connections and the red arrow denotes an inhibitory connection. (d) Time series of the binary threshold
oscillator half adder based on biophysically meaningless Fitzhugh-Nagumo models. The device is functioning as a half-adder
(compare with the truth table in (b)).

connectivity. Transistor technology requires an exponential growth in the number of components, hence
the need for chips containing billions of transistors. Secondly, for SR flip-flop circuits, threshold oscillator
switches can be caused by ballistic propagation – where a single pulse can cause a switch (see Figure 2(d)).
Using transistor-based SR flip-flops costs far more power as the whole line has to be charged to cause a
switch (see Figure 2(a)).

There are potentially six avenues of research for binary oscillator computing and we will now briefly
introduce each avenue in turn providing a number of references for the interested reader:

(1) Transistor-based threshold oscillators. These oscillators could be employed like those used in
many neuromorphic computers being built today [Indiveri, 2011; Merolla, 2014; Ohno, 2011; Zhou,
2015]. Indiveri et al. [Indiveri, 2011] describe the most common transistor-based Complementary Metal-
Oxide-Semiconductor (CMOS) circuitry and techniques used for hardware implementation of spiking
neurons for a large variety of applications. As yet, there are no CMOS circuits for binary oscillator
computing and this remains an open avenue of research.

(2) Josephson junction (JJ) neurons. JJs are superconducting threshold oscillators and unsurprisingly
they can be used to model neurons [Lynch, 2013] with the added advantages that they are much faster
oscillators than biological neurons; the signal processing properties are closely aligned to biological
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Fig. 2. Set Reset (SR) flip-flops. (a) Schematic of a logic circuit for an SR flip-flop, where R and S are inputs and
Q and Q̄ are outputs, where Q̄ is not Q. (b) Truth table for a binary SR flip-flop. (c) Schematic of a binary oscillator SR
flip-flop comprising two inputs R and S, two threshold oscillators with inhibitory connections between them and two outputs
Q and Q̄. Note that oscillators O1 and O2 act as a pair of cross-coupled NOR or NAND gates. (d) Time series of the binary
threshold oscillator SR flip-flop based on biophysically meaningless Fitzhugh-Nagumo models. The device is functioning as an
SR flip-flop (compare with the truth table in (b)). Note that line charging is required in (a) but only a single pulse is required
to cause a switch for an oscillator SR flip-flop.

neurons; large arrays can be packed into small volumes; they operate in low noise environments with
temperatures of a few Kelvin and finally, the power dissipation is very low (in the order of 10−9 W
per junction on average). JJs are natural threshold oscillators so it should come as no surprise that
simple circuits can be built that mimic the functionality of neurons, see references [Crotty, 2010;
Dana, 2006; Mizugaki, 1993; Mukhanov, 1988], for example. More recently, scientists at HYPRES,
Inc. (www.hypres.com) invented Rapid Single Flux Quantum (RSFQ) logic [Filippov, 2012] which
used over-damped JJs and two-junction interferometers to pass, store and process data as single flux
quanta. In 2017, Segall et al. [Segall, 2017] built a physical circuit where JJ neurons synchronize in
picoseconds and more recently they have simulated JJ neuron half-adder and SR flip-flop circuits, this
research will be published at a later date. Interested readers should consult references [Fillipov, 2011;
Josephson, 1962, 1974; Mukhanov, 1987, 2011; Ryazanov, 2012] for more information.

(3) Superconducting nanowires. In June 2019, Toomey, Segall and Berggren [Toomey, 2019] proposed
the use of superconducting nanowires as a platform for the development of an artificial neuron. The
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authors were able to demonstrate multiple neuron behaviors using electrothermal circuit simulations
computed in LTSpice. As well as modeling excitation and inhibition, the authors were also able show
how a single neuron could inhibit four target neurons thus demonstrating the capability of fanout. Su-
perconducting nanowires can interface with both CMOS and JJs. The authors are currently attempting
to make physical circuit prototypes, and the nanowire neuron is a promising candidate for low-power
artificial neural networks as well as binary oscillator computing.

(4) Memristors and neuristors. In 1971, Leon Chua proved the existence of the memristor [Chua, 1971]
and thirty seven years later a team at HP Laboratories [Strukov, 2008] declared that they had built a
memristive device. Memristors can be used to form neuristors (built using two nanoscale Mott memris-
tors) which are simple devices that can capture the essential characteristics of a neuron [Pickett, 2013].
Nanoscale memristors can act as synapses in neuromorphic systems [Jo, 2010]. Furthermore, memristor
nanodevices can act as synapses to add dynamic learning to neuromorphic networks implemented in
CMOS/memristor hybrids based on a crossbar lattice network [Afifi, 2009]. It is claimed that mem-
ristors can be used to provide high connectivity between electronic neurons - where one neuron can
connect to a thousand other neurons. For more detail on memristors the reader is directed to references
[Chua, 2013; Kim, 2012; Linn, 2014]. More recently, Papandroulidakis et al. [Papandroulidakis, 2019]
have given a practical implementation of memristor-based threshold logic gates.

(5) Optical oscillators. Researchers from the Optoelectronics Research Center (ORC) at the University
of Southampton, UK, and Center for Disruptive Photonic Technologies (CDPT) at the Nanyang Tech-
nological University (NTU), Singapore, have demonstrated how neural dynamics in the brain can be
simulated with optical pulses as information carriers using chalcogenide glass fibers that are sensitive
to light [Gholipour, 2015]. The material of the fibers can switch from glass to a crystal and back
again in response to varying wavelengths, intensities and polarizations of light. As with other photonic
networks, neuromorphic devices could be built with the beneficial properties of ultra fast operation
speeds, low thermal footprints and large bandwidth. The researchers are currently scaling the fibers to
form much smaller waveguides and in the future it should be possible to fit hundreds of thousands of
nodes on to a single chip.

(6) Biological neuronal oscillators. Finally, and most relevant to what will follow in this paper, biolog-
ical neurons can be used to build binary oscillator logic circuits, memory devices and clocking circuits.
Many researchers are attempting to build neuromorphic computers that will mimic the human brain,
however, binary oscillator computing, although based on the dynamics of the brain, will be used to
perform conventional computing. One of the potential applications of this technology is that it could be
used to test functionality of new technologies and be used as a kind of half-way house to test whether
or not the neurons and synaptic connections to be used in neuromorphic machines are performing in
the correct way.

In Sections 2 and 3, we discuss the use of CMOS-based multi-electrode arrays (MEAs) for stimu-
lating and recording from in vitro electrogenic cells, and we present the biophysically meaningful com-
putational/mathematical models of neurons and chemical synapses which connect them. The results of
simulations are shown in the Section 4 where we demonstrate full functionality of a neuron-based binary
oscillator half-adder, a neuron-based SR flip-flop, and for the first time, a simple neuron-based clocking
circuit. Simulations using biologically meaningful neural threshold oscillator models and chemical synaptic
models demonstrate how such a model may be implemented even in the presence of noise. The final section
presents a Discussion.

2. Materials and methods

We will now expand upon biological neuronal oscillator circuits, the main topic of this paper. A recent
patent [Lynch, 2016] shows how in vitro cell assays, which employ binary half-adder and/or logic gates, can
measure the effect a test condition has on cells and cell structures. The inventors are currently attempting
to build a prototype of the neuronal assay and computational and mathematical modeling will aid in this
construction. Figure 3(a) shows our apparatus set up where the computer monitor is displaying spike trains
of neurons sat atop an MEA, and Figure 3(c) shows a close up of an MEA.
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Fig. 3. Multi-Electrode Arrays (MEAs). (a) MEA apparatus - notice the spike trains on the computer monitor. (b)
Brain slice on an MEA: The yellow time series traces that overlay the electrodes show the summative effect of surrounding
neurons. (c) An MEA manufactured by Scientifica Ltd (http://www.scientifica.uk.com/). Used with permission of Scientifica
Ltd. (d) Individual neurons on an MEA: Used with permission of C. Wyart.

In 1972, Thomas Jr. et al. [Pine, 2006] conducted the first experiments incorporating the use of planar
electrodes on an MEA to record electrical activity from cultured myocyte cells. A sharp change in voltage
in the extracellular environment, usually caused by an ion influx through the cellular membrane, can be
detected on an MEA connected to a computer and these readings are being used extensively to characterize
both network and cellular activity. The technology and related culture techniques for both tissue and
electro-physiological cell assays have been greatly improved in recent years. High spatio-temporal resolution
and low noise recordings have been taken from retinal cells [Wong, 1993], heart cells [Mauritz, 2008],
mammalian spinal neuronal cells [Gross, 1995], muscle cells [Peng, 2001], brain cells [Cohen, 2011], and
MEAs can be used in drug discovery and basic research [Stett, 2003]. Acute tissue preparations such
as brain slices [Egert, 1998], see Fig 3(b), for example, enable immediate recording after removal from
the animal and in-vivo positions remain intact. In this case, simultaneous multi-site long-term recording
is required and these systems provide useful tools to measure synaptic plasticity, neural networks and
pathophysiological conditions such as ischemia, Alzheimer’s disease and epilepsy. Coating the MEA chips
with cell-adhesion substrates such as collagen, fibronectin, laminin and poly-D-lysine aid adhesion of the
cells or tissue. In 2005, Wyart et al. [Wyart, 2005] introduced a new technique to control the architecture of
networks of individual neurons in vitro. Fig 3(d) (used with Wyart’s permission) shows individual neurons
situated in close proximity to electrodes with connecting neurites (or axons) following chemical trails to
connecting neurons. In 2010, Wheeler and Brewer [Wheeler, 2010] provided an overview of the lithographic
techniques used to attach neurons and guide axonal growth to form networks. They highlight five micro-
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patterning technologies for cellular lithography including laser ablation, micro-contact printing, micro-
channel deposition, micro-fluidic deposition and photo-resist patterning. Materials that promote cell growth
include various amino silanes, laminin and polylysine, while albumin, chondroitin sulfate and polyethylene
glycol, for example, restrict cell growth. The authors also state that baseline activity can be manipulated
using changes in media composition, stimulation and glial addition, for example. In what is to follow we will
present mathematical models of single connected neurons, whilst this is possible using current technology,
activity, survivability and function are difficult at this stage [Khatami, 2008]. However, Chang et al. [Chang,
2001] showed that when local cell densities exceeded 250 cells per mm2, there was substantial activity and
longevity of cell function. Using platforms consisting of chambers and tunnels [Campenot, 1977; Park, 2008]
will offer tremendous advantages as each chamber can be filled with a cluster of excitatory or inhibitory
cells, directed axonal growth can be achieved and a variety of local geometries (even three-dimensional)
is possible. Action potentials can be monitored at the source, along the communication channel and at
the target. Using a nano-material bio-screening platform for neurological applications [Jenkins, 2015], the
authors are currently working with Dr Paul Roach, Loughborough University, in an attempt to build logic
and memory circuits using clusters of neurons in chambers connected by tunnels. These results will be
published at a later date. Three-dimensional MEAs for recording dissociated neuronal cultures have been
developed [Edelman, 2005; Musick, 2009] and more recently, Lozano et al. [Lozano, 2015] have bioprinted
three-dimensional layered brain-like structures using peptide modified gellan gum substrates allowing for
more accurate in vitro micro-structures.

In 2002, Zemelman et al. [Zemelman, 2002] developed a method for stimulating genetically modified
neurons using light and this has led to the field of research known as optogenetics. The field of optogenetics
is quickly moving beyond proof of concept and is finding applications in cell signaling, biophysical modeling
and systems biology, see [Tischer, 2014] for a review up to 2014. In 2008, Basu et al. [Basu, 2008] developed
a new strategy to selectively label excitatory and inhibitory neurons in the cerebral cortex of mice. In 2015,
Fosque et al. [Fosque, 2015] showed that a fluorescent protein-based reagent could permanently mark active
populations of neurons in vivo over short time scales. In the future, with the developments in optogenetics
and fluorescent marking it should be possible to develop our logic, memory and clocking circuits without
the need for electronic intervention.

3. Mathematical models

The Hodgkin-Huxley model: A biophysically meaningful model

For the first time, we present biophysically realistic models of a biological half-adder, an SR flip-flop
and a clocking circuit using the famous Hodgkin and Huxley equations [Hodgkin, 1952]. We present the
differential equations for completeness:

I = C
dV

dt
+ INa + IK + IL, (1)

where I is the total membrane current density, C is the membrane capacitance per unit area, V is the
difference between the membrane potential and the resting potential, INa is the sodium current, IK is the
potassium current, and IL is the leakage current. Hodgkin and Huxley were able to expand equation(1) to
give:

C
dV

dt
= I − gNam

3h (V − VNa) − gKn
4 (V − VK) − gL (V − VL) , (2)

where VNa, VK , VL, C and gL are all constants determined from experimental data, and gNa and gK are
the sodium and potassium conductances per unit area, respectively. The three dimensionless quantities m,
h, and n represent sodium, potassium and leakage gating variables and evolve according to the differential
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equations:

dm

dt
= αm(1 −m) − βmm

dh

dt
= αh(1 − h) − βhh

dn

dt
= αn(1 − n) − βnn,

(3)

where αi and βi are the transition rate constants for the i-th ion channel. The individual gates act in
a similar manner to first order chemical reactions with two states. The rate constant αi represents the
number of times per second that a shut gate opens, and similarly, βi represents the number of times per
second that an open gate shuts.

Fig. 4. Solutions of the Hodgkin-Huxley equations. (a) Spike train of action potentials that travel down the axon.
At the beginning of the action potential the Na+ channels open and Na+ ions move into the axon causing depolarization.
Re-polarization occurs when the K+ channels open and K+ ions move out of the axon. The signal travels down the axon to
the axon terminal where it can trigger other neurons. (b) The gating variables m, h, and n for equations and parameters listed
in equations (2), (3), (4), and (5). (c) Neuron membrane voltage (upper blue trace) subject to an external input current Iext
(lower cyan trace). As the input current is increased, the neuron eventually forms a spike train and the frequency of oscillation
increases up to some physical limit.

Based on experimental data, the following parameter values have been chosen to generate Figures 4(a)
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and 4(b):

αm =
0.1(V + 40)

1 − exp(−0.1(V + 40))
, βm = 4 exp(−0.0556(V + 65)),

αh = 0.07 exp(−0.05(V + 65)), βh =
1

1 + exp(−0.1(V + 35))
,

αn =
0.01(V + 55)

1 − exp(−0.1(V + 55))
, βn = 0.125 exp(−0.0125(V + 65)), (4)

and additionally,

C = 1µFcm−2,

gL = 0.3 ms/cm2, gK = 36 ms/cm2, gNa = 120 ms/cm2,

VL = −54.402 mV, VK = −77 mV, VNa = 50 mV. (5)

In the simplest sense, neurons are either firing or not firing. Once the neuron has been sufficiently
excited above some threshold (typically −55mV in human neurons), the cell fires, if the neuron does not
reach this threshold, it will not depolarize or create an action potential. If the stimulus does not reach
threshold, then the neuron does not fire. As the stimulus passes the threshold value and continues to rise,
the neuron starts to fire and the amplitude of oscillation remains constant, hence the All or None principle
of neuron firing. Note, however, as the stimulus increases the frequency of oscillation increases up to some
physical limit. Figure 4(c) illustrates each of these outcomes, the lower figure shows the external input
current to the neuron and the upper figure shows the corresponding membrane voltage. When the external
input current is zero (0 ≤ t ≤ 50ms), the neuron does not fire. When the input current is increased to 2mV
(50 ≤ t ≤ 100ms), the membrane voltage rises slightly, but the neuron still does not fire. When the input
current is raised to 5mV (100 ≤ t ≤ 150ms), the neuron spikes once and returns to its resting state. When
the input current reaches 7mV (150 ≤ t ≤ 200ms), the neuron starts to spike at regular intervals and as
the input current increases, the frequency of oscillation increases up to a physical limit and then switches
off again.

In order to model chemical excitation and inhibition, Hodgkin-Huxley ODEs are coupled together that
model the membrane potential in both presynaptic and postsynaptic neurons, and both the excitatory and
inhibitory synaptic currents are modeled using models of chemical kinetics.

The next section shows how the chemical kinetics are modeled with differential equations which are
again included for the sake of completeness.

Mathematical model of biophysically meaningful chemical synapses

In 1994, Destexhe et al. [Destexhe, 1994] derived an efficient method for computing synaptic conductances
based on chemical kinetics. As an action potential reaches a presynaptic axon terminal, neurotransmitter
molecules, T say, are released and diffuse across the synaptic gap to bind with specific receptors in the
postsynaptic neuron. This binding mechanism can be modeled using the stoichiometric equation:

R + T 
 RT, (6)

where [T ] is the concentration of neurotransmitter, [R] is the proportion of concentration of unbound
receptor, [RT ] is the proportion of concentration of bound receptor, and kf and kr are the forward and
reverse rate constants, respectively. Suppose that B = [RT ], then

dB

dt
= kf [T ](1 −B) − krB. (7)

Often in mathematics we have to make assumptions and simplifications. It is important to note at this
stage that it is an oversimplification to think of synapses in terms of only one neurotransmitter. In reality,
more then one neurotransmitter will diffuse across the synaptic gap to bind with specific receptors in the
membrane of the adjoining neuron. In this case we will assume that the mediated excitatory receptor is
N-methyl-D-aspartate (NMDA) and the mediated inhibitory receptor is γ-Aminobutyric acid (GABA).
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These are the most common excitatory and inhibitory neurotransmitters in the brain. There are others 
and some neurotransmitters, such as dopamine, can be both excitatory and inhibitory. However, the sum-
mative effect can be modeled (verified by experimentation [Destexhe, 1994]) using the following equations. 
Assuming that the neurotransmitter occurs as a pulse, then equation(7) leads to the following expressions:

1. During a pulse, when t0 < t < t1, [T ] = Tmax and B is given by

B (t− t0) = B∞ + (B (t0) −B∞) exp

(
−(t− t0
τB

)
, (8)

where

B∞ =
kfTmax

kfTmax + kr

and

τB =
1

kfTmax + kr
.

2. After a pulse, when t > t1, [T ] = 0, and B is given by

B (t− t1) = (B (t1)) exp (−kr(t− t1)) . (9)

In order to generate an excitatory conductance after a single transmitter pulse, the forward and
reverse rate constants are set to kf = 2msec−1mM−1 and kr = 1msec−1mM−1. To generate an inhibitory
conductance after a single transmitter pulse, the forward and reverse rate constants are set to kf =
0.5msec−1mM−1 and kr = 0.05msec−1mM−1. With these parameter values, a single transmitter pulse will
evoke a fast excitatory conductance which quickly decays or an inhibitory conductance which decays far
more slowly. The excitatory and inhibitory synaptic currents, INMDA and IGABA, respectively, can then be
written as

INMDA = GNMDABNMDA(t) (Vpost(t) − ENMDA) , (10)

and

IGABA = GGABABGABA(t) (Vpost(t) − EGABA) , (11)

where GNMDA, GGABA are the maximal conductances of the relevant synapse, ENMDA, EGABA are the
synaptic reversal potentials and Vpost is the post-synaptic potential. Thus from equation (1), for coupled
neurons, the current in the postsynaptic neuron is given by

Iext + INMDA + IGABA = C
dV

dt
+ INa + IK + IL, (12)

where one or more of Iext, INMDA, IGABA, could be zero.

4. Results

The results in this section were generated using MATLABR© and MathematicaR©, however, packages such
as MapleTM and Python would produce the same results. Readers can reproduce these results by editing
some of the programs listed in [Lynch, 2018, 2017, 2014, 2010].

Figure 5 shows the output for chemical excitation and inhibition using the Hodgkin-Huxley equations
and the methods of Destexhe et al. Figure 5(a) shows the traces for a presynaptic neuron potential Vpre
(upper green trace), a ratio of excitatory conductance B (middle magenta trace) and a postsynaptic neuron
potential Vpost (lower blue trace). The transmitter pulse is initiated each time Vpre exceeds a threshold of
0mV, but only when the event function increases, that is the gradient of Vpre has to be positive at this
event. Referring to Figure 5(a), the first transmitter pulse is evoked when t0 = 18.557ms, Tmax = 1mM,
and the transmitter pulse duration (t1 − t0) = 1ms. Subsequent transmitter pulses result in another four
spikes in B. The lower trace Vpost shows that the neuron is at resting potential for t0 ≤ t ≤ 20ms, but then
starts to spike as a result of the excitatory synaptic current. Figure 5(b) shows the traces for a presynaptic
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Fig. 5. Models of chemical excitation and chemical inhibition. (a) The upper figure shows the voltage of the presy-
naptic neuron voltage Vpre (green curve) and the middle curve shows the ratio of excitatory conductance B. The lower curve
shows the postsynaptic neuron voltage Vpost, which is switched on by the excitatory synaptic current INMDA. The simula-
tion was run using the parameters listed in equations (2)-(5) and (8)-(12) with kf = 2msec−1mM−1, kr = 1msec−1mM−1,
GNMDA = 1nS and ENMDA = 0mV. (b) The upper figure shows the voltage of the presynaptic neuron voltage Vpre (red curve)
and the middle curve shows the ratio of inhibitory conductance B. The lower curve shows the postsynaptic neuron voltage
Vpost, which is switched off by the inhibitory synaptic current, IGABA. The simulation was run using the parameters listed in
equations (2)-(5) and (8)-(12) with kf = 0.5msec−1mM−1, kr = 0.05msec−1mM−1, GGABA = 1nS and EGABA = −80mV.

neuron potential Vpre (upper red trace), a ratio of inhibitory conductance B (middle magenta trace) and
a postsynaptic neuron potential Vpost (lower blue trace). The transmitter pulse is initiated in the same
way as for Figure 5(a), however, in this case an inhibitory synaptic current is evoked. Referring to Figure
5(b), the first transmitter pulse is evoked when t0 = 18.557ms, Tmax = 1mM, and the transmitter pulse
duration (t1− t0) = 1ms. Subsequent transmitter pulses result in another four spikes in B. The lower trace
Vpost shows that the neuron is spiking for t0 ≤ t ≤ 20ms, but then is inhibited as a result of the inhibitory
synaptic current.

Next we consider the simple biological neuronal circuitry for a half adder, an SR flip-flop and a simple
clocking circuit, all subject to noise.

Figure 6(a) shows a schematic of a binary neuron-oscillator half adder connected to electrodes (shown
in black) as it would appear on an MEA. Figure 6(b) shows the corresponding time series plot showing that
the device is functioning correctly for a binary half adder when subjected to noise (see Figure 1(b)). The
upper cyan plots show inputs I1 and I2, the green V1 plot shows the output for neuron N1 and the red V2
plot shows the output for neuron N2. The ratio B magenta trace shows the ratio of inhibitory conductance
B and the lowest plot displays the noise in the circuit which is of a similar amplitude to the input.

Figure 7(a) shows a schematic of a binary neuron-oscillator SR flip-flop connected to electrodes (shown
in black) as it would appear on an MEA. Figure 7(b) shows the corresponding time series plot showing
that the device is functioning correctly as a binary SR flip-flop when subject to noise (see Fig 1(d)). The
upper cyan plots show the input pulses I1 and I2, the outputs V1 and V2 in red are the outputs for neurons
N1 and N2, respectively. The noise is displayed as the blue curve in the lowest plot and is of a larger
magnitude than that of the input.

Finally, we present Figure 8(a) showing the schematic of a binary neuron-oscillator feedback clocking
circuit as it would appear on an MEA. Figure 8(b) shows the time series voltage plots for neurons N1, N2,
N3 as V1, V 2, V3, respectively. In this case, neurons N2 and N3 are synchronized and out of phase with
neuron N1. This circuitry is also noise resistant.

Thus, the authors have demonstrated how all of the components required to build a computer, namely,
ALUs, memory and clocking circuits could be implemented with biological neurons. Once these simple
circuits have been constructed then it will be possible to build more complex logic, memory and clocking



January 31, 2020 12:13 IJBC-D-18-00446˙R1

Fig. 6. Binary neuron threshold oscillator half adder. (a) Schematic of a binary neuron-oscillator half adder as it
would look on an MEA. The excitatory neuron N1 is colored green and the inhibitory neuron N2 is colored red. (b) Time
series showing correct functionality of a binary oscillator half-adder when subjected to noise. Refer to Figure 1(b). Note that
in this case that there is an inhibitory synaptic connection to an excitatory neuron. The parameters used in this computational
model were gk = 36, gl = 0.3, VNa = 50, VK = −77, Vl = −54.402 and C = 1. For the low threshold neuron N1, gNa = 170
and for the high threshold neuron gNa = 140. The noise was generated using normally generated random numbers.

circuits. A typical neuron has only one axon, instead of requiring multiple axons, a neuron simply branches
its axons via axon collaterals and in this way one neuron can connect with many other neurons (up to
a thousand in the human brain) and most post-synaptic neurons receive the same signal. Propagation
dynamics in branching axons are discussed in [Bakkum, 2013; Ofer, 2017]. However, due to the physical
restrictions of biological neurons (mainly speed), building a conventional computer in this way would be
impractical.

Implementation using one of the other technological paradigms mentioned in the introduction could be
possible in the future or there may be bespoke applications of this research. Results of these investigations
will be published at a later date.

5. Discussion

Implementation of the invention on binary oscillator computing can come from one of six technological
paradigms—computational/mathematical models of transistor and Josephson junction have been discussed
in [Lynch, 2012] and [Lynch, 2013], implementation in terms of memristors, superconducting nanowires
and optical fibers is yet to be investigated. This paper concentrates on the biological aspect of the invention
which could have far reaching implications in neural computing, reducing animal testing and drug research.

Our logic, memory and clocking circuits incorporate excitatory and inhibitory synaptic connections,
inhibitory-inhibitory feedback synaptic connections and excitatory-inhibitory feedback connections. Read-
ers may be interested in excitatory-excitatory feedback synaptic connections which are important in syn-
chronization and de-synchronization dynamics, see for example, [Acker, 2003; Ashwin, 2004].

It is estimated that there are about 500 neurological conditions and disorders affecting the brain, spine
and the nervous system. In 2005, the World Health Organization estimated that neurological disorders
affected more than one billion people worldwide. Just one of these disorders, Alzheimer’s disease (the most
common form of dementia) currently has no cure and it is estimated that 1.2% of the world’s population
will be affected by 2050. In order to develop treatments for such disorders, it is essential to be able to
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Fig. 7. Binary neuron threshold oscillator SR flip-flop. (a) Schematic of a binary neuron-oscillator SR flip-flop as it
would look on an MEA. The inhibitory neurons N1 and N2 are colored red. (b) Time series showing correct functionality
of a binary oscillator SR flip-flop when subjected to considerable noise. Refer to Fig 1(d). Note that in this case there are
inhibitory-inhibitory feedback synaptic connections. The parameters used in this computational model were gk = 36, gl = 0.3,
VNa = 50, VK = −77, Vl = −54.402 and C = 1. For both inhibitory neurons N1 and N2, gNa = 120 and EGABA = 120. The
noise was generated using normally generated random numbers.

Fig. 8. Binary neuron threshold oscillator clocking circuit. (a) Schematic of a binary neuron-oscillator feedback
clocking circuit as it would appear on an MEA. The excitatory neurons N1 and N2 are colored green and the inhibitory
neuron N3 is colored red. (b) Time series showing correct functionality of a binary neuron-oscillator clocking circuit. Note that
in this case that there is an excitatory synaptic connection to an excitatory neuron and there are excitatory-inhibitory feedback
synaptic connections. The parameters used in this computational model were gk = 36, VNa = 50, VK = −77, Vl = −54.402
and C = 1, for all neurons. Otherwise, I1 = 11, g1NMDA = 5, g2NMDA = 6, g3GABA = 8. The noise was generated using
normally generated random numbers.
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accurately assess the functionality of neural cells in-vitro before more invasive in-vivo tests are conducted. 
Growing neural cells atop multi-electrode arrays is now well established. These devices enable fundamental 
neurophysiological insights at both the circuit and cellular level. The advantages in using MEAs are well-
documented, see [Whitson, 2006], for example, and implementation of our circuitry should eventually be 
possible. Neurons are not the only oscillators in the human body, heart cells, muscle cells and retinal cells, 
for example, all oscillate and can excite and inhibit one another, and there are other oscillators that cycle on 
a wide range of time scales [Lynch, 2015]. The use of cardiac myocytes, for example, which are more robust 
than neurons, could provide alternative solutions to the problems that neurons bring with experimentation 
[Siso-Nadal, 2009]. It is also possible to set up co-cultures of sympathetic neurons and cardiac myocytes 
on MEAs [Lockhart, 1997]. Running several circuits simultaneously will increase the throughput and cut 
the costs of experimentation in drug research and since our circuits are so simple and can be replicated, it 
should be possible to test a number of drugs on one MEA.

Biophysical meaningful models of a binary oscillator half-adder, an SR flip-flop and a clocking circuit 
have been presented for the first time. There are several ways in which these ideas may be implemented, 
however, in the short term it appears that the use of fluidic chambers and tunnels may provide the most 
robust, reliable and durable assays using current technology. Dr Roach and his group are currently fabri-
cating platforms enabling the segregated co-culture of neurons to be controlled, with connectivity between 
neuronal populations being possible only by direction of neurites through microchannels [Kamudzandu, 
2019]. Such devices are becoming more commonplace in the literature, although very few address the is-
sues of multiple different neuronal types within a single device. Further work is directed to humanizing this 
model and also to address specific challenges regarding the size of features used and their density. Chemical 
modification of MEAs will contribute to better control spatial location of cells for biological computing 
possibilities. When defining neuronal circuits down at the single-cell resolution, it is often difficult to main-
tain the viability of cells in such low density cultures. Furthermore, poisoning of multiple different neuronal 
sub-types within such a device raises issues of how to pattern these in mixed populations. One of the biggest 
drawbacks from the current work is the limited ability to replicate a humanized model. Many of the ex-
isting models rely heavily on the use of animal derived materials [Kose, 2017; Merryweather, 2017; Roach, 
2008] which can be useful for biological computing applications but have limited scope within the area of 
drug testing or regenerative medicine. New approaches applying synthetic biology approaches to rapidly 
reprogram human pluripotent stem cells for the first time provide a robust and scalable source of func-
tional human neurons [Pawlowski, 2017, 2013]. Neurons produced in this way display electro-physiological 
activity within less than two weeks and develop functional networks within three weeks [Tourigny, 2018].

Currently, the best assays in industry measure neurotoxicity via mean firing rate, burst characteristics 
and synchrony of spikes and bursts of clusters of neurons. They typically use stimulatory compounds, 
inhibitory compounds and seizurogenic compounds and then measure whether spike/burst rates have in-
creased or decreased. Our assays, once manufactured, would provide the world with platforms which would 
provide far more detail than is available with current technology. By constructing neural circuits using our 
patented architecture, pharmaceutical companies would have an assay that measures the functionality of 
both neurons and their logic, memory and clocking circuits.

With regards to future patents, this technological area is increasingly of interest due to rapid growth 
in capabilities within the manufacture of biological-electrical hybrid devices. It is also becoming apparent 
that collaboration across the scientific disciplines is necessary to unlock the potential for future growth in 
this area, and that mathematical modeling will play a vital role in this endeavor.
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