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Abstract

Diabetic Foot Ulcers (DFU) that affect the lower extremities are a major com-

plication of Diabetes Mellitus (DM). It has been estimated that patients with

diabetes have a lifetime risk of 15% to 25% in developing DFU contributing up

to 85% of the lower limb amputation due to failure to recognise and treat DFU

properly. Current practice for DFU screening involves manual inspection of the

foot by podiatrists and further medical tests such as vascular and blood tests are

used to determine the presence of ischemia and infection in DFU. A comprehen-

sive review of computerized techniques for recognition of DFU has been performed

to identify the work done so far in this field. During this stage, it became clear

that computerized analysis of DFU is relatively emerging field that is why related

literature and research works are limited. There is also a lack of standardised

public database of DFU and other wound-related pathologies.

We have received approximately 1500 DFU images through the ethical ap-

proval with Lancashire Teaching Hospitals. In this work, we standardised both

DFU dataset and expert annotations to perform different computer vision tasks

such as classification, segmentation and localization on popular deep learning

frameworks. The main focus of this thesis is to develop automatic computer vision

methods that can recognise the DFU of different stages and grades. Firstly, we

used machine learning algorithms to classify the DFU patches against normal skin

patches of the foot region to determine the possible misclassified cases of both

classes. Secondly, we used fully convolutional networks for the segmentation of

DFU and surrounding skin in full foot images with high specificity and sensitivity.

Finally, we used robust and lightweight deep localisation methods in mobile de-

vices to detect the DFU on foot images for remote monitoring. Despite receiving

very good performance for the recognition of DFU, these algorithms were not able

to detect pre-ulcer conditions and very subtle DFU.

Although recognition of DFU by computer vision algorithms is a valuable

study, we performed the further analysis of DFU on foot images to determine

factors that predict the risk of amputation such as the presence of infection and

ischemia in DFU. The complete DFU diagnosis system with these computer vision

algorithms have the potential to deliver a paradigm shift in diabetic foot care

among diabetic patients, which represent a cost-effective, remote and convenient

healthcare solution with more data and expert annotations.



Acknowledgements

Throughout my research and preparation of this thesis, many people have guided

my understanding and knowledge that allowed me to form the work presented.

Firstly, I would like to thank my Director of Studies, Dr. Moi Hoon Yap, for her

kindness, patience and overall confidence in my abilities from the very beginning. I

also want to express my utmost gratitude to my other supervisor Dr. Neil Reeves,

and Dr. Satyan Rajbhandari who provided his timely perspective and help on the

clinical aspects of my work and contributing greatly when I was in need.

I want to express special thanks to Lancashire Teaching Hospitals, and Jen-

nifer Spragg for their extensive support and contribution in carrying out this re-

search.

I have received help and advice, directly or indirectly, from my peers and

colleagues throughout my study. These people motivated me to share ideas and

build relationships to further expand my knowledge. From MMU, Ms. Jhan, Dr.

Connah Kendrick, Mr. Sean Barton, Mr. Guido Ascenso, Dr. Adrain K. Davison,

Dr. Brett Hewitt, Dr. Ezak Fadzrin, Mr. Nadim Baharum.

My most sincere thanks goes to my family, for always believing I could suc-

ceed, even when I did not. I am grateful for MMU for providing the studentship

for me to complete this thesis, and provide valuable experience in teaching at a

university level.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures vii

List of Tables xi

List of Abbreviations xiii

List of Publications xv

1 Introduction 1

1.1 Background of DFU . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Clinical Background and Related Telemedicine Systems for DFU 10

2.1 Medical Classification Systems for DFU . . . . . . . . . . . . . . . . 10

2.1.1 Wagner Classification System . . . . . . . . . . . . . . . . . 10

2.1.2 Texas Classification System . . . . . . . . . . . . . . . . . . 11

2.1.3 Sinbad Classification System . . . . . . . . . . . . . . . . . . 12

2.2 Telemedicine Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Store-and-Forward . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Remote Monitoring . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Real-Time Interactive Services . . . . . . . . . . . . . . . . . 14

2.3 Current Telemedicine Systems for DFU . . . . . . . . . . . . . . . . 15

2.3.1 Non-automated Telemedicine Systems . . . . . . . . . . . . . 15

2.3.2 Automated Telemedicine Systems . . . . . . . . . . . . . . . 16

iii



Algorithms development based on basic image pro-
cessing and traditional machine learning
techniques . . . . . . . . . . . . . . . . . . 17

Algorithms development based on deep learning tech-
niques . . . . . . . . . . . . . . . . . . . . 18

Research based on different modalities of images . . . 18

Smartphone applications for DFU . . . . . . . . . . . 19

2.4 Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Theories and Techniques 22

3.1 Image Processing and Traditional Machine Learning . . . . . . . . . 22

3.1.1 K-Mean Clustering . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Local Binary Patterns . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 Histogram of Oriented Gradients . . . . . . . . . . . . . . . 27

3.1.5 Color Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.6 Support Vector Machines . . . . . . . . . . . . . . . . . . . . 29

3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Introduction and Background . . . . . . . . . . . . . . . . . 35

3.2.1.1 Convolutional Layer . . . . . . . . . . . . . . . . . 36

3.2.1.2 Activation Functions . . . . . . . . . . . . . . . . . 37

3.2.1.3 Pooling Layer . . . . . . . . . . . . . . . . . . . . . 39

3.2.1.4 Fully Connected Layers . . . . . . . . . . . . . . . 39

3.2.1.5 Output . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Optimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Batch Size, Epoch and step . . . . . . . . . . . . . . . . . . 44

3.2.6 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.7 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 DFU Dataset and Performance Metrics 47

4.1 DFU Dataset and Expert Labelling . . . . . . . . . . . . . . . . . . 47

4.1.1 Expert Annotations in DFU Classification . . . . . . . . . . 50

4.1.2 Expert Annotations in DFU Segmentation . . . . . . . . . . 50

4.1.3 Expert Annotations in DFU Localisation . . . . . . . . . . . 51

4.1.4 Expert Annotations for Recognition of Ischemia and Infec-
tion in DFU . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Accuracy, Precision, Sensitivity and Specificity . . . . . . . . 54

4.2.2 F-Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Matthews Correlation Coefficient . . . . . . . . . . . . . . . 55

4.2.4 ROC Curve and AUC . . . . . . . . . . . . . . . . . . . . . 56

iv



4.2.5 Performance Measures in Segmentation . . . . . . . . . . . . 56

4.2.6 Performance Measures in Localization . . . . . . . . . . . . . 57

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 DFU Classification 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Data Augmentation of Training Patches . . . . . . . . . . . 59

5.2.2 Pre-processing of Training Patches . . . . . . . . . . . . . . 60

5.2.3 Conventional Machine Learning . . . . . . . . . . . . . . . . 60

5.2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . 60

5.2.5 Proposed Method - Diabetic Foot Ulcer Network . . . . . . 62

5.2.5.1 Input Data . . . . . . . . . . . . . . . . . . . . . . 64

5.2.5.2 Block of Convolution Layers in Parallel . . . . . . . 64

5.2.5.3 Fully Connected Layers and Output Classifier . . . 67

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Experimental Analysis and Discussion . . . . . . . . . . . . 72

5.4 Performance evaluation on Heterogeneous Test Case . . . . . . . . . 73

5.5 Performance Evaluation on Facial Skin Dataset . . . . . . . . . . . 74

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 DFU Segmentation 76

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Traditional Machine Learning Methods for DFU Segmentation 78

6.2.2 Fully Convolutional Networks for DFU segmentation . . . . 78

6.2.2.1 FCN-AlexNet . . . . . . . . . . . . . . . . . . . . . 79

6.2.2.2 FCN-32s, FCN-16s, FCN-8s . . . . . . . . . . . . . 80

6.3 Experiment and Result . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Inaccurate segmentation cases in FCN-AlexNet, FCN-32s,
FCN-16s, FCN-8s . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 DFU Localisation 86

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.1 Traditional Methods for DFU Localisation and Classification 87

7.2.2 Deep Learning Methods for DFU Localisation . . . . . . . . 88

7.2.2.1 CNN as feature extractor . . . . . . . . . . . . . . 88

7.2.2.2 Generation of proposals and refinement . . . . . . . 90

7.2.2.3 RoI Classifier and Bounding Box Regressor . . . . 90

7.2.3 Performance Measures of Deep Learning Methods . . . . . . 94

7.3 Experiment and Result . . . . . . . . . . . . . . . . . . . . . . . . . 94

Configuration of GPU Machine for Experiments 95

7.3.1 Inaccurate DFU Localisation Cases . . . . . . . . . . . . . . 98

v



7.4 Inference of Trained Models on NVIDIA Jetson TX2 Developer Kit 99

Configuration of Jetson TX2 for Inference . . . 99

7.5 Real-time DFU localisation with smartphone application . . . . . . 99

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Detection of Ischemia and Infection in DFU 103

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.1 Natural Data-Augmentation for DFU images . . . . . . . . . 108

8.2.2 Proposed method for Natural Data-Augmentation . . . . . . 109

8.2.3 Traditional Machine Learning . . . . . . . . . . . . . . . . . 109

8.2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . 110

8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3.1 Experimental Analysis and Discussion . . . . . . . . . . . . 115

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Conclusion and Future Works 119

9.1 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 126

vi



List of Figures

1.1 The sample images in the DFU dataset . . . . . . . . . . . . . . . . 4

2.1 The University of Texas Classification System for DFU [1] . . . . . 12

2.2 The types of computer vision tasks . . . . . . . . . . . . . . . . . . 17

3.1 Classification of Machine Learning algorithms . . . . . . . . . . . . 23

3.2 Training and inference using supervised machine learning algorithm 24

3.3 DFU recognition using K-mean clustering (n=3) and post-processing 25

3.4 LBP code calculation. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 LBP Comparsion between Normal Vs Ulcer . . . . . . . . . . . . . 28

3.6 HOG Visualization on Normal Skin Patch . . . . . . . . . . . . . . 28

3.7 HOG Visualization on abormal Skin Patch . . . . . . . . . . . . . . 29

3.8 SVM Hyperplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Supervised machine learning and deep learning algorithm . . . . . . 33

3.10 The overview of convolutional neural network LeNet designed by
LeCun [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 The visualization of some feature outputs of Ist convolutional layer
of AlexNet on sample DFU image [3] . . . . . . . . . . . . . . . . . 37

3.12 This image shows ReLU (left) activation vs sigmoid (right), notice
how sigmoid normalises the range, but ReLU allows an output range
between 0 and infinity . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 The example of activation of last Rectified Layer Unit (ReLU) layer
of AlexNet on sample DFU image . . . . . . . . . . . . . . . . . . . 38

3.14 This image shows ReLU (left) activation vs Leaky ReLU (right),
ReLU set all the negative values to zero, where Leaky ReLU allows
negative values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.15 An example of a Max-pooling and Avg Pooling operation with filter
size of 2×2 with a stride of 2 on input feature map. . . . . . . . . . 40

3.16 The example of activation of pooling layer in channel 32 of AlexNet
on sample DFU image . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.17 The example of converting the class scores by softmax function . . . 41

3.18 The example of log loss graph between the predicted probability
and true label = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.19 The good learning rate which is not high and really low trains
Convolutional Neural Network (CNN) well . . . . . . . . . . . . . . 43

3.20 The two-tier transfer learning from big datasets to produce more
effective segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



4.1 (a) and (b) are examples of non-standardised dataset (c) and (d)
are examples of non-standardised dataset . . . . . . . . . . . . . . . 48

4.2 Types of images excluded for this experiment . . . . . . . . . . . . 49

4.3 An example of delineating the different regions from the whole foot
image to produce abnormal and normal skin patches with the help
of annotator software [4]. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 An example of delineating the different regions of the pathology
from the whole foot image and conversion to Pascal VOC format . . 51

4.5 Comparison of Size of DFU against the size of image in the DFU
dataset of 1775 images . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Annotation of ground truths on foot images for DFU localization . 53

4.7 Comparison of combined Ischemia and Infection cases in the DFU
dataset where ISC stands for ischemia and INF is infection . . . . . 53

5.1 The output of healthy and diabetic ulcer skin from the first convo-
lution layer of LeNet highlight discriminative features. . . . . . . . . 61

5.2 An overview of the proposed DFUNet architecture. The proposed
DFU architectures consists of Input Data block which consists of
training and validation data, Traditional Convolution block con-
sist of single convolutional layers, block of convolutional layers in
parallel to extract concatenated features with the help of different
convolutions, Fully Connected layers which act as neural network
and finally, Output Classifier to produce the prediction of class label 63

5.3 Healthy and ulcer patches taken from feet for training in the CNN. 64

5.4 The structure of block of Conv. in parallel in which three types of
convolutional filters are used, concatenation layers to concatenate
the features of each convolutional filters, and finally pass it local
response norm layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 The convolution activation produced by the kernels of first convo-
lutional layer on healthy skin raw input, to highlight the features
learned by convolutional layer. . . . . . . . . . . . . . . . . . . . . . 66

5.6 The convolution activation produced by the kernels of first convo-
lutional layer on DFU skin patch, to highlight the discriminative
features learned by convolutional layer. . . . . . . . . . . . . . . . . 67

5.7 The ROC curve for all DFUNet models as mentioned in Table 5.3,
DFUNet var. 5 performed best with an AUC score of 0.961. Var.
refers to variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 ROC curve for all the models including Conventional Machine Learn-
ing (CML) and Convolutional Neural Networks (CNNs) mentioned
in Table 5.4 in which our proposed DFUNet method achieved the
best AUC score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 Few examples of accurate and inaccurate classified cases for both
abnormal and normal classes with DFUNet. . . . . . . . . . . . . . 73

5.10 The examples of three classes in facial skin dataset. . . . . . . . . . 74

viii



6.1 Overwiew of fully convolutional network’s architecture which can
learn features with forward and backward learning to make pixel-
wise prediction to perform segmentation where C1-C8 are convolu-
tional layers and P1-P5 are max-pooling layers . . . . . . . . . . . . 79

6.2 Four Examples of DFU and surrounding skin segmentation with the
help of four different Fully Connected Network (FCN) models . . . 81

6.3 Boxplot of Dice for all FCN models for Complete Area Determination 82

6.4 Boxplot of Dice for all FCN models for Ulcer region . . . . . . . . . 83

6.5 Boxplot of Dice for all FCN models for Surrounding Skin region . . 83

6.6 Distribution of Dice Similarity Coefficient for each trained model . . 84

6.7 Inaccurate segmentation cases by the different Fully Connected Net-
works (FCNs) used in the testing dataset . . . . . . . . . . . . . . . 85

7.1 Stage 1: The feature map extracted by CNN that acts as backbone
for object localisation network. Conv refers convolutional layer. . . 89

7.2 Stage 2: Detected proposal boxes with translate/scale operation to
fit the object. There can be several proposals on a single object. . . 89

7.3 Illustration of Stage 3: The classification and further box refinement
of RoI boxes from the second stage proposal with softmax and Bbox
regression. Where FC refers to Fully-connected layer . . . . . . . . 90

7.4 Faster R-CNN Architecture for DFU localisation which consists of
all three stages discussed earlier. . . . . . . . . . . . . . . . . . . . . 91

7.5 R-FCN Architecture which considers only the feature map from the
last convolutional layer which speeds up the three stage network . . 92

7.6 The architecture of Single Shot Multibox Detector (SSD). It con-
siders only two stage by eliminating the last stage to produce faster
box proposals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.7 The accurate localsation results to visually compare the perfor-
mance of object localisation networks on DFU dataset. Where
SSD-MobNet is SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2,
FRCNN-IncV2 is Faster R-CNN with InceptionV2, and RFCN-
Res101 is R-FCN with ResNet101. . . . . . . . . . . . . . . . . . . 97

7.8 Incorrect localisation results to visually compare the performance of
object localisation networks on DFU dataset. Where SSD-MobNet
is SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2
is Faster R-CNN with InceptionV2, and RFCN-Res101 is R-FCN
with ResNet101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.9 Nvidia Jetson TX2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.10 DFU localisation on Nvidia Jetson TX2 using Faster R-CNN with
InceptionV2 on tensor-flow. . . . . . . . . . . . . . . . . . . . . . . 100

7.11 The real-time localisation using smartphone android application . . 101

8.1 Examples of the presence of DFU on. (a) Forefoot, (b) Midfoot and
(c) Hindfoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Examples of classification of area of DFU . . . . . . . . . . . . . . . 105

8.3 The types of computer vision tasks . . . . . . . . . . . . . . . . . . 105

ix



8.4 Examples of classification of depth of DFU . . . . . . . . . . . . . . 106

8.5 Cases of the presence of ischemia and no ischemia in DFU in foot
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Cases of presence of infection and no ischemia in DFU in foot images107

8.7 Comparison of Size of DFU against the size of image in the DFU
dataset of 1459 images . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.8 The types of computer vision tasks . . . . . . . . . . . . . . . . . . 110

8.9 Natural data-augmentation produced from the original image with
different magnifications. MAG refers to magnification . . . . . . . . 111

8.10 Natural data-augmentation of different angles produced from the
images (different magnification) . . . . . . . . . . . . . . . . . . . . 112

8.11 Example of superpixel oversegmentation and computing the mean
RGB color of each superpixel in DFU patch. . . . . . . . . . . . . . 112

8.12 Example of extracting red and black regions from DFU patch with
different threshold values . . . . . . . . . . . . . . . . . . . . . . . . 113

8.13 Correctly classified patches by InceptionResNetV2 on Ischemia dataset.
(a) and (b) represents non-ischemia cases. (c) and (d) represents
ischemia cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.14 Misclassified patches by InceptionResNetV2 on Ischemia dataset.
(a) and (b) represents non-ischemia cases. (c) and (d) represents
ischemia cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.15 Correctly classified patches by InceptionResNetV2 on Infection dataset.
(a) and (b) represents non-infection cases. (c) and (d) represents
infection cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.16 Misclassified patches by InceptionResNetV2 on Infection dataset.
(a) and (b) represents non-infection cases. (c) and (d) represents
infection cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1 DFU images of same foot are captured with different magnification
and angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2 Future work consists of finding an approximate size and site of DFU 124

9.3 Comparison of Size of DFU against the size of image . . . . . . . . 125

x



List of Tables

2.1 The descriptions of SINBAD score according to the different condi-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 The total number of cases of each condition of DFU . . . . . . . . . 54

5.1 Complete description of Network Architecture of DFUNet. Conv.
refers to convolutional layer, Max-pool. refers to Max-Pooling lay-
ers. There are variations in filter size of blocks of convolutional
layers in parallel of different variant of DFUNet. . . . . . . . . . . . 63

5.2 The descriptions of filter size in the block of convolutional layers in
parallel of different variants of DFUNet. Conv. refers to convolu-
tional layer and var. refers to variant. . . . . . . . . . . . . . . . . . 65

5.3 The performance measures of various variants of the DFUNet on
DFU dataset. where S.E. is standard error of AUC and C.I. is
confidence interval of AUC curve . . . . . . . . . . . . . . . . . . . 69

5.4 The performance measures of binary classification task by both tra-
ditional machine learning and CNNs including our proposed method
DFUNet. Overall, our proposed DFUNet achieved the best results.
where S.E. is standard error of AUC and C.I. is confidence interval
of AUC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Facial Skin classification task with three classes as Normal skin,
Spot, Wrinkle. The proposed DFUNet outperformed GoogLeNet
in every performance metrics on this dataset. . . . . . . . . . . . . . 74

6.1 Segmentation results for color segmentation and traditional ma-
chine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Comparison of different FCNs architectures on DFU dataset (SS
denotes Surrounding Skin) . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 Performance of state-of-the-art object localisation models on MS-
COCO dataset. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Performance measures of object localisation models on DFU dataset 95

8.1 Performance measures of object localisation models on DFU dataset 109

8.2 The performance measures of binary classification of Ischemia by
both traditional machine learning and CNNs where MCC is Matthew
Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



8.3 The performance measures of binary classification of Infection task
by both traditional machine learning and CNNs results. where
MCC is Matthew Correlation Coefficient . . . . . . . . . . . . . . . 114

9.1 Research objectives and outcomes. . . . . . . . . . . . . . . . . . . 120

9.2 Research objectives and outcomes. . . . . . . . . . . . . . . . . . . 121

xii



List of Abbreviations

2D 2-Dimensional

3D 3-Dimensional

AI Artificial Intelligence

AUC Area Under the ROC Curve

ANN Artificial Neural Networks

CML Conventional Machine Learning

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

DM Diabetes Mellitus

DFU Diabetic Foot Ulcers

FC Fully Connected

FCN Fully Connected Network

FCNs Fully Connected Networks

fps Frames per Second

FP False Positive

FPR False Positive Rate

FN False Negative

HOG Histogram of Oriented Gradients

xiii



ICT Information and Communication Technologies

IoT Internet of Things

IoU Intersection over Union

JSI Jaccard Similarity Index

LBP Local Binary Patterns

LRN Local Response Normalisation

MCC Matthew’s Correlation Coefficient

ReLU Rectified Layer Unit

ROI Region of Interests

SD Standard Deviation

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SMO Sequential Minimal Optimization

SURF Speeded Up Robust features

SVM Support Vector Machines

TP True Positive

TPR True Positive Rate

TML Traditional Machine Learning

TN True Negative

RF Random Forests

ROC Receiver Operating Characteristic

ROI Regions of Interest

XML Extensible Markup Language

xiv



List of Publications

This thesis is based on material from the following publications:

1. Manu Goyal, Neil D. Reeves, Adrian K. Davison, Satyan Rajbhandari, Moi

Hoon Yap, “Robust Methods for Real-time Diabetic Foot Ulcer Detection

and Localisation on Mobile Devices.” IEEE journal of biomedical and health

informatics (2018).

2. Manu Goyal, Neil D. Reeves, Adrian K. Davison, Satyan Rajbhandari, Jen-

nifer Spragg, Moi Hoon Yap, “DFUNet: Convolutional Neural Networks for

Diabetic Foot Ulcer Classification,” IEEE Transactions on Emerging Topics

in Computational Intelligence (2018).

3. Manu Goyal, Neil D. Reeves, Satyan Rajbhandari, Jennifer Spragg, Moi

Hoon Yap, “Fully Convolutional Networks for Diabetic Foot Ulcer Segmen-

tation,” IEEE International Conference on Systems, Man, and Cybernetics

(IEEE SMC-2017).

xv



Dedicated to my Parents and Teachers

xvi



Chapter 1

Introduction

This Chapter outlines the background information of the project. The

aim of this project is to implement computerised telemedicine systems

which can detect DFU. This chapter starts with the introduction, moti-

vation and problem statement of the DFU project. Then, contributions

from each chapter and thesis organisation is discussed.

1.1 Background of DFU

DM commonly known as Diabetes is a lifelong condition resulting from hyper-

glycemia (high blood sugar levels), which leads to major life-threatening compli-

cations such as cardiovascular diseases, kidney failure, blindness and lower limb

amputation which is often preceded by DFU [6]. According to the global report

on diabetes in 2016 by the world health organisation, there were 422 million peo-

ple suffering from DM in 2014, compared to 108 million people in 1980. Among

the adults that are over 18 years of age, the global prevalence has gone up from

4.7% in 1980 to 8.5% in 2014 [7]. It is estimated by the end of 2035, the figure

is expected to rise to 600 million people living with DM worldwide [8]. From this

report, there is about only 20% of these people will be from developed countries

and the rest will be from developing countries due to poor awareness and limited

healthcare facilities [9]. There is about 15%-25% chance that a diabetic patient

will eventually develop DFU and if proper care is not taken, that may result in

lower limb amputation [10], although higher rates of up to 34% is suggested in

the recent study [11]. Annually, on average, more than 1 million patients suffering
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from diabetes lose part of their leg due to the failure to recognise and treat DFU

appropriately [12]. A Diabetic patient with a ’high risk’ foot needs periodic check-

ups of doctors, continuous expensive medication, and hygienic personal care to

avoid further consequences as discussed earlier. Hence, it causes a great financial

burden on the patients and their family, especially in developing countries where

the cost of treating this disease can be equivalent to 5.7 years of annual family

income. Also, there is a large cost to healthcare systems in developed nations [13].

In current clinical practices, the evaluation of DFU comprises of various im-

portant tasks in early diagnosis, keeping track of development and number of

lengthy actions taken in the treatment and management of DFU for each par-

ticular case: 1) the medical history of the patient is evaluated; 2) a wound or

diabetic foot specialist examines the DFU thoroughly; 3) additional tests like CT

scans, MRI, X-Ray may be useful to help develop a treatment plan. The patients

with DFU generally have a problem of a swollen leg, although it can be itchy and

painful depending on each case. Usually, the DFU have irregular structures and

uncertain outer boundaries. The visual appearance of DFU and its surrounding

skin depending upon the various stages i.e. redness, callus formation, blisters, sig-

nificant tissues types like granulation, slough, bleeding, scaly skin. In the current

healthcare settings, clinicians primarily monitor the patients by visual inspection

to determine the important conditions such as area, depth, infection, ischemia,

neuropathy, and site. There is a high risk of infection spreading in the body

through DFU. Hence, patients need to visit the healthcare centres on regular in-

terval for inspection of DFU which results in a financial burden to both patients

and healthcare settings.

The proliferation of information and communication technologies present both

challenges and opportunities in terms of the development of new age healthcare

systems. Current literature of DFU evaluation with the help of computerised

algorithms is still in the preliminary stage. Since the analysis of DFU with com-

puterized methods is relatively emerging field, there are limited computer methods

developed for the assessment of diabetic foot pathologies with the help of basic

image processing and traditional machine learning [14, 15].

In recent years, there has been a rapid development in the area of computer

vision, especially towards the difficult and important issues like understanding

images of different domains such as spectral, non-medical objects, abnormalities

2



Chapter 1. Introduction

in medical imaging, and facial features recognition [16–19]. There is a major ad-

vancement of computer vision algorithms especially in the field of medical imag-

ing. Recent advancement in deep learning has significantly improved the qual-

ity of these computer vision systems to detect the abnormalities in the different

medical imaging such as Magnetic Resonance Imaging (MRI), dual-energy X-ray

absorptiometry, ultrasonography, and computed tomography [20–24]. Although

the potential for DFU analysis in computer vision is huge, core aspects of develop-

ment need to be greatly improved to get accuracy rates of podiatrists. The major

challenges in this field include the lack of publicly available datasets and expensive

annotations. Hence, starting with end-to-end robust solutions for the recognition

of different types of DFU on the substantial dataset would lay a foundation that

would be beneficial to provide an initial point from where further interpretation

can follow. Hence, developing the robust methods that can also be transferable to

the mobile devices for the remote monitoring of DFU is an important advancement

in computerised analysis of DFU.

But before we develop complete DFU diagnosis system to provide the out-

come of DFU according to the different conditions such as area, depth, infection,

ischemia, neuropathy, and site. There is a need for the robust methods with the

help of cost-effective computer vision techniques to detect the DFU of various

stages and grades according to the Texas classification [1, 25–27]. Since there are

no automatic computerised solutions available so far in the literature survey which

can analyse or detect the DFU on the basis of the medical classification system.

This thesis investigated fully automatic methods to detect DFU, with the

potential to be applied in real heath-care settings. In the recent developments in

computer vision and deep learning, it allowed us to design the end-to-end solu-

tions for the recognition of DFU. We collected a large dataset of DFU of various

patients of different backgrounds from Lancashire Teaching Hospital over a five

years period. We received the NHS Research Ethics Committee approval with

REC reference number 15/NW/0539 to use these images for our research. The

ground truths for this DFU dataset were produced by the podiatrists expertise in

DFU. The sample foot images in dataset are shown in the Fig. 1.1.

The main emphasis of this work was to clean the dataset and refine the expert

annotations to perform three popular computer vision tasks for the medical imag-

ing that are DFU classification, segmentation and localisation. Also, we converted
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Figure 1.1: The sample images in the DFU dataset

these ground truths in popular annotation formats to support various deep learn-

ing libraries such as Caffe, PyTorch, Tensorflow. The major focus of this thesis

was to design different types of end-to-end deep learning algorithms to achieve

the recognition of DFU with high accuracy and precision. We compared the re-

sults achieved by these methods with current state-of-the-art methods (traditional

machine learning and image processing). Another significant contribution was to

transfer the robust DFU detection algorithms on mobile devices such as Nvidia

Jetson TX2 and smart-phone application. These robust mobile applications could

help patients and medical staffs to monitor the progress of DFU in the remote

setting.

In the last contribution of this work, apart from just recognition of DFU in

full foot images, we investigated the use of machine learning algorithms for the first

time to determine ischemia and infection in DFU which could aid in predicting

the outcome of DFU.
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1.2 Motivation

The computerised methods mentioned in current literature based on traditional

machine learning and image processing are not robust enough to detect the DFU

of various grades and stages. Also, these methods are not end-to-end solutions

as traditional machine learning algorithms usually consist of multiple stages such

as pre-processing, feature extraction, training of classifiers, implementation of the

classifier for recognition and post-processing whereas image processing techniques

require manual tuning for individual images to get the final results.

The fast-growing research area of computer vision and medical imaging is

largely driven by end-to-end algorithms with the potential of deploying these al-

gorithms to real-world environments. The research based on recognition of DFU

has focused on the ability of algorithms to detect DFU of varying grades and

stages. Also, algorithms should be robust enough to detect the DFU of patients

with different ethical backgrounds. Then, a further insight of DFU could be pro-

vided by determining the important conditions such as site, area, depth, infection

and ischemia. Hence, designing robust computer vision algorithms that could

analyse the DFU with high accuracy and precision have the potential to deliver

a paradigm shift in diabetic foot care among diabetic patients, which represent a

cost-effective, remote and convenient healthcare solution.

1.3 Problem Statement

The nature of an emerging field means that research is limited and tends to be

exploratory rather than focused on already established work. In Chapter 2, cur-

rent methods and algorithms for recognising, classifying and detecting DFU are

discussed. Many different methods based on conventional machine learning and

image processing are used to detect the DFU on the limited datasets. These liter-

ature works have not made their algorithms and datasets public. Hence, there is

a need for end-to-end computerized solutions which can detect DFU of all grades

and stages.

It is worth mentioning, there are no public DFU datasets available for re-

search. Currently, most of the state-of-the-art computer recognition techniques
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for medical imaging is based on deep learning models. Deep learning models imi-

tate the functionality of the human brain to some extent with the help of neural

networks. Hence, for training the deep learning models, there is a requirement of

a large database of DFU images along with expert annotations. Expert annota-

tions in medical imaging can be very expensive as there is a need for experienced

clinicians to perform this to produce ground truth. In the current DFU dataset,

these expert annotations are performed visually by podiatrists expertise in DFU.

Furthermore, there can be influencing factors such as lighting conditions and skin

tone due to the patient’s ethnicity.

1.4 Aim and Objectives

The aim of this project was to develop novel computer algorithms to recognise and

analyse DFU of various stages and grades. This thesis reviewed and critically anal-

ysed the existing computerised methods to identify DFU in terms of classification,

object detection and segmentation. The following are the objectives:

1. To study the literature related to the background of DFU, medical classifi-

cation systems for DFU, and computerised methods for recognition of DFU

of various grades and stages.

2. To propose a novel computer vision method for DFU classification based on

deep learning approach to differentiate normal skin lesions and DFU skin

lesions in the foot region.

3. To develop new CNN-based automatic segmentation methods to segment

DFU and surrounding skin on full foot images as surrounding skin is an

important visual indicator to assess the progress of DFU.

4. To develop robust and lightweight deep learning methods for DFU localisa-

tion that can be utilized in mobile devices for remote monitoring.

5. To analyse the different conditions of diabetic foot pathologies according to

the popular medical classification systems.
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1.5 Thesis Contributions

The main contributions of this thesis are as follows:

1. We identified the research gaps in computerized methods for recognition of

DFU, discussed various popular medical classification systems used to grade

DFU and established standardised DFU datasets (with experts annotation)

for popular computer vision tasks that are classification, segmentation and

localisation.

2. The expert podiatrists delineated DFU dataset of 292 images to produce

healthy skin and DFU skin patches. We used machine learning algorithms

to extract the features for DFU and healthy skin patches to understand

the differences in the computer vision perspective. A novel deep learning

classification framework - DFUNet, which outperformed the state-of-the-art

traditional machine learning and deep learning methods for DFU classifica-

tion [2].

3. Experts precisely delineated the DFU and the surrounding skin region in

full foot images. This is the first time, segmentation of surrounding skin is

performed which is an important indicator for clinicians to assess the progress

of DFU. We proposed to use two-tier transfer learning segmentation methods

for semantic segmentation of DFU and its surrounding skin [3].

4. We used State-of-the-art deep learning localisation methods on the extensive

DFU dataset of 1775 images and FootSnap dataset. We transferred the

robust and lightweight models on mobile devices such as Nvidia Jetson TX2

and smart-phone android application for remote monitoring of DFU [1].

5. We investigated the different conditions of DFU such as site, infection, neu-

ropathy, bacterial infection, area, and depth according to the computer vision

perspective. In this work, we used machine learning algorithms to determine

the important conditions of DFU such as bacterial infection and ischemia.

1.6 Thesis Organisation

This thesis is split into two main sections: introductory chapters and contribution

chapters. The first section consists of three introductory chapters, the first of
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which is the current Chapter introducing the work presented in the thesis and

outlining what to expect from the research.

Chapter 2 presents fundamental knowledge and a review of the literature re-

lating to DFU detection. Given the emergence of this field, some medical research

is included to form a foundation on which DFU detection system should be based.

Chapter 3 provides technical information on the techniques explored for DFU

detection. This includes techniques used for the image processing and traditional

machine learning approaches, feature extraction methods and deep learning meth-

ods.

Chapter 4 provides details of DFU datasets that are used in the later contribu-

tion chapters. This also includes the format of expert annotations and performance

metrics used for each DFU recognition tasks.

The second section includes four contribution chapters. Chapter 5 investi-

gates the classification of DFU and healthy skin of the foot. The classification

is completed using traditional machine learning, deep learning to classify these

two classes. It also introduces our novel deep learning network called DFUNet

which performed better than other deep learning and traditional machine learning

methods.

Chapter 6 introduces an automated segmentation of DFU and its surrounding

skin by using fully connected networks. We propose a two-tier transfer learning

method by training the fully convolutional networks (FCNs) on larger datasets of

images and use it as the pre-trained model for the segmentation of DFU and its

surrounding skin.

Chapter 7 proposes the use of CNNs to localise DFU in real-time with two-

tier transfer learning. To our best knowledge, this is the first time CNNs are

used for this task. Since our main focus is on mobile devices, we emphasise on

light-weight object localisation models. Finally, we demonstrate the application

of our proposed methods on two types of mobile devices: Nvidia Jetson TX2 and

an android mobile application.

The last of the contribution chapters, Chapter 8, investigate the use of ma-

chine learning algorithms to find the presence or absence of infection and ischemia

in DFU, which are very important factors in determining the conditions of DFU
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in medical classification systems such as Texas classification and Sinbad classifica-

tion systems. We propose to use natural data-augmentation to avoid unnecessary

artefacts in foot images and to have more balanced datasets. Then, we use both

traditional machine learning and deep learning techniques to perform binary clas-

sification of ischemia and infection. In this experiment, the methods were able

to perform better in the classification of ischemia and non-ischemia cases rather

than infection and non-infection cases. We found that deep learning algorithms

performed better for both classification tasks than traditional machine learning.

Finally, Chapter 9 concludes this thesis with a summary of contributions, the

limitations faced in the field of DFU analysis and the future research direction.
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Chapter 2

Clinical Background and Related

Telemedicine Systems for DFU

An overview of the current literature related to popular medical clas-

sification systems to grade DFU, current telemedicine systems, and

computerised methods for the recognition of DFU is presented.

2.1 Medical Classification Systems for DFU

The medical classification systems for DFU are used to classify the DFU on the

basis of different conditions such as size, area, neuropathy, ischemia and infec-

tion to predict the outcome of DFU. These systems are all currently based on

observations made by the clinician and clinical judgements. The popular medical

classification systems are briefly explained below:

2.1.1 Wagner Classification System

The Wagner classification system is one of the most widely accepted classification

systems which is based on the depth of penetration, the presence of osteomyelitis or

gangrene, and the extent of tissue necrosis according to the following list [28, 29].

• Grade 0: No open lesions; may have deformity or cellulitis
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• Grade 1: Superficial diabetic ulcer (partial or full thickness)

• Grade 2: Ulcer extension to ligament, tendon, joint capsule, or deep fascia

without abscess or osteomyelitis

• Grade 3: Deep ulcer with abscess, osteomyelitis, or joint sepsis

• Grade 4: Gangrene localised to the portion of forefoot or heel

• Grade 5: Extensive gangrenous involvement of the entire foot

The main drawback of this classification system is that it does not address

two important conditions that are ischemia and infection. This system classi-

fies DFU on the basis of grades whereas Texas classification system provides the

classification on the basis of both stages and grades [1, 29].

2.1.2 Texas Classification System

This standard classification system is popularly used by podiatrists and medical

professionals to classify DFU into the different categories depending upon the

stages and grades [1]. This system helps in evaluating the DFU according to

the ulcer depth, the presence of infection and skin tissues types, and peripheral

arterial occlusive disease in each category of the ulcer assessment. It consists of

4×4 matrix in which rows represent stages of the ulcer in alphabetic order and

columns represent grades of the ulcer in numerical order. The stages of the ulcer

are explained below:

• Stage A: No infection or ischemia

• Stage B: Infection present

• Stage C: Ischemia present

• Stage D: Infection and ischemia present

The different grades of the ulcer are:

• Grade 0: Epithelialised wound
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Figure 2.1: The University of Texas Classification System for DFU [1]

• Grade 1: Superficial wound

• Grade 2: Wound penetrates to tendon or capsule

• Grade 3: Wound penetrates to bone or joint

The complete Texas classification system for DFU is illustrated in Fig. 2.1

2.1.3 Sinbad Classification System

It is relatively new and simplified classification system introduced by Paul et al.

[30] to compare the outcomes of DFU of different populations around the world.

Sinbad score stands for S (Site), I (Ischemia), N (Neuropathy), B (Bacterial infec-

tion), A (Area), D (Depth). For each DFU, Sinbad score is calculated according

to the Table 2.1. Although, Texas Classification System has been mostly used by

podiatrists, but Sinbad scores are better suited for audit due to greater specificity

[30]. Also for machine learning algorithms, the binary classification of each condi-

tion provided by this system is more suitable than other classification systems.
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Table 2.1: The descriptions of SINBAD score according to the different con-
ditions

Category Definition Sinbad score

Site
Forefoot 0

Midfoot and hindfoot 1

Ischemia
Pedal blood flow intact: at least one pulse palpable 0

Clinical evidence of reduced pedal blood flow 1

Neuropathy
Protective sensation intact 0

Protective sensation lost 1

Bacterial infection
None 0

Present 1

Area
Ulcer ≤ 1 cm 0

Ulcer > 1 cm 1

Depth
Ulcer confined to skin and subcutaneous tissue 0

Ulcer reaching muscle, tendon or deeper 1

Total possible score 6

2.2 Telemedicine Systems

Telemedicine systems are the cost-effective healthcare services that are provided

from the distance or remote location with the help of Information and Communi-

cation Technologies (ICT) [31]. With the recent development in ICT and limited

healthcare services to the large population, the computerised telemedicine sys-

tems have great potential to overcome geographical distance barriers and provide

cost-effective and quality healthcare services. Since there is a number of types

of telemedicine systems suggested by various researchers and scientists over time.

But, in general, the three main categories of telemedicine are store-and-forward,

remote monitoring and real-time interactive services. Each of these telemedicine
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systems has improved overall current healthcare systems and, it offers a number

of benefits and facilities to medical staff and patients.

2.2.1 Store-and-Forward

The Store-and-forward telemedicine system is getting very popular as the appli-

cations of medical imaging are immensely improved. When utilised properly and

with care, this practice can save time and cost of both medical practitioners and

patients. Nowadays, the medical imaging modalities can also be recorded in elec-

tronic format and with history report and documentation, the patients don’t need

to meet impersonal with the medical specialist and practitioner every time [32].

Instead, the medical data such as biosignals or medical images of the patient can

be sent to the specialist as needed with the help of communication devices in flash

of a second. This telemedicine system is effective for various medical imaging

modalities such as CT scan, X-Ray, MRI etc which is very common in the medical

fields of dermatology, radiology and pathology [33–35].

2.2.2 Remote Monitoring

The remote monitoring telemedicine devices are very popular among patients.

These devices allow patients to check the clinical signs or symptoms and monitor

health without the need of any expert input [36, 37]. There is the number of

self-monitoring kits available in the market to check the temperature of the body,

sugar level, blood pressure, heart-rate which is effective in the management of

various chronic diseases like diabetes, asthma, cardiovascular disease [38, 39].

There are the number of benefits of remote monitoring telemedicine systems

which include cost-effective solutions, more frequent health check and greater pa-

tient satisfaction. But there is some risk of faulty telemedicine system or ineffective

self-test conducted by patients can lead to inaccurate outcomes.

2.2.3 Real-Time Interactive Services

Interactive services can provide immediate advice to patients who require medical

attention. There are several different mediums utilised for this purpose, including

14



Chapter 2. Clinical Background and Related Telemedicine Systems for DFU

phone, online and home visits. A medical history and consultation about present-

ing symptoms can be undertaken, followed by assessment similar to those usually

conducted in face-to-face appointments. It also involves the automated solutions

of clinical decisions to deal with the shortage of expert medical professionals in

consultation for the various chronic diseases [40, 41].

These services are a great step forward in improving the accessibility of health-

care to all patients, particularly those living in areas with limited local healthcare

settings. Additionally, these services offer a significant benefit of reduced cost in

comparison to traditional in-person appointments.

2.3 Current Telemedicine Systems for DFU

This section focuses on the current telemedicine systems that are available for

recognition and analysis of DFU. With the rapid growth in mobile telecommu-

nications, remote communication is made possible with the help of standalone

devices like smart-phones, laptops and the Internet. Nowadays, a pocket-size

smart-phone with the advanced mobile operating system has the capability of a

personal computer that can capture and send high-resolution pictures and also,

audio and video communication with the help of advanced mobile internet like 4G.

These telemedicine systems are broadly categorised into two categories:

• Non-automated Telemedicine Systems

• Automated Telemedicine Systems

2.3.1 Non-automated Telemedicine Systems

In the non-automated category, the common telemedicine systems based on these

devices that are mostly set-up in the remote location for assessment of patients

a) video conferencing [42]; b) 3-Dimensional (3D) wound imaging [43]; c) digital

photography [44]; d) optical scanner [45]. However, there is a still need of spe-

cialised medical professionals on the other side for completing the assessment of

the patient. In the recent study, Netten et al. [46] find that clinicians achieved

low validity and reliability for remote assessment of DFU in foot images. Hence,
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there is an urgent need for intelligent systems which can automatically detect the

different DFU pathologies remotely.

2.3.2 Automated Telemedicine Systems

The use of automated telemedicine for DFU is still in its infancy. Notably, Liu

et al. [14, 47] developed an intelligent telemedicine system for recognition of

diabetic foot complications with the help of spectral imaging, infra-red thermal

images and 3D surface reconstruction. However, to implement this system, there

is a requirement for several expensive devices and specialist training to use these

devices.

From a computer vision and medical imaging perspective, there are three

common tasks can be performed for the recognition of abnormalities on medical

images, which are 1) Classification 2) Localisation 3) Segmentation. These tasks

on DFU are illustrated in Fig. 2.2. The current computer methods are based on

manually engineered features or image processing approaches were implemented

for tissue classification and segmentation of wound/ulcers. In general, virtually all

the skin lesions related to both wound and ulcer are now termed as wound. In the

medical perspective, both wound and ulcer are considered differently as wounds are

caused by an external problem whereas, ulcers are caused by an internal problem.

Also, there are differences in the appearance of the skin lesion of wound and

ulcer, the cause (aetiology), the way the body responds (physiology) and disease

processes (pathology) [48]. Hence, in this present study, only DFU are considered

to determine how they are different from the normal skin at the same place of

appearance.

The conventional machine learning for classification task was performed by ex-

tracting various features such as texture descriptors and color descriptors on small

delineated patches of wound images, followed by machine learning algorithms to

classify them into normal and abnormal skin patches [49–53]. As in many com-

puter vision systems, the hand-crafted features are affected by lighting conditions

and skin color depending upon the ethnicity group of the patient.

Various researchers have made contributions related to computerised methods

for the recognition of DFU. We divided these contributions into the following four

categories:
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Classification Localisation Segmentation

Figure 2.2: Examples of three common tasks for abnormalities inspection on
a DFU image. (a) Classification, (b) Localisation and (c) Segmentation of DFU

(Green) and Surrounding Skin (Red) [25].

1. Algorithms development based on basic image processing and traditional

machine learning techniques

2. Algorithms development based on deep learning techniques

3. Research based on different modalities of images

4. Smartphone applications for DFU

Algorithms development based on basic image processing and tradi-

tional machine learning techniques Several studies suggested computer vi-

sion methods based on basic image processing approaches and supervised tradi-

tional machine learning for the recognition of DFU/wound. Mainly, these studies

have performed the segmentation task by extracting texture descriptors and color

descriptors on small patches of wound/DFU images, followed by traditional ma-

chine learning algorithms to classify them into normal and abnormal skin patches

[50–53]. In conventional machine learning, the hand-crafted features are usually

affected by skin shades, illumination, and image resolution. Also, these techniques

struggled to segment the irregular contour of the ulcers or wounds. On the other

hand, the unsupervised approaches rely on image processing techniques, edge de-

tection, morphological operations and clustering algorithms using different color

space to segment the wounds from images [54–56]. Wang et al. [15] used an image

capture box to capture image data and determined the area of DFU using cas-

caded two-stage SVM-based classification. They proposed the use of superpixel

technique for segmentation and extracted the number of features to perform two-

stage classification. Although this system reported promising results, it has not

been validated on a more substantial dataset. In addition, the image capture box
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is very impractical for data collection as there is a need for the patient’s barefoot

to be placed directly in contact with the screen of image capture box. In health-

care, such a setting would not be allowed due to the concerns regarding infection

control.

The majority of these methods involve manually tuning of the parameters ac-

cording to different input images and multi-stage processing which make them hard

to implement in clinical settings. These state-of-the-art methods were validated on

relatively small datasets, ranging from 10 to 172 images. Current state-of-the-art

methods based on basic image processing and traditional machine learning tech-

niques are not robust, due to their nature of reliance on specific regulators and

rules, with certain assumptions.

Algorithms development based on deep learning techniques In con-

trast to traditional machine learning, deep learning methods do not require such

intense assumptions and have demonstrated superiority in object localisation and

segmentation of DFU, which suggests that the robust fully automated recogni-

tion of DFU may be achieved, by adopting such approach [25, 26, 57]. In the

field of deep learning, several researchers made contributions to the classification

and segmentation of DFU. Goyal et al. [26] proposed a new deep learning frame-

work called DFUNet which classified the skin lesions of the foot region into two

classes, i.e. normal skin (healthy skin) and abnormal skin (DFU). In addition,

they used deep learning methods for the semantic segmentation of DFU and its

surrounding skin with a limited dataset of 600 images [25]. In one of the recent

works [58], the deep localisation networks are designed to detect the DFU with

great accuracy and these algorithms are transferred to the mobile systems such as

smart-phone and Nvidia Jetson TX2 to assist remote monitoring. Wang et al. [57]

proposed a new deep learning architecture based on encoder-decoder to perform

wound segmentation and analysis to measure the healing progress of the wound.

To date, this work is the first attempt to develop deep learning methods for the

DFU localisation task.

Research based on different modalities of images Then, in a separate

study from computer vision techniques, Van et al. [59] proposed the recognition of

DFU using a different modality called infra-red thermal imaging. They found that

there is a significant temperature difference between the DFU and the surrounding
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healthy skin of the foot. Hence, they used this considerable temperature difference

on a heat-map to detect the DFU. Liu et al. presented a preliminary case study

to evaluate the effectiveness of infra-red dermal thermography on diabetic feet

soles to identify pre-signs of ulceration [60]. Harding et al. [61] performed a

study to assess the infra-red imaging for the prevention of secondary osteomyelitis.

Similarly, infra-red thermography has been used in various studies to detect the

complications related to the DFU [62, 63].

Smartphone applications for DFU Health applications on the smartphone

are fast becoming popular in monitoring essential aspects of the human body.

Yap et al. [64, 65] developed an app called FootSnap, which is used to produce

the standardised dataset of the DFU images. This application used basic image

processing techniques such as edge detection to provide the ghost images of the

foot which is useful to monitor the progress of DFU. Since this was designed to

standardising image capture conditions, it did not perform any automated DFU

recognition. Recently, Brown et al. [66] developed a smartphone application called

MyFootCare, which provides useful guidance to the DFU patients as well as keep

the record of foot images. In this application, the end-users need to crop the

patch of the captured image, and with basic color clustering algorithms, it can

produce DFU segmentation. But, previous research [25] has already shown that

the basic clustering algorithms are not robust enough to provide accurate DFU

segmentation on full foot images.

2.4 Research Direction

With limited healthcare settings and increasing global population and financial

burden, the medical facilities to the patients are becoming big concerns for even

the developed countries. The computerised telemedicine systems are often tipped

as potential solutions to this problem. The proliferation of Information and Com-

munication Technologies (ICT) present both challenges and opportunities in terms

of the development of new age healthcare systems.

For any computerised DFU recognition algorithm, there could be many chal-

lenges that are needed to resolve before ensuring an effective recognition system

with the help of DFU images. Based on a review of the current literature, a few
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research challenges are identified that are (1) high inter-class similarity between

the normal (healthy skin) and abnormal classes (DFU) in the foot region; (2) intra-

class variations depending upon the classification of DFU; (3) lighting conditions;

(4)patient’s ethnicity [26, 27]. Similarly, the changes in visual appearance of DFU

and its surrounding skin i.e. redness, callus formation, blisters, significant tissues

types like granulation, slough, bleeding, scaly skin depending upon the various

stages remains another challenge for robust recognition of DFU. Hence, the DFU

analysis and recognition with the help of computer vision algorithms could be very

challenging tasks. Producing ground truths for the segmentation of DFU and its

surrounding skin which usually have very irregular structures and uncertain outer

boundaries that makes it very challenging annotation task for podiatrists.

Regardless of current issues, DFU recognition systems are still in the early

stages of development, with the recognition algorithms are tested on very small

testing sets. Hence, computerised algorithms need to train and test on substantial

DFU datasets to provide robust recognition of DFU. Further, due to the medical

data and copyright, the current literature did not make their dataset public.

But before we move straight forward to predict the outcomes of DFU accord-

ing to the medical classification systems, there is a need of the robust methods

with the help of cost-effective computer vision techniques to detect the DFU of

various stages and grades according to the Texas classification [1, 25–27]. These

robust methods could help for clinical applications which can help medical staff to

monitor the real-time progress of DFU in the remote setting. Since there are no

technical or computerised solution available so far in the literature survey which

can analyse the DFU on the basis of the medical classification system. Analysing

DFU with the help of computer vision has the potential to deliver a paradigm shift

in diabetic foot care among diabetic patients, which represent a cost-effective, re-

mote, and convenient healthcare solution.

2.5 Summary

This Chapter investigated the DFU background in both medical and computer al-

gorithms perspective and why it is important to develop the intelligent telemedicine

systems for recognition and analysing the DFU. It started with a discussion of cur-

rent medical practice for the evaluation of DFU of patients on the basis of different
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medical classification systems such as Wagner, Texas, and Sinbad. According to

these systems, DFU can be classified into many categories depending on the dif-

ferent conditions such as neuropathy, ischemia, size, area, depth, infection. Then,

we outlined the challenges faced by the computerised systems for recognition and

analysis of DFU.

In the next section of this chapter, the current literature based on non-

automated and automated telemedicine system for DFU is discussed. In auto-

mated category, the methods based on basic image processing and machine learn-

ing techniques make many assumptions in the recognition of DFU, and in contrast,

whereas deep learning algorithms are more suitable approach for DFU recognition.

With the rapid growth in computer vision techniques for the recognition of abnor-

malities in medical imaging, we identified key factors for the recognition of DFU.

So far, there are no technical solutions to detect the outcome of DFU according

to the medical classification systems. Recognition and analysis of DFU with im-

ages could be difficult even for medical staff, but approaches to detect DFU using

computer vision are steadily growing, but have a long way to go before being as

well-established as analysis according to the medical classification systems.
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Chapter 3

Theories and Techniques

This Chapter focuses on the theories and techniques used throughout the

thesis, including basic image processing, traditional machine learning

in terms of feature descriptors and classifier, deep learning methods

that are used for the computer vision tasks for the recognition of DFU.

3.1 Image Processing and Traditional Machine

Learning

Basic image processing includes analysing and manipulating digital images with

the help of computer systems and algorithms. These algorithms perform some

operations on the input image in order to extract some useful information or to

get an enhanced image. There are many useful applications of image processing

in medical imaging which mainly focuses on improving the quality of input images

such as contrast enhancement and distinguish the Regions of Interest (ROI) in an

image as computer vision tasks [67–71].

Machine learning is an application of artificial intelligence algorithms that

provides computer systems with the ability to automatically learn and improve

from more data without being explicitly programmed [72, 73]. Machine learning

algorithms are usually divided into two categories that are supervised learning and

unsupervised learning as shown in Fig. 3.1.

22



Chapter 3. Theories and Techniques

Figure 3.1: Classification of Machine Learning algorithms

Supervised machine learning algorithms train on the labelled data to predict

future events. Supervised learning algorithms are used for different types of data

such as text, audio, images and videos [74–76]. But, in our work, we used this

learning for the images, and videos. Also, supervised learning is used in both tra-

ditional machine learning and deep learning used for DFU recognition. It starts

with annotated training dataset, the learning algorithms extract features from the

training data to build an inferred function to make predictions about the output

values. At the end of each iteration, the systems compare its output with the

ground truths (intended output) and use error to improve the model accordingly.

After sufficient training and minimal errors, the algorithms can provide outputs for

any unseen input data. Supervised learning can be further classified into classifi-

cation and regression techniques to develop predictive algorithms. Hence, machine

learning algorithms use supervised learning on the images data to learn the fea-

tures or pattern of certain objects and then use it to perform inference on unseen

data based on the previous examples that we provide as shown in Fig. 3.2.

Classification techniques are used to classify the data into categories, for ex-

ample, whether a foot image has a presence of DFU or not or whether dermoscopic

image containing mole is cancerous or benign [23, 77–79]. These are the examples

of binary classification problem, it can be further divided into more categories such

as medical classification system such as the Wagner system classifies DFU into 6

categories whereas the Texas classification model uses 16 categories [1, 28].

Classification models predict discrete responses in terms of categories, re-

gression techniques predict continuous responses in a certain range, for example,

predicting the age of human using face images [80]. The continuous output of
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Figure 3.2: Training and inference using supervised machine learning algo-
rithm

regression models is a real-value, such as an integer or floating point value. These

are often quantities, such as amounts and sizes.

Unsupervised learning algorithms find hidden patterns or intrinsic structures

in non-labelled data to predict the output. Hence, these algorithms are used to

draw inferences from datasets consisting of input data without labelled responses.

Clustering is the most common unsupervised learning technique. It is used for

exploratory data analysis to find hidden patterns or groupings in data. Applica-

tions for clustering include gene sequence analysis, market research, and object

recognition [81, 82].

3.1.1 K-Mean Clustering

In image processing methods, segmentation is very important to segment the re-

gion of interest in medical imaging with the help of clustering algorithms [83].

K-means clustering algorithm is one of the important technique used in image

segmentation. K-mean clustering is an unsupervised clustering algorithm which is

based on inherent distances between data points to classify these points into mul-

tiple clusters. K-mean algorithm is an iterative method which calculates the new

cluster centres in each phase and reassigns every pixel to their nearest cluster cen-

tre [84, 85]. Many state-of-the-art algorithms used K-mean clustering algorithm

to segment the DFU from foot images as shown in Fig. 3.3.
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Figure 3.3: DFU recognition using K-mean clustering (n=3) and post-
processing

3.1.2 Feature Descriptors

A feature descriptor is an algorithm which takes an image as input and outputs

feature vectors. Feature descriptors find hidden patterns in the training images

and convert them into a series of numbers that act as a sort of numerical ”finger-

print” that can be used to differentiate one feature from another. Feature descrip-

tors are instrumental for many computer vision tasks such as image classification,

registration, object detection, object tracking, 3-D construction. Over the years,

the researchers have introduced number of feature descriptors descriptors such as

edge detection, corner detection [86], texture descriptors such as Local Binary Pat-

terns (LBP) [87], Gabor filter [88], Histogram of Oriented Gradients (HOG) [89],

shape-based descriptors such as Hough transform [90] and color descriptors such

as Normalised RGB, HSV, and L*u*v features [91] to perform these tasks. These

feature descriptors transform the input image data into a set of features known as

the feature vector. Feature vectors are the higher level representation of data in

the given dataset. In this thesis, we used feature descriptors for DFU classification

task that consists of two classes as healthy skin and DFU skin. Since there are

mainly textural and color differences due to the changes of the visual appearance

of healthy skin to DFU skin depending upon the significant tissues such as callus

formation, blisters, granulation, slough, bleeding, scaly skin. Hence, we focused

on the color descriptors and texture features as feature descriptors for DFU clas-

sification. The Local Binary Patterns (LBP) [92, 93] and Histogram of Oriented

Gradients (HOG) [94] which encodes information about the local neighbourhood

image gradients are the commonly used texture features for the classification task.

For the color descriptors, we used color histograms and the mean values of each

channel in various color spaces such as RGB, HSV, L*u*v as feature vectors for

this classification.
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3.1.3 Local Binary Patterns

The Local Binary Patterns (LBP) [92] operator forms labels for each pixel in an

image by thresholding a 3×3 neighbourhood of each pixel with the centre value.

A result is a binary number where if the outside pixels are equal to or greater than

the centre pixel, it is assigned a 1, otherwise, it is assigned a 0. The amount of

labels will ,therefore, be 28 = 256 labels.

This operator was extended to use neighbourhoods of different sizes. Using

a circular neighbourhood and bilinearly interpolating values at non-integer pixel

coordinates allow any radius and number of pixels in the neighbourhood. The

grey-scale variance of the local neighbourhood can be used as the complementary

contrast method. The following notation of (P,R) will be used for pixel neigh-

bourhoods, where P are sampling points on a circle of radius R [92, 93, 95].

Uniform patterns are used to reduce the length of the overall feature vector

and implement a single rotation-invariant descriptor. A LBP that is uniform when

the binary pattern contains at most two bitwise transitions from 0 to 1 or vice versa

when the bit pattern is traversed circularly. So 00000000 (0 transitions), 01110000

(2 transitions) and 11001111 (2 transitions) are uniform whereas the patterns

11001001 (4 transitions) and 01010010 (6 transitions) are not. In the computation

of the LBP labels, uniform patterns are used so that there is a separate label for

each uniform pattern and all the non-uniform patterns are labelled with a single

label. For example, when using (8, R) neighbourhood, there are a total of 256

patterns, 58 of which are uniform, which yields in 59 different labels [92, 96, 97].

Each region has the standard LBP operator applied with c being the centre

pixel and P being neighbouring pixels with a radius of R

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (3.1)

where gc is the grey value of the centre pixel and gp is the grey value of the p-th

neighbouring pixel around R. 2p defines weights to neighbouring pixel locations

and is used to obtain the decimal value. The sign function to determine what
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Figure 3.4: LBP code calculation by using the difference of the neighbourhood
pixels around the centre.

binary value is assigned to the pattern is calculated as

s(A) =


1, if A ≥ 0

0, if A < 0
(3.2)

If the grey value of P is larger than or equal to c, then the binary value is 1,

otherwise it will be 0. Fig. 3.4 illustrates the sign function on a neighbourhood of

pixels. After the image has been assigned LBPs, the histogram can be calculated

by

Hi =
∑
x,y

I{LBPl(x, y) = i}, i = 0, . . . , n− 1 (3.3)

We used the LBP feature descriptor to find the feature vectors for the two

healthy skin patches and one DFU patch from foot region. Then, the squared error

of LBP histograms is compared between normal patches and normal vs ulcer as

shown in Fig. 3.5. In Fig. 3.5, we found out the squared error of LBP histograms

is very high in normal vs ulcer compared to the normal vs normal. Hence, LBP is

utilized as one of the feature descriptors in the DFU classification.

3.1.4 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) features [94] were originally created for

human detection in 2-Dimensional (2D) images and used the pixel orientation

values, weighted by its magnitude, to calculate features for describing a human as

an object. Fig. 3.6 shows a visualisation of a normal skin image with the HOG

operator applied whereas Fig. 3.7 shows HOG visualization of ulcer skin patch in

the foot region. The image shown is for understanding how the features are applied

and are not used in processing. The small white plots on the image denote the
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Figure 3.5: LBP code calculation by using the difference of the neighbourhood
pixels around the centre.

Figure 3.6: HOG visualization on normal skin patch.

direction of a HOG cell weighted by the pixel magnitude using signed calculations.

So, the longer the white line, the higher the magnitude in that direction. Each

white line represents a particular bin, and in this example, there are 9 bins in a 360

degree (or 2π) available orientations split into 40 degrees per bin. As shown in the

DFU skin patch in Fig. 3.7 and healthy skin in Fig. 3.6, there is a difference in the

pixel orientation values especially around the contour of DFU and its surrounding

skin.
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Figure 3.7: HOG visualization on abnormal skin DFU patch.

3.1.5 Color Descriptors

The color descriptors are proved to be effective feature descriptors in the classi-

fication tasks where there is a significant difference in color between the classes.

DFU develops over the healthy skin of the foot with different tissues formation

depending on the various grades and stages of DFU. These tissues have significant

color differences when compared to healthy skin. The three color space that we

have used: RGB, HSV and L*u*v in which we computed color histograms, as well

as a most dominated color value, in each channel are utilized as feature vectors

for the identification of DFU.

3.1.6 Support Vector Machines

Machine learning algorithms are all about learning structure (pattern and infor-

mation) from raw data, and many methods exist in this field. In this section, the

classification method, Support Vector Machines (SVM), is described. SVM can

be utilized for both classification and regression tasks. For DFU classification, we

utilized SVM as a classifier to train feature vectors extracted by feature descriptors

mentioned in the previous sections.

First proposed by Cortes and Vapnik [98] a SVM attempts to find a linear

decision surface (hyperplane) that can separate classes and has the largest distance

between support vectors (elements in data closest to each other across classes). If
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Figure 3.8: Visualisation of an SVM hyperplane. The green and red circles
represent the positive and negative classes respectively, with the support vec-
tors contributing to hyperplane separation leading to the determination of the

maximum margin [99].

a linear surface does not exist, then a SVM is able to use kernel functions to map

the data into a higher dimensional space where a decision surface can be found.

SVM was originally based on the Structural Risk Minimisation principle, which

was used for machine learning from a finite dataset.

As shown in Fig. 3.8, data points are split using an optimal separating hyper-

plane. The dashed lines on either side of the hyperplane is hereby defined as the

margin m. Each training vector (feature vector) x belongs to a class y, with the

training set defined as (x1, y1), . . . , (xn, yn). The total set and classes are defined

as (xi) ∈ Rd and yi ∈ {−1,+1} where Rd is a real number in d-dimensions and

{−1,+1} are the two classes. For a given hyperplane, x+ and x− are the closest

points to the hyperplane among the positive and negative examples. The norm of

a vector w is denoted by ||w|| as its length and is given by
√

wTw. A unit vector

w in the direction of w is given by w/||w|| and ||w|| = 1.

From a geometric consideration, the margin of a hyperplane h with respect

to a dataset D can be defined as

mD(f) =
1

2
wT (w+ −w−) (3.4)

30



Chapter 3. Theories and Techniques

where there is an assumptions that w+ and w−) are equidistant from the decision

boundary as

f(x+) = wTx+ + b = a (3.5)

f(x−) = wTx− + b = −a (3.6)

for some constant a > 0. To make this geometric margin meaningful, the value

of the decision for the points closest to the hyperplane, a = 1. By adding Eq. 3.5

and Eq. 3.6 and then dividing by ||w||, the margin becomes

mD(f) =
1

2
wT (w+ −w−) =

1

||w||
(3.7)

Next, a maximum margin classifier, sometimes called a hard margin, is defined

to handle linearly separable data. It can then be modified to attempt to handle

less easily separable (or non-separable) data. The maximum margin classifier

is the discriminant function that maximises the geometric margin 1/||w|| which

is the equivalent to minimising ||w2||. This leads to the following constrained

optimization problem

min
x,b

||w2||

subject to yi(w
Txi + b) ≥ 1, i = 1, 2, . . . , n

(3.8)

where the constraints show ensure that the maximum margin classifies each exam-

ple correctly assuming the data is linearly separable. However, it is often the case

that data is not linearly separable. A larger margin can be determined by allowing

for some misclassification of points. The optimization problem now becomes

min
x,b

1

2
||w2||+ C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0

(3.9)

where ξ ≥ 0 are the variables that allow for a margin error, 0 ≤ ξi ≤ 1, or

to be misclassified by ξ > 1. The constant C > 0 sets the relative importance

of maximising the margin and minimising the amount of errors. This way of

calculating for non-separable data is called a soft margin SVM.

Lagrange multipliers are used as a mathematical method to solve constrained

optimization problems of differentiable functions. With an SVM, the saddle point
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of the Lagrange function can be found using

L(w, b, α) = ||w2|| −
n∑
i=1

αi{yi[(wT · xi) + b]− 1} (3.10)

where αi are the Lagrange multipliers. The Lagrangian function has to be min-

imised with respect to w, b and maximised with respect to αi ≥ 0. The optimiza-

tion can be transformed into its dual problem as

max
α

L(w, b, α) = max
α

n∑
i=1

αi −
n∑

i,j=1

αiαjYiYjKij

subject to 0 ≤ αi ≤ C &
n∑
i=1

αiYi = 0

(3.11)

and the optimal separating hyperplane is represented by the dual solution

w =
n∑
i=1

αi · yi · xi (3.12)

The value of b can be estimated by inputting w into the original equation

wTx + b = 0. For testing, the classification is given by

f(x) = sign(w · x + b) (3.13)

for any new data point x. If the training data input into the SVM is non-separable,

then the error variables, ξ, can be used.

3.2 Convolutional Neural Networks

Artificial Intelligence (AI) is a new buzzword as an emerging technology in recent

years. Many giant multi-national companies such as Amazon, Facebook, Google

are investing a large number of resources in this technology as many expert tips

AI technology to improve human life in almost every evitable sector. With all

commercial and scientific fields announcing all the advances that AI technology

is making, still, we are scratching the silver surface of the huge potential of AI

technology. Also, there is a common fear among the people, it would make the

human workers obsolete in the future. But in reality, AI technology is most likely
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Figure 3.9: Supervised machine learning and deep learning algorithm

to assist the human force to improve their work and lifestyle in coming future

intervention.

The AI technology relies on the number of vast assisting technologies and

algorithms such as robotics, machine learning, Internet to perform the tasks. It

imitates the working of the human brain to perform the tasks in a similar way

the human does. But with the backing of unlimited computational power and

storage capacity, these technologies have the potential to outperform the human.

Deep learning algorithms are the latest revelation in AI technology mainly to

perform computer vision and speech recognition with the help of camera and

microphone respectively. In speech recognition, the devices can now understand

many world languages and also can provide you with useful information. With the

help of computer vision algorithms, the computer is able to see and learn about

the common things around us. It basically, uses similar feature representation

such as color, shape, pattern to recognise the different objects [100]. In traditional

machine learning, the features and classifiers are manually selected by the users to

train the model whereas in deep learning techniques act as bit of black box which

extracts features by its own with the help of convolutional layers and in later part,

fully connected layers with Softmax classifier to predict the outputs as shown in

the Fig. 3.9.

Below are the few examples of AI projects that use deep learning to identify

specific objects include:

1. Technology to enable self-driving cars [101].

2. Speech recognition algorithms used to interact with humans such as SIRI,

Alexa, and Google Assistant [102].
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3. Assisting medical experts for the recognition of abnormalities in medical

imaging.

4. Identification of 120 breeds of dog; one algorithm has been reported to have

achieved an accuracy of more than 96% [103].

5. Prediction of user choices and demands such as Netflix predicts the movies

list that user may like to watch in future and similarly, Uber predicts the

period of high demand for taxis [104].

The CNNs are neural networks which are based on a computational model

inspired by the working of biological brains. A large number of connected nodes

called artificial neurons are used in these systems similar to biological neurons in

the brain. These systems are based on the supervised learning in which they learn

the features from the manual labelled data such as “dog” or “no dog” without any

prior knowledge about the dog. It uses these learned features to provide inference

on unseen examples. Similarly, in medical imaging, these networks are used to

determine “abnormal” or “normal” in various modalities of imaging. They are

used to train on large labelled databases of different medical images and matched

or exceeded the expert vision for the recognition of objects in the images [105, 106].

1. Breast cancer

2. Brain tumour

3. Skin cancer

4. Alzheimer disease

These algorithms will soon be scalable to multiple devices, platforms, and

operating systems, reducing their cost and increasing their availability for diag-

nosis and research. Universities, governments and research funding agencies have

recognised the opportunities to improve early diagnosis of cancer, heart disease,

diabetes and dementia among others and are investing heavily in the sector. AI

techniques approved by the US Food and Drug Administration (FDA) for clinical

use by September 2018 include products to:

1. Identify signs of diabetic retinopathy in retinal images [107].
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Figure 3.10: The overview of convolutional neural network LeNet designed
by LeCun [2]

2. Recognise signs of stroke in CT scans [108].

3. Visualise blood flow in the heart [109].

4. Skin vision mobile app uses AI to detect skin cancer [110].

3.2.1 Introduction and Background

The very first CNN was designed by Yann LeCun for the text recognition in 1998

[2]. The overall overview of this CNN is demonstrated in Fig. 3.10. The CNN

really provide the breakthrough when AlexNet emerged as the winner of imageNet

ILSVRC-2012 competition in classification category [3]. In recent years, CNNs

are developed to perform the number of tasks other than classification such as

regression, segmentation, object detection and localization, object landmarking,

object tracking, object activity recognition. In this thesis, we used CNNs for three

categories that are classification, segmentation, and localization.

CNNs are like Artificial Neural Networks (ANN), both make use of neurons

that have learnable weights and biases. The main difference between these net-

works is input data. Unlike ANN, where the input data is 2-D vector, here for

CNNs, the input data is generally multi-channelled image data (RGB images in

our case). Hence, input image data is firstly down-sampled to 2-D feature vector

with intermediate layers such as convolutional layer and pooling layer. CNNs are

usually composed of four types of layers that are convolutional layer, pooling layer,

ReLU layer, and fully connected layers. These layers are stacked on each other in

different settings to design different CNN architectures.
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3.2.1.1 Convolutional Layer

Convolutional layers extract the feature map from the images. Convolution pre-

serves the spatial relationship between pixels by learning image features using

small squares of input data. Initial convolutional layers extract low-level features

like edges, corners and shapes. With later convolutional layers, high-level features

can be interpreted by the network to detect the type of class.

A convolution is a kernel-based method to detect features in an image, it

uses a small sliding matrix (kernel) over a matrix (input image) and compute

element-wise multiplication between these two matrices, and add the element-

wise multiplication outputs to get the final output which forms the final output.

In a CNN, a convolution layer has adjustable parameters, such as:

• Kernel Size: This value determines the kernels height and width in pixels.

Adjusting the filter size influences the networks ability to determine specific

features in an image. In CNN, 3×3 filter is one of the most commonly used

kernel size for the convolutional layer.

• Stride: This value determines how much the kernel slides after each calcula-

tion. By increasing the stride, input data to convolutional layer can also be

down-sampled to form smaller feature maps as it begins to jump pixels at a

time.

• Padding : Padding allows the input data to have additional zeros placed

around the edge, to maintain the similar feature map size despite using a

larger kernel for convolution.

• Filter Count : It determines the number of kernels is used in the convolu-

tional layer. By using more array of kernels, a convolutional layer can be

used to identify a multitude of different features as each kernel can focus on

highlighting alternative feature.

An example of visualization of the convolutional layer on a DFU image is

shown in Fig. 3.11.
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Figure 3.11: The visualization of some feature outputs of Ist convolutional
layer of AlexNet on sample DFU image [3]

3.2.1.2 Activation Functions

An activation function is used after each convolutional layer to determine the

values of the feature map such as replacing all the negative values in the feature

map by zero. The activation functions can be divided into two categories that are:

(1) Linear activation functions; (2) Non-linear activation functions. The output of

the linear function will not be confined between any range (-infinity to infinity).

The non-linear functions are the most used activation functions as it helps the

model to generalize even the difficult data. A commonly used non-linear activation

function is sigmoid, illustrated in Eq. 3.14. The sigmoid function normalises the

data between the range of 0 and 1 similar to the probability.

The ReLU is most commonly used activation function in the CNNs as de-

scribed in Eq. 3.15. The ReLU is half rectified (from bottom) i.e. f(x) is zero

when x is less than zero and f(x) is equal to x when x is above or equal to zero.
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Figure 3.12: This image shows ReLU (left) activation vs sigmoid (right),
notice how sigmoid normalises the range, but ReLU allows an output range

between 0 and infinity

Figure 3.13: The example of activation of last ReLU layer of AlexNet on
sample DFU image

The activations of the ReLU layer after final convolutional layer in AlexNet

clearly pinpoint areas of the DFU image that have strong features as shown in

Fig. 3.13.

f(x) =
1

1 + e−x
(3.14)

f(x) = max(0, x) (3.15)

The main issue of using ReLU in CNN is that it immediately set the negative

values in the feature maps to zero which decreases the CNNs to train or learn from

the input data properly.

38



Chapter 3. Theories and Techniques

Figure 3.14: This image shows ReLU (left) activation vs Leaky ReLU (right),
ReLU set all the negative values to zero, where Leaky ReLU allows negative

values

The solution of this problem is to use the Leaky ReLU which does not set the

negative values to zero straightway as shown in Fig. 3.14.

3.2.1.3 Pooling Layer

Pooling layer is used in CNN to down-sample input feature map to reduce the

number of parameters and computation. The Pooling Layer operates indepen-

dently on every depth slice of the input feature map and resizes it spatially, using

the MAX operation in Max pooling layer and AVG in Average pooling layer. The

most common Max pooling layer used in CNN is a filter of 2×2 with a stride of as

illustrated in Fig 3.15. The down-sampling of the sample input DFU image with

pooling layer is shown in Fig. 3.16.

3.2.1.4 Fully Connected Layers

Fully connected layers can only take single dimensional data, and each neuron

connects to all values in the previous layer. Each connection has weight applied,

with basic matrix operation with the addition of a bias value. These layers are

commonly referred to as the fully connected layers. As the input data to CNN

for our work is images, which consists of two or more dimensions based upon the

channels available in the final layer, matrix reshaping needs to be done. As the

matrix is reshaped, the network loses the spatial information of input data.

39



Chapter 3. Theories and Techniques

Figure 3.15: An example of a Max-pooling and Avg Pooling operation with
filter size of 2×2 with a stride of 2 on input feature map.

Figure 3.16: The example of activation of pooling layer in channel 32 of
AlexNet on sample DFU image

3.2.1.5 Output

The output layer can be deemed as the last layer of the CNN. For classification,

softmax is popularly used as an output layer in the CNN. The softmax output of

class probabilities and is a measure of how close the parameters are with respect to

the ground truth labels of the training and validation data. The softmax function

(cross-entropy regime) is the final layer and is defined as

fi(y) =
eyi∑
k e

yk
(3.16)
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Figure 3.17: The example of converting the class scores by softmax function

where fi is the i-th element of the vector of class scores f and y is a vector of

arbitrary real-valued scores that are squashed to a vector of values between zero

and one that sum to one.

Further explanation of how softmax is used to convert the class scores into

probabilities is shown in Fig.

3.2.2 Loss Function

The loss is the error CNN makes during training while predicting the labels for

the training and validation data. The loss is used in determining the effectiveness

of CNN by evaluating how good (or bad) are the predicted probabilities. A good

Loss function should return high values for bad predictions and low values for good

predictions.

For binary classification (DFU skin and healthy skin), the commonly used

loss function is binary cross entropy or log loss. The binary cross-entropy loss/

log loss is defined by

Hp(q) = − 1

N

N∑
i=1

yi · log (p (yi)) + (1− yi) · log (1− p (yi)) (3.17)

where y is the true label and p(y) is the predicted probability given by the

CNN.
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Figure 3.18: The example of log loss graph between the predicted probability
and true label = 1)

As shown in Fig. 3.18, when the predicting probability is between 0 and 0.1,

the log loss results in really high value, but as predicting probability approaches

1, the loss starts to decrease.

3.2.3 Optimisers

Optimisers are used to update the weights according to the loss in the training

stage of the network; The purpose of the optimiser is to guide the weights associ-

ated with layers to minimize the loss while predicting the labels for the training

and validation data.

A CNN works by combining different layers into one complete network. A

standard CNN network takes training images as input. CNNs generally require

a large amount of labelled training data to ensure high accuracy results. The

network learns by processing the training data in the number of batches; larger

batches allow the network to become more generalisable. Each batch of training

images are processed by the network with the loss being calculated at each step,

this is forward propagation. The next stage is backpropagation in which optimiser

adjusts the weights of the neural network based upon the loss and learning rate

value. Setting up a good learning rate is also a very important trick to train the
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Figure 3.19: The good learning rate which is not high and really low trains
CNN well

CNN effectively. Generally, small learning rate works very well for training the

CNN rather than high learning rate as shown in Fig. 3.19.

The commonly used optimiser in CNN is Stochastic Gradient Descent (SGD)

which is an extension of popular gradient descent. The gradient descent considers

all the images in the training set to calculate the gradient in a single epoch. If the

training set consists of thousands or millions of images, it would take a very long

time to calculate the gradient descent for a single epoch. The SGD is an estimate

of gradient descent of a small random sample from a training set.

Another optimizer method Adam [111] or Adaptive Moment Estimation per-

forms very well in this field. Adam is an improved method that learns from

previous methods, such as AdaDelta, by remembering previous gradients.
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3.2.4 Cross-validation

In medical imaging, the cross-validation technique is popularly used to test the

whole image dataset. Before we start to use any machine learning algorithm, the

whole dataset is divided into the k-fold cross-validation data. For example, in

5-fold cross-validation, we would split the training data into 5 equal folds, use 3

and half of them for training, half for validation, and one for the testing set. We

would then iterate over which fold is the testing fold, evaluate the performance,

and finally average the performance across the different folds.

3.2.5 Batch Size, Epoch and step

A step indicates the processing of one batch of training images by CNN whereas

an epoch indicates one iteration over all the images in the training set is processed.

For example, if we have 2000 images in the training set, using a batch size of 100

means one epoch should contain 2000/100=20 steps.

3.2.6 Normalization

Before we input image data in CNN, the image data is normalized to reduce the

computation and improving training time. In RGB images, the pixel values range

from 0 to 255, these values are generally normalized by dividing 255. This results

in pixel values range from 0 to 1. Another popular normalization technique is

called zero-centering technique in which the mean of pixel values lies on the zero.

It is done by subtracting pixel values with an overall mean value of pixels.

3.2.7 Transfer Learning

CNNs requires a considerable dataset to learn the features to get the positive

results for the recognition of objects in images [100]. It is vital to use transfer

learning from massive datasets in non-medical backgrounds such as ImageNet,

Pascal-VOC, and MS-COCO dataset to converge the weights associated with each

convolutional layers of network [25, 112, 113] for training the limited dataset.

We utilized this transfer learning technique for training deep learning models for

DFU segmentation and DFU localization. The main reason for using two-tier
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Figure 3.20: The two-tier transfer learning from big datasets to produce more
effective segmentation

transfer learning in this work is because the medical imaging datasets are very

limited. Hence, when CNNs are trained from scratch on these datasets, they

do not produce effective results. There are two types of transfer learning i.e.

partial transfer learning in which only the features from few convolutional layers

are transferred and full transfer learning in which features are transferred from all

the layers of previous pre-trained models. In both types of transfer learning, we can

also freeze the features of layers. But, since we are transferring the features from

non-medical datasets to medical datasets, we opted not to freeze any layers. We

used both types of transfer learning known as two-tier transfer learning [25]. In the

first tier, we used partial transfer learning by transferring the features only from

the convolutional layers trained on most significant classification challenge dataset

called ImageNet which consists of more than 1.5 million images with 1000 classes

[3]. In the second tier, we used full transfer learning to transfer the features from

a model trained on image segmentation dataset called Pascal VOC that consists

of 2913 images of 21 classes for DFU segmentation task. For DFU localization

task, we utilized the object localisation dataset called MS-COCO that consists of

more than 80000 images with 90 classes [5]. The framework of two-tier transfer

learning is demonstrated in Fig. 3.20. These two-tier transfer learning pre-trained

models are used for training the deep learning models on DFU dataset results in

better convergence of weights rather than initialising the weights randomly.
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3.3 Summary

All of the theories and techniques regarding image processing, machine learning,

CNN described in this Chapter 3 that provides the foundation on which the follow-

ing contribution Chapters will be based. Chapter 4 describes the different DFU

datasets and expert annotations used to perform different computer vision tasks

for identification of DFU. Chapter 5 describes the classification models based on

traditional machine learning and deep learning to classify normal skin and abnor-

mal skin DFU of foot region in the dataset of 292 images. Chapter 6 introduces

deep learning segmentation models to segment both DFU and surrounding skin in

the foot images in the DFU dataset of 600. Chapter 7 outlines the robust meth-

ods for the localization of DFU in the extensive dataset of 1775 DFU images and

transfer these models on the mobile devices for real-time detection of DFU. The

final contribution in Chapter 8 outlines the machine learning methods to detect

infection and ischemia in DFU with natural data-augmentation performed on 1459

foot images of DFU dataset.
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DFU Dataset and Performance

Metrics

This Chapter focuses on DFU dataset with expert annotations is de-

scribed in terms of classification, segmentation and localisation. Fur-

ther section in this chapter is dedicated to the performance measures

used in the different computer vision tasks for DFU recognition

4.1 DFU Dataset and Expert Labelling

To demonstrate the potential of this experiment, we utilized two different types

of DFU dataset that are standardised dataset and non-standardised dataset for

different medical imaging tasks. In the non-standardised dataset, we have col-

lected 1500 patient’s foot with DFU over the previous ten years at the Lancashire

Teaching Hospitals, obtaining ethical approval from all relevant bodies and pa-

tient’s written informed consent for the purpose of teaching and learning. These

DFU images were captured with different cameras that are Nikon D3300, Kodak

DX4530, and Nikon COOLPIX P100. In this dataset, the images are captured

with inconsistent angles and orientation. Whereas in the standardised dataset,

foot images are captured by IPad with FootSnap mobile application to show the

robustness of algorithms over heterogeneous capture setup. It consists of the feet

of 15 people with diabetes, aged between 43 and 74, and 15 non-diabetic con-

trol volunteers [64]. This dataset consists of 120 images that include both 105
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(a) (b)

(c) (d)

Figure 4.1: (a) and (b) are examples of non-standardised dataset (c) and (d)
are examples of non-standardised dataset

healthy foot and 15 DFU foot images. Few examples of the non-standardised and

standardised dataset are demonstarted in Fig. 4.1.

In this dataset, we excluded the cases such as out of focus, leg ulcer, no visible

DFU from 1500 images as shown in Fig. 4.2.

There is no metadata regarding the patient’s age, identity, sex, conditions of

DFU such as infection, ischemia, depth, area, site included in this dataset. The

main focus of this work is expert labelling of DFU according to the popular med-

ical imaging tasks on this DFU dataset. The ground truth was produced by three

healthcare professionals (two podiatrists and a consultant physician with special-

ization in the diabetic foot) specialized in diabetic wounds and ulcers. Where
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Out of focus cases

No visible DFU

Leg Ulcer Cases

Figure 4.2: Types of images excluded for this experiment

there was disagreement, the final decision was made by the main podiatrist. We

obtained the different number of expert labelling for DFU dataset for different

computer vision tasks.
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4.1.1 Expert Annotations in DFU Classification

In DFU classification, we utilized a subset of dataset consists of 292 images of

patient’s foot with DFU. We also utilized a subset of standardised DFU dataset

to show the robustness of algorithms over heterogeneous capture setup and also

to get more patches for normal class. It consists of 20 abnormal skin patches and

32 normal skin patches in this heterogeneous test case.

With the available annotator from Hewitt et al. [4], for each full image of a

foot with ulcers, the medical experts delineated the ROI which is an important re-

gion around the DFU comprises of significant tissues of both normal and abnormal

skin. The ground truth labels are delineated by medical professionals in the form

of both normal and abnormal skin patches from the ROI region. In the collection

of ground truth patches, the experts only collected both classes of patches from

ROI region that helped with a more robust classification of the patches rather

than involving the whole foot as a region. For each delineated abnormal region,

the ground truth of the type of the abnormality was labelled and exported to a

Extensible Markup Language (XML) file. For the annotation of 397-foot images

with both ulcer and non-ulcer, there is a total of 292 ROI (Only for the foot images

with ulcers). From these annotations, we produce a total of 1679 skin patches with

641 of normal and 1038 of abnormal class. Finally, we divided the dataset into

a training set of 1423 patches, validation set of 84 patches and testing set of 172

patches. The annotator tool which can delineate the image into different types of

patches is shown in Fig. 4.3.

4.1.2 Expert Annotations in DFU Segmentation

A subset of the images was used for this study, which includes 600 DFU images

and 105 healthy foot images. The ground truth annotation of our dataset was

performed by a podiatrist specialising in the diabetic foot and validated by a con-

sultant specialising in diabetes. We created ground truth for each image with

DFU by using Hewitt et al. [4] annotator. For each DFU image (as illustrated in

Fig. 4.4), the expert delineated the region of interest (ROI) as the combination

of ulcer and its surrounding skin. Then in each ROI, the two classes were la-

belled separately and exported to an XML file. These ground truths were further

converted into the label image of single channel 8-bit paletted image (commonly
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Figure 4.3: An example of delineating the different regions from the whole foot
image to produce abnormal and normal skin patches with the help of annotator

software [4].

Figure 4.4: An example of delineating the different regions of the pathology
from the whole foot image and conversion to Pascal VOC format

known as Pascal VOC format for semantic segmentation) as shown in Fig. 4.4. In

this format, index 0 maps to black pixels represent the background, index 1 (red)

represents the surrounding skin and index 2 (green) as DFU. From 600 DFU im-

ages in our dataset, we produce 600 ROIs of ulcers and 600 ROIs for surrounding

skin around the ulcers.

4.1.3 Expert Annotations in DFU Localisation

In the localisation experiment, we utilized the DFU dataset has a total of 1775

foot images with DFU. To test the specificity measure for the algorithms, we

have included 105 healthy foot images in the DFU dataset from the FootSnap

application [65].

In this dataset, the size of images varies between 1600×1200 and 3648×2736.

We resized all the images to 640×640 to improve the performance and reduce
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Figure 4.5: Comparison of Size of DFU against the size of image in the DFU
dataset of 1775 images

the computational costs. We used Brett et al. [4] annotation tool for producing

the ground truths in the form of a bounding box as shown in Fig. 4.6. In the

DFU dataset, there is only one bounding box in approximately 90% images, two

bounding boxes in 7% and finally, more than two bounding boxes in the remaining

3% images of the whole dataset. The medical experts delineated a total of 2080

DFUs (some images with more than one ulcer) using an annotator software. As

shown in Fig. 4.5, approximately 88% DFU have the size of less than 10% of

the actual size of an image. The size varied considerably across the DFUs in the

dataset.

4.1.4 Expert Annotations for Recognition of Ischemia and

Infection in DFU

For the recognition of ischemia and infection in DFU according to the Sinbad

medical classification systems, we utilized dataset of 1459 images of patient’s foot

with DFU. Expert labelling of DFU to determine the binary classification of

infection and ischemia on this DFU dataset is really important for this task. For

this task, we performed the separate binary classification of ischemia and infection

rather than performing combined infection and ischemia classification because of

an unbalanced dataset as shown in Fig. 4.7 especially in the category where

ischemia is present in DFU without infection (Only 24 cases).
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Figure 4.6: Annotation of ground truths on foot images for DFU localization

Figure 4.7: Comparison of combined Ischemia and Infection cases in the DFU
dataset where ISC stands for ischemia and INF is infection
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Table 4.1: The total number of cases of each condition of DFU

Category Definition No. of Cases No. of DFU patches No. of Augmented patches

Ischemia
Pedal blood flow intact 1249 1431 4935

Clinical evidence of reduced pedal blood flow 235 705 4935

Total images 1459 1666 9870

Bacterial infection
None 628 684 2946

Present 831 982 2946

Total images 1459 1666 5892

The complete number of cases of expert annotation of binary classification

of ischemia and infection is detailed in Table 4.1. As shown in Table 4.1, the

number of cases for ischemia and no ischemia in DFU are quite unbalanced whereas

infection and no infection cases are fairly balanced. To balance the dataset, we

used the natural data-augmentation technique [58].

4.2 Performance Measures

To measure the performance of the classification algorithm, quantification of re-

sults will be presented by various evaluation metrics such as Accuracy, Sensistiv-

ity, Specificity, Recall, Precision, F-Measure and Matthews Correlation Coefficient

(MCC). These measurements are commonly used for binary classification pur-

poses, and so is adequate for quantifying True Positive (TP), False Positive (FP),

True Negative (TN) and False Negative (FN) detections.

4.2.1 Accuracy, Precision, Sensitivity and Specificity

Accuracy is a measure of correctness of classifier. But, if data is unbalanced, then

Accuracy is not reliable performance measures. By using the Precision measure of

exactness, and determines a fraction of relevant responses from results. In medical

imaging, both Sensitivity and Specificity are considered as very important metrics.

Sensitivity, or Recall is a fraction of the results that are relevant to the experiment

and that are successfully retrieved. Specificity determines the classifier’s ability

to identify negative results. In medical imaging, specificity of the test is the
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proportion of patient’s medical image that do not to have abnormality and will

successfully test negative for it.

Accuracy =
TP + FN

TP + TN + FP + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Sensitivity =
TP

TP + FN
(4.3)

Specificity =
FP

FP + TN
(4.4)

It is unlikely to use these measures on their own as both these measures are

commonly used together to form an understanding of the relevance of the results

returned from experimental classification.

4.2.2 F-Measure

The F-Measure is useful in determining the harmonic mean between the Precision

and Recall and is used in place of accuracy as it provides a more detailed analysis

of the data. The equation can be defined as

F -Measure =
2TP

2TP + FP + FN
. (4.5)

A downside to this measure is that it does not take into account TNs, a value

that is required to create Receiver Operating Characteristic (ROC) curves.

4.2.3 Matthews Correlation Coefficient

The Matthew’s Correlation Coefficient (MCC) uses all detection types to output

a value between −1, which indicates total disagreement and +1, which indicates

total agreement. A value of 0 would be classed as a random prediction, and

therefore both variables can be deemed independent. It can be provide a much

more balanced evaluation of prediction than previous measurements, however it
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is not always possible to obtain all four detection types (TP, FP, FN, TN). The

coefficient can be calculated by

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.6)

4.2.4 ROC Curve and AUC

An ROC curve determinnes the performance of a classifier at all classification

thresholds which include two parameters True Positive Rate (TPR) and False

Positive Rate (FPR). It plots TPR vs FPR at different classification thresholds.

Area Under the ROC Curve (AUC) measures the entire 2D area underneath the

entire ROC curve which provides an aggregate measure of performance across all

possible classification thresholds.

TPR =
TP

TP + FN
(4.7)

FPR =
FP

FP + TN
(4.8)

4.2.5 Performance Measures in Segmentation

The performance measures for segmentation algorithms are almost similar to the

classification measures. Additionally, Jaccard Similarity Index (JSI) and dice are

popularly used by the researchers for the segmentation tasks. Dice is same as

of F-Measure and is more forgiving than JSI in comparing the similarity of the

shapes (Output and ground truth).

JSI =
TP

TP + FP + FN
. (4.9)

Dice =
2TP

2TP + FP + FN
. (4.10)
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4.2.6 Performance Measures in Localization

All performance metrics are calculated with ”overlap criterion” as an Intersection

over Union (IoU) of the detected lesion and GT. A TP is when the IoU > 0.5. A

FP is a detected ROI with IoU ≤ 0.5 and the duplicate bounding boxes. A FN is

when there is no ROI detected by the algorithm.

We evaluate the performance of the proposed methods using three metrics,

i.e. Precision, Recall and Mean IoU. The Precision is calculated by the number of

TP divided by the sum of the number of TP and FP. The Recall is the number of

TP divided by the sum of a number of TP and FP. We also report the Mean IoU,

which is the average of the overlap percentage of the TP cases (detected DFU).

4.3 Summary

In this chapter, we discussed the different DFU datasets and expert annotations

used to perform different computer vision tasks for recognition of DFU. One of

the major focus of this thesis to prepare the DFU datasets and expert annotations

according to the popular machine learning and deep learning libraries such as Caffe,

Tensor-flow, PyTorch. We received the expert annotations from the experienced

podiatrists for classification, segmentation and localization in the XML format

using in-house annotator. We cleaned the dataset and converted the format of

these expert annotation according to the input format of ground truths required

by the deep learning methods such as Pascal VOC format for segmentation. In

the later section, the brief discussion of popular performance metrics used in our

experiments is provided.
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DFU Classification

This Chapter presents preliminary investigations of DFU classification

problem. We assessed the two classes as normal skin (healthy skin)

and abnormal skin (DFU). This work investigated the use of machine

learning algorithms to extract the features for DFU and healthy skin

patches to understand the differences in the computer vision perspective

5.1 Introduction

In this work, we proposed computer vision algorithms to differentiate DFU from

healthy skin with traditional machine learning and deep learning approaches. The

main motive of performing this 2-class classification was to find the misclassified

cases of both DFU skin and healthy skin patches by the classifier. Misclassified

cases, especially in DFU skin patches, could help us understand which DFU of

particular stages/grades are not well recognised by the computer vision techniques.

The key contributions of this work include:

1. This work presented the related computerised telemedicine systems designed

for DFU. We also presented the DFU dataset of 397 foot images, which con-

sists of 292 images with DFU and 105 healthy foot images. The podiatrists

delineated the total of 1679 skin patches with 641 of healthy skin and 1038

of DFU.
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2. To the best of our knowledge, this is the first time, machine learning algo-

rithms are used to understand and extract the computer vision features from

DFU and healthy skin patches. We used CNNs to develop a fully automatic

method to classify the DFU skin against the normal skin.

3. Development of a novel CNN architecture called DFUNet, which was fine-

tuned to process the input data more effectively and efficiently than other

comparative state-of-the-art CNNs architecture. CNNs require substantial

data to produce very accurate results, but with the help of larger filter sizes

in the blocks of convolutional layers in parallel, it can produce good results

on small dataset such as DFU and facial skin dataset.

5.2 Methodology

This section describes the feature descriptors used in experiments, including for

CML, the CNNs architecture of LeNet, AlexNet, and GoogLeNet. Finally, we

proposed our own CNN architecture, DFUNet, to improve the way DFU are clas-

sified.

5.2.1 Data Augmentation of Training Patches

Deep networks require a lot of training image data because of the enormous num-

ber of parameters, especially weights associated with convolutional layers needed

to be tuned by learning algorithms. Hence, we used data augmentation to improve

the performance of deep learning methods. We used the combination of various

image processing techniques like rotation, flipping, contrast enhancement, using

different color space, and random scaling to perform data augmentation. The ro-

tation was performed by rotating the image by the angle of 90◦, 180◦, 270◦. Then,

three types of flipping (horizontal flip, vertical flip and horizontal+vertical flip)

performed on the original patches. The four color space that are used for data

augmentation are Ycbcr, NTSC, HSV and L*a*b. In the contrast enhancement,

we used the three functions called adjust image intensity value, enhanced contrast

using histogram equalization, and contrast-limited adaptive histogram equaliza-

tion. We produced the two times cropped patches with the help of random offset
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and random orientation from the original dataset of skin patches. With these tech-

niques, we increased the number of training and validation patches by 15 times

i.e. 21,345 patches for training and 1260 patches for validation.

5.2.2 Pre-processing of Training Patches

Since we obtained a large number of training data with the help of data augmen-

tation, it was essential to perform pre-processing on these patches. We used the

zero-centring technique for pre-processing of these obtained patches, by subtract-

ing pixel values with an overall mean value of pixels. So, that mean of pixel values

lies on the zero.

5.2.3 Conventional Machine Learning

We investigated the use of human design features with CML on DFU and healthy

skin classification. From our observation on the differences between DFU and

healthy skin, the color and texture feature descriptors were the visual cues for

classification. For this 2-class classification problem, the Sequential Minimal Op-

timization (SMO) [114] was selected as SVM based machine learning classifier.

5.2.4 Convolutional Neural Networks

For comparison with the traditional features, deep learning, specifically convolu-

tional neural networks, were used to classify between healthy foot skin and skin

with diabetic ulcerations. The first architecture, we used was LeNet [115] running

for 60 epochs, a learning rate of 0.01 with a step-down policy and step size of 33%,

and gamma is set to 0.1. This network was originally used for recognizing digits

and zip codes. These simple structures are easily recognized, even in hand-written

datasets such as MNIST [2].

Using LeNet represented these structures much better than traditional fea-

tures, even on a relatively small training set of 1423 patches and validation of 84

patches.

60



Chapter 5. DFU Classification

Figure 5.1: The output of healthy and diabetic ulcer skin from the first con-
volution layer of LeNet highlight discriminative features.

The input was 28×28 patches of skin in grayscale split into abnormal and

normal skin samples. At the first convolution layer shown in Fig. 5.1, the ker-

nels and activations already showed the effectiveness of CNNs when highlighting

important features.

We used the Caffe [116] framework to implement LeNet [115], and used the

Adaptive Moment Estimation (Adam) [117] method for stochastic optimisation.

This solver combines the advantages found in AdaGrad [118], which works well

with sparse gradients, and RMSProp [119], which works well in an online setting.

Adam is intended for large datasets and variability in parameters. However, the

results in Table 5.4 show that smaller datasets work as effectively.

We also used popular CNN model AlexNet for classification of abnormal

(DFU) and normal (healthy skin) classes. This network was originally used for

classification of 1000 different objects of classes on ImageNet dataset. It emerged

as the winner of ImageNet ILSVRC-2012 competition in classification category by

achieving 99% confidence. There are few adjustments made in the original net-

work to work well for our 2-class classification problem. Also, a pre-trained model

was used for better convergence of weights to achieve better results [3]. To train

the model on Caffe framework, we used the same parameters as in LeNet i.e. 60

epochs, a learning rate of 0.01, and gamma of 0.1.

Another state-of-the-art CNN architecture that we used is GoogLeNet [17],

a 22 layers deep network, with a similar experimental setting as of LeNet and

AlexNet. Szegedy et al. [17] introduced a new module called inception to GoogLenet.

This acts as a multiple convolution filter inputs, which are processed on the same

input and also does pooling at the same time. All the outcomes are then merged
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into a single feature layer. This layer allows the model to take advantage of multi-

level feature extraction from each input. Again, a transfer learning approach using

pre-trained models to improve performance.

5.2.5 Proposed Method - Diabetic Foot Ulcer Network

Since this experiment focused on the types of skin lesion which are at high risk of

being misclassified by computer vision algorithms. ResNet [120], DenseNet [121],

Inception [17] frameworks are very deep and computational intensive networks to

work on this basic binary classification problem. The traditional CNNs such as

AlexNet [3, 100] use only single type of convolutional filters popularly ranging from

1×1 to 7×7 on the input data. To improve the extraction of important features

for DFU classification, we proposed a new Diabetic Foot Ulcer Network (DFUNet)

architecture which is inspired from GoogleNet with two major interventions that

are the depth of the network and filter sizes in the block of convolution layers in

parallel. For DFUNet, we significantly decreased the depth of the network from 22

layers to 14 layers, but, the number of filters in the block of convolutional layers in

parallel is increased significantly to learn more features maps. Since deeper CNNs

convolve more input data, it also leads to a large number of parameters and compu-

tation time. Since there are discriminative feature difference between healthy and

DFU skin, we used less number of layers and increased the filter sizes in DFUNet

to reduce the computation. DFUNet combines two types of convolutional layers

i.e. traditional convolution layers at the starting of the network which use blocks

of single convolutional layer followed by blocks of convolutional layers in parallel,

which use multiple convolutional layers in parallel for extraction of concatenated

features from the same input. We tested different variants of DFUNet by using

the different number of filter sizes in the block of convolutional layers in parallel.

Detecting changes in healthy skin is a clear computer vision problem similar to

malignant skin lesions, so the DFUNet is designed around convolutions to finding

discriminative features for learning.

Healthy skin tends to exhibit smooth textures and DFU have many distinct

features including long edges, sharp changes in intensity or color and quick changes

between surrounding healthy skin and the DFU itself. DFUNet, summarised in

Fig. 5.2, is split into three main sections: the initialisation layers inspired by

GoogLeNet, blocks of convolution layers in parallel to discriminate the DFU more
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Figure 5.2: An overview of the proposed DFUNet architecture. The proposed
DFU architectures consists of Input Data block which consists of training and
validation data, Traditional Convolution block consist of single convolutional
layers, block of convolutional layers in parallel to extract concatenated features
with the help of different convolutions, Fully Connected layers which act as
neural network and finally, Output Classifier to produce the prediction of class

label

Table 5.1: Complete description of Network Architecture of DFUNet. Conv.
refers to convolutional layer, Max-pool. refers to Max-Pooling layers. There are
variations in filter size of blocks of convolutional layers in parallel of different

variant of DFUNet.

Layer no. Layer type Filter size Stride No. of filters FC units Input Output

Layer 1 Conv. 7×7 2×2 64 - 3×224×224 64×112×112

Layer 2 Max-pool. 3×3 2×2 - - 64×112×112 64×56×56

Layer 3 Conv. 1×1 1×1 64 - 64×56×56 64×56×56

Layer 4 Conv. 3×3 1×1 192 - 64×56×56 192×56×56

Layer 5 Max-pool. 3×3 2×2 - - 192×56×56 192×28×28

Layer 6 Conv. in parallel 1×1,3×3,5×5 1×1 32⊕64⊕128 - 192×28×28 224×28×28

Layer 7 Max-pool. 3×3 2×2 - - 224×28×28 224×14×14

Layer 8 Conv. in parallel 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×14×14 224×14×14

Layer 9 Conv. in parallel 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×14×14 224×14×14

Layer 10 Max-pool. 3×3 2×2 - - 224×14×14 224×7×7

Layer 11 Conv. in parallel 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×7×7 224×7×7

Layer 12 Max-pool. 7×7 1×1 - - 224×7×7 224×1×1

Layer 13 Fully conn. - - - 224

Layer 14 Fully conn. - - - No. of Classes

efficiently than previous network layers and lastly, both fully-connected layers and

a softmax-based output classifier. The detailed layers of the general DFUNet

architecture are provided in Table 5.1.

The parameters used for training with DFUNet are 60 epochs, a batch size

of 8, the Adam solver with a learning rate of 0.001. A step-down policy was used

where the learning rate reduced with a step of 33% and gamma was set to 0.1.
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Figure 5.3: Healthy and ulcer patches taken from feet for training in the CNN.

The Configuration of GPU Machine for Experiments was: (1) Hardware: CPU -

Intel i7-6700 @ 4.00Ghz, GPU - NVIDIA TITAN X 12GB, RAM - 32GB DDR4

(2) Software: Caffe .

5.2.5.1 Input Data

The DFU training and validation images were resized as 256×256 patches from

areas of the feet containing DFU and healthy skin. An example of the regions of

a foot cropped is shown in Fig. 5.3. We used the centre crop of size 224×224

and mirror as data parameters. Initial traditional convolutional block consists of

single convolution filters at each step to reduce the computational cost on feature

maps. Inspired by the GoogLeNet [17] input stem, the input to DFUNet, begins

by initial convolutions, pooling and normalisation layers in a traditional CNNs

structure from layer 1 to layer 5 in Table 5.1. Doing this step also ensures that the

larger raw input image dimensionality is reduced before moving on to subsequent

layers.

5.2.5.2 Block of Convolution Layers in Parallel

The idea behind using the block of convolutional layers in parallel is basically con-

catenation of multiple convolution filter inputs to allow the multiple-level feature

extraction and cover more spread out clusters from the same input. The design of
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Table 5.2: The descriptions of filter size in the block of convolutional layers
in parallel of different variants of DFUNet. Conv. refers to convolutional layer

and var. refers to variant.

Layers No. DFUNet Var. 1 DFUNet Var. 2 DFUNet Var. 3 DFUNet Var. 4 DFUNet Var. 5

1st block of Conv. in parallel 128⊕256⊕512 192⊕256⊕512 128⊕128⊕128 192⊕192⊕192 256⊕256⊕256

2nd block of Conv. in parallel 128⊕256⊕512 192⊕256⊕512 128⊕128⊕128 256⊕256⊕256 256⊕256⊕256

3rd block of Conv. in parallel 128⊕256⊕512 192⊕256⊕512 256⊕256⊕256 256⊕256⊕256 512⊕512⊕512

4th block of Conv. in parallel 128⊕256⊕512 192⊕256⊕512 256⊕256⊕256 512⊕512⊕512 512⊕512⊕512

the convolutions is weighted towards creating as discriminative features as possible

to highlight any DFUs in an image. Three sizes of convolution kernels are used in

the block of convolutional layers in parallel of DFUNet throughout: 5×5, 3×3 and

1×1. 1×1 convolution layer is used in the block of convolutional layers in parallel

to reduce the dimensionality of your input to large convolutions such as 3×3 and

5×5, thus keeping computations reasonable. These are processed in parallel to

each other and finally concatenated. The core of DFUNet is the three blocks of

convolutional layers in parallel and is shown in Fig. 5.4. Increasing filter sizes in

the block of convolutional layers in parallel is a key innovation in methods appears

to be in the architecture of the DFUNet. As this is the one of the most significant

innovation, the DFUNet is experimented with different variants of these blocks of

convolutional layers in parallel to get the optimal architecture. We investigated

the different sizes of filters in the block of convolutional layers in parallel by mak-

ing 5 variants to get the best variant based on the performance metrics in Table

5.2. We created these five variants to test the hypothesis whether increasing the

size of filters improves the performance of DFUNet or not. These variants were

tested on the DFU dataset and the results are provided below in Table 5.3.

Each convolution provides additional discriminative power. Lower activations

are present in healthy skin samples shown in Fig. 5.5 due to the absence of skin

abnormalities. Higher activations are present in skin with an ulcer as shown in

Fig. 5.6 due to skin abnormality.

Each convolution layer uses a ReLU which is defined as

f(x) = max(0, x) (5.1)

65



Chapter 5. DFU Classification

Figure 5.4: The structure of block of Conv. in parallel in which three types of
convolutional filters are used, concatenation layers to concatenate the features

of each convolutional filters, and finally pass it local response norm layer.

Figure 5.5: The convolution activation produced by the kernels of first con-
volutional layer on healthy skin raw input, to highlight the features learned by

convolutional layer.
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Figure 5.6: The convolution activation produced by the kernels of first con-
volutional layer on DFU skin patch, to highlight the discriminative features

learned by convolutional layer.

where the function thresholds the activations at zero. As we used a ReLU for

each convolution, they include unbounded activations, so we used Local Response

Normalisation (LRN) to normalise these activations after each concatenation of

convolutional layers. It is also proven helpful in avoiding the over-fitting problem

faced by CNNs methods. Let, a i
x,y

be the source output of kernel i applied at

position (x,y). Then, regularized output b i
x,y

of kernel i applied at position (x,y)

is computed by

b i
x,y

= a i
x,y

(k + α

min(N−1,i+n
2
)∑

max(0,i−n
2
)

(a j
x,y

)2)β (5.2)

where N is total number of kernels, n is the size of the normalization neighbourhood

and α,β,k,(n) are the hyper-parameters.

Further, to reduce dimensionality, a max pooling layer is included after the

first and the third block of convolutional layers in parallel.

5.2.5.3 Fully Connected Layers and Output Classifier

The final section is the softmax output of class probabilities and is a measure of

how close the parameters are with respect to the ground truth labels of the training
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and validation data. The 2-class outputs of the DFU are healthy skin and DFU.

It is formed from an average pooling layer followed by two Fully Connected (FC)

layers with outputs of 100 for the first and 2 for the second. It is worth mentioning,

the computation complexity of DFUNet is further reduced for the 2-class problem

by using only 100 neurons rather than 1000 in first FC layer and last FC layer

is adjusted as 2. This modification in FC layers helps in faster processing time

in both training and testing phase of the DFUNet. The softmax function (cross-

entropy regime) is the final layer and is defined as

fj(z) =
ezj∑
k e

zk
(5.3)

where fj is the j-th element of the vector of class scores f and z is a vector

of arbitrary real-valued scores that are squashed to a vector of values between

zero and one that sum to one. The loss function is defined so that having good

predictions during training is equivalent to having a small loss. The final layers

including fully connected layers which work as a regular neural network which

have connections to all activations in the previous layer, and softmax classifier, to

predict the class label as either normal skin or DFU.

5.3 Results and Discussion

The DFU dataset was split into the 85% training, 5% validation and 10% testing

sets and we adopted the 10-fold cross-validation technique. Hence, for training,

validation, and testing set using the proposed DFUNet architecture, we used ap-

proximately 1423 patches (including 882 abnormal cases), 84 patches (including

52 abnormal cases), and 172 patches (104 abnormal cases) respectively from the

397 original foot images. As mentioned previously, we used both CML models

and CNNs models to do the classification task. LeNet was the only architecture

that worked on 28×28 grayscale patches rather than 256×256 RGB images as the

input used by GoogLeNet, AlexNet, DFUNet and CML. It was included to show

how the basic deep learning works on this new classification problem.

In Table 5.4, we report Sensitivity, Specificity, Precision, Accuracy, F-Measure

and Area under curve of ROC (AUC) as our evaluation metrics. In medical imag-

ing, Sensitivity and Specificity are considered reliable evaluation metrics for clas-

sifier completeness.

68



Chapter 5. DFU Classification

Table 5.3: The performance measures of various variants of the DFUNet on
DFU dataset. where S.E. is standard error of AUC and C.I. is confidence interval

of AUC curve

Sensitivity Specificity Precision Accuracy F-Measure AUC Score S.E. 95% C.I.

DFUNet Var. 1 0.923±0.029 0.910±0.037 0.946±0.021 0.918±0.017 0.934±0.017 0.957 0.0049 0.9481 - 0.9673

DFUNet Var. 2 0.928±0.034 0.905±0.036 0.942±0.028 0.919±0.024 0.935±0.020 0.959 0.0046 0.9499 - 0.9678

DFUNet Var. 3 0.928±0.032 0.906±0.036 0.942±0.028 0.921±0.027 0.935±0.019 0.960 0.0045 0.9518 - 0.9694

DFUNet Var. 4 0.927±0.023 0.900±0.038 0.938±0.030 0.917±0.019 0.933 ± 0.017 0.958 0.0046 0.9496 - 0.9675

DFUNet Var. 5 0.934±0.033 0.911±0.044 0.945±0.032 0.925±0.029 0.939±0.024 0.961 0.0044 0.9520 - 0.9695

In Table 5.3, we report the performance measures of various DFUNet variants

with different parameters as explained in the architecture of DFUNet in the pre-

vious section. There was not much gap in performances between all the models.

But, overall, the DFUNet variant 5 performed best in every evaluation metrics

except Precision in which DFUNet variant 1 performed the best. It also proved

the earlier hypothesis correct as increasing the size of filters in the block of convo-

lutional layers in parallel improved the performance of DFUNet. Hence, DFUNet

variant 5 which uses the much larger filter sizes than other variants in the last two

blocks of convolutional layers in parallel produced better results. Hence, with best

results achieved by DFUNet variant, we used it as a proposed DFUNet to com-

pare the performance with other traditional machine learning and deep learning

models. ROC curve for all the variants is illustrated by Fig. 5.7.

There are three CML models and three CNNs models used for classification.

In CML, we used the combination of LBP, HOG and Colour descriptors (RGB,

HSV and L*u*v) as feature vectors and then, we trained an SMO for our classi-

fication problem. For each CNN, LeNet, AlexNet, GoogLeNet and our proposed

DFUNet are the chosen architectures used for classification. Each classifier per-

formed well for Sensitivity with less than 1.4% margin between the highest result

(DFUNet) and the lowest result (LBP + HOG). There is a more significant gap of

7.7% in Specificity for the CML models performance measure, with results ranging

from 0.835 to 0.845.

For the CNNs approaches, LeNet achieved the lowest score of 0.81 for Speci-

ficity, whereas the AlexNet, GoogLeNet and DFUNet performed best in this cat-

egory, with 0.892, 0.912, and 0.908 respectively. AUC is considered to be a viable

performance measure for the different machine learning approaches for classifica-

tion, with DFUNet and GoogLeNet achieving 0.961 and 0.960 respectively.

69



Chapter 5. DFU Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC Curves for all the DFU variants

DFUNet Var. 1

DFUNet Var. 2

DFUNet Var. 3

DFUNet Var. 4

DFUNet Var. 5

Figure 5.7: The ROC curve for all DFUNet models as mentioned in Table
5.3, DFUNet var. 5 performed best with an AUC score of 0.961. Var. refers to

variant.

Table 5.4: The performance measures of binary classification task by both
traditional machine learning and CNNs including our proposed method DFU-
Net. Overall, our proposed DFUNet achieved the best results. where S.E. is

standard error of AUC and C.I. is confidence interval of AUC curve

Sensitivity Specificity Precision Accuracy F-Measure AUC Score S.E. 95% C.I.

LBP 0.919±0.029 0.764±0.052 0.878±0.038 0.865±0.038 0.898±0.033 0.932 0.0061 0.9202 - 0.9443

LBP + HOG 0.881±0.022 0.841±0.032 0.906±0.027 0.866±0.042 0.893±0.022 0.931 0.0060 0.9190 - 0.9427

LBP + HOG + Colour 0.902±0.027 0.845±0.027 0.904±0.025 0.880±0.034 0.904±0.024 0.943 0.0054 0.9324 - 0.9537

LeNet (CNN)[115] 0.912±0.026 0.810±0.063 0.871±0.038 0.872±0.041 0.893±0.019 0.929 0.0050 0.9405 - 0.9603

Alexnet (CNN)[3] 0.895±0.024 0.886±0.029 0.933±0.032 0.893±0.021 0.914±0.022 0.950 0.0050 0.9405 - 0.9603

GoogLeNet (CNN)[17] 0.905±0.027 0.912±0.052 0.949±0.038 0.907±0.022 0.927±0.019 0.960 0.0045 0.9514 - 0.9690

Proposed DFUNet 0.934±0.033 0.911±0.044 0.945±0.032 0.925±0.029 0.939±0.024 0.961 0.0044 0.9520 - 0.9695

Overall, we showed that using CNNs can outperform the more traditional

CML features by a large margin. All CNN architectures achieved higher results

than any of the CML results in most cases. GoogLeNet and DFUNet were the

best performers for various evaluation metrics among all the classifiers. The ROC

curve for all the models is demonstrated by the Fig. 5.8. The details of AUC

performance for each method is described in Table 5.4.

We received better results than GoogLeNet on various evaluation metrics.

70



Chapter 5. DFU Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC Curves for DFU Classification

Proposed DFUNet

GoogLeNet

AlexNet

LeNet

LBP+HOG+Color Descriptors

LBP+HOG

LBP

Figure 5.8: ROC curve for all the models including CML and CNNs mentioned
in Table 5.4 in which our proposed DFUNet method achieved the best AUC

score.

The reason behind using the DFUNet rather than conventional CNNs architec-

ture, in particular, GoogLeNet is to speed up the best results with the help of

lesser layers i.e. 14 layers architecture compared to the 22 layers architecture of

GoogLeNet. We also reduced the number of neurons in the FC layers to improve

the processing time of DFUNet according to the 2-class problem. With the 10-fold

cross-validation, on the same machine configuration and input batch size on Caffe

framework, DFUNet took an average of 3 minutes 32 seconds whereas GoogLeNet

took an average of 16 minutes 27 seconds to train a model with the same amount of

training and validation data. For testing, DFUNet took an average of 49 seconds

whereas GoogLeNet took an average of 72 seconds to classify the same test data.

Therefore, we demonstrated how reducing the number of layers using the bespoke

architecture of DFUNet markedly reduced processing time, while also achieving

higher sensitivity and specificity with the introduction of blocks of convolutional

layers in parallel with an increased number of filter input.

Our proposed DFUNet received highest scores in performance measures in

Sensitivity, with a score of 0.934, F-measure with 0.939 and AUC with 0.962.

Whereas in Specificity and Precision, the scores achieved in these performance

measures by DFUNet and GoogLeNet are almost the same.
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With data augmentation technique, these patches were made 15 times for both

training and validation. But, when we tested the data augmentation training in

our experiment, there were no differences found in performance metrics with all the

models. Hence, we did not include the data augmentation results in Table 5.3 and

Table 5.4 as it did not improve the results. The main reasons behind the failure

of data augmentation were overall performance metrics recorded without data

augmentation was quite high and there was only small number of misclassification

cases which were not corrected even with models trained with data augmentation.

For example, we found in evaluations, some ulcer conditions with similar skin

tone and small sizes shown in the second row in Fig. 5.9 have too subtle features

to be detected as ulcer regardless of any pre-processing with data-augmentation.

Hence, we did not use data augmentation to produce final results as the training

with data augmentation become more computational expensive because of 15 times

more data than the normal dataset. Also, the focus of this work is to determine

the skin lesions are at high risk to be detected as misclassification.

There is no evidence of an influence of factors such as lighting conditions

and skin tone due to patient’s ethnicity on DFU classification. As ulcer and

surrounding skin has quite distinctive texture and color features from the normal

healthy skin irrespective of above-mentioned factors. In our experiments, these

factors result in very few misclassified instances in testing set when there is very

high red skin tone as shown in Fig. 5.9.

5.3.1 Experimental Analysis and Discussion

Diagnosis and detection of DFU by the computerized method has been an emerg-

ing research area with the evolution of computer vision, especially deep learning

methods. This preliminary experiment of binary classification of DFU and healthy

skin is performed to learn the distinctive features of both types of skin lesions.

Also, the main motivation of this experiment to find the type of skin lesions which

are at high risk of being misclassified by algorithms. In this experiment, we pro-

posed a new lightweight deep learning architecture which can classify DFU and

healthy skin lesions with high accuracy. There are a few examples of correctly

and incorrectly classified cases in both abnormal and normal classes by DFUNet

as illustrated in Fig. 5.9. The computer vision algorithms struggle to classify the

very subtle DFU with similar skin tone correctly. They are detected as normal
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Figure 5.9: Few examples of accurate and inaccurate classified cases for both
abnormal and normal classes with DFUNet.

with high percentage as illustrated by example 1 and 2 of misclassification cases of

abnormal class in Fig. 5.9. Also, DFU that are very small in size is misclassified

as normal as shown by example 3 and 4 of misclassification cases of abnormal class

Fig. 5.9. In normal skin, the patches with toe, highly wrinkled skin, and very high

red tone skin are classified wrongly by the proposed method as illustrated by the

examples of misclassified cases of normal classes in Fig. 5.9.

5.4 Performance evaluation on Heterogeneous Test

Case

Since, DFU dataset is captured with the same DSLR camera as mentioned in above

section. With computer vision techniques, it is preferable to have heterogeneous

capture to form dataset. But, strict medical ethical approval does not allow to use

different cameras to capture the pictures of DFU in the healthcare setting. Hence,

we collected another heterogeneous dataset of standardised DFU images with the

help of FootSnap application. These images are captured with the help of IPad

camera. We tested our algorithm on this heterogeneous dataset and received good

performance with Sensitivity score of 0.929, F-measure with 0.931, Specificity of

0.908, Precision with 0.942 and AUC with 0.950 score.
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Normal Spot Wrinkle

Figure 5.10: The examples of three classes in facial skin dataset.

Table 5.5: Facial Skin classification task with three classes as Normal skin,
Spot, Wrinkle. The proposed DFUNet outperformed GoogLeNet in every per-

formance metrics on this dataset.

Sensitivity Specificity Precision Accuracy F-Measure MCC

LBP 0.733 0.740 0.740 0.808 0.735 0.586

LBP + HOG 0.736 0.742 0.742 0.811 0.738 0.591

LBP + HOG + Colour 0.741 0.741 0.742 0.815 0.741 0.597

GoogLenet 0.783 0.882 0.784 0.846 0.784 0.665

Proposed DFUNet 0.867 0.930 0.867 0.907 0.867 0.796

5.5 Performance Evaluation on Facial Skin Dataset

Since, DFUNet performed well on the classification of DFU skin patches, to test

the robustness of DFUNet on other skin lesion datasets, we run the experiment of

3-class classification of facial skin patches i.e. normal, spot and wrinkles as shown

in the Fig. 5.10. It is worth mentioning, there is no public skin lesion dataset

available for research without prior written consent. In this derma dataset, we

delineated the equal number of skin patches i.e. 110 patches for each class. We used

traditional machine learning methods and two best performing CNN architectures

in Table. 5.4 i.e. GoogLeNet and DFUNet for this experiment. With the same

experimental settings, DFUNet outperforms GoogLeNet and other methods in

each evaluation metrics for 10-fold cross-validation data as shown in Table 5.5.

This is due to the deep learning models are generally trained with datasets of a

substantial amount of images to achieve good accuracy [122]. But, larger filter

sizes in the later blocks of convolutional layers in parallel in DFUNet to extract

more multiple features as compared to GoogLeNet improved the performance of

DFUNet on this smaller dataset of 330 images.
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5.6 Summary

In this work, we trained various classifiers based on traditional machine learn-

ing algorithms, CNNs and proposed a new CNN architecture, DFUNet on DFU

classification which discriminates the DFU skin from healthy skin. With high-

performance measures in classification, DFUNet allows the accurate automated

detection of DFU in foot images and make it an innovative technique for DFU

evaluation and medical treatment. For the detection of DFU, it is vital to under-

stand the difference between DFU and healthy skin to know the features differ-

ences between these two classes in computer vision perspective. For classification,

DFUNet is a light-weight CNN framework that is used for DFU dataset consists

of two classes (ulcer and normal skin) and facial skin dataset consists of three

classes (spot, wrinkles and normal skin), it will be further tested in the future to

include many more classes. Therefore, we demonstrated how reducing the number

of layers and number of neurons in FC layers using the bespoke architecture of

DFUNet markedly reduced processing time, while also achieving higher sensitivity

and specificity.
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DFU Segmentation

This Chapter presents the use of fully convolutional networks for au-

tomatic segmentation of DFU and its surrounding skin. Using 5-fold

cross-validation, the proposed two-tier transfer learning FCN Model

achieved a Dice Similarity Coefficient of 0.794 (±0.104) for ulcer re-

gion, 0.851 (±0.148) for surrounding skin region, and 0.899 (±0.072)

for the combination of both regions.

6.1 Introduction

This work investigated a two-tier transfer learning from bigger datasets to train

the FCNs to automatically segment the DFU and surrounding skin. Since even

for specialist podiatrists, it is very hard to define the difference in the boundary

between the DFU and it’s surrounding skin. It is mainly because of high intra-class

and inter-class visual similarities in tissues between these two classes and irregular

contours. Hence it is a very difficult problem for any computer vision algorithm to

clearly define and segment these two classes in the same region. This experiment

was performed to evaluate the performances of deep learning algorithms to segment

DFU and it’s surrounding skin separately. The contributions of this work include

1. To overcome the deficiency of DFU dataset in the state of the art, we pre-

sented the largest DFU dataset and annotated ground truth (600 foot images

with DFU).
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Table 6.1: Segmentation results for color segmentation and traditional ma-
chine learning

Method
Dice Similarity Coefficient Specificity Sensitivity MCC

Complete Complete Complete Complete

Color Segmentation 0.415 0.922 0.511 0.394

Traditional Machine Learning 0.533 0.938 0.575 0.507

2. This is the first attempt in computer vision methods to segment the signifi-

cant surrounding skin separately from the ulcer.

3. We proposed a two-tier transfer learning method by training the FCNs on

larger datasets of images and use it as a pre-trained model for the segmen-

tation of ulcers and its surrounding skin. The performance was compared

to other deep learning framework and the state-of-the-art ulcer/wound seg-

mentation algorithms on our dataset.

The skin surrounding an ulcer is very important as its condition determines

if the ulcer is healing and is also a vulnerable area for extension [123, 124]. There

are many factors that increase the risk of vulnerable skin such as ischemia, inflam-

mation, abnormal pressure, maceration from exudates etc. Similarly, healthy skin

around the ulcer indicates a good healing process. Surrounding skin is examined

by inspection of color, discharge and texture, and palpation for warmth, swelling

and tenderness. On visual inspection, redness is suggestive of inflammation, which

is usually due to wound infection. The black discoloration is suggestive of ischemia.

White and soggy appearance is due to maceration and white and dry is usually

due to increased pressure. It is important to recognise that skin appearances look

different in different shades of skin. Lesions that appear red or brown in white

skin, may appear black or purple in black or brown skin. Mild degrees of redness

may be masked completely in dark skin.

6.2 Methodology

This section describes semantic segmentation of DFU and surrounding skin using

Traditional Machine Learning (TML) methods and deep learning methods. In the

end of this section, the performance metrics are used to compare FCN.
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6.2.1 Traditional Machine Learning Methods for DFU Seg-

mentation

In this section, we assessed the performance of TML methods for segmentation of

DFU in DFU dataset. As these methods are not meant for surrounding skin seg-

mentation, we re-implemented the state of the art on general ulcer/wound segmen-

tation (henceforth complete). In image processing, we used the color segmentation

with the different threshold value to get the desirable results of segmentation. For

traditional machine learning, we delineated approximately 1780 patches (including

743 normal skin patches and 1037 abnormal skin patches) for feature extraction

and training of classifier using 5-fold validation from the 480 original foot images.

Since, these two classes of skin (normal and abnormal) have major textural dif-

ferences amongst them, we investigated the popular feature extraction techniques

including texture descriptors such as LBP [87],HOG [89] and color descriptors such

as Normalised RGB, HSV, and L*u*v features [91]. After the feature extraction

from images, we used Quadratic support vector machine [125] as classifier for clas-

sification task. Then, to perform segmentation task, we used the sliding window

approach to mask each pixel if the corresponding patch is detected as ulcer by

trained classifier.

Both techniques have achieved a very average score in evaluation metrics,

such as color segmentation achieved 0.415 (±0.208) in Dice Similarity Coefficient

and traditional machine learning is slightly better and achieved 0.533 (±0.223)

in Dice Similarity Coefficient. The complete evaluation for both techniques on

the testing dataset is illustrated by Table 6.1. These conventional segmentation

methods require a lot of intermediate steps like pre-processing of images, extracting

hand-crafted features and rigorous manual-tuning of parameters to get the results.

Whereas, deep learning provides the end-to-end models on various computing

platforms which simply take images as input and provide the final segmentation

results as output.

6.2.2 Fully Convolutional Networks for DFU segmentation

Deep learning models proved to be powerful algorithms to retrieve hierarchies of

features to achieve various tasks of computer vision. These convolutional neu-

ral networks, especially classification networks have been used to classify various
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Figure 6.1: Overwiew of fully convolutional network’s architecture which can
learn features with forward and backward learning to make pixel-wise prediction
to perform segmentation where C1-C8 are convolutional layers and P1-P5 are

max-pooling layers

classes of objects by assigning discrete probability distribution for each class. But,

these networks have limitations as they are not able to classify multiple classes

in a single image and figure out the position of the objects in images. FCNs

instead produce segmentation by addressing these limitations by pixel-wise pre-

diction rather than single probability distribution in the classification task for each

image. Therefore, each pixel of an image is predicted for which class it belongs.

The working of FCN architecture to produce pixel-wise prediction with the help

of supervised pre-training using the ground truth is illustrated in Fig. 6.1. Hence,

these models have the ability to predict multiple objects of various classes and the

position of each object in images.

6.2.2.1 FCN-AlexNet

The FCN-AlexNet is a fully convolutional network version of original classification

model AlexNet by few adjustments of layers of networks for segmentation [126].

This network was originally used for classification of 1000 different objects of

classes on the ImageNet dataset. It emerged as winner of imageNet ILSVRC-2012

competition in classification category by achieving 99% confidence [3]. There are

few customisations made in the classification network model in order to convert it

into FCN to carry out dense prediction. In FCN-AlexNet, earlier CNN layers are

kept the same to extract the features and fully connected layers which throw away

the positional coordinates are convolutionalised with the equivalent convolutional

layers by adjusting the size of filters according to the size of the input to these layers

[126]. After the extraction of coarser and high-level features from input images, to

produce the pixel-wise prediction for every pixel of the input, the deconvolutional
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layers work exactly opposite to the convolutional layers and stride used in this

layer is equal to the scaling factor used in the convolutional layers.

The input was 500×500 foot images and ground truth images (Pascal VOC

format). In the end, the network prediction on test images was very close to the

ground truth. We used the Caffe [116] framework to implement FCN-AlexNet.

We used these network parameters to train a model on the dataset i.e. 60 epochs,

a learning method as stochastic gradient descent as rate of 0.0001 with a step-

down policy and step size of 33%, and gamma is 0.1. The learning parameter

is decreased by the factor of 100 due to the introduction of new convolutional

layers instead of fully connected layers which result in improved performance of

FCN-AlexNet and other FCNs.

6.2.2.2 FCN-32s, FCN-16s, FCN-8s

FCN-32s, FCN-16s, and FCN-8s are three models inspired by the VGG-16 based

net which is a 16 layer CNN architecture that participated in the ImageNet Chal-

lenge 2014 and secured the first position in localisation and second place in clas-

sification competition [126, 127]. These models are customised with the different

upsampling layers that magnify the output used in the original CNN model VGG-

16. FCN-32s is same as of FCN-VGG16 in which fully connected layers are con-

volutionised and end to end deconvolution is performed with 32-pixel stride. The

FCN-16s and FCN-8s additionally work on low-level features in order to produce

more accurate segmentation. In FCN-16s, the final output is the sum of upsam-

pling of two layers i.e. upsampling of pool4 and 2× upsampling of convolutional

layer 7 whereas in FCN-8s, it is the sum of upsampling of pool3, 2× upsampling

of pool4 and 4× upsampling of convolutional layer 7. Both models perform pre-

diction on much more finer grained analysis i.e. 16×16 pixel blocks for FCN-16s

and 8×8 pixel blocks for FCN-8s. The suitable pre-trained models for each model

are also used in the training. The same input images are used to train the model

with the same parameters as of FCN-AlexNet i.e. 60 epochs, a learning rate of

0.0001, and gamma of 0.1.
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Figure 6.2: Four Examples of DFU and surrounding skin segmentation with
the help of four different FCN models

6.3 Experiment and Result

As mentioned previously, we used the deep learning models for the segmentation

task. The experiments were carried out on the DFU dataset of 600 ulcer foot

images that were split into the 70% training, 10% validation and 20% testing.

We adopted a 5-fold cross-validation. For training and validation using the deep

learning architecture, we used 420 images and 60 images respectively from the 600

original foot ulcer images. Finally, we tested our model predictions on 120 remain-

ing images. Further, we tested the performance of the models on 105 healthy test

images.

The performance evaluation of the FCN frameworks on the testing set is

achieved with 3 different DFU regions due to the practical medical applications.

The DFU regions are explained below:

1. The complete area determination (including Ulcer and Surrounding Skin).

2. The ulcer region

3. The surrounding skin (SS) region

In Table 5.4, we report Dice Similarity Coefficient (Dice), Sensitivity, Speci-

ficity, Mathews Correlation Coefficient (MCC) as our evaluation metrics for seg-

mentation of DFU region. In medical imaging, Sensitivity and Specificity are
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Figure 6.3: Boxplot of Dice for all FCN models for Complete Area Determi-
nation

Table 6.2: Comparison of different FCNs architectures on DFU dataset (SS
denotes Surrounding Skin)

Method
Dice Specificity Sensitivity MCC

Complete Ulcer SS Complete Ulcer SS Complete Ulcer SS Complete Ulcer SS

FCN-AlexNet 0.869 0.707 0.685 0.985 0.982 0.991 0.879 0.714 0.731 0.859 0.697 0.694

FCN-32s 0.899 0.763 0.762 0.989 0.986 0.989 0.904 0.751 0.823 0.891 0.752 0.768

FCN-16s 0.897 0.794 0.851 0.988 0.986 0.994 0.900 0.789 0.874 0.889 0.785 0.852

FCN-8s 0.873 0.753 0.835 0.990 0.987 0.993 0.854 0.726 0.847 0.865 0.744 0.838

considered reliable evaluation metrics and where as for segmentation evalaution,

Dice are popularily used by researchers.

In performance measures, FCN-16s was the best performer and FCN-AlexNet

emerged as the worst performer for various evaluation metrics among all the other

FCN architectures. Though, FCN architectures achieve comparable results when

the evaluation is considered in the complete region. But, there is a notable dif-

ference in the performance of FCN models when ulcer and especially surrounding

skin regions are considered. FCN-16s has achieved the best score of 0.794 (±0.104)

in the ulcer region and 0.851 (±0.148) in the surrounding skin region for Dice.

whereas the FCN-32s achieved the best score of 0.899 (±0.072) in the complete

area determination. The boxplots for all the FCN models performance in Dice
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Figure 6.4: Boxplot of Dice for all FCN models for Ulcer region

Figure 6.5: Boxplot of Dice for all FCN models for Surrounding Skin region
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Figure 6.6: Distribution of Dice Similarity Coefficient for each trained model

separately for all three regions are illustrated through Fig. 6.3, Fig. 6.4 and Fig.

6.5. Overall, the FCN models has very high Specificity for all the regions. Fur-

ther, assessing the FCNs performance, we observed that FCN-16s and FCN-32s

are better in Senstivity. FCN-16s performed best in the ulcer and surrounding skin

regions and FCN-32s has the best in complete region performance in segmenting

the complete region in terms of Sensitivity, Dice and MCC. The results in Table

6.2 showed that the complete region segmentation has better performance than

ulcer and surrounding skin in terms of Dice and MCC.

Finally, we tested the performance of the trained models on healthy foot

images, they produced the highest specificity of 1.0 where neither ulcer nor sur-

rounding skin was detected.

6.3.1 Inaccurate segmentation cases in FCN-AlexNet, FCN-

32s, FCN-16s, FCN-8s

Although the results are promising, there are few inaccurate segmentation cases

that achieve very Dice for each trained model as shown in Fig. 6.6. The examples

of such cases for every FCNs that we trained are illustrated in the Fig. 6.7.

There are few instances in which FCN-AlexNet and FCN-32s models are not able

to detect the small ulcers and distinct surrounding skin or detect a very small

part of them. As discussed earlier, ulcer and surrounding skin regions have very

irregular outer boundaries, FCN-AlexNet and FCN-32s always tend to draw more
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Figure 6.7: Inaccurate segmentation cases by the different FCNs used in the
testing dataset

regular contour and struggled to draw irregular boundaries to perform accurate

segmentation, whereas, FCN-16s and FCN-8s with smaller pixel stride were able

to produce more irregular contours of both ulcer and surrounding skin. But, in a

few test images, some part of both categories overlap in some region due to the

distinct tissues of ulcer looks like surrounding skin and vice versa.

6.4 Summary

In this work, we developed and applied computer vision and deep learning ap-

proaches to train various FCNs that can automatically detect and segment the

DFU and surrounding skin area with a high degree of accuracy. It’s important to

segment the surrounding skin along with DFU as surrounding skin is an important

hint of the progress of DFU. This work also lays the foundations for technology

that may transform the preliminary examination of diabetic foot ulcers. More-

over, this research could be applied to other related medical fields, for example, in

automatically identifying and segmenting a range of other skin lesions from images

of the pathologies.
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DFU Localisation

This Chapter presents robust deep learning methods for DFU localisa-

tion on foot images. We demonstrated the application of this work by

transferring a lightweight DFU localisation model to mobile devices for

remote monitoring of DFU.

7.1 Introduction

Deep learning methods for object localisation task in the computer vision and

medical imaging field is drawing lots of attention of both researchers and develop-

ers. In the last few years, the accuracy of algorithms on public object localisation

datasets is significantly improved with the introduction of CNNs. In this work, we

provided a large-scale annotated DFU dataset, tested new and lightweight deep

learning architectures such as Faster R-CNN, SSD, R-FCN on this DFU dataset

of 1775 images and propose an end-to-end mobile solution for DFU localisation.

The key contributions of this work include:

1. We presented one of the largest DFU dataset, which consists of 1775 images

with annotated bounding box indicating the ground truth of DFU location.

To date, the largest dataset we encountered is of 600 DFU images, where

it was used for the semantic segmentation of DFU and its surrounding skin

[25].
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2. We proposed the use of CNNs to localise DFU in real-time with two-tier

transfer learning. To our best knowledge, this is the first time CNNs are

used for this task. Since our main focus is on mobile devices, we emphasised

on light-weight object localisation models.

3. Finally, we demonstrated the application of our proposed methods on two

types of mobile devices: Nvidia Jetson TX2 and an android mobile applica-

tion.

The major challenges of DFU localisation task are as follow: 1) Expensive

in data collection and expert labelling on the DFU dataset; 2) High inter-class

similarity between the DFU lesions and intraclass variation depending upon the

classification of DFU [1]; and 3) Lighting conditions and patient’s ethnicity.

7.2 Methodology

This section describes a brief description of deep learning methods for DFU lo-

calisation. We compared these methods with popular localization performance

metrics.

7.2.1 Traditional Methods for DFU Localisation and Clas-

sification

In this section, we assessed the performance of conventional methods for the lo-

calisation of DFU. For traditional machine learning, we annotated 2028 normal

skin patches and 2080 abnormal skin patches from expert annotations for DFU

localisation. We utilized this dataset for feature extraction and training of classi-

fier using 5-fold cross-validation [26]. We also used data-augmentation techniques

such as flipping, rotation, random crop, color channels to make a total of 28392

normal and 29120 abnormal patches. 80% of the image data is used to train the

classifier and remaining 20% of the data is used as test images. Since these two

classes of skin (normal and abnormal) have significant textural and color differ-

ences amongst them, we utilized LBP, HOG, color descriptors to extract features

from skin patches of both normal and abnormal classes. For a single patch, 209
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features were extracted with above-mentioned feature extraction techniques. Af-

ter the feature extraction from images, we used support vector machine [125] as

a classifier for the classification task. Then, to perform DFU localisation task

with multiple scales, we used the sliding window approach to mask each box if the

corresponding patch is detected as ulcer by a trained classifier.

This technique has achieved a good score in evaluation metrics, 70.3% in Mean

Average Precision. The traditional machine learning methods require a lot of in-

termediate steps like pre-processing of images, extracting hand-crafted features

and multiple stages to get the final results which makes them very slow. Whereas,

deep learning provides the faster end-to-end models on various computing plat-

forms which simply take images as input and provide the final localisation results

as output.

7.2.2 Deep Learning Methods for DFU Localisation

CNNs proved their superiority compared to the conventional machine learning

techniques in image recognition tasks such as ImageNet [3] and MS-COCO chal-

lenges [5]. They are very capable of classifying the images into different classes of

objects from both non-medical and medical imaging by extracting the hierarchies

of features. One of the important tasks in computer vision is object localisation

where algorithms need to localise and identify the multiple objects in an image.

Mainly, object localisation networks consist of three stages as described in the

following subsections.

7.2.2.1 CNN as feature extractor

In Stage 1, the standard CNN such as MobileNet, InceptionV2, the convolutional

layers extract the features from input images as feature maps. These feature maps

are used to identify the objects in the image with particular attention focused on

DFU regions as shown in Fig. 7.1. These feature maps serve as input for the later

stages such as the generation of proposals in the second stage and classification

and regression of RoI in the third stage.
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Figure 7.1: Stage 1: The feature map extracted by CNN that acts as backbone
for object localisation network. Conv refers convolutional layer.

Figure 7.2: Stage 2: Detected proposal boxes with translate/scale operation
to fit the object. There can be several proposals on a single object.
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Figure 7.3: Illustration of Stage 3: The classification and further box re-
finement of RoI boxes from the second stage proposal with softmax and Bbox

regression. Where FC refers to Fully-connected layer

7.2.2.2 Generation of proposals and refinement

In Stage 2, the network scans the image in a sliding-window fashion and finds

specific areas that contain the objects using the feature map extracted in Stage

1. These areas are known as proposals which have different boxes distributed over

the image. In general, around 200,000 proposals of different sizes and aspect ratios

are found to cover as many objects as possible in the image. With GPU, Faster

R-CNN produces these much anchors in 10ms [128]. Stage 2 generates two outputs

for each proposal:

• Proposal Class: It can be either foreground or background. The foreground

class means there is likely an object in that proposal and it is also known as

a positive proposal.

• Proposal Refinement: A positive proposal might not be perfectly capture the

object. So the network estimates a delta (% change in x, y, width, height)

for refinement of the proposal box to centre the object better as illustrated

in Fig. 7.2.

7.2.2.3 RoI Classifier and Bounding Box Regressor

Stage 3 consists of the classification of RoI boxes provided by Stage 2 and further

refinement of the RoI boxes as shown in Fig. 7.3. First, all RoI boxes are fed into

the RoI pooling layer to resize them into fixed input size for classifier as RoI boxes

can have different sizes. Similar to Stage 2, it generates two outputs for each RoI:
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Figure 7.4: Faster R-CNN Architecture for DFU localisation which consists
of all three stages discussed earlier.

• RoI Class: The softmax layer provides the classification of regions to specific

classes (if more than one class). If the RoI is classified as a background class,

it is discarded.

• Bbox Refinement: Its purpose is to refine the location of RoI boxes.

We considered three types of object localisation networks to perform on the

DFU dataset. First is Faster R-CNN [128], which is a successor of Fast R-CNN

[129] for object localisation in terms of speed. It consists of all three stages of

object localisation network as shown in Fig. 7.4. It has two-stage loss function

whereas first stage loss function that consists of the parameters such as space, scale

and aspect ratio of the proposals. Then, second stage loss function re-runs the

crops of proposal produced by the second stage with feature extractor to produce

more accurate box proposals for classification.

Dai et al. [130] proposed the Region-based Fully Convolutional Networks (R-

FCN) to produce faster box proposals by considering the crops only from the last

layer of features with comparable accuracy as Faster R-CNN which crop features

from the same layer where region proposals are predicted as shown in the Fig. 7.5.

Due to cropping limited only to the last layer, it minimizes the time to get the

box refinement.

Single Shot Multibox Detector (SSD) [131] is a new architecture for the object

localisation which uses a single stage CNN to predict classes directly and anchor

offsets without the need of second stage proposal generator unlike Faster R-CNN
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Figure 7.5: R-FCN Architecture which considers only the feature map from
the last convolutional layer which speeds up the three stage network

Figure 7.6: The architecture of Single Shot Multibox Detector (SSD). It con-
siders only two stage by eliminating the last stage to produce faster box pro-

posals.

[128] and R-FCN [130] as shown in the Fig. 7.6. The SSD meta-architecture

produces anchors much faster than other object localisation networks, which makes

it more suitable for the mobile platforms.

There are six popular state-of-the-art object localisation models which are

based on these three region based detector meta-architectures i.e. Single Shot

multibox detector [131], R-FCN [130] and Faster R-CNN [128]. These three meta-

architectures used the state-of-the-art classification algorithms like MobileNet [132],

InceptionV2 [133], ResNet101 [120], Inception-ResNetV2 [134] to get the anchor

boxes from the features maps, and finally, classify these anchors to different classes.
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Table 7.1: Performance of state-of-the-art object localisation models on MS-
COCO dataset. [5]

Model Name Speed (ms) Size of Model (MB) COCO mAP

SSD-MobileNet 30 29.2 21

SSD-InceptionV2 42 102.2 24

Faster R-CNN with InceptionV2 57.2 58 28

R-FCN with ResNet101 92 218.3 30

Faster R-CNN with ResNet101 106 196.9 32

Faster R-CNN with Inception-ResnetV2 620 247.5 37

Table 7.1 summarises the size of models, speed (inference per image), and accuracy

(mAP) trained on MS-COCO dataset with 90 classes [5, 135].

Since our work is limited by the hardware on mobile devices and real-time

prediction, we only considered lightweight models (very small, low latency) in

terms of the size of the model and inference speed. We used the first three models

(SSD-MobileNet, SSD-InceptionV2 and Faster R-CNN with InceptionV2) for the

DFU dataset as illustrated in Table 7.1. These small models are specifically chosen

to match the resource restrictions (latency, size) on mobile devices for this appli-

cation. To evaluate the performance of DFU localisation using a heavy model, we

also included R-FCN with ResNet101 to our experiment.

Inception-V2 is a new iteration of the original inception architecture called

GoogleNet with new features such as factorisation of bigger convolution kernels

to multiple smaller convolution kernels and improved normalisation. For the first

time, this network used depth-wise separable convolutions to reduce the computa-

tions in the first few layers. They also introduced batch normalisation layer which

can decrease internal covariate shift, also combat the gradient vanishing problem

to improve the convergence during training [133].

MobileNet is a recent lightweight CNN which uses depth-wise separable con-

volutions to build small, low latency models with a reasonable amount of accuracy

that matches the limited resource on mobile devices. The basic block of depth-wise

separable convolution consists of depth-wise convolution and pointwise convolu-

tion. The 3 × 3 depth-wise convolution is used to apply a single filter per each
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input channel whereas pointwise convolution is just simple 1× 1 convolution used

to create the linear combination of the depth-wise convolution output. Also, it

uses both batchnorm layers as well as RELU layers after both layers [132].

ResNet101 is one of the residual learning networks which won the first place

on ILSVRC 2015 classification task [120]. As suggested by the name, ResNet101

is a very deep network consists of 101 layers which is about 5 times much deeper

than VGG nets but still having lower complexity. The core idea of ResNet is

providing shortcut connection between layers, which make it safe to train very

deep network to gain maximal representation power without worrying about the

degradation problem, i.e., learning difficulties introduced by deep layers.

7.2.3 Performance Measures of Deep Learning Methods

We used four performance metrics i.e. Speed, Size of the model, mean average

precision (mAP), and Overlap Percentage. The Speed determines the time model

takes to perform inference on a single image whereas Size of the model is the total

size of the frozen model that is used for the inference of test images. These are

crucial factors for the real-time prediction on mobile platforms. The mAP has

an ”overlap criterion” of intersection-over-union greater than 0.5. The mAP is

an important performance metric extensively used for the evaluation of the object

localisation task. The prediction by a model to be considered a correct detection,

the area of overlap Ao between the bounding box of prediction Bp and bounding

box of ground truth Bg must exceed 0.5 (50%) [136]. The last evaluation metric

is called Overlap Percentage, which is a mean average of intersection over union

for all correct detection.

Ao =
area(Bp ∩Bg)

area(Bp ∪Bg)
(7.1)

7.3 Experiment and Result

As mentioned previously, we used the deep learning models based on three meta-

architectures for the DFU localisation task. Tensorflow object detection API [135]

provides an open source framework which makes very convenient to design and
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Table 7.2: Performance measures of object localisation models on DFU dataset

Model Name Speed (ms) Size of Model (MB) Ulcer mAP Overlap Percentage (%)

SSD-MobileNet 28 22.6 84.9 89.4

SSD-InceptionV2 37 53.5 87.2 92.6

Faster R-CNN with InceptionV2 48 52.2 91.8 95.8

R-FCN with Resnet 101 90 199.1 90.6 96.1

build various object localisation models. The experiments were carried out on

the DFU dataset and evaluated with 5-fold cross-validation technique. First, we

randomly split the whole dataset into 5 testing sets (20% each) for 5-fold cross-

validation. This is to ensure that the whole dataset was evaluated on testing sets.

For each testing set (20%), the remaining images were randomly split into 70%

for the training set and 10% validation set. Hence, for each fold, we divided the

whole dataset of 1775 images into approximately 1242 images in the training set,

178 in the validation set and 355 in the testing set. This was repeated for 5-fold

to ensure the whole dataset was included in testing set.

Configuration of GPU Machine for Experiments (1) Hardware: CPU -

Intel i7-6700 @ 4.00Ghz, GPU - NVIDIA TITAN X 12GB, RAM - 32GB DDR4

(2) Software: Tensor-flow [135].

We tested four state-of-the-art deep convolutional networks for our proposed

object localisation task as described in Section III B. We trained the models with

input-size of 640x640 using stochastic gradient descent with different learning rate

on Nvidia GeForce GTX TITAN X card. We initialised the network with pre-

trained weights using transfer learning rather than randomly initialised weights

for the better convergence of the network. We tested the multiple learning rates

by decreasing the original learning rates with the 10 and 100 times as well as

multiplication factor from 1 to 5 to check the overall minimal validation loss. For

example, if the original Inception-V2 learning rate was set at 0.001. Then, for

training on DFU dataset, we used 10 learning rates of 0.0001, 0.0002, 0.0003,

0.0004, 0.0005, 0.00001, 0.00002, 0.00003, 0.00004, 0.00005.

We used 100 epochs for the training of each reported model, which we found

are sufficient to train the DFU dataset as both training and validation loss finally

converge to optimal lowest. We selected the models on the basis of minimum
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validation losses for the evaluation. We tried different hyper-parameters such as

learning rate, number of steps and data augmentation options for each model to

minimize both training and validation losses. In the next section, we report the

different network hyper-parameters and configurations for each model used for

evaluation on the DFU dataset.

We set the appropriate hyper-parameters on the basis of meta-architecture to

train the models on the DFU dataset. For SSD, we used two CNNs, MobileNet

and Inception-V2 (both of them use depth-wise separable convolutions), we set

the weight for l2 regularizer as 0.00004, initialiser that generates a truncated

normal distribution with a standard deviation of 0.03 and mean of 0.0, batch norm

with the decay of 0.9997 and epsilon of 0.001. For training, we used a batch size

of 24, optimizer as RMS Prop with a learning rate of 0.004 and a decay factor of

0.95. The momentum optimizer value is set at 0.9 with a decay of 0.9 and epsilon

of 0.1. We also used two types of data augmentation as random horizontal flip and

random crop. For Faster R-CNN, we set the weight for l2 regularizer as 0.0,

initialiser that generates a truncated normal distribution with standard deviation

of 0.01, batch norm with decay of 0.9997 and epsilon of 0.001. For training, we

used a batch size of 2, optimizer as momentum with manual step learning rate

with an initial rate as 0.0002, 0.00002 at epoch 40 and 0.000002 at epoch 60. The

momentum optimizer value is set at 0.9. For training RFCN, we used the same

hyper-parameters as Faster R-CNN with only change in the learning rate set as

0.0005. For data augmentation, we used only random horizontal flip for these two

meta-architectures.

In Table 7.2, we report the performance evaluation of object localisation net-

works for DFU dataset on 5-fold cross-validation. Overall, all the models achieved

promising localisation results with high confidence on DFU dataset. Few instances

of accurate localisation by all trained models are demonstrated by Fig. 7.7. SSD-

MobileNet ranked first in the Size of Model and Average Speed performance index.

This is mainly due to the simpler architecture to generate anchor boxes in SSD

[131]. Whereas in Ulcer mAP and Overlap Percentage, R-FCN with ResNet101

and Faster R-CNN with InceptionV2 were almost equally competitive in these per-

formance measures. In Ulcer mAP, Faster R-CNN with InceptionV2 ranked first

with an overall mAP of 91.8%, just slightly better than R-FCN with ResNet101

with mAP of 90.6%. But, in Overlap Percentage, R-FCN-Resnet101 achieved a
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GT SSD-MobNet SSD-IncV2 FRCNN-IncV2 RFCN-Res101

Figure 7.7: The accurate localsation results to visually compare the perfor-
mance of object localisation networks on DFU dataset. Where SSD-MobNet
is SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-

CNN with InceptionV2, and RFCN-Res101 is R-FCN with ResNet101.

score of 96.1%, which was slightly better than Faster R-CNN with Inception. SSD-

InceptionV2 ranked third in both of these performance measure categories with a

difference of 4.6% in Ulcer mAP and 3.5% in Overlap Percentage from the first

position. In performance measures, overall Faster R-CNN with InceptionV2 was

the best performer, and the most lightweight SSD-MobileNet emerged as the worst

performer in terms of accuracy. Finally, we tested models on the dataset of 105

healthy foot images for specificity measure. None of the above-mentioned models

produces any DFU localisation on these healthy images.
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GT SSD-MobNet SSD-IncV2 FRCNN-IncV2 RFCN-Res101

Figure 7.8: Incorrect localisation results to visually compare the performance
of object localisation networks on DFU dataset. Where SSD-MobNet is SSD-
MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-CNN

with InceptionV2, and RFCN-Res101 is R-FCN with ResNet101.

7.3.1 Inaccurate DFU Localisation Cases

In this work, we explored different object localisation meta-architectures to localise

DFU on full foot images. Although the performance of all models is quite accurate

as shown in Fig. 7.7, this section explores inaccurate localisation cases by trained

models on DFU dataset in 5-fold cross-validation as shown in the Fig. 7.8. We

found that trained models were struggled to localise the DFU of very small size

and that has a similar skin tone of the foot especially, SSD-MobileNet and SSD-

InceptionV2. There are cases of DFU that have very subtle features, not even,

most accurate models such as Faster R-CNN with InceptionV2 and R-FCN with

ResNet101 were able to detect these conditions.
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7.4 Inference of Trained Models on NVIDIA Jet-

son TX2 Developer Kit

Nvidia Jetson TX2 is the latest mobile computer hardware with an onboard 5-

megapixel camera and a GPU card for the remote deep learning applications as

shown in the Fig. 7.9. However, it is not capable of training large deep learning

models. We installed tensor-flow specifically designed for this hardware to produce

inference from the DFU localisation models that we trained on the GPU machine.

Jetson TX2 is a very compact and portable device that can be used in various

remote locations.

Configuration of Jetson TX2 for Inference (1) Hardware: CPU - dual-core

NVIDIA Denver2 + quad-core ARM Cortex-A57, GPU - 256-core Pascal GPU,

RAM - 8GB LPDDR4 (2) Software: Ubuntu Linux 16.04 & Tensor-flow.

We did not find any difference in the prediction of the models on Jetson TX2

hardware and the GPU machine; the only let-off is the slow inference speed on

the Jetson TX2. It is obviously due to limited hardware compared to the GPU

machine. For example, the speed of SSD-MobileNet was 70 ms per inference on

Jetson TX2 as compared to 30 ms on GPU machine. Also, for real-time localisa-

tion, models can produce the visualisation of maximum 5 fps using the on-board

camera with a lightweight model. Fig 7.10 demonstrates the inference using Jetson

TX2.

7.5 Real-time DFU localisation with smartphone

application

Training and inference of the deep learning frameworks on a smartphone are chal-

lenging tasks due to limited resources of a smartphone. Hence, we trained these

object localisation frameworks on the desktop with a GPU card. We utilised the

whole dataset of 1775 DFU images for further experiments by randomly splitting

90% data in the training set and remaining 10% in the validation set. We trained

only Faster R-CNN with InceptionV2 on this dataset because of the best trade-off

between the accuracy and the speed. With android studio and tensor-flow deep
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Figure 7.9: Nvidia Jetson TX2.

Figure 7.10: DFU localisation on Nvidia Jetson TX2 using Faster R-CNN
with InceptionV2 on tensor-flow.
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Figure 7.11: Real-time localisation using smartphone android application. In
the first row, images are captured by the default camera. In the second row,

the snapshot of real-time localisation by our prototype android application.

learning mobile library, we deployed these models on Samsung A5 2017 (Android

Phone) to create the real-time object localisation for DFU. As mentioned in the

previous section, we finalised Faster R-CNN with InceptionV2 model for the pro-

totype android application.

We tested our prototype application for the real-time application in real-time

healthcare settings as shown in Fig. 7.11. We tested this application on 30 people

in this preliminary test in which 10 people were with DFU. Out of 10 people

with DFU, our application detected 8 DFU and out of 20 people with normal

foot, our application did not detect any false detection. Furthermore, more user-

friendly features, care, and guidance will be added to this application to make it

a complete package of DFU care for diabetic patients.
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7.6 Summary

In this work, we collected an extensive database of 1775 images of DFU. Two med-

ical experts produced the ground truths of this dataset by outlining the region of

interest of DFU with an annotator software. Using 5-fold cross-validation, overall,

Faster R-CNN with InceptionV2 model using two-tier transfer learning achieved a

mean average precision of 91.8%, the speed of 48 ms for inferencing a single image

and with a model size of 57.2 MB. To demonstrate the robustness and practicality

of our solution to real-time prediction, we evaluated the performance of the models

on a NVIDIA Jetson TX2 and a smartphone app. This work demonstrates the

capability of deep learning in real-time localization of DFU, which can be further

improved with a more extensive dataset.
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Chapter 8

Detection of Ischemia and

Infection in DFU

In this Chapter, we analysed the use of computer vision algorithms

to determine the conditions such as area, depth, ischemia, infection

in DFU according to the Sinbad classification system on the current

dataset. We used various traditional machine learning and deep learn-

ing techniques to perform binary classification of ischemia and infec-

tion.

8.1 Introduction

The major progress in computer vision allows us to make extensive use of medical

imaging data to provide us with better diagnosis, treatment and prediction of

diseases [25, 26]. There are numbers of medical classification systems for DFU are

discussed such as Wagner, Texas, and Sinbad Classification systems which depend

upon the number of factors or conditions that are the site, area, depth, neuropathy,

the presence of ischemia, infection [1, 28, 30]. Sinbad classification system is

relatively new and simplified classification system introduced by Paul et al. to

compare the outcomes of DFU of different populations around the world. Sinbad

score stands for S (Site), I (Ischemia), N (Neuropathy), B (Bacterial infection),

A (Area), D (Depth). Sinbad scores are relatively easy and better suited for the

machine learning algorithms rather than other classification systems as it provides

the specific criteria to perform binary classification for each condition of DFU.
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Forefoot Midfoot Hindfoot

Figure 8.1: Examples of the presence of DFU on. (a) Forefoot, (b) Midfoot
and (c) Hindfoot

Applying computer vision techniques to find these conditions or factors for

current dataset could be very difficult, as the DFU images are captured in the

hospitals without any standardisation that is relative distance and orientation of

foot. The current dataset we received with the ethical approval from NHS did

not contain any records about these conditions or any medical classification. The

predictions of these conditions on DFU images could be very difficult even for

experienced podiatrists as there are certain physical and medical tests are needed

to assess these conditions. To find the presence or absence of these conditions on

DFU, expert annotations from the podiatrists specialised in DFU are required.

The brief description of each condition according to the Sinbad scores is described

with the computer vision perspective as well.

1. Site: the site of DFU tells about the presence of DFU on which part of the

foot. Usually, DFU occurs on the two major sites that are forefoot or midfoot

and hindfoot that are shown in Fig. 8.1. Defining the site with computer

vision is certainly possible but it can be easily performed by a person even

without prior medical knowledge.

2. Area: The area of DFU determines the extent of the 2D shape of DFU on

the foot. The area of DFU is classified whether DFU is greater than 1 cm or

not as shown in Fig. 8.2. Since, as mentioned earlier, the inconsistent images

in the current dataset due to distance, orientation and lighting as the data

captured in hospital, DFU images are captured with different magnification

and angles as shown in the Fig. 8.3.
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Area greater than 1cm Area less than or equal to 1cm

Figure 8.2: Examples of classification of area of DFU

Figure 8.3: Example of DFU images are captured with different magnification
and angles

3. Depth: the depth of DFU determines the distance from the surface of the

foot to the bottom due to tissue damage and loss. The depth of DFU can be

classified into two categories whether DFU is superficial that is confined to

the skin and subcutaneous tissue or DFU reaching muscle, tendon or deeper

as shown in Fig. 8.4. 2D Photo documentation provided in the current

dataset cannot accurately measure the depth of DFU.

4. Ischemia: DFU appear due to the damage that raised blood sugars can cause

sensation and blood circulation. The inadequate blood supply to the foot can

lead to a condition called ischemia. The visual appearance of ischemia could

be determined with the presence of a pale looking ulcer, or black gangrenous

toes (tissues death to part of the foot) as shown in the Fig. 8.5. In computer

vision perspective, it is an important hint of the presence of ischemia in the

DFU.
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Depth reaching tendon Superficial depth

Figure 8.4: Examples of classification of depth of DFU

Presence of ischemia in DFU No ischemia in DFU

Figure 8.5: Cases of the presence of ischemia and no ischemia in DFU in foot
images

5. Infection: Infection is defined as bacterial soft tissue or bone infection in

the DFU which is based on the presence of at least two classic findings of

inflammation or purulence as shown in Fig. 8.6. It is very hard to determine

the presence or absence of diabetic foot infections in DFU images because, in

the medical system, blood testing is performed as supporting evidence. Also,

in this dataset, the images are captured after the debridement of necrotic and

devitalised tissues which might be an important indicator of the presence of

infection in DFU.

6. Neuropathy: Neuropathy is defined as loss of sensation in the lower extrem-

ities i.e. foot region due to damage of the peripheral nerves. Neuropathy is

again infeasible with the help of computer vision techniques as there is no
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Presence of infection No Infection

Figure 8.6: Cases of presence of infection and no ischemia in DFU in foot
images

visual hint to detect neuropathy in the foot. But, the patients can determine

the neuropathy condition with the help of very simple physical procedures.

Usually, patients with DFU have certain neuropathy condition.

This work focuses on finding the presence or absence of ischemia and infection

in DFU of foot images as detecting other conditions are not feasible with com-

puter vision techniques due to different factors such as non-standardised dataset,

2D images and requirement of physical and medical tests to determine certain

conditions as mentioned above.

In the related work, Netten et al. [46] find that clinicians achieved low validity

and reliability for remote assessment of DFU in foot images. Hence, it is clear

that analysing these conditions on the images are extremely difficult even by the

expert podiatrists. In various image recognition and natural language processing

tasks where machine learning algorithms can perform better than skilled humans.

This experiment is performed to analyse the performance of machine learning

algorithms on the detection of ischemia and infection in DFU images.

8.2 Methodology

This section describes proposed methods for Natural Data-Augmentation, feature

descriptors and classifiers used for the traditional machine learning. Brief descrip-

tion of deep learning methods and experimental settings is also discussed in this
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Figure 8.7: Comparison of Size of DFU against the size of image in the DFU
dataset of 1459 images

section.

8.2.1 Natural Data-Augmentation for DFU images

In the DFU dataset, the size of images varies between 1600 × 1200 and 3648 ×
2736 depending on the different professional cameras used to capture the data. In

deep learning, data augmentation is tipped as an important tool to improve the

performance of algorithms.

As shown in Fig. 8.7, about 92% of DFU have area between 0% to 20% on foot

images. In common data-augmentation, there is the number of techniques used

such as flip, rotation, random scale, random crop, translation, Gaussian noise to

perform augment in the dataset. Since DFU occupy very small percentage of the

total area of foot images, there is a risk of missing the region of interests by using

important augmentation technique such as random scale, crop and translation.

Hence natural data-augmentation is more suitable for the DFU evaluation rather

than common data-augmentation.

To focus more on ROI of DFU, we proposed the use of automatic data aug-

mentation technique called natural data-augmentation which is based on DFU

localization using Faster R-CNN [27, 58]. This augmentation technique helps in
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Table 8.1: Performance measures of object localisation models on DFU dataset

Model Name Speed (ms) Size of Model (MB) Ulcer mAP Overlap Percentage (%)

SSD-MobileNet 28 22.6 84.9 89.4

SSD-InceptionV2 37 53.5 87.2 92.6

Faster R-CNN with InceptionV2 48 52.2 91.8 95.8

R-FCN with Resnet 101 90 199.1 90.6 96.1

Faster R-CNN with Inception ResNet V2 626 596.7 92.9 96.3

assisting the machine algorithms to clearly pinpoint ROI of foot images and focus

on finding the strong features exists in this area.

8.2.2 Proposed method for Natural Data-Augmentation

First of all, we used the deep learning based localisation method called Faster

R-CNN with InceptionResNetV2 to get the ROI of DFU on foot images in our

dataset as shown in Fig. 8.8. This method further improved the performance

of localisation methods from the previous chapter as shown in Table 8.1. Our

proposed method can provide a robust natural data-augmentation technique for

DFU images as shown in Fig. 8.9 by removing the unnecessary background data

and without any particular loss of quality (only in the case of very small ulcers).

As most of the deep learning algorithms use smaller image size as input from

224×224 to 331×331 depending on the architecture. The number of natural data-

augmentation with localisation methods depends upon the input image size for

algorithm and the ratio between the size of ROI and size of an image. In Fig. 8.9

and 8.10, we showed natural data-augmentation with different magnification and

angles using our proposed methods.

8.2.3 Traditional Machine Learning

We investigated the use of human design features with TML on the binary classifi-

cation of infection and ischemia. We used the color descriptors as mentioned before

that could be the important visual cues for identification of ischemia and infection

in DFU. First of all, we used SLIC superpixels technique to produce superpixel

oversegmentation of DFU patches [137] and then computed mean RGB color of

each superpixel as shown in Fig. 8.11. Finally, with different threshold values from
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Figure 8.8: Examples of DFU detection and localisation using Faster-RCNN
with Inception ResNet V2

each color channel, we extracted regions of two particular colors of interest that

are red and black from the DFU patches as shown in Fig. 8.12. For these classifi-

cation problems, we tried number of classifiers with standard hyper-parameters on

these color features in which BayesNet, Random Forest, and Multilayer Percep-

tron were selected as these methods achieved the highest accuracy among other

machine learning classifiers [138–143].

8.2.4 Convolutional Neural Networks

For comparison with the traditional features, deep learning algorithms are used

to perform binary classification to classify (1) infection and non-infection; (2)

ischemia and non-ischemia classes in DFU patches. For this work, we fine-tuned

(transfer learning from pre-trained models) the state-of-the-art CNN models such

as Inception-V3, ResNet50, and InceptionResNetV2 for this task.
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(a) Original Image (b) Ist MAG (c) 2nd MAG (d) 3rd MAG

Figure 8.9: Natural data-augmentation produced from the original image with
different magnifications. MAG refers to magnification

Inception-V3 is a new iteration of the original inception architecture designed

by Google team with new features such as factorisation of bigger convolution ker-

nels to multiple smaller convolution kernels and improved normalisation. In this

network, depth-wise separable convolutions are used in initial layers of architec-

ture to reduce the computations of down-sampling the input images. They also

introduced batch normalisation layer which can decrease internal covariate shift,

also combat the gradient vanishing problem to improve the convergence during

training [133, 144].

ResNet50 is a lighter residual learning network version of ResNet101 which

won the first place on ILSVRC 2015 classification task [120]. The core idea of

ResNet is providing a shortcut connection between layers to gain maximal repre-

sentation from both initial as well as later layers in training of the network.

InceptionResNetV2 is a very deep network which combines the strengths of
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(a) Image (b) Mirror (c) 90◦ (d) 180◦ (e) 270◦

Figure 8.10: Natural data-augmentation of different angles produced from the
images (different magnification)

Figure 8.11: Example of superpixel oversegmentation and computing the
mean RGB color of each superpixel in DFU patch.

both inception and residual learning networks as the name suggests. It is in-

spired by InceptionV3 architecture with residual connections between the layers

to successfully train even deeper neural networks, which have to lead to even bet-

ter performance. It achieved new state-of-the-art results in terms of accuracy on

various standard datasets [133, 134].
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Figure 8.12: Example of extracting red and black regions from DFU patch
with different threshold values

8.3 Results and Discussion

Both infection and ischemia datasets were split into the 70% training, 10% val-

idation and 20% testing sets and we adopted the 5-fold cross-validation tech-

nique. Hence, in ischemia dataset, for training, validation, and testing set using

the proposed methods, we used approximately 6909 patches, 987 patches, and 1974

patches in training, validation, and testing sets respectively whereas in infection

dataset, we used 4124 patches, 589 patches, and 1179 patches from the 1459 orig-

inal foot images. As mentioned previously, we used both TML models and CNNs

models to do the classification task and utilised 256×256 RGB images as input

for CML and InceptionV3, AlexNet, and ResNet50. For InceptionResNetV2, we

resized the dataset to 299×299.

In Table 8.2 and 8.3, we report Accuracy, Sensitivity, Precision, Specificity, F-

Measure and MCC as our evaluation metrics. In medical imaging, Sensitivity and

Specificity are considered reliable evaluation metrics for classifier completeness.
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Table 8.2: The performance measures of binary classification of Ischemia by
both traditional machine learning and CNNs where MCC is Matthew Correla-

tion Coefficient

Accuracy Sensitivity Precision Specificity F-Measure MCC Score

BayesNet 0.785±0.022 0.774±0.034 0.809±0.034 0.800±0.027 0.790±0.020 0.572±0.044

Random Forest 0.780±0.041 0.739±0.049 0.872±0.029 0.842±0.034 0.799±0.033 0.571±0.078

Multilayer Perceptron 0.804±0.022 0.817±0.040 0.787±0.046 0.795±0.031 0.800±0.023 0.610±0.045

InceptionV3 (CNN) 0.841±0.017 0.784±0.045 0.886±0.018 0.898±0.022 0.831±0.021 0.688±0.031

ResNet50 (CNN) 0.862±0.018 0.797±0.043 0.917±0.015 0.927±0.017 0.852±0.022 0.732±0.032

InceptionResNetV2 (CNN) 0.853±0.021 0.789±0.054 0.906±0.017 0.917±0.019 0.842±0.027 0.714±0.039

Table 8.3: The performance measures of binary classification of Infection task
by both traditional machine learning and CNNs results. where MCC is Matthew

Correlation Coefficient

Accuracy Sensitivity Precision Specificity F-Measure MCC Score

BayesNet 0.639±0.036 0.619±0.018 0.653±0.039 0.660±0.015 0.622±0.079 0.290±0.070

Random Forest 0.605±0.025 0.608±0.025 0.607±0.037 0.601±0.069 0.606±0.012 0.211±0.051

Multilayer Perceptron 0.621±0.026 0.680±0.023 0.622±0.057 0.570±0.023 0.627±0.074 0.281±0.055

InceptionV3 (CNN) 0.662±0.014 0.693±0.038 0.653±0.015 0.631±0.034 0.672±0.019 0.325±0.029

ResNet50 (CNN) 0.673±0.013 0.692±0.051 0.668±0.023 0.654±0.051 0.679±0.019 0.348±0.028

InceptionResNetV2 (CNN) 0.676±0.015 0.688±0.052 0.672±0.015 0.664±0.039 0.680±0.024 0.352±0.031

When comparing the performances, the methods including TML and CNN

performed better in the binary classification of ischemia than infection. The aver-

age performance of all the models in terms of accuracy in ischemia dataset is 82.1%

which is significantly higher than average accuracy of 64.6% in infection dataset.

MCC score is considered to be a viable performance measure for the different

machine learning approaches for classification, with an average MCC Score for

ischemia classification of 64.8% is higher compared to the infection classification

of 30.1%. When comparing the performances of TML and CNNs, CNNs (85.2%)

outperformed the TML models (79%). Similarly, in infection classification, the

accuracy of CNNs (67%) performed better than TML (62.1%) with a margin of

4.9%.

In ischemia classification, ResNet50 received highest score in all performance
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measures except for Sensitivity in which TML method multilayer perceptron re-

ceived a score of 81.7% but scored lowest score of 79.5% in Specificity. For Speci-

ficity, the CNN methods performed extremely well with average score of 91.4%

when compared to TML methods with average score of 81.2%. There is a huge

margin of 13.2% between the highest result (ResNet50) and the lowest result (Mul-

tilayer perceptron). There is a more significant gap of approximately 16.1% in

MCC Score for the methods performance, with results ranging from 57.1% to

73.2%.

In infection classification, both TML and CNN methods received moderate

score in the performance measures. Similarly, CNN methods once again performed

better than TML methods achieving highest score in all performance measures.

The InceptionResnNetV2 marginally performed better than other CNN classifiers

especially in Specifcity with score of 66.4% in infection classification. For Sensi-

tivity, all the CNNs performed equally well with InceptionV3 achieved the highest

score of 69.3%. For TML methods, Multilayer Perceptron performed well in Sen-

sitivity, whereas BayesNet in Specificity and Precision.

ResNet50 is the best performers for various evaluation metrics among all the

classifiers in ischemia classification whereas InceptionResNetV2 performance is

best in infection classification.

8.3.1 Experimental Analysis and Discussion

Analysis of conditions of DFU with the computerised methods is very important for

the limited medical experts and healthcare settings. This preliminary experiment

of binary classification of ischemia and infection of DFU is performed in this work.

The main motivation of this experiment to find what conditions of ischemia and

infection are at high risk of being misclassified by computer vision algorithms. Few

examples of correctly and incorrectly classified cases in both binary classifications

of ischemia and infection are illustrated in Fig. 8.13, 8.14, 8.15, and 8.16. As

for the misclassified cases, there are huge intra-class dissimilarities and inter-class

similarities between (1) infection and non-infection; (2) ischemia and non-ischemia

cases in the DFU that make classifiers difficult to predict the right class. Also,

there are other influential factors in the classification of these conditions such as

lighting conditions, marks, tattoo and skin tone due to the patient’s ethnicity. In

misclassified cases of non-ischemia as shown in Fig. 8.14, the cases (a) and (b) are
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(a) (b) (c) (d)
Accurate non-ischemia cases Accurate ischemia cases

Figure 8.13: Correctly classified patches by InceptionResNetV2 on Ischemia
dataset. (a) and (b) represents non-ischemia cases. (c) and (d) represents

ischemia cases.

(a) (b) (c) (d)
Misclassified non-ischemia cases Misclassified ischemia cases

Figure 8.14: Misclassified patches by InceptionResNetV2 on Ischemia dataset.
(a) and (b) represents non-ischemia cases. (c) and (d) represents ischemia cases.

hindered by the lighting condition and tattoo respectively whereas in the (c) and

(d) misclassified ischemia cases, the ischemia features are too subtle to be detected

by the algorithm. In Fig. 8.16, misclassified cases of non-infection, the presence

of blood in the case (a) whereas in the case (b) belongs to one of the rare cases

in the dataset that is the presence of ischemia and non-infection. In misclassified

infection cases, the visual indicators of infection in these cases were too subtle.

The current ground truths are based on visual inspection by experts only

and not supported by the medical notes or clinical tests. Also, DFU images were

derided with debridement before these images were captured. Hence, the debride-

ment of DFU removed the important visual indicators of infection such as coloured

exudate. Therefore, the sensitivity and specificity of these algorithms can be fur-

ther improved in the future feeding in ground truth from clinical tests such as

vascular assessments (ischemia) and blood tests (to identify the presence of any

bacterial infection).
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(a) (b) (c) (d)
Accurate non-infection cases Accurate infection cases

Figure 8.15: Correctly classified patches by InceptionResNetV2 on Infection
dataset. (a) and (b) represents non-infection cases. (c) and (d) represents

infection cases.

(a) (b) (c) (d)
Misclassified non-infection Misclassified infection cases

Figure 8.16: Misclassified patches by InceptionResNetV2 on Infection dataset.
(a) and (b) represents non-infection cases. (c) and (d) represents infection cases.

8.4 Summary

In this work, we trained various classifiers based on traditional machine learn-

ing algorithms and CNNs to discriminate the conditions of (1) ischemia and non-

ischemia; (2) infection and non-infection in DFU skin. We found high-performance

measures in the binary classification of ischemia, whereas moderate performance

by classifiers in the classification of infection and non-infection classes. It is vital

to understand the features of both conditions of DFU (ischemia and infection) in

the computer vision perspective. Determining these conditions especially infec-

tion from the non-standard foot images could be very challenging due to (1) high

visual intra-class dissimilarities and inter-class similarities between classes; (2) the

visual indicators of infection and ischemia are too subtle in DFU; (3) medical

tests are needed to assess these conditions; (4) other factors such as lighting con-

ditions, marks, and skin tone due to patient’s ethnicity. Ground truths enhanced

by clinical tests for the ischemia and infection may provide further insight and

further improvement of algorithms even where there is no apparent visual indica-

tor by eye. In the case of infection even after debridement, ground truth informed

by blood tests for infection may yield improvements to sensitivity and specificity
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even in the absence of overtly obvious visual indicators. With more balanced data

and improved data capturing of DFU, the performance of these methods could be

improved in the future. This work has the potential for technology that may trans-

form the detection and treatment of diabetic foot ulcers and lead to a paradigm

shift in the clinical care of the diabetic foot.
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Chapter 9

Conclusion and Future Works

In this final Chapter, a summary of the contributions of this thesis

on recognition and analysis of DFU are discussed. A critical analysis

of the work completed is done with a focus on the strengths and lim-

itations found during the research. It also highlights potential future

improvements to this field and the direction in which it is heading for

researchers in this continuously growing area.

9.1 Research Findings

A summary of the research objectives is shown in Table 9.1 along with the corre-

sponding outcomes. These findings will detail the reason for each objective and

how the outcome was achieved.

Diagnosis and recognition of DFU by the computerised method has been

an emerging research area with the evolution of computer vision, especially deep

learning methods. In this work, we investigated the use of both conventional

machine learning and deep learning for the recognition and analysis DFU. We

achieved relatively good performance using a conventional machine learning tech-

nique. But, due to multiple intermediate steps, this approach is very slow for DFU

recognition tasks. In deep learning, we used different architectures to train the

end-to-end models on the DFU dataset with different hyper-parameter settings to

detect DFU on the full foot images with high accuracy. These methods are capable

of localising and segmenting multiple DFU with high inference speed. Then, we
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Table 9.1: The research objectives (defined in Section 1.4) against the actual
outcomes.

No. Objective Outcome

1 To study the literature related to
the background of DFU, medical
classification systems for DFU, and
computerised methods for recogni-
tion of DFU of various grades and
stages.

We identified the research gaps in
computerized methods for recog-
nition of DFU, discussed various
popular medical classification sys-
tems used to grade DFU and estab-
lished standardised DFU datasets
(with experts annotation) for pop-
ular computer vision tasks that are
classification, segmentation and lo-
calisation.

2 To propose a novel computer vi-
sion method for DFU classification
based on deep learning approach
to differentiate normal skin lesions
and DFU skin lesion in the foot re-
gion.

DFU dataset of 292 images is delin-
eated by experts to produce healthy
skin and DFU skin patches. We
used machine learning algorithms
to extract the features for DFU and
healthy skin patches to understand
the differences in the computer vi-
sion perspective. A novel deep
learning classification framework is
introduced - DFUNet, which out-
performed the state-of-the-art tra-
ditional machine learning and deep
learning methods for DFU classifi-
cation [2].

3 To develop new CNN-based au-
tomatic segmentation methods to
segment DFU and surrounding skin
on full foot images as surrounding
skin is an important visual indica-
tor to assess the progress of DFU.

Experts precisely delineated the
DFU and the surrounding skin re-
gion in full foot images. This is
the first time, segmentation of sur-
rounding skin is performed which
is an important indicator for clini-
cians to assess the progress of DFU.
We proposed to use two-tier trans-
fer learning segmentation methods
for semantic segmentation of DFU
and its surrounding skin [3].
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Table 9.2: The research objectives (defined in Section 1.4) against the actual
outcomes.

No. Objective Outcome

4 To develop robust and lightweight
deep learning methods for DFU lo-
calisation that can be utilized in
mobile devices for remote monitor-
ing.

State-of-the-art deep learning lo-
calisation methods are tested on
the extensive DFU dataset of
1775 images and FootSnap dataset.
We transferred the robust and
lightweight models on mobile de-
vices such as Nvidia Jetson TX2
and smart-phone android applica-
tion for remote monitoring of DFU
[1].

5 To analyse the different conditions
of diabetic foot pathologies accord-
ing to the popular medical classifi-
cation systems.

We investigated the different con-
ditions of DFU such as site, in-
fection, neuropathy, bacterial infec-
tion, area, and depth according to
the computer vision perspective. In
this work, we used machine learn-
ing algorithms to determine the im-
portant conditions of DFU such as
bacterial infection and ischemia.

demonstrated how the localisation methods can be easily transferred to a portable

device, Nvidia Jetson TX2, to produce inference remotely. Finally, these deep

learning methods were used in android application to provide real-time DFU lo-

calisation. In this work, we developed mobile systems that can assist both medical

experts and patients for the DFU diagnosis and follow-up in the remote settings.

In the later experiment, we used the proposed natural data-augmentation with

the help of DFU localisation to create DFU patches from full size foot images.

These patches are useful to focus more on finding the important characteristics of

DFU such as infection and ischemia. Then, we investigated the use of both CML

and CNNs to classify these conditions as binary classification. In this experiment,

we received very good performance when it comes to find ischemia despite the

unbalanced dataset. But in the case of infection, the classifiers did not perform

well, as the condition of infection is very hard to recognise from the foot images

even by the experienced podiatrists [46].

Despite receiving very good accuracy with different algorithms proposed in
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terms of classification, segmentation and localization methods, there were few

limitations regarding recognition of DFU in some particular cases such as pre-

ulcer conditions and very small DFU with subtle features. The current DFU

dataset was captured from Lancashire Teaching Hospital, where most of the DFU

images are captured with already significant developed of DFU. There were very

few cases in which pre-ulcer and subtle DFU were captured. Hence, there is a

need for more cases of DFU of these grades in the DFU dataset in order to make

algorithms more robust to detect these particular DFU.

Developing the remote, computerised and innovative DFU diagnosis system

according to the medical classification systems and exactness accomplished by the

podiatrist, it demands a significant amount of research. To assist podiatrist, foot

analysis with computerised methods in the near future, the following issues need

to be addressed.

1. The recognition of DFU on foot images with computerised methods is a

difficult task due to high inter-class similarities and intra-class variations in

terms of color, size, shape, texture and site amongst different classes of DFU.

Although, recognition of DFU on full foot images is a valuable study, further

analysis of each DFU on foot images is required according to the medical

classification systems followed by podiatrists such as Texas Classification of

DFU [1] and SINBAD Classification System [30]. We presented the analysis

of computer vision techniques to determine important conditions such as

infection and ischemia. The current dataset is not suitable for finding other

conditions such as area, and depth.

2. Ground truths enhanced by clinical tests for the ischemia and infection may

provide further insight and further improvement of algorithms even where

there is no apparent visual indicator by eye. In the case of infection even after

debridement, ground truth informed by blood tests for infection may yield

improvements to sensitivity and specificity even in the absence of overtly

obvious visual indicators. The vascular assessments may be useful for recog-

nition of ischemia.

3. Most of the state-of-the-art computerised imaging methods rely on super-

vised learning. Hence, there is a need for laborious manual annotation by

medical experts according to these popular classification systems. For ex-

ample, Texas classification system classifies DFU into 16 classes depending
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on conditions of DFU based on ischemia, infection, area and depth. These

methods can be extended to produce localisation of DFU and determine the

outcome of DFU according to the Texas classification system with substan-

tial image data belonging to each class and expert annotations.

4. Deep learning methods require a considerable amount of data to learn fea-

tures of abnormality in medical imaging. To achieve accurate DFU recog-

nition according to different classification systems, multiple images of same

DFU covering key specific conditions such as lighting conditions, the dis-

tance of image capture from the foot and orientation of the camera relative

to the foot. To our best knowledge, there are no publicly available stan-

dardised DFU dataset with descriptions and annotation. Hence, there is a

requirement of publicly available annotated DFU dataset with essential di-

agnostic in this regard. The standardised dataset can help to produce even

more accurate results with these methods.

5. Early detection of key pathological changes in the diabetic foot leading to the

development of a DFU is really important. Hence, the time-line dataset of

patients with early signs of DFU until the diagnosis is required to achieve this

objective. With these methods and time-line dataset, the early prediction,

healing progress and other potential outcomes of DFU could be possible.

6. The DFU diagnosis system should be scalable to multiple devices, platforms

and operating systems.

In the present situation, manual inspection by podiatrists remains the ideal

solution for the diagnosis of DFU as computer vision and the current dataset is

ineffective in determining the conditions of DFU such as depth, area, neuropathy.

Also, Netten et al. [46] claimed that human observers achieved low validity and

reliability for remote assessment of DFU. Hence, with the help of improved dataset

and better algorithms, the computerised diagnosis system could be used as a tool

to improve human performance.

9.2 Future Works

The current DFU dataset, the images are captured with different orientation and

distance as shown in Fig. 9.1. Hence it is very hard to estimate the approximate
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Figure 9.1: DFU images of same foot are captured with different magnification
and angles

Figure 9.2: Future work consists of finding an approximate size and site of
DFU

area of DFU. Site of DFU is also considered as one of the important condition in

SINBAD classification system to predict the outcome of DFU. Our future work

would emphasize finding the site and approximate area of DFU irrespective of

orientation and distance as shown in the Fig 9.2.

With limited human resources and facilities in healthcare systems, DFU di-

agnosis is a significant workload and burden for the healthcare systems. The

computer-based systems have huge potential to assist healthcare systems in the

DFU assessment. The primary focus of this thesis to develop automatic computer

vision methods for robust recognition of DFU. In the last chapter, we further

analyse the important conditions that are infection and ischemia with machine

learning algorithms. Another future target is to build a complete computerized

DFU diagnosis system that can determine the important conditions such as site,
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Figure 9.3: Comparison of Size of DFU against the size of image

area, ischemia, infection and depth of DFU. This diagnosis system could be de-

ployed at the cloud server to remotely assess the DFU, provide faster feedback

with good accuracy. The overview of this DFU diagnosis system is shown in Fig.

9.3. But, this integrated system should be tested and validated rigorously by podi-

atrists and medical experts, before it is implemented in the real healthcare setting

and deployed as a mobile application.
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