
Please cite the Published Version

Shepherd, Todd, Winwood, Keith, Venkatraman, Prabhuraj, Alderson, Andrew and Allen, Thomas
(2020) Validation of a Finite Element Modelling Process for Auxetic Structures under Impact.

physica status solidi (b), 257 (10). p. 1900197. ISSN 0370-1972

DOI: https://doi.org/10.1002/pssb.201900197

Publisher: Wiley

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/625038/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of an article published in physica
status solidi (b) by Wiley.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-4910-9149
https://doi.org/10.1002/pssb.201900197
https://e-space.mmu.ac.uk/625038/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1002/pssb.201900197. 
 
 This article is protected by copyright. All rights reserved 

Validation of a Finite Element Modelling Process for Auxetic Structures under Impact
 
Todd Shepherd, Keith Winwood, Prabhuraj Venkatraman, Andrew Alderson and Thomas Allen*  
 
T. Shepherd, Dr. K. Winwood, Dr. P. Venkatraman, Dr. T. Allen 
 
Sports Engineering Research TEAM, Manchester Metropolitan University, Chester Street, 
Manchester, M15 6BH, UK 
E-mail: todd.shepherd@stu.mmu.ac.uk 
 
Prof. A. Alderson 
Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK 
 
Keywords: auxetic, finite element modelling, sporting protective equipment, additive 
manufacturing, validation 
 
Auxetic materials behave unconventionally under deformation, which enhances material properties 

such as resistance to indentation and energy absorption. Auxetics, therefore, have the potential to 

enhance sporting protective equipment. This study explores finite element modeling, additive 

manufacturing and impact testing of three auxetic lattices, and a conventional equivalent, with a 

view to advance auxetic implementation within sports equipment. The lattices are modeled and 

impacts are simulated between 1 J and 5 J, for flat and hemispherical drop hammers. Simulation 

outputs, including peak impact force, impact duration, maximum axial strain and Poisson’s ratio are 

compared to experimental results from equivalent impact energies on additively manufactured 

lattices, using an instrumented drop tower and a high-speed camera. The simulation and 

experimental results show broad agreement for all lattices and scenarios, demonstrated by 

comparative force vs time plots and maximum compression images. The benefits of developing and 

validating finite element models of three auxetic lattices (as well as the conventional honeycomb 

lattice) under various impact scenarios as a process is discussed, including material characterization 

of an exemplar thermoplastic polyurethane. Future work could use the models to investigate auxetic 

lattices further, selecting and tailoring candidates to further explore their potential application to 

specific personal protective equipment in sport. 
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1. Introduction 

   Poisson’s ratio (ν) is the negative ratio of the lateral to axial strain of a material under 

compression or tension and ranges between -1 and +0.5 for three-dimensional (3D) isotropic 

materials, according to elasticity theory, [1] and -1 and +1 for two-dimensional (2D) isotropic 

materials. [2] Auxetic materials (and structures) have a negative Poisson’s ratio (NPR) as they 

expand laterally when stretched and contract laterally when compressed. [3] Auxetics can have 

enhanced properties including increased resistance to indentation and increased energy absorption 

under compression. [4, 5] They also exhibit synclastic curvature, [3, 6] which could improve the 

conformability of clothing to the body. Such properties make auxetics ideal candidates for 

enhancing personal protective equipment (PPE) in sport, [7] such as those used in rugby, [8] 

American football or snow-sports. [9, 10] 

   Head injuries, for example, still frequently occur in sport despite developments in helmet 

technology and increased user uptake. [11, 12] Shear thickening materials are often used in sporting 

PPE products, such as snowboard back protectors, but their ability to limit impact forces can change 

with temperature. [13] Approximately 4.5 million people are treated in EU hospitals for sports 

related injuries annually, [14] at a cost of €2.4 billion (~£2 billion), [15] which could be reduced with 

more effective protection and better regulation. Better fitting, more comfortable and higher 

performing auxetic PPE has potential to increase participation in sport and improve general well-

being, both physically and mentally. [16] In addition, a more active population could reduce 

healthcare costs, particularly as National Health Service providers spent ~£900 million on 

addressing health issues related to physical inactivity in the UK in 2009/10. [17] There are also social 

health benefits of practicing a sport with others. [18] Bailly et al. found that snow-sport participants 

with an injury that did not concern the head were less likely to be wearing a helmet than those 

without an injury, [19] challenging the concerns of Wilson that sporting participants who wear PPE 

take more risks. [20] 
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   While auxetic systems can be found in nature, [21] research into these materials has typically 

focused on man-made products like open-cell foam, which was first manufactured by Lakes using 

thermo-mechanical techniques that combined compression and heating. [3] Auxetic foam fabrication 

has also been investigated by Chan and Evans. [4, 22] Scarpa et al. were the first to report the 

dynamic response of auxetic open-cell foam highlighting its potential in crashworthiness 

applications. [23] More recently, this potential was demonstrated further; open-cell auxetic foam 

reduced the peak acceleration of drop tower impacts (energies up to 5.6 J) by two to three times, 

when compared to its conventional counterpart. [24] Thin polypropylene shells covering auxetic 

foam (replicating basic body protection) have reduced peak accelerations between five and ten 

times, [25, 26] when impacted with a hemispherical drop hammer, and absorbed up to three times 

more energy under quasi-static compression from a stud, [10] when compared to their conventional 

counterparts. When drop testing a head-form fitted with a sports helmet, Foster et al. reported a 

reduction of linear accelerations and Gadd Severity Index (up to 44% for side impacts) [26, 27] in 

using an open-cell auxetic foam liner, rather than the conventional open-cell foam typically used in 

such helmets.  

   Temperature and compression gradients can occur during thermo-mechanical fabrication of open-

cell auxetic foam, [25, 28] which could result in undesirable inhomogeneous samples when scaled to 

the larger sizes that are required for developing sporting PPE. Compressing larger foam samples 

into the mold during fabrication can also result in creases. [22, 29] To potentially address these issues, 

the use of a vacuum pump during the compression stage has been implemented, [30] and the 

microstructure of the open-cell foam has been subject to specific temperature profiles to effect a 

more stable auxetic transformation. [31] Other developments in fabrication techniques have also 

helped improve consistency in large samples of open-cell auxetic foam, such as through-thickness 

rods to control compression, [32, 33] but its application to PPE has not been achieved commercially. 
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Using compressed CO2 in the conversion process has been identified as a potential method to 

increase sample sizes. [34]  

   Duncan et al. recently explored the effect of heat exposure and volumetric compression during 

fabrication on the properties of open-cell auxetic foam, [35, 36] which could help facilitate 

investigations into the effect of Poisson’s ratio on indentation resistance and impact performance 

and the application of open-cell auxetic foam in commercial PPE. Closed-cell auxetic foams have 

been fabricated, [22] with a simpler fabrication process using steam penetration recently developed 

by Fan et al., [37] although its potential for sporting applications has not been investigated. 

   There are patents for the application of auxetics in sport related products, [38] while others have 

resulted in commercially available sports shoes. [39] Another example is the Trust Stealth™ Helmet 

Pad System (D3O Technologies, UK), [40] which integrates auxetic structures into the helmet liner 

padding. To the authors’ knowledge, however, there are no peer-reviewed publications that have 

tested these products. A recent publication by Bliven et al. features a helmet liner (WaveCel 

Concept) [41] for reducing rotational acceleration during oblique impacts. The liner resembles a 

double arrowhead auxetic structure, [42] although the authors do not refer to the design as auxetic 

nor provide details of how it was manufactured. 

The 2D re-entrant structure of auxetic materials was the first to be modelled numerically, [43] and 

was extended to a mechanical model of a 3D structure of rigid rods with elastic hinges to give ν = -

1. [44] Chiral auxetics are asymmetric structures that are non-superimposable on their mirror image 

and achieve NPR through node rotation-induced bending of connecting ligaments. [45] Rigid 

rotating units can have an NPR, dependent on the rotation of connected squares or other shapes 

(e.g. rectangles, triangles), and this model has been used as an alternative to the re-entrant model in 

auxetic foams. [46] Computer modeling was used in early auxetic research, with Monte Carlo and 2D 

lattice models used to demonstrate NPR in anisotropic systems. [47] 
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   A route to further facilitating and exploring the uptake of auxetics in sports equipment is through 

finite element (FE) modeling, which can predict the behavior of materials, structures and products 

under predetermined conditions and analyze design parameters, such as those in snowboard wrist 

protectors, [48] helmets and other sporting equipment and facilities. [49-51] FE modelling has been 

applied to auxetic structures and used to investigate the effect of changing unit-cell geometry on 

mechanical properties, such as Young’s Modulus and Poisson’s ratio at low axial strains, [52] and to 

investigate the effect of altering Poisson’s ratio itself on mechanical behavior of auxetic plates. [53] 

It has also been utilized to analyze the potential of auxetic constituents (e.g. cylinders, sandwich-

structures and ellipses) within composite materials, [54] to investigate the effect of unit-cell disorder 

in hexa/anti-chiral structures on material properties [55] and to illustrate induced NPR in face-

centered cubic crystals. [56] 

   FE modelling has been used to investigate auxetic structures under impact scenarios, [57] although 

these examples use flat plates and a high velocity bullet (150 to 300 m/s), which is different to the 

impact scenarios typical of sport, in terms of impactor shape, stiffness, mass and velocity. 

Elsewhere, FE modelling has been used to develop an auxetic jounce bumper in the automotive 

industry, [58] to produce auxetic stents for medicine and to predict the indentation response of an 

auxetic foam in an anti-vibration glove. [59, 60] 

   The accuracy of FE models should be quantified by comparison against experimental data if they 

are to be used to develop products such as helmets and other PPE, which requires testing of a 

physical product or prototype, [61] and was demonstrated for rotating-unit auxetic structures by 

Slann et al. [62] It is important to validate FE models for scenarios that are representative of those 

where potential products may be used, such as oblique impacts of helmets or concentrated loads for 

sporting body padding. [63, 64] Once validated, innovative design solutions can be developed and 

virtually tested using the FE models, based on obtained results and comparison to relevant 

standards or specific injury criteria. [65-68] Initial designs developed in the FE models can be 
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consequently tested and developed further, as seen with the optimization of a foam liner in 

equestrian helmets, [67] reducing the requirement for experimental work, which can be time-

consuming and require intricate or specialist test rigs and instrumentation. Validated FE models of 

auxetic structures could be combined with other FE models when investigating specific areas of 

interest, such as coupled head-form and helmet models or solid sports ball models, [49, 69] allowing 

specific injury scenarios to be investigated. Overall, FE models can improve our understanding of 

particular problems; individual components or internal parameters of a design can be isolated and 

investigated, [49, 66, 68] which would not be possible, or at least complicated, experimentally. 

   Additive manufacturing (AM) can be used to fabricate conventional and auxetic macrostructures 

as alternatives to foams (microstructures). [70] AM has been used in a sporting context to design 

multi-material shin pads, [71] to manufacture cellular structures for potential use in bicycle helmet 

inner liners and equipment brands have used AM to produce physical models and shoes. [72, 73] 

Specifically designed and intricate auxetic structures can be produced by AM, [74] and used in 

validation experiments for both FE and analytical models. [58, 75] Dual-material AM auxetic 

structures have also been developed, where a flexible and a stiffer material can be used in different 

regions of a structure, allowing greater control over its mechanical properties for the designer. [76] 

These dual-material structures are more complex to manufacture and, through the application of FE 

modelling, it may be possible to tailor the geometry of a single material structure (e.g. rib thickness 

and taper) to achieve desirable properties at lower manufacturing complexity. The current state of 

the art of AM is reported in Ngo et al. and, [77] more specifically for auxetic structures as applicable 

to sporting PPE, in Duncan et al. [7] 

   The aim of this current work was to develop and validate FE models of auxetic lattices subject to 

impact at a range of energies (1 to 5 J; maximum energy comparable to EN 14120:2003), [78] with a 

view to progressing their implementation within a sporting PPE context. The work also 

demonstrates how AM can be used to develop physical prototypes of auxetic lattices that can be 
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used for model validation purposes. The present study uses FE modelling and AM in conjunction to 

investigate the behavior of auxetic lattices under impact, to potentially advance the application of 

auxetic materials in a sporting context. The reported validation process is the necessary foundation 

step taken that can lead to the future development of more finalized and innovative auxetic sporting 

PPE designs, which should increase the uptake of auxetic materials and structures in sport. 

 
2. Methods and Materials 

2.1. Summary 

   FE models of three auxetic lattices and a conventional honeycomb lattice were developed for 

virtual impact testing, using ANSYS® Design Modeler (v18.2), and setup using ANSYS® 

Engineering Data (v18.2) and ANSYS® Workbench Mechanical (v18.2) (Livermore Software 

Technology Corporation (LSTC), CA, USA). The front face of each lattice design was sketched and 

extruded to a depth of 40 mm, resulting in 2.5D lattices (3D objects created by the extrusion of a 

2D pattern/face) that could be AM without support material. Simulations were run for all lattices 

with both a flat and a hemispherical (based on cricket ball diameter of 72 mm as used in BS 6183-

1:1981) [79] drop hammer, which were assigned velocities corresponding to the required impact 

energy.   

   The modeled lattices were converted to .stl files using ANSYS® SpaceClaim (v18.2) and 

fabricated via AM (Lulzbot® Taz 5 Desktop – fused filament fabrication, Aleph Objects, USA), 

with print times of ~15 hours. A thermoplastic polyurethane (TPU) filament (NinjaFlex®, Ninjatek, 

Manheim, PA, USA; blush color; diameter, 3 mm; density (ρ), 1200 kg/m3; tensile modulus, 12 

MPa; hardness, 85 Shore A; Glass transition, -35 °C) [80] was used as an example material for the 

validation process, which was selected for its flexibility and durability. AM settings for high print 

quality (based on visual inspection) were established through pilot prints and used throughout: 

nozzle diameter, 0.6 mm; print speed, 15 mm/s; printing temperature, 245 °C; bed temperature, 50 

°C; layer height, 0.15 mm; travel speed, 200 m/s; infill orientation, diagonal (Cura software 
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v15.08). A bespoke instrumented drop tower was used to impact test the lattices to validate the FE 

models (Section 2.4.), [48] with the hammer release height set for each impact energy, assuming no 

friction in the rail. A range of material characterization techniques (e.g. tension, compression, 

impact) were assessed for simulating the TPU within the lattice, with the method that produced the 

best overall agreement with experimental impact testing selected. 

 

2.2. Characterization of TPU 

   Five dog-bone style tensile (ISO 37:2017; [81] gauge length, 25 mm; width, 4 mm; thickness, 2 

mm) and five cylindrical compressive (BS EN ISO 386-1 (1997); [82] height, 10 mm; diameter, 20 

mm) TPU samples were fabricated via AM and characterized to support the development of a 

material model within ANSYS® Mechanical (v18.2). Following initial testing, a further five tensile 

samples scaled to 150% of the size outlined in ISO 37:2017 (gauge length 37.5 mm; width, 6 mm; 

thickness, 3 mm) were fabricated via AM to improve strain measurement using Digital Image 

Correlation (DIC) software (GOM Correlate 2017, GOM GmbH, Braunschweig, Germany). These 

material samples were used throughout, with measurements of dimensions confirming that the TPU 

did not pass its elastic limit during testing. 

   Full-field strain measurements were obtained using DIC, [83] as in previous research with sports 

equipment and auxetic foam, [33, 35, 36, 84, 85] amongst other applications. Speckle patterns were 

applied to the central region (37.5 x 6.0 mm) of the face of the tensile samples prior to testing using 

matt black acrylic spray paint. A camera (Phantom Miro R110, Vision Research UK Ltd., Bedford, 

UK; resolution, 1280 x 800 pixels; sample rate, 24 fps; lens, Nikon® AF Nikkor 24-85 mm, f/2.8-

4D IF) was used to film the pattern as the samples were stretched to 50% of their original length at 

a strain rate of 0.006 s-1 (Hounsfield HK10S Tensometer; load cell, 100 N; sample rate, 22.5 kHz). 

Using Microsoft® Excel, a second order polynomial trend line (selected based on visual inspection) 
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was fitted to plots of lateral vs axial strain, obtained from the video footage using DIC, and 

differentiated to give the relationship between Poisson’s ratio and axial strain.  

   To investigate the TPU rate dependency, the compressive samples (BSEN ISO 386-1) were tested 

at the higher strain rates (Instron Universal testing machine, Labtronic 8800 console, 5 kN load 

cell) of 1 s-1, 2 s-1, ~4 s-1, ~8 s-1 and, the machine maximum of ~19 s-1 (maximum displacement rate 

in compression = ~180 mm/s). Further tensile testing was performed at 1 s-1 and 2 s-1, and the 

maximum achievable strain rate in tension with the samples and the device used (Instron, 

pneumatic grips, pressure, 3-4 bar) was ~3 s-1, as undesirable noise was observed in the data at 

higher rates. The five tensile and compressive samples were cycled to 40% strain five times 

(preloads; tensile, 15 N; compressive, 100 N), to account for stress softening (Mullins’ effect), [86] 

with the data from the final loading cycle analyzed. Force vs extension data from the testing 

machine was converted to engineering stress vs engineering strain using the dimensions of each 

sample, as measured with Vernier calipers (Duratool, D00352).  

   Stress relaxation tests were performed on two of the compressive samples (from before) at a later 

date to provide time dependent (viscoelastic) data for the TPU material model (Instron machine, as 

used previously), as required for simulating lattice response under impact. Prior to relaxation 

testing, each sample was compressed five times to a strain of either 0.2 or 0.4 (to account for the 

Mullins’ effect). The sample was then compressed to a strain of either 0.2 or 0.4 at a rate of ~12 s-1 

(120 mm/s; t0.2 = 0.0176 s) and ~15 s-1 (145 mm/s; t0.4 = 0.0280 s) respectively, where it was then 

held for 600 seconds, [87] while the decaying force was measured (sample rate, 1.2 kHz). The factor 

of ten rule was applied to remove the first 10t (s) of data after loading (0.176 or 0.280 s), [88] as 

stress waves generated during loading can result in non-pure viscoelastic behavior at the start of the 

test. The force data was converted to Young’s modulus (E) (in compression) using the sample 

dimensions and applied strain. Equation (1) was then applied to calculate shear modulus (G), using 
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the Poisson’s ratio (ν) from the tensile tests, with G vs t then plot (as required for the material model 

input). 

𝐺 = �
�(���)             (1) 

2.3. Finite element modeling of auxetic lattice impacts 

   An auxetic lattice geometry comprising of repeat ‘bow tie’ re-entrant structures was modeled 

(Figure 1) as an initial auxetic prototype to investigate (consisted of seven unit-cells wide and three 

high). [43, 89] A rectangular face (80.0 x 46.5 mm) was used as pilot testing showed a squared-faced 

cuboid lattice (60 x 60 x 20 mm) was prone to buckling under compression. The specific size and 

shape of the lattice was not deemed crucial, as the focus of this work was to develop and validate 

FE models, particularly a TPU material model suitable for simulating impact response, whilst 

exploring the feasibility of using AM for producing prototypes for testing rather than developing a 

PPE product solution. The re-entrant lattice was split into 123 bodies and given shared topology to 

obtain a more uniform hexahedral mesh (using default solid elements with constant stress; 

ELFORM = 1) [90] than when using a continuous geometry (481,680 elements; 606,690 nodes).  

   Anti-tetra chiral (735,300 elements; 958,692 nodes, hexahedral mesh), [91] missing-rib/hound’s 

tooth (600,453 elements; 742,264 nodes, hexahedral mesh) [92] and conventional honeycomb 

hexagonal honeycomb (531,400 elements; 673,172 nodes, hexahedral mesh) [93] lattices were also 

modeled (Figure 1c - h) and manufactured using the techniques, model settings and AM settings as 

for the re-entrant lattice. A maximum element face size of 5 x 10-4 m was determined from a mesh 

convergence study for the re-entrant and the same size was used for the hound’s-tooth lattice. 

Maximum element sizes of 4 x 10-4 m and 3.5 x 10-4 m was used for the anti-tetra chiral and 

conventional honeycomb lattices respectively. Relevant metrics were assessed for all meshes; each 

mesh had a mean aspect ratio value of 1.7 or lower, a mean element quality of 0.85 or higher and a 

skewness of 0.17 or lower, indicating a good quality mesh. [90, 94] Each mesh had at least three 
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elements through each unit-cell wall, preventing shear locking from stiffening the lattices 

undesirably. [90, 94] 

   The unit-cell wall thickness was matched to the re-entrant lattice at 1.5 mm and the overall lattice 

dimensions (height, width, depth) were matched closely (re-entrant: mass, 56.0 g; volume (of solid 

material), 4.67 x 10-5 m3; anti-tetra chiral: mass, 74.7 g; volume, 5.77 x 10-5 m3; hound’s-tooth: 

mass, 80.3 g; volume, 6.56 x 10-5 m3; conventional honeycomb: mass, 38.5 g; volume, 3.27 x 10-5 

m3). The mass of the AM lattices varied from those in the models by 3.1 g (re-entrant), 9.0 g (anti-

tetra chiral), 0.9 g (hound’s-tooth) and 0.8 g (conventional), indicating some inaccuracies in 

printing. The conventional honeycomb lattice had the lowest mass of the lattices as it was designed 

using an equivalent cell-angle to the re-entrant lattice (30°) with equivalent dimensions, whilst 

maintaining whole unit-cells.  

   To mimic the validation experiments, the flat (steel; diameter, 80 mm; thickness, 10 mm; ρ, 7,850 

kg/m3; E, 2 x 1011 Pa; v, 0.3; elements, 5,465; nodes, 6,792; hexahedral mesh) and hemispherical 

(aluminum alloy; diameter, 0.075 m; ρ, 2,770 kg/m3; E, 7.1 x1010 Pa; v, 0.33; elements, 54,549; 

nodes, 10,304; tetrahedral mesh with one point constant stress solid elements; ELFORM = 10) [90] 

drop hammers were modeled. The geometries did not include the rail carriage the hammers were 

attached to (for simplicity), but the densities were adjusted (flat, 31,990 kg/m3; hemisphere, 19,708 

kg/m3) to match the total experimental mass (flat, 1.60 kg; hemisphere, 1.92 kg). A base plate was 

also modeled for the structure to rest on (steel; 0.140 x 0.100 x 0.015 m; 12,768 elements, 15,561 

nodes; hexahedral mesh). Rigid material models (*MAT_RIGID) were assigned to these parts, with 

the base plate fully constrained and the hammer constrained in all but the y-direction (vertical) to 

replicate its movement on the rail in the drop tower experiment. Each rigid body had a maximum 

element size of 2.5 mm.  

   A contact algorithm was assigned between the lattice and the base plate, as well as between the 

lattice and the flat impactor (*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE). Different 
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contact algorithms were used for the contact between the hemispherical hammer and the lattice 

(*CONTACT_AUTOMATIC_NODES_TO_SURFACE; asymmetric), and for the self-contact 

between the lattice ribs (*CONTACT_AUTOMATIC_SINGLE_SURFACE), as recommended for 

structural impacts. [90, 94] All friction coefficients were set to 0.7 for these contacts, based on a study 

of tires (using the same TPU) on an aluminum rail. [95] Other LS-DYNA specific settings were 

included for the rigid body contacts (soft constraint formulation; SOFT=1, soft constraint scale 

factor, 0.3; viscous damping coefficient, 10; slave penalty scale factor, 1) and for the TPU self-

contact (segment based contact setting, soft = 2; soft constraint scale factor, 0.3; viscous damping 

coefficient, 50; slave penalty scale factor, 5; solid element thickness, 5 x 10-5 m). [90, 94]  A time-step 

safety (scale) factor of 0.5 was used with a maximum time step size of 2 x 10-6 s to prevent negative 

volume errors. [90, 94] After pilot simulations, an hourglass control (Flanagan-Belytschko Stiffness 

Form; LS-DYNA ID 4) of 0.10 was used, with the default settings of quadratic bulk (1.5) and linear 

bulk (0.06), to ensure the hourglass energy was less than 10% of the internal energy of the system 

for each simulation. [90, 94] 

   Initially, a linear elastic material model (*MAT_ELASTIC) was assigned to the lattice, using data 

from Yang for the same TPU (ρ, 1,200 kg/m3; E, 15 MPa; ν, 0.48), [96] but this resulted in excessive 

deformation of the structure under impact, indicating insufficient stiffness and the requirement for a 

more complex material model. Non-linear hyperelastic material models were trialed, including 

Ogden, Polynomial and Mooney-Rivlin. [90] The Mooney-Rivlin 5 parameter 

(*MAT_HYPERELASTIC_RUBBER five term, with optional viscoelastic card in the form of a 

Prony series) [90] was consequently assigned to predict the experimentally measured stress vs strain 

relationship and determine material coefficients (Cij) using ANSYS® Engineering Data. Equation 

(2) outlines the constitutive model of the Mooney-Rivlin 5 parameter material model, derived from 

the strain energy function (W) and three strain invariants I1, I2 and I3, where Cij are material 

constants relating to the shear behavior. [97]  
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𝑊(�) = 𝐶��(𝐼� − 3) + 𝐶��(𝐼� − 3) + 𝐶��(𝐼� − 3)� +  𝐶��(𝐼� − 3)� +  𝐶��(𝐼� − 3) (𝐼� − 3)   (2) 

   Three sets of stress vs strain relationships were trialed in the hyperelastic material model and 

tested in the impact simulations, corresponding to: i) the compression test data at the highest strain 

rate (~19 s-1; E, ~20 MPa, up to 10% strain) in isolation, ii) the compression test data at the highest 

strain rate combined with the tensile test data and iii) data obtained from impact testing the 

cylindrical compressive samples, as detailed in the following sub-section (2.4). For ii), the 

experimental stress values from the tensile data at the maximum strain rate (~3 s-1) were artificially 

stiffened, since the test was at a lower strain rate than the compressive test. The stiffening factor 

applied to the tensile data was tuned by matching simulation and experimental results, similar to the 

approach of Smith & Duris [69] fitting viscoelastic parameters to improve sports ball model and 

experimental agreement and Andena et al. [98] extrapolating low strain rate experimental data to 

higher strain rates during sport surface model development.  

   The shear modulus vs time data from the stress relaxation test was curve-fit to a three term Prony 

series (Equation (3): G, shear modulus; t, time; α, shear constant; β, time constant), as reported by 

Smith & Duris when characterizing polyurethane softball cores, [69] to determine six viscoelastic 

constants: αi  and βi (Mechanical APDL v18.2 (LTSC, CA, USA)). 

𝐺(𝑡) =  ∑ 𝛼�𝑒���� �
���          (3)  

   The hyperelastic and Prony series coefficients, and the value determined for ν, were used to form 

a material model specific to the TPU. The ρ from the TPU data sheet was included, [80] with the 

maximum shear modulus (Gmax), determined from experimental stress relaxation data (with the 

factor of ten rule applied) (Figure 2), used as the ‘frequency independent damping’ value. [90] 

Critical stress (notation: SIGF) was calculated by dividing Gmax by 250. [90] The material model 

snippet (Table 1) was applied to the TPU bodies for each lattice and simulations were run for 

impact energies of 1 J, 3 J and 5 J. Simulation results for all lattice impacts were generated via the 
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explicit dynamic solver, LS-DYNA vR8.1.0 (LSTC), with LS-Pre-Post-4.3 (LSTC) used for post-

processing. 

 

2.4. Impact testing of auxetic structures 

   The drop hammer was attached to a carriage (Linear 488-5136, RS Components, Corby, UK) on a 

slide rail (Linear WS-10-40-1000, 488-5243, RS) and held and released by a magnet-coupling 

device (F4M905 70 kg Pull, First4Magnets, UK). The lattice to be impacted was positioned on an 

aluminum plate (0.118 x 0.118 x 0.015 m) that was attached to a large steel plate (0.75 x 0.45 x 

0.04 m) via a uniaxial load cell (208C05, PCB, UK) close to each corner. This setup created a 

bespoke force platform, whereby the load cells recorded temporal voltage that was converted to 

force using their calibration factor (as provided by supplier – mean, 0.230 mV/N; standard 

deviation, +0.002 mV/N). The force platform was similar to the design used by Smith et al. for 

testing sports balls. [99] 

   The load cells were connected to two three-channel signal conditioners (480B21, PCB, UK – x10 

gain), which were connected to a digital oscilloscope (PicoScope 4424, PicoTech, UK). Each 

impact was filmed (resolution, 512:320 pixels; sample rate, 10 kHz) with the camera used for 

tensile testing placed approximately 0.2 m in front of the lattice, which was aligned in the center of 

the image. The camera was synchronized with the load cells via the oscilloscope (trigger level, 500 

mV; sample rate, 10 kHz), and was activated by a manual trigger as the hammer was released 

(falling edge, 0.5 V). The vertical axis of the lattice was aligned with that of the drop hammer by 

eye, with the impact position checked in the video footage. Each impact per energy was repeated 

three times and mean values for peak force, maximum axial strain and impact duration were 

determined. The camera was calibrated using the measured height of the un-deformed lattice (e.g. 

re-entrant = 46.5 mm) in each video (Phantom Cine Viewer v3.0.770.0), allowing maximum axial 

deformations to be manually measured and converted to strain (estimated error of within 1 mm/ 

A
cc

ep
te

d 
A

rti
cl

eThe drop hammer was attached to a carriage (Linear 488

A
cc

ep
te

d 
A

rti
cl

eThe drop hammer was attached to a carriage (Linear 488

slide rail (Linear WS

A
cc

ep
te

d 
A

rti
cl

e
slide rail (Linear WS-

A
cc

ep
te

d 
A

rti
cl

e
-10

A
cc

ep
te

d 
A

rti
cl

e
10-

A
cc

ep
te

d 
A

rti
cl

e
-40

A
cc

ep
te

d 
A

rti
cl

e
40

device (F4M905 70 kg Pull, F

A
cc

ep
te

d 
A

rti
cl

e
device (F4M905 70 kg Pull, F

aluminum plate (0.118 x 0.118 x 0.015 m) that was attached to a large steel plate (0.75 x 0.45 x 

A
cc

ep
te

d 
A

rti
cl

e

aluminum plate (0.118 x 0.118 x 0.015 m) that was attached to a large steel plate (0.75 x 0.45 x 

a

A
cc

ep
te

d 
A

rti
cl

e

a uniaxial load cell (208C05, PCB, UK) close to each corner. This setup created 

A
cc

ep
te

d 
A

rti
cl

e

uniaxial load cell (208C05, PCB, UK) close to each corner. This setup created 

bespoke force platform, whereby the load cells recorded temporal voltage that was converted to 

A
cc

ep
te

d 
A

rti
cl

e

bespoke force platform, whereby the load cells recorded temporal voltage that was converted to 

force using their calibration factor (

A
cc

ep
te

d 
A

rti
cl

e

force using their calibration factor (

deviation, +0.002 mV/N). The force platform was similar to the desig

A
cc

ep
te

d 
A

rti
cl

e

deviation, +0.002 mV/N). The force platform was similar to the desig

testing sports balls. 

A
cc

ep
te

d 
A

rti
cl

e

testing sports balls. [99

A
cc

ep
te

d 
A

rti
cl

e

[99]

A
cc

ep
te

d 
A

rti
cl

e

]

A
cc

ep
te

d 
A

rti
cl

e

The load cells were connected to two three

A
cc

ep
te

d 
A

rti
cl

e

The load cells were connected to two three

gain), which were connected to a digital oscilloscope (PicoScope 4424, PicoTech, UK). Each 

A
cc

ep
te

d 
A

rti
cl

e

gain), which were connected to a digital oscilloscope (PicoScope 4424, PicoTech, UK). Each 

impact was fil

A
cc

ep
te

d 
A

rti
cl

e

impact was filmed (resolution, 512:320 pixels; sample rate, 10 kHz) with the camera used for 

A
cc

ep
te

d 
A

rti
cl

e

med (resolution, 512:320 pixels; sample rate, 10 kHz) with the camera used for 

nsile testing

A
cc

ep
te

d 
A

rti
cl

e

nsile testing placed approximately 

A
cc

ep
te

d 
A

rti
cl

e

placed approximately 

the image. The camera was synchronized with the load cells via the oscillo

A
cc

ep
te

d 
A

rti
cl

e

the image. The camera was synchronized with the load cells via the oscillo

mV; sample rate, 10 kHz), and was activated by a manual trigger as the hammer was released

A
cc

ep
te

d 
A

rti
cl

e

mV; sample rate, 10 kHz), and was activated by a manual trigger as the hammer was released

(falling edge, 0.5 V). A
cc

ep
te

d 
A

rti
cl

e

(falling edge, 0.5 V). The vertical axis of the lattice was aligned with that of the drop hammer by A
cc

ep
te

d 
A

rti
cl

e

The vertical axis of the lattice was aligned with that of the drop hammer by A
cc

ep
te

d 
A

rti
cl

e

eye, with the impact position checked iA
cc

ep
te

d 
A

rti
cl

e

eye, with the impact position checked i



  

 This article is protected by copyright. All rights reserved 

~2% strain). Impact duration was measured experimentally by cross-referencing synchronized 

video and load cell data to identify the start and end of contact (estimated error of within 0.5 ms/5 

frames). The repeat showing the closest overall agreement with these mean values was used for 

force vs time plots, the experimental images at maximum axial strain presented in the results section 

and for the approximation of Poisson’s ratio.  

   To investigate the agreement between the simulation and experiment: peak forces, maximum 

axial strains, impact durations and Poisson’s ratios were compared. Values for Poisson’s ratio were 

determined for the lattices for flat plate impacts at 3 J. A central region for each lattice was selected 

and two axial (y1, y2) and two lateral displacements (x1, x2) were measured, up to ~0.2 axial strain 

(Figure 1). Experimentally, this was done using Phantom Cine Viewer (as detailed previously), with 

measurements taken every 5 frames (0.5 ms) and the same reference point for each measurement 

manually selected. For simulations, specific nodes were selected with x and y displacements 

measured using LS-Pre-Post-4.3 every ~0.3 ms, 0.2 ms, 0.25 ms and 0.5 ms for the re-entrant, anti-

tetra chiral, hound’s-tooth and conventional lattices respectively (different sample rates due to 

different impact durations). Lateral and axial strains were calculated and plotted using Microsoft 

Excel, with the gradient of a linear trend line used to approximate Poisson’s ratio. 

   The drop tower rig was also used to impact test the five cylindrical compressive samples, using 

the flat dropper, to obtain high strain rate stress vs strain data for the TPU. The approach was 

similar to that of Burbank and Smith who developed an impact test method to obtain stress vs strain 

data for polyurethane foam at high strain rates for modeling sports balls, [100] and Ankrah and Mills 

who characterized ethylene vinyl acetate foam for modeling shin pads with a drop tower. [101] Drop 

heights varied from 5 to 25 cm in 5 cm increments (velocity range, 1.0 to 2.2 m/s; energy range 0.8 

to 3.9 J), with the load cells sampling at 200 kHz. Each impact energy was repeated three times and 

showed graphical consistency. A second-order polynomial trend line was fitted to the initial section 

of the acceleration (force) vs time data (based on visual inspection and avoiding any noisy data 
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towards maximum compression), which corresponded to sample loading. Smoothed acceleration vs 

time data was generated from the equation of the trend line, and the trapezium method was applied 

to obtain the strain vs time relationship. Stress vs strain relationships were then obtained using the 

acceleration (force) data generated previously from the equation of the trend line. Maximum 

displacements/strains were calculated and compared to those measured in the video footage to 

check accuracy (e.g. stress vs strain data used in FE models at 10 cm impact height; velocity, 1.4 

m/s; energy, 1.6 J, calculated maximum displacement of 1.98 mm vs measured maximum 

displacement of 1.85 mm; strain, ~0.2 ). Strain rate during sample loading was approximated from 

the gradient of a linear trend line fitted to strain vs time data, acknowledging that the rate of 

compression is inherently changing as the drop hammer decelerates. 

3. Results 

3.1. Material Characterization 

   Poisson’s ratio of the TPU dog-bone samples decreased in a quasi-linear fashion from ~0.45 to 

~0.25, as tension increased up to 40%. The maximum v (~0.45) and the corresponding tensile 

modulus (7 MPa, up to 10% strain), were both lower than the values of v = 0.48 and E = 15 MPa in 

Yang et al., [96] although this publication did not provide details of material characterization 

techniques, AM procedures nor printer settings. The compressive modulus obtained from the 

compressive testing (at ~19 s-1) was ~20 MPa (also up to 10% strain); closer to the published E 

value of Yang et al. 

   Compression testing showed the TPU to be rate dependent, increasing in stiffness with strain and 

strain rate (Figure 2a). The rate dependency of the TPU was further highlighted in the data from the 

impact tests on the compressive samples (strain rate range, ~96 to ~220 s-1) (Figure 2a), where the 

stiffness was almost twice that of the compression tests (E range, ~32 to 36 MPa, up to 10% strain). 

When using the compression test data in isolation to obtain the Mooney-Rivlin coefficients, the 

simulation over-predicted the deformation of the lattice in comparison to the experiment. When 

A
cc

ep
te

d 
A

rti
cl

edisplacements/strains were 

A
cc

ep
te

d 
A

rti
cl

edisplacements/strains were 

check accuracy (e.g. stress 

A
cc

ep
te

d 
A

rti
cl

e
check accuracy (e.g. stress 

m/s; energy, 1.6 J, c

A
cc

ep
te

d 
A

rti
cl

e
m/s; energy, 1.6 J, calculated 

A
cc

ep
te

d 
A

rti
cl

e
alculated 

displacement of 1.85 mm; strain, ~0.2 ). Strain

A
cc

ep
te

d 
A

rti
cl

e

displacement of 1.85 mm; strain, ~0.2 ). Strain

the gradient of a linear trend line fitted to strain 

A
cc

ep
te

d 
A

rti
cl

e

the gradient of a linear trend line fitted to strain 

compression is inherently changing as the drop hammer decelerates.

A
cc

ep
te

d 
A

rti
cl

e

compression is inherently changing as the drop hammer decelerates.

3.1. Material Characterization

A
cc

ep
te

d 
A

rti
cl

e

3.1. Material Characterization

Poisson’s ratio of the TPU 

A
cc

ep
te

d 
A

rti
cl

e

Poisson’s ratio of the TPU 

~0.25, as tension increased up to 40%. The maximum 

A
cc

ep
te

d 
A

rti
cl

e

~0.25, as tension increased up to 40%. The maximum 

modulus (7 MPa, up to 10% strain), were both lower than the values of 

A
cc

ep
te

d 
A

rti
cl

e

modulus (7 MPa, up to 10% strain), were both lower than the values of 

[96

A
cc

ep
te

d 
A

rti
cl

e

[96]

A
cc

ep
te

d 
A

rti
cl

e

] although this publication did not provide details of material characterization 

A
cc

ep
te

d 
A

rti
cl

e

although this publication did not provide details of material characterization 

techniques, AM procedures nor printer settings. The compressive modulus 

A
cc

ep
te

d 
A

rti
cl

e

techniques, AM procedures nor printer settings. The compressive modulus 

compressive testing (at ~19

A
cc

ep
te

d 
A

rti
cl

e

compressive testing (at ~19

A
cc

ep
te

d 
A

rti
cl

e

of Yang 

A
cc

ep
te

d 
A

rti
cl

e

of Yang et al.

A
cc

ep
te

d 
A

rti
cl

e

et al.

Compression testing showed the TPU to be rate dependent, increasing in stiffness with strain and A
cc

ep
te

d 
A

rti
cl

e

Compression testing showed the TPU to be rate dependent, increasing in stiffness with strain and 

Figure 2 A
cc

ep
te

d 
A

rti
cl

e

Figure 2a A
cc

ep
te

d 
A

rti
cl

e

a). The rate dependency of the TPU was further highlighted in the data from the A
cc

ep
te

d 
A

rti
cl

e

). The rate dependency of the TPU was further highlighted in the data from the 



  

 This article is protected by copyright. All rights reserved 

using the combined compression and tensile data in the material model, broad agreement was 

obtained between the simulated and experimental impacts on the lattices. The tensile data had to be 

stiffened by a factor of six, however, which was considered excessive. The stress vs strain data 

obtained from the impact test on the compressive samples obtained at a drop height of 10 cm (strain 

rate, ~140 s-1; E, ~ 32 MPa) was, therefore, used to obtain the Mooney-Rivlin coefficients, as this 

provided broad agreement with the experimental impact data on the lattices, without any tuning 

required.  

   The six Prony series coefficients for an applied strain of 0.4 in the stress relaxation test (and v = 

0.45) were selected due to the marginally higher strain rate achieved during loading, although a 

sensitivity analysis indicated that using the coefficients for either strain made no clear difference to 

simulation outputs (Figure 2b). 

3.2. Impact testing (experimental and simulations) 

   Figure 3 shows experimental force vs time plots (EXP) for 1.0 (‘low’), 3.0 (‘medium’) and 5.0 J 

(‘high’) impacts, with equivalent simulation (SIM) plots overlaid for comparison, for each lattice 

and hammer type. FE model and experimental images at maximum deformation at the impact 

energy of 3 J are included for visual inspection and comparison (Figure 4). Table 2 displays the 

maximum discrepancies between experimental and FE results for all lattices, and complete results 

are included in ‘Supporting Information’. In general, the trends reported were observed both 

experimentally and within the simulation results. 

   For all lattices, and both flat and hemispherical impacts, peak force and maximum axial strain 

increased with impact energy (Figure 3). The impact duration increased with impact energy for anti-

tetra chiral_flat (Figure 3c), but decreased with increasing impact energy for the other lattices 

(Figure 3d, f and h).  

   When comparing results for the two drop hammers at equivalent energies, the hemisphere 

exhibited lower peak forces (except for re-entrant and anti-tetra chiral at 5 J and for the 
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conventional honeycomb at 3 and 5 J), longer impact durations (Figure 3) and increased axial strain 

(Figure 4).  

When comparing the auxetic lattice designs across all impact energies, the re-entrant exhibited the 

lowest stiffness in compression (also lowest mass/volume). The re-entrant lattice also recorded the 

lowest mean peak force (310 N for flat and 304 N for hemisphere), the longest mean impact 

duration (28.5 ms for flat and 42.3 ms for hemisphere), and the largest mean axial strain (0.3 for flat 

and 0.4 for hemisphere). The anti-tetra chiral lattice recorded the highest mean peak forces (659 N 

for flat, 550 N for hemisphere), the lowest mean axial strain (0.1 for flat) and had the shortest mean 

impact duration (12.0 ms for flat and 21.0 ms for hemisphere), indicating it was the lattice with the 

highest stiffness in compression. 

   When comparing all lattices, the conventional honeycomb exhibited the lowest mean peak force 

under flat hammer impacts (279 N), although the peak force recorded for the impact at 5 J was 100 

N higher than the re-entrant lattice equivalent. The highest peak force overall was for the 

conventional honeycomb lattice at the hemispherical impact of 5 J (1,009 N). The mean impact 

duration and mean axial strain for the conventional honeycomb lattice were both greater than for the 

auxetic lattices, for both flat and hemisphere impacts.  

   The FE models agreed with the trends detailed previously and showed broad agreement with 

experimental results, as shown in Figure 4 (and supported by the general shape of the force vs time 

plots in Figure 3). All auxetic lattices showed an NPR in both experimental and simulation analysis, 

confirming that they were auxetic, while the conventional honeycomb lattice exhibited a positive 

Poisson’s ratio, as expected, with simulation and experimental results matching at 0.36 (Figure 5). 

For the auxetic lattices, the re-entrant exhibited the greatest magnitude of NPR (-0.81 

experimentally vs -1.08 in simulations), despite having the worst agreement between model and 

experiment, whilst the hound’s-tooth displayed the lowest magnitude of NPR and best agreement (-

A
cc

ep
te

d 
A

rti
cl

elowest mean peak for

A
cc

ep
te

d 
A

rti
cl

elowest mean peak force

A
cc

ep
te

d 
A

rti
cl

ece (310 N for 

A
cc

ep
te

d 
A

rti
cl

e (310 N for 

duration (28.5 ms for 

A
cc

ep
te

d 
A

rti
cl

e
duration (28.5 ms for f

A
cc

ep
te

d 
A

rti
cl

e
flat and 42.3 ms for 

A
cc

ep
te

d 
A

rti
cl

e
lat and 42.3 ms for flat and 42.3 ms for f

A
cc

ep
te

d 
A

rti
cl

e
flat and 42.3 ms for f

emisphere). The 

A
cc

ep
te

d 
A

rti
cl

e
emisphere). The 

lat, 550 N for 

A
cc

ep
te

d 
A

rti
cl

e

lat, 550 N for h

A
cc

ep
te

d 
A

rti
cl

e

hemisphere), 

A
cc

ep
te

d 
A

rti
cl

e

emisphere), 

impact duration (12.0 ms for 

A
cc

ep
te

d 
A

rti
cl

e

impact duration (12.0 ms for 

highest stiffness in compression

A
cc

ep
te

d 
A

rti
cl

e

highest stiffness in compression

When comparing all lattices, the conventional honeycomb exhibited the lowest mean peak force 

A
cc

ep
te

d 
A

rti
cl

e

When comparing all lattices, the conventional honeycomb exhibited the lowest mean peak force 

under flat hammer impacts (279 N), although the peak force recorded for the impact at 5 J was 100 

A
cc

ep
te

d 
A

rti
cl

e

under flat hammer impacts (279 N), although the peak force recorded for the impact at 5 J was 100 

er than the re

A
cc

ep
te

d 
A

rti
cl

e

er than the re-

A
cc

ep
te

d 
A

rti
cl

e

-entrant lattice equivalent. The highest

A
cc

ep
te

d 
A

rti
cl

e

entrant lattice equivalent. The highest

conventional honeycomb lattice at the hemispherical impact of 5 J (1,009 N)

A
cc

ep
te

d 
A

rti
cl

e

conventional honeycomb lattice at the hemispherical impact of 5 J (1,009 N)

duration and mean axial strain for the conventional honeycomb lattice were both greater than for the 

A
cc

ep
te

d 
A

rti
cl

e

duration and mean axial strain for the conventional honeycomb lattice were both greater than for the 

auxetic lattices, for both fla

A
cc

ep
te

d 
A

rti
cl

e

auxetic lattices, for both fla

The FE models agreed with the trends detailed previously and showed broad agreement with 

A
cc

ep
te

d 
A

rti
cl

e

The FE models agreed with the trends detailed previously and showed broad agreement with 

experimental results, as shown in Figure 

A
cc

ep
te

d 
A

rti
cl

e

experimental results, as shown in Figure 

plots in Figure 

A
cc

ep
te

d 
A

rti
cl

e

plots in Figure 3

A
cc

ep
te

d 
A

rti
cl

e

3). All 

A
cc

ep
te

d 
A

rti
cl

e

). All auxetic

A
cc

ep
te

d 
A

rti
cl

e

auxetic

confirming that they were auxeticA
cc

ep
te

d 
A

rti
cl

e

confirming that they were auxetic

Poisson’s ratio A
cc

ep
te

d 
A

rti
cl

e

Poisson’s ratio, A
cc

ep
te

d 
A

rti
cl

e

, as expectedA
cc

ep
te

d 
A

rti
cl

e

as expected



  

 This article is protected by copyright. All rights reserved 

0.46 experimental vs -0.44 simulation). The anti-tetra chiral showed fair agreement (-0.68 

experimental vs -0.86 simulation) (see Supporting Information). 

4. Discussion 

   The FE models of three auxetic lattices and a conventional honeycomb lattice under impact 

showed broad agreement with experimental data, when comparing force vs time plots (Figure 3) 

and images at maximum compression (Figure 4). The modeling techniques have been validated 

across three established auxetic lattices and a conventional honeycomb equivalent, [89, 91-93] two 

hammer shapes and a range of impact energies (1 J to 5 J). Agreement with the experiments across 

this range of scenarios demonstrates the robustness of the FE models and their suitability in 

predicting the performance of different lattice shapes and designs, particularly as there will be 

inherent variation in the AM of test samples. The four lattice designs exhibited clear differences in 

behavior under impact, further highlighting the potential of using FE modeling techniques for 

tailoring mechanical properties for a particular sporting application. The potential of auxetics in a 

sporting context has been demonstrated previously, and further highlighted in this study through FE 

models validated against AM prototypes, which can now be applied to develop auxetic sporting 

PPE products. [6, 7, 10, 25] 

   In particular, the effect of scaling lattice size and shape to be representative of specific sporting 

PPE products, such as body padding or helmet liners, could now be investigated. In parallel, the 

effect of auxetic unit-cell parameters on the impact performance of the lattice, [52] using established 

or new designs, can be explored in relation to injury specific criterion. Higher impact energies 

should also be considered, such as those seen in Foster et al., [26] where energies up to ~40 J were 

used to test a helmet featuring auxetic foam.  

   The strain rate used to obtain the compression data for the TPU was the maximum possible with 

the available Instron machine (~19 s-1) and the sample size tested. The maximum achievable strain 

rate for stress relaxation data was lower at ~12 s-1 due to the nature of the experiment (one 
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compressive cycle). In tension, the maximum strain rate (without excessive noise) was ~3 s-1 and 

the stress vs strain data from these tests had to be artificially stiffened to provide Mooney-Rivlin 

material model coefficients that gave acceptable, but subjective, agreement between simulation and 

experimental results. Impact testing compressive samples, similar to the work of Burbank and 

Smith and Ankrah and Mills, [100, 101] produced Mooney-Rivlin coefficients that resulted in broad 

agreement between the simulation and experiment for the auxetic lattices. While these coefficients 

will allow the FE model to be used as a design tool, there are limitations associated with this 

material testing approach, such as the level of measurement accuracy, the achievable range and 

consistency in strain rate during loading and the lack of tensile data. Future work should therefore 

investigate more established methods of characterizing the TPU (and other potential candidate 

materials) at these higher strain rates that are more representative of those experienced by the 

material in the lattice under impact. For example, using a split Hopkinson bar or dynamic 

mechanical analysis, as used by Signetti et al. to characterize closed cell polymeric foams for 

modeling back protectors. [12, 102] DIC, alongside the FE models, could also be used to obtain the 

strains and strain rates present in auxetic lattices under impact to give representative values to help 

inform material testing strategies, similar to the work of Lane et al. for sports balls. [85]   

   The specific AM settings (e.g. nozzle diameter or layer height), combined with the printer used 

and its condition, can affect the properties of the TPU and dimensional accuracy of the lattices. 

Pilot testing also indicated some variation between colors of TPU and between spools of the same 

color. Therefore, care should be taken when transferring the results presented within this study for 

material and impact testing to other applications, and further work should look to assess inherent 

variation in AM and the influence of this on the experimental results and predictions of the models. 

   When compared to experimental results, the FE models for all lattices under predicted peak forces 

at 1 J but over-predicted peak forces for 3 J and 5 J. There were exceptions for hound’s-

tooth_hemisphere and conventional honeycomb_hemisphere at 3 J, which under-predicted peak 
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force. In the simulations, the vertical axis of the drop hammer was aligned with that of the lattice 

but there was likely to be some variation in impact location during experimental testing, although 

this was not measured specifically. Additional simulations with the hemispherical drop hammer 

offset from the center of the lattice by 2.5 mm resulted in a marginal reduction in peak impact force 

and an increase in contact duration (e.g. <5% for anti-tetra chiral), which may explain some of the 

discrepancy between the model and experiment results.    

   For re-entrant_hemisphere, both the experimental video footage and simulation animations 

showed the lattice to buckle sideways in a similar manner (Figure 4), although the simulations 

appeared to over-exaggerate this movement. The relative size of the hemisphere compared to the 

lattices was large and these edge effects may be less prevalent once the lattices are scaled to sizes 

more representative of sporting PPE. The issue was not seen with anti-tetra chiral_hemisphere, as 

the anti-tetra chiral lattice has a more continuous boundary (Figure 4), and this could be a 

consideration when selecting and developing candidate auxetic lattices for further testing in 

sporting PPE applications. Future work should look to quantify the performance of each lattice, 

based on key parameters relevant to sporting PPE, such as force limitation and energy absorption. 

   The conventional honeycomb lattice exhibited lower peak forces and longer impact durations than 

the auxetic lattices at 1 J and 3 J (for flat and hemisphere impacts), indicating better impact 

performance at these impact energies. For 5 J impacts on the conventional honeycomb lattice, 

however, the peak force recorded for the hemisphere was the largest of all lattices, and the flat 

impact was larger than the re-entrant lattice. The auxetic lattices can be seen to contract laterally 

and densify beneath the drop hammer (Figure 3), preventing them from “bottoming out”, as is the 

case for the conventional honeycomb lattice at 5 J (particularly with the hemisphere), which 

expanded laterally and exhibited high axial compression (~75% for hemisphere) and a ‘spike’ in 

impact force. These results indicate that auxetic lattices are more resistant to “bottoming out” than 

their conventional counterparts, [24, 25] providing further evidence that auxetic materials may be well 
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suited for application in sporting PPE intended to offer protection across as range of impact 

scenarios.   

   The Poisson’s ratios presented in this paper were approximated at 3 J for each lattice, which was 

sufficient to confirm their auxetic nature during high strain compression. The Poisson’s ratio 

measured experimentally (-0.81) for the re-entrant lattice had a smaller magnitude than values 

reported in the literature, which approach -1 with an equivalent cell angle of -30°, based on the 

cellular material theory from Gibson and Ashby, [84]. The simulation value was -1.08, and 

substituting the re-entrant dimensions from Figure 1a into this theory, a greater magnitude of 

Poisson’s ratio was predicted (-1.22). Isotropic chiral auxetic structures have a theoretical Poisson’s 

ratio of -1, [45] although this is dependent on the chiral-type and the thickness of the cell ribs. [55] 

The difference in NPR for the experimental (-0.68) and simulation values (-0.86) of the anti-tetra 

chiral, when compared to this theoretical study, could thus be explained by the different unit-cell 

wall thickness used in this study. The hound’s-tooth showed good agreement for Poisson’s ratio (-

0.44 simulation v -0.46 experimental), although values obtained were lower than those reported by 

Smith et al. (~-0.6). [92] Future work could investigate Poisson’s ratio in more detail, considering 

factors such as how it changes with applied strain and strain rate, which could be facilitated 

experimentally by using automated tracking software. The effect of the unit-cell design, including 

increasing the concentration of unit-cells within each lattice, could be amended so their behavior is 

more representative of a continuum material. 

   The validated material model could be extended to other auxetic structures, including new 

designs, a combination of structures or be developed further to improve simulation and 

experimental agreement. The material characterization process could be used to investigate other 

materials within the FE model, which also have potential to progress the use of auxetic materials in 

sporting PPE. The auxetic lattices investigated here were limited to 2.5D and future work could use 

the model to explore 3D structures, with support material used in the AM of any prototypes. [70, 76] 
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Investigating multi-material auxetic structures could also be of particular interest. [76] The work 

presented here is limited to linear impacts, and future work could investigate auxetic structures 

under oblique impacts, which are of particular relevance to sports helmets, where limiting rotational 

acceleration is an important consideration. [26, 49]  

 

5. Conclusion 

FE models for TPU lattices have been developed and validated, across two impact scenarios (flat 

and hemispherical) and a range of energies (1 J to 5 J), with a broad agreement being shown for 

four designs: re-entrant, anti-tetra chiral, hound’s-tooth and conventional honeycomb. The benefit 

of combining FE modeling and AM when investigating auxetic and conventional honeycomb 

lattices under impact has been demonstrated, laying the foundations for future work in this area 

concerning sporting PPE. Validating the impact response of three auxetic lattices and a 

conventional honeycomb lattice with two drop hammer types, including a concentrated load that 

commonly occurs in sporting impacts, has not been reported as a systematic process before. The 

validated FE models can consequently be used to expand on this initial study and develop auxetic 

products that are particularly relevant to application within sporting PPE. Exploratory design 

studies for specific sporting PPE products of varying complexity can consequently be undertaken 

with the FE models, without having to continuously manufacture physical prototypes and subject 

them to repeated experimental work. 
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Fig
ure 
1. 
a) 
2D 
ske
tch 
of 
re-
entr
ant 
unit
-
cell
, b) 
iso
met
ric 
vie
w 
of 
co
mpl
ete 
re-
entr
ant 
latti
ce, 
c) 
2D 
ske
tch 
of 
anti
-
tetr
a 
chir
al 
unit
-
cell
, d) 
iso
met

ric view of complete anti-tetra chiral lattice, e) 2D sketch of hound’s-tooth unit-cell, f) isometric 
view of complete hound’s-tooth lattice, g) 2D sketch of conventional honeycomb unit-cell and h) 
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isometric view of complete conventional hexagonal honeycomb lattice. All dimensions shown in 
mm. 
 

 

 
Figure 2. a) Stress vs strain curves for a range of strain rates in compression (up to machine 
maximum of ~19 s-1) and from impact testing (up to ~220 s-1) and b) stress relaxation data for strain 
of 0.2 and 0.4, with factor of ten rule applied and log scale used for time axis. 
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Different axes used for conventional 
honeycomb graphs due to significantly 
larger peak force (hemisphere) and impact 
duration. 
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Figure 3. Force vs time graphs for auxetic lattices impacted at low, medium and high energies (1, 3 
and 5 J) - a) re-entrant_flat, b) re-entrant_hemisphere, c) anti-tetra chiral_flat, d) anti-tetra 
chiral_hemisphere, e) hound’s-tooth_flat, f) hound’s-tooth_hemisphere, g) conventional 
honeycomb_flat and h) conventional honeycomb_hemisphere. Images of maximum compression 
for 5 J hemispherical impacts are included to demonstrate densification of auxetic lattices in b), d) 
and f) and ‘bottoming out’ of conventional honeycomb in h). 
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Figure 4. Comparison images between simulation and experimental results at maximum 
compression of 3 J impacts, with key parameters recorded. 
 
Table 1. Material model generated and used for TPU showing required parameters obtained from 
material characterization testing 
 

Material model Coefficient value 

Mooney-Rivlin 5 
[MPa] 

C10 
-10.68 

C01 
+5.22 

C11 
+846.5 

C20 
+451.7 

C02 
+398.7 

 

6 term Prony 
[MPa for αi] 

α1 
0.0732 

α2 
0.130 

α3 
0.0728 

β1 
20.3 

β2 
1.07 

β3 
255.6 

Property Value 

ρ [kg/m3] 1.2 

ν 0.45 

Gmax [MPa] 7.2 

 SIGF [MPa] 0.03 

 
Table 2. Maximum predicted discrepancy for each key parameter, detailed per structure and 
hammer type, with the corresponding impact energy in brackets. 
 

Structure Hammer type Peak Force [N] Axial strain difference Impact duration [ms] 

Re-entrant Flat 118 (5 J) -0.06 (1 J) -5.6 (5 J) 

Re-entrant Hemisphere 63 (3 J) -0.06 (1 J) -9.0 (1 J) 

Anti-tetra chiral Flat 100 (5 J) 0.05 (3 J) 3.8 (3 J) 

Anti-tetra chiral Hemisphere 131 (5 J) 0.04 (3, 5 J) 2.7 (1 J) 

Hound’s-tooth Flat -122 (1 J) 0.08 (5 J) 7.8 (1 J) 

Hound’s-tooth Hemisphere 111 (5 J) 0.07 (3 J) 5.1 (1 J) 

Conventional honeycomb Flat 28 (3 J) -0.02 (5 J) -2.2 (3 J) 

Conventional honeycomb Hemisphere 108 (5 J) -0.07 (3 J) -7.9 (1 J) 
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Fig
ure 
5. 
Lat
eral 
vs 
axi
al 
stra
in, 
up 
to 
~0.
2 
stra
in 
for 
a) 
re-
entr
ant, 
b) 
anti
-
tetr
a 
chir
al, 
c) 
hou
nd’
s-
toot
h 

and d) conventional hexagonal honeycomb, with simulation and experimental images at ~0.2 strain 
included. Graphs are presented as positive strains and the negative of the gradient is equivalent to 
the Poisson’s ratio. 
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ToC text: 
A validated finite element model for three auxetic lattices and a conventional honeycomb lattice is 
presented. The lattices were additively manufactured and subjected to normal impacts of 1, 3 and 5 
J, using flat and hemispherical drop hammers. The model can consequently be used as a design tool 
to advance the implementation of auxetic materials in sporting PPE. 
 
ToC figure: 
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