
Please cite the Published Version

Kabir, RH, Pervaiz, B, Khan, TM, Ul-Hasan, A, Nawaz, Raheel and Shafait, F (2019) DeepRank:
Adapting Neural Tensor Networks for Ranking the Recommendations. In: 3rd Mediterranean
Conference on Pattern Recognition and Artificial Intelligence, MedPRAI 2019, 22 December 2019
- 23 December 2019, Istanbul, Turkey.

DOI: https://doi.org/10.1007/978-3-030-37548-5_13

Publisher: Springer

Downloaded from: https://e-space.mmu.ac.uk/625001/

Usage rights: In Copyright

Additional Information: “The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-37548-5_13.”

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-9588-0052
https://doi.org/10.1007/978-3-030-37548-5_13
https://e-space.mmu.ac.uk/625001/
https://rightsstatements.org/page/InC/1.0/?language=en
https://doi.org/10.1007/978-3-030-37548-5_13.\T1\textquotedblright
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

DeepRank: Adapting Neural Tensor Networks
for Ranking the Recommendations

Raaiha Humayun Kabir1, Bisma Pervaiz1, Tayyeba Muhammad Khan1,
Adnan Ul-Hasan2, Raheel Nawaz3, and Faisal Shafait1,2

1 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pakistan
{rkabir.bese15seecs, bpervaiz.bese15seecs, tkhan.bese15seecs,

faisal.shafait}@seecs.edu.pk
2 Deep Learning Laboratory, National Center of Artificial Intelligence, Islamabad,

Pakistan
3 School of Computing, Mathematics and Digital Technology, Manchester

Metropolitan University, Manchester, U.K.
R.Nawaz@mmu.ac.uk

Abstract. Ranking results are vital in order to display the most relevant
search results to the user. Similarly, ranking properties according to the
user’s context is important for enhancing user experience. In this paper
we propose an expressive neural tensor network to find similarity between
two property entities to rank the properties when searched for. Previous
similarity techniques do not take into account the numerous complex
features used to define a property. We showed that performance can be
enhanced if the property entities are represented as an average of their
constituting features before finding the similarity between them. After
training the model using the context and the user’s preferences, we tested
it to find out the similarity between the properties suggested to the user
and the one’s in the user’s history, and then ranked the results from
most to least similar. Our model hence takes into account each feature
dynamically and predicts similarity with an accuracy of 86.6 percent.

Keywords: Neural tensor networks · similarity · recommender system
· real estate · ranking.

1 Introduction

The purpose of recommendation systems is to filter information in such a way
that it is presented to the querying user in an order according to his/her pref-
erence. Many well-known recommendation systems today like Amazon, Netflix
and YouTube take input from user and show the results to the querying user
based on that input. However, they do not take into account that user prefer-
ences cannot be correctly judged by a single query. Recommendations generated
based on a single input from user are hence not very accurate.

A lot of work has been done on how to find good recommendations for a user
who is querying the system. In this paper our goal is to improve the recommen-
dations generated by taking into the account a users context. The user’s context

2 Kabir et al.

Fig. 1. Visual representation of the system used to store context and preferences,
recommend properties and display ranked recommendations.

is defined by their browsing data on a particular website and the chat history
retrieved from the Chat bot which is the end product where recommendations
are to be shown. The data of a users browsing history will help to rank the
recommendations fetched based on the users query.

We used real estate data set for our research where when a user wants a
property with certain specifications, similar properties from the database are
ranked using the browsing data of that user. Data from the real estate domain
is a very complex as a single property can have multiple features that describe it
fully. Moreover, there are many personal variables which can influence a person’s
choice regarding a property. For example one person might be looking for a house
near to a certain school for his/her convenience whereas another person might
want an apartment with 4 bedrooms. Hence determining what each user may
like becomes a difficult task because of personal variants and because of how vast
the property types can be. We chose this domain to solve the problem mentioned
above so that users can be shown the properties most important to them during
a particular time period.

Figure 1 is a simplified version of the model we used to rank the recommen-
dations. A user will generate certain chats by conversing with the chatbot (a
platform where a user can input their preferences like the number of rooms, size
of the house etc.) and their preferences will be saved. The chats will be pre-
processed to extract the intents, which will be stored in the database to improve

DeepRank: Adapting Neural Tensor Networks for Ranking 3

the Chatbot’s conversation. The chatbot will generate certain recommendations
for the user. These recommendations will be ranked using the user’s context.
Recommendations will be ranked based on what the user’s visited pages (on the
same website) contain, and by finding out the similarity between the gener-
ated recommendations and the visited properties. The similarity model is based
on neural tensor networks which instead of predicting the relations [18] is used
to rank the recommendations. To make this possible we have represented each
property as an entity (a description of the property’s feature). To rank different
properties we calculate a similarity score of two properties. Property with the
highest score gets the highest rank.

The first contribution of this paper is the adaptation of the Neural Tensor
Network (NTN), to find out the similarity between two entities and then rank
them, instead of using it to model relational information. We modified the neural
tensor networks so that instead of determining the relationship between two
properties, it could calculate the similarity score by assessing commonalities
between two properties.

The second contribution is that since the property entities can be displayed
as the average of each of the word/feature vector in the property, it can be scaled
up to a great amount to incorporate a million features, which can further increase
the strength of the model resulting in better output. The third contribution is
of maintaining context. The results are ranked according to the similarity scores
between the recommended properties and the ones visited by the user previously.
It can automatically prioritize which feature of a property is the most important
for the user in a particular time period. Hence, it takes into account both the
user’s manually entered preferences and the inferred preferences.

2 Related Work

There are several recommendation systems that have applications related to e-
commerce. Online shopping sites like Alibaba, Amazon and Ebay recommend to
the user their desired product. We will discuss some of the existing work in the
field of recommendation systems done by these organizations.

Argal et al [4] presented the history of how chatbots evolved with time. First
of all, AIML language used topics and categories to answer queries. Automatic
answer generating technique became popular where only the most significant
words were searched. Later, chatbots started using the information in the ques-
tions asked by the user to continue the conversation. However, the chatbots then
could only converse about the domain specific information on which they were
trained. Lee et al [10, 1, 7] provided us with deep insights about how a user’s
context can be defined and what are the problems associated with the systems
that are context-aware. In Shawar et al [15] the chatbot described is designed to
generate recommendation for hotels. They were able to answer queries of user
using RBM and clarifying the knowledge by asking more questions from the
user but another problem emerged in this approach, that was related to context

4 Kabir et al.

maintenance. Every time the user left the conversation their previous history
would be lost.

Fuzzy et al [5] used a Hybrid Content Based Fuzzy Conformal Recommender
System for finding items online without the hassle to go through piles of data
available online . The technique used by Qadir et al [13] provides the aggregated
score of the driver to the requesting passenger in case of carpooling services be-
cause of the conflicting needs of the driver and the passenger. Anwaar et al [3]
tackled collaborative filtering cold start cases of user rating records but other
methods of feedback are not discussed. Ying et al [19] talks about collabora-
tive deep ranking but has used the Bayesian framework model to do so. Liu et
al [12] however, showed the comparison between ranking based recommender sys-
tems and rating based recommender systems and also showed the effectiveness
of ranking based recommender systems. Guan et al [9] talks about ranking the
recommendations of tags on social networks; they have achieved this ranking us-
ing a graph-based algorithm that takes into account a user’s interests. Singhal et
al [17] talks about the latest deep learning techniques used in current recommen-
dation systems. This helped us to obtain a summary of the work that has been
done up till now for recommendation systems using deep learning in different
domains. It explains the results of using deep learning in recommender systems
across different domains and whether using deep learning in recommender sys-
tems has shown any noteworthy improvement over the conventional systems for
generating recommendations. Feng et al [8] introduced a new personalized rank-
ing metric to make the point-of-interest recommendations for social networks.
This was useful to us since we also had to find a suitable metric to check our
ranked recommendations.

The most relevant approach is described in Socher et al [18]. They introduce
neural tensor networks which are essentially neural networks but instead each
layer is replaced by many tensor layers. Using these neural tensor networks, they
showed how two unknown entities can be related by finding the relationship
between them. Prior to this paper the entities were represented as single entity
vector but with neural tensor networks the entities can be represented as the
average of the words in it and hence the performance increases. The cost function
uses triplets in the form of (Entity 1, Relationship, Entity 2); if the two entities
have the correct relationship between them, their confidence score is higher than
when either of the two entities are replaced by a random entity. The algorithm
in this paper has been used to find a relation between two entities; it handles
multiple relations between entities but has not been adapted to find out the
similarity between multiple entity pairs, and then ranking all the entity pairs on
the basis of how similar are the two entities in a particular pair, mainly in the
domain of real estate recommendations.

With the help of neural tensor networks, not only can we solve the problem of
ranking complex domain entities, but can also enhance the deep learning modern
recommendation systems [17] to elevate user experience.

DeepRank: Adapting Neural Tensor Networks for Ranking 5

3 Neural Tensor Networks for Deep Ranking

This section introduces how we adapted the NTN to work on complex real estate
data. The NTN performs the evaluation on the property entities and finds out
the similarity score to rank the properties based on the user’s context.

3.1 Problem with the Distance Model

The distance based model calculates the distance between two entities and based
on a threshold it defines whether two entities are similar or not. We initially
used the distance model approach to rank the recommendations provided to
the user by the chatbot. The problem with using the distance model is that it
does not take into account the user’s context in any way. This approach when
used, only calculates the distance between the user’s preferences vector and
the properties recommended by the bot. Hence, the distance model is unable
to use the context to infer the user’s current priorities as it is only able to
calculate the distance between two vectors. Therefore, the process of ranking
the recommended properties according to the user’s context is not possible with
the distance model.

3.2 Neural Tensor Networks

We use neural tensor networks (NTN) for ranking different properties on the
basis of the property’s features and the user’s context. The Neural tensor network
is used to calculate the similarity between two properties, by finding the common
features amongst them and then evaluating their score. For example, we fetch
4 properties (B, C, D, E) from database that are similar to property A; the
NTN will calculate the similarity between the properties. Assuming that the
similarity score for ”propertyA similar propertyD” is higher than ”propertyA
similar propertyB”, then we can conclude that D will precede B in the ranking
list. Hence the result is a ranked list of property recommendations which can
be displayed. To use Neural tensor networks, we need to define a relationship
among the two entities in question. The only relation useful for this purpose was
of ”similar” to find out whether two entities are similar to each other or not.
Figure 2 below is a visual representation of the neural tensor layer that is used
to find the similarity between two property entities. The diagram contains two
slices of tensor layers.

As described in [18], Neural Tensor Networks are used because they replace
each linear layer of a neural network with a bi-linear tensor layer and hence can
relate two vectors across multiple dimensions. The relation we use is similarity
therefore, we can compute the similarity score between two entities by:

g(e1, S, e2) = uTSf(eT1W
[1:k]
S e2 + VS

∣∣∣∣e1e2
∣∣∣∣ + bS) (1)

6 Kabir et al.

Fig. 2. Representation of a Neural Tensor Layer, for visualizing equation (1), used to
compute similarity.

This equation from [18] was used to determine how similar two properties are
to each other in terms of their features. The function f=tanh applies a standard
non-linearity on each element.

eT1W
[1:k]
S e2 (2)

Equation (2) presents the bilinear tensor product. Each slice of tensor is used to
determine the similarity between two entities. The model, for example will learn
that two types of properties are similar if their price is within each others range,
or their size is within the same range. Hence the tensor layers help to recognize
how close each feature of the property is and whether both are similar or not.
The activation function used for training is tanh which acts as a scaled sigmoid
function. It is nonlinear in nature, so it can easily be used to stack layers. Its
range is bound to (-1, 1) hence, prevents the problem of activation’s blowing up.
The gradient of tanh is stronger than sigmoid which means that the derivatives
are steeper.

3.3 Minimizing the cost

The cost function used to minimize the cost is Tensor Net cost function. The
main idea behind it is to replace one entity in each training line with a random
entity, so that the score of the correct sample can be greater as compared to the
one where one entity was randomly replaced. This helps the model to learn the
pattern and determine the similarity between two entities. The cost function is
as stated below and its validity has been proved by Andrew N.g et al [18] and
is also described with detail. The NTN parameters used (as by Andrew N.g et
al [18]) are

Ω = u,W, V, b, E (3)

J(Ω) = ΣN
i=1Σ

C
c=1max(0, 1− g(T (i)) + g(T (i)

c)) + λ ‖ Ω ‖22 (4)

DeepRank: Adapting Neural Tensor Networks for Ranking 7

4 Experimentation

Experiments were done on the real estate data, by finding out which properties
were similar to each other and then ranking them on the basis of a particular
user’s context

4.1 Data set

The real estate data consists of original properties in Pakistan which have been
obtained from the real estate website in Pakistan; Aarz.pk. Our data consists of
properties that are available on the website, browsing history of user on website
and chats generated by the user when he/she converses with the chatbot to
describe his/her preferences.

Each property is identified by a property identifier and, similarly each user
also has a user identifier. We have limited the property type to houses. Areas of
barren land with no construction were not made a part of this research. Similarly,
we restricted the data of the properties by passing it through a city filter so, our
database only consists of properties in Islamabad, Pakistan. For each user, their
chat history and preferences given to the chatbot are recorded in the database
along side the properties that were recommended to the user as a result of some
previous conversations with the bot. In addition to this data, the click-through
data, which consists of user’s clicking on properties of interest, is also maintained
in the database. The click-through data of a user is managed unless new data is
generated as a result of the user’s activity.

The data set has been divide into three parts; the training data set, develop-
ment data set (validation data set) and testing data set. The training data set
includes only positive examples (properties similar to each other); with a total
of 103,100 properties, of which 50 percent is obtained from the original data set
of actual properties in Islamabad, and 50 percent of which is synthetically gener-
ated by changing the values of the features to generate properties that can serve
as an example of similar properties for the training the model. The development
data set contains both positive and negative examples (properties that are not
similar to each other) with a label of 1 for the positive examples and a -1 for the
negative example. The development data set has 4,000 properties in total where
each positive example has its counter example. Thus, there were 2,000 positive
and 2,000 negative examples. The testing data set contains 608 properties with
positive and negative examples. Furthermore, all of the properties to be tested
were extracted from the original data set.

4.2 Data Representation

The data is represented in the form of triplets. Each triplet has two entities and
a relation. In our model we used a single relation that is of similarity and the
entities represent the two properties under consideration.
General representation of a triplet is:

8 Kabir et al.

Entity1 Relation Entity2

Representation specific to our use case is:

PropertyA Similar PropertyB

Each property consists of its features. The general representation of a property
is:

City Sector Size Bedrooms Bathrooms Kitchen PowerRoom
Price PropertyType Purpose

For example, if there is an apartment in the database that is situated in G-10
Islamabad, has 3 bedrooms, 2 bathrooms, 1 kitchen, available for rent at Rs.
50,000 per month, it will be represented as:

Islamabad G-10 0 3 2 1 0 50000 Apartment Rent

4.3 Features of Properties

A real estate can either be land or a built unit, so we extracted features for both
of these types, and came to the conclusion that the features of a plot are subset
of the features of a house. The features that were extracted are tabulated in
Table 1.

Due to the data availability issue, there was no data available for many of the
features from each category listed in Table 1, in several of the properties. Hence,
we selected only those features for which there was complete and consistent data
available. The features with the missing data could not be assigned a weight in
the training, therefore excluding them was inevitable to prevent the distortion
of the results. The model and the similarity algorithm can further be improved
by obtaining data for all features listed above, which can then also be used to
cater diverse groups of people with diverse needs.

The features that were used are listed below:
1. City
2. Locality (Sector)
3. Area (Size)
4. Price
5. Property type
6. Purpose (buy or rent)
7. Bedrooms
8. Bathrooms
9. Kitchen
10. Power Room

DeepRank: Adapting Neural Tensor Networks for Ranking 9

Fig. 3. Word2Vec mapping giving an overview of how entities in database are repre-
sented in the word vector space and how neural networks are used to find the confidence
score.

10 Kabir et al.

Land Features House Specific Features Surrounding Environment Features

City Bedrooms Adjacent to water
Locality (Area) Bathrooms Sidewalks or walking paths
Area (Size) Kitchen Distance from airport
Price Power Room Distance from park
Property type Storey Distance from Mosque
Purpose (buy or rent) Taxes Distance from local commute

Garage/parking Distance from market
Basement Kid friendly environment
Basement Bathroom Dog friendly environment
Basement ceiling height
Basement kitchen
Basketball court
Bedrooms on basement
Bedrooms on main level
Central heating/cooling system
Furnished
Fence Yard
Grill
Guestroom
Home theatre
Library
Pool
Rec room
Security system

Table 1. Features that define the properties.

4.4 Inputs for Similarity classification

The inputs required for testing include property entities, word embeddings, de-
velopment set and the test data itself. While testing, the threshold is calculated
at run-time for each sample in the test file. This threshold is later used to check
if the predicted value is either above or below the threshold so that the label of
0 or 1 can be assigned accordingly. The entities that have been labelled as 1 or
are above threshold are then collected, and are arranged in a descending order of
similarity scores. The best match properties, according to preferences and user
history are then displayed to the user.

Separate set of words are generated from the entities in the whole data set.
Words can be described as the unique ”words” that make up an entity along with
a special unique Id assigned to it for referencing it later on. Additionally, we also
generated a tree structure which replaces each word in the entities data with its
relevant id from the words set. The algorithm makes words from the entities
and then maps them to a word-vector space as shown in Figure 3. This is done
with the word2vec neural network. It simply groups the vectors of similar words
together in a vector space. This means that it detects the similarities mathemat-
ically. Word2vec creates vectors that are distributed numerical representations
of the word features.

DeepRank: Adapting Neural Tensor Networks for Ranking 11

5 Results and Discussion

Testing was done on the data with original properties only, excluding all synthetic
data. We labelled the test data manually with labels 1 for positive samples and
-1 for negative. We used accuracy to measure the working of our model on unseen
test data; accuracy was defined as number of correct labels predicted divided by
total test samples. Initially, we tested the model by giving the properties in the
following format:

Property1 similar Property1

meaning the model had to determine if the two entities on either side of the
similar relation are exactly the same, then the accuracy should be 100 percent.
For 20,000 similarity relations in the test file, in the above format, the expected
results were obtained (100 percent). Hence this ensured that the model was at
least recognizing two exactly same properties.

In the next phase, we had to test how our model performed when the two
properties are not exactly the same. We manually determined if two properties
are similar or not by assessing whether the features of the two properties are sim-
ilar to each other. For example, if there is a house in the sector G-10, Islamabad
with a price of Rs. 50,0000 with a size of 20 Marlas, it would be similar to a house
in the neighbouring sectors of G-10 (like G-11 or F-10) with a price range close
to Rs. 50,0000 (within the range Rs. 40-60,0000) and a size of around 20 Marlas.
Following this method, we built the whole test data to determine whether our
model is predicting correct similarity relation on the original data set.

On the 20,000 lines of test data, the accuracy was 86.6 percent. Our confi-
dence on this accuracy is high since our test data included very different samples
of similarity.

Figure 4 shows a particular use case where the algorithm performs well and
displays the ranked results.Suppose a user converses with the chatbot to find
a suitable home for themselves. We can see from the diagram that the user’s
context contains information about certain properties that they visited for the
past few days before conversing with the chatbot. The user then asks the bot for
a recommendation close to a house for rent of around Rs. 60,000 in the sector G-
11, Islamabad. The output that the user receives from the chatbot has a certain
pattern to it based on the user’s context. Our model inferred from the user’s
context that they are more interested in renting a house, within a range of Rs.
50,000 to 70,000 in Islamabad, but the sector can vary to some extent and is
not entirely fixed. Hence the recommendations are generated from the database
according to the user’s query, and are then ranked based on the priorities inferred
from the user’s context. So it can be observed that the top three properties
displayed are the ones with an option of renting a house specifically, within an
acceptable price range in Islamabad. Whereas the last two recommendations are
not fulfilling the user’s request based on their context (i.e. are either not houses
or are not available for rent) and have been placed lower in the list.

Figure 5 is an example of a negative use case where our model is unable
to rank the recommendations on the user’s context. We can observe from the

12 Kabir et al.

Fig. 4. Example of a positive use case. The model successfully ranks the recommenda-
tions based on the user’s context.

Fig. 5. Example of a negative use case where the model was unable to rank the recom-
mendations. User’s context in this example is not clear; it contains properties where
none of the features are similar.

DeepRank: Adapting Neural Tensor Networks for Ranking 13

context that the user has visited many different properties online before con-
versing with the chatbot. The context contains properties from different cities of
Pakistan, with different types of properties (house or apartments), with prices
that are varying a lot. The user then requests a house for rent of Rs. 60,000 in
the sector G-11, Islamabad. The chatbot does retrieve some properties of Islam-
abad, but the results displayed have not been successfully ranked. The results
displayed are although according to the query of the user, for example there are
properties in Islamabad within an appropriate price range and an acceptable
location, however, the model was unable to infer any priorities from the user’s
context. Hence, was not able to rank the recommendations. The problem was
that the user’s context was so haphazard that a pattern could not be recognized
and the model could not determine what the user was actually looking for.

Finally, given the right context, the model achieved what it was intended
to. It mostly predicts the similarity between properties correctly. The real-world
testing data in our system is the users past visited propertied on the website
and, the properties recommended to them by the chatbot. The chatbot checks
the similarity of each property in the recommended list with each property in
the users context. It then uses the predicted output (raw score) to sort them in
descending order. From that list eventually the ranked list of recommendations
are displayed to the user.

6 Conclusion and Outlook

The main problem that we addressed was to generate recommendations that are
personalized for each user based on their previous activity on the system. Use
of Neural Tensor Networks to identify the similarity between two properties has
proved to be very useful and efficient. Now, when the user is browsing on the
website their activity can be recorded and maintained which can translate into
their context. When the user enters his/her preferences, they are used to fetch the
properties from the database and then similarity between the users context and
properties fetched is tested. Thus, the problem of exclusion of relevant context
has been addressed since now a users context is also used to rank and recommend
properties.

In future, this work can be extended by getting complete data of the features
that were missing; training the model on those added features and then testing
it again. Our work was limited to the city of Islamabad in Pakistan, and only
for houses; this can be extended for all cities of the country. If the data for many
diverse features can be obtained, the model can be trained to cater many cities
of Pakistan and can also be applied generally for any place in the world with
even more accuracy.

Another suggestion for the extension that would make the results more accu-
rate and stronger is to incorporate the user’s browsing history related to similar
websites (more real estate websites instead of a single site as in this paper) to
gain more insight about the interests of the user [16, 1]. For example, if a user has
visited 3 other real estate websites and has viewed some properties, a more com-

14 Kabir et al.

prehensive context can be built and the user’s current priorities can be inferred
with more accuracy due to more history.

Moreover, the algorithm does not perform well when a user visits the website
for the very first time and converses with the bot, as there is no previous history
regarding the user. Hence, there is no (or very little) context, which the algorithm
needs to extract the priorities of the user from. This means that less accurate or
no priorities can be inferred resulting in the algorithm recommending unranked
properties only based on the features of the property which the user themselves
entered at the beginning of the conversation with the bot. One solution to this
problem is to use the existing techniques of collaborative filtering [2, 6, 14, 11]
to find out similarities between different users of the website. To implement
collaborative filtering for cold start cases, some personal data like each user’s
likes, dislikes, location where they currently reside in, and other such useful
information has to be collected from each user when they visit the website. Then
if a new user with no history wants ranked recommendations, their priorities
can be inferred by finding out the similarity of this user with other users of
the website. If the new user has some commonalities with an other user, his
priorities can be inferred from the other user because they had the same taste or
requirements, hence their context would be relatively similar. The recommended
properties can then be ranked based on these inferred priorities for the new user.

Another use of the collection personal information is that the user profiles can
be more comprehensive and have details related to their hobbies, interests and
background so that a general idea of the user’s context can also be incorporated
while generating ranked recommendations for the user. For example, people with
big families will definitely be interested in bigger homes that fits the needs of
their families or people with children might prefer houses that have parks or
recreational areas near them.

Acknowledgment

This research was partly supported by HEC Grant TDF-029.

References

1. Abowd, D., G., Dey, K., A., Brown, J., P., Davies, N., Smith, M., Steggles, P.: To-
wards a better understanding of context and context-awareness. In: HUC. Lecture
Notes in Computer Science, vol. 1707, pp. 304–307. Springer (1999)

2. Ahn, Jun, H.: A new similarity measure for collaborative filtering to alleviate the
new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

3. Anwar, F., Iltaf, N., Afzal, H., Nawaz, R.: HRS-CE: A hybrid framework to inte-
grate content embeddings in recommender systems for cold start items. J. Comput.
Science 29, 9–18 (2018)

4. Argal, A., Gupta, S., Modi, A., Pandey, P., Shim, S., Choo, C.: Intelligent travel
chatbot for predictive recommendation in echo platform. In: 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC). pp. 176–183
(2018). https://doi.org/10.1109/CCWC.2018.8301732

DeepRank: Adapting Neural Tensor Networks for Ranking 15

5. Ayyaz, S., Qamar, U., Nawaz, R.: Hcf-crs: A hybrid content based fuzzy conformal
recommender system for providing recommendations with confidence. PLoS ONE
13 (09 2018). https://doi.org/10.1371/journal.pone.0204849

6. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering ap-
proach to mitigate the new user cold start problem. Knowl.-Based Syst. 26, 225–
238 (2012)

7. Dey, K., A.: Understanding and using context. Personal and Ubiquitous Computing
5(1), 4–7 (2001)

8. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking
metric embedding for next new POI recommendation. In: IJCAI. pp. 2069–2075.
AAAI Press (2015)

9. Guan, Z., Bu, J., Mei, Q., Chen, C., Wang, C.: Personalized tag recommendation
using graph-based ranking on multi-type interrelated objects. In: SIGIR. pp. 540–
547. ACM (2009)

10. Lee, S., Park, S., Lee, S.: A study on issues in context-aware systems based on a
survey and service scenarios. In: SNPD. pp. 8–13. IEEE Computer Society (2009)

11. Lian, D., Ge, Y., Zhang, F., Yuan, Jing, N., Xie, X., Zhou, T., Rui, Y.: Content-
aware collaborative filtering for location recommendation based on human mobility
data. In: ICDM. pp. 261–270. IEEE Computer Society (2015)

12. Liu, Y., Yang, J.: Improving ranking-based recommendation by social information
and negative similarity. In: ITQM. Procedia Computer Science, vol. 55, pp. 732–
740. Elsevier (2015)

13. Qadir, H., Khalid, O., Khan, M.U.S., Khan, Rehman, u.A., Nawaz, R.: An optimal
ride sharing recommendation framework for carpooling services. IEEE Access 6,
62296–62313 (2018)

14. Sedhain, S., Sanner, S., Braziunas, D., Xie, L., Christensen, J.: Social collaborative
filtering for cold-start recommendations. In: RecSys. pp. 345–348. ACM (2014)

15. Shawar, Abu, B., Atwell, E.: Chatbots: Are they really useful? LDV Forum 22(1),
29–49 (2007)

16. Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit
feedback. In: SIGIR. pp. 43–50. ACM (2005)

17. Singhal, A., Sinha, P., Pant, R.: Use of deep learning in modern recommendation
system: A summary of recent works. CoRR abs/1712.07525 (2017)

18. Socher, R., Chen, D., Manning, D., C., Ng, Yan-Tak, A.: Reasoning with neural
tensor networks for knowledge base completion. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States. pp. 926–934 (2013)

19. Ying, H., Chen, L., Xiong, Y., Wu, J.: Collaborative deep ranking: A hybrid pair-
wise recommendation algorithm with implicit feedback. In: PAKDD (2). Lecture
Notes in Computer Science, vol. 9652, pp. 555–567. Springer (2016)

