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ARTICLE

A chemical biology toolbox to study protein
methyltransferases and epigenetic signaling
Sebastian Scheer 1, Suzanne Ackloo 2, Tiago S. Medina3, Matthieu Schapira 2,4, Fengling Li2,

Jennifer A. Ward 5,6, Andrew M. Lewis 5,6, Jeffrey P. Northrop1, Paul L. Richardson 7,

H. Ümit Kaniskan 8, Yudao Shen8, Jing Liu 8, David Smil 2, David McLeod 9,

Carlos A. Zepeda-Velazquez9, Minkui Luo 10,11, Jian Jin 8, Dalia Barsyte-Lovejoy 2, Kilian V.M. Huber 5,6,

Daniel D. De Carvalho3,12, Masoud Vedadi2,4, Colby Zaph 1, Peter J. Brown 2 & Cheryl H. Arrowsmith2,3,12

Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes

with therapeutic relevance. Here we present a collection of chemical probes and associated

reagents and data to elucidate the function of human and murine PMTs in cellular studies.

Our collection provides inhibitors and antagonists that together modulate most of the key

regulatory methylation marks on histones H3 and H4, providing an important resource for

modulating cellular epigenomes. We describe a comprehensive and comparative character-

ization of the probe collection with respect to their potency, selectivity, and mode of inhi-

bition. We demonstrate the utility of this collection in CD4+ T cell differentiation assays

revealing the potential of individual probes to alter multiple T cell subpopulations which may

have implications for T cell-mediated processes such as inflammation and immuno-oncology.

In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and main-

taining lineage integrity. This chemical probe collection and associated data form a resource

for the study of methylation-mediated signaling in epigenetics, inflammation and beyond.

https://doi.org/10.1038/s41467-018-07905-4 OPEN

1 Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton,
VIC 3800, Australia. 2 Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada. 3 Princess Margaret Cancer Centre, University
Health Network, Toronto, ON M5G 2M9, Canada. 4Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
5 Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. 6 Target Discovery Institute, Nuffield Department of Medicine, University of
Oxford, Oxford OX3 7FZ, UK. 7 AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL 60064, USA. 8Mount Sinai Center for Therapeutics Discovery,
Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,
USA. 9Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada. 10 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA. 11 Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. 12 Department of Medical
Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada. Correspondence and requests for materials should be addressed to
C.Z. (email: colby.zaph@monash.edu) or to P.J.B. (email: peterj.brown@utoronto.ca) or to C.H.A. (email: cheryl.arrowsmith@uhnresearch.ca)

NATURE COMMUNICATIONS |           (2019) 10:19 | https://doi.org/10.1038/s41467-018-07905-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9716-5009
http://orcid.org/0000-0002-9716-5009
http://orcid.org/0000-0002-9716-5009
http://orcid.org/0000-0002-9716-5009
http://orcid.org/0000-0002-9716-5009
http://orcid.org/0000-0002-9696-1839
http://orcid.org/0000-0002-9696-1839
http://orcid.org/0000-0002-9696-1839
http://orcid.org/0000-0002-9696-1839
http://orcid.org/0000-0002-9696-1839
http://orcid.org/0000-0002-1047-3309
http://orcid.org/0000-0002-1047-3309
http://orcid.org/0000-0002-1047-3309
http://orcid.org/0000-0002-1047-3309
http://orcid.org/0000-0002-1047-3309
http://orcid.org/0000-0002-8735-5263
http://orcid.org/0000-0002-8735-5263
http://orcid.org/0000-0002-8735-5263
http://orcid.org/0000-0002-8735-5263
http://orcid.org/0000-0002-8735-5263
http://orcid.org/0000-0002-6447-354X
http://orcid.org/0000-0002-6447-354X
http://orcid.org/0000-0002-6447-354X
http://orcid.org/0000-0002-6447-354X
http://orcid.org/0000-0002-6447-354X
http://orcid.org/0000-0001-5526-8168
http://orcid.org/0000-0001-5526-8168
http://orcid.org/0000-0001-5526-8168
http://orcid.org/0000-0001-5526-8168
http://orcid.org/0000-0001-5526-8168
http://orcid.org/0000-0001-5327-832X
http://orcid.org/0000-0001-5327-832X
http://orcid.org/0000-0001-5327-832X
http://orcid.org/0000-0001-5327-832X
http://orcid.org/0000-0001-5327-832X
http://orcid.org/0000-0003-4740-243X
http://orcid.org/0000-0003-4740-243X
http://orcid.org/0000-0003-4740-243X
http://orcid.org/0000-0003-4740-243X
http://orcid.org/0000-0003-4740-243X
http://orcid.org/0000-0002-6232-6087
http://orcid.org/0000-0002-6232-6087
http://orcid.org/0000-0002-6232-6087
http://orcid.org/0000-0002-6232-6087
http://orcid.org/0000-0002-6232-6087
http://orcid.org/0000-0003-4908-5554
http://orcid.org/0000-0003-4908-5554
http://orcid.org/0000-0003-4908-5554
http://orcid.org/0000-0003-4908-5554
http://orcid.org/0000-0003-4908-5554
http://orcid.org/0000-0001-7409-7034
http://orcid.org/0000-0001-7409-7034
http://orcid.org/0000-0001-7409-7034
http://orcid.org/0000-0001-7409-7034
http://orcid.org/0000-0001-7409-7034
http://orcid.org/0000-0002-2387-3862
http://orcid.org/0000-0002-2387-3862
http://orcid.org/0000-0002-2387-3862
http://orcid.org/0000-0002-2387-3862
http://orcid.org/0000-0002-2387-3862
http://orcid.org/0000-0002-6560-9621
http://orcid.org/0000-0002-6560-9621
http://orcid.org/0000-0002-6560-9621
http://orcid.org/0000-0002-6560-9621
http://orcid.org/0000-0002-6560-9621
http://orcid.org/0000-0002-1103-5300
http://orcid.org/0000-0002-1103-5300
http://orcid.org/0000-0002-1103-5300
http://orcid.org/0000-0002-1103-5300
http://orcid.org/0000-0002-1103-5300
http://orcid.org/0000-0002-9889-9848
http://orcid.org/0000-0002-9889-9848
http://orcid.org/0000-0002-9889-9848
http://orcid.org/0000-0002-9889-9848
http://orcid.org/0000-0002-9889-9848
http://orcid.org/0000-0002-8454-0367
http://orcid.org/0000-0002-8454-0367
http://orcid.org/0000-0002-8454-0367
http://orcid.org/0000-0002-8454-0367
http://orcid.org/0000-0002-8454-0367
mailto:colby.zaph@monash.edu
mailto:peterj.brown@utoronto.ca
mailto:cheryl.arrowsmith@uhnresearch.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Epigenetic regulation of gene expression is a dynamic and
reversible process that establishes and maintains normal
cellular phenotypes, but contributes to disease when dys-

regulated. The epigenetic state of a cell evolves in an ordered
manner during cellular differentiation and epigenetic changes
mediate cellular plasticity that enables reprogramming. At the
molecular level, epigenetic regulation involves hierarchical cova-
lent modification of DNA and the histone proteins that package
DNA. The primary heritable modifications of histones include
lysine acetylation, lysine mono-, di-, or tri-methylation, and
arginine methylation. Collectively these modifications establish
chromatin states that determine the degree to which specific
genomic loci are transcriptionally active1.

Proteins that read, write, and erase histone (and non-histone)
covalent modifications have emerged as druggable classes of
enzymes and protein–protein interaction domains2. Histone
deacetylase (HDAC) inhibitors and DNA hypomethylating agents
have been approved for clinical use in cancer and more recently
clinical trials have been initiated for antagonists of the BET
bromodomain proteins (which bind to acetyllysine on histones),
the protein methyltransferases EZH2, DOT1L, and PRMT5, and
the lysine demethylase LSD13. The development of this new class
of epigenetic drugs has been facilitated by the use of chemical
probes to link inhibition of specific epigenetic protein targets with
phenotypic changes in a wide variety of disease models, thereby
supporting therapeutic hypotheses4.

Methylation of lysine and arginine residues in histone proteins is
a central epigenetic mechanism to regulate chromatin states and
control gene expression programs5–7. Mono-, di-, or tri-methylation
of lysine side chains in histones can be associated with either
transcriptional activation or repression depending on the specific
lysine residue modified and the degree of methylation. Arginine
side chain methylation states include mono-methylation and sym-
metric or asymmetric dimethylation (Fig. 1a). In humans two main
protein families carry out these post-translational modifications of
histones. The structurally related PR and SET domain containing
enzymes (protein lysine methyltransferases (PKMT)) methylate
lysine residues on histone “tails”, and the dimeric Rossman fold
protein arginine methyltransferase (PRMT) enzymes modify argi-
nine. DOT1L has the Rossman fold, but is a monomer and modifies
a lysine on the surface of the core histone octamer within a
nucleosome (as opposed to the disordered histone tail residues).
Many of these proteins also methylate non-histone proteins, and
even less is known about non-histone methylation signaling8,9.

Here we describe a resource of chemical probes and related
chemical biology reagents to study the cellular function of PMTs,
and link inhibition of select PMTs to biological mechanisms and
therapeutic potential. We summarize the key features of each
probe including its potency, selectivity, biochemical and cellular
activity, and mode of action for a comprehensive data resource
for the collection. We also describe a control compound to use for
each probe that is structurally similar but inactive on the enzyme.
Furthermore, a set of affinity reagents derived from each chemical
probe is presented and their use is exemplified in cellular selec-
tivity and chemical proteomics experiments. Finally, we use the
entire collection of chemical probes to examine the effects of
inhibition of individual PMTs on the ability of naïve T cells to
differentiate into effector T cell lineages. These data reveal links
between epigenetic regulators and T cell biology in both humans
and mice, and in so doing demonstrate how the chemical probe
collection may be used to explore the biology of these PMTs.

Results
A collection of inhibitors of the major histone methyl marks.
Table 1 lists chemical probes for human protein

methyltransferases (PMTs) and key characteristics of their
activity. This collection provides significant coverage of the
human histone lysine and arginine methyltransferase phyloge-
netic trees (Fig. 1a), but more importantly includes modulators of
the major regulatory histone methylation marks (Fig. 1b). Key
among these are H3K9me2, H3K27me3, H3K79me2, and
H4K20me2/3, each of which are written exclusively by G9a/GLP,
PRC2 complex (via EZH1/2), DOT1L and SUV420H1/2 enzymes,
respectively. As such, the respective chemical probes for these
enzymes are able to reduce the global levels of their resultant
mark in cells as measured by western blot, in-cell western, or
immunofluorescence assays10–13. Other histone marks such as
H3K4me1/2/3 are written by multiple enzymes. Thus, a chemical
probe such as OICR-9429, which disrupts the MLL1 complex, is
more likely to have specific effects only at loci targeted by MLL1,
and not necessarily all methylated H3K4 loci14. PMTs also have
many non-histone targets, including transcription factors such as
p5315, estrogen receptor16,17, and cytosolic signaling factors such
as MAP3K218. In addition to histone modification, arginine
methylation plays an important role in the function of RNA-
binding proteins, ribosome biogenesis and splicing19–21. Thus,
this collection of chemical probes constitutes a broad resource to
link enzyme activity to a wide range of epigenetic and non-
epigenetic methylation-mediated signaling pathways and biology.

PMT chemical probes are potent, selective and cell-penetrant.
The development of these chemical probes was guided by prin-
ciples practiced in the pharmaceutical industry to test the link
between a specific protein and a putative biological or phenotypic
cellular trait4,22–24. A useful chemical probe should be reasonably
potent in cells, selective for the intended target protein, and free
of confounding off-target activities.

The chemical probes described here were each discovered using
a biochemical enzymatic assay for the respective recombinant
protein, or in some cases the relevant recombinant multiprotein
enzyme complex, where the probe has been demonstrated to have
an on-target potency with IC50 < 100 nM (Table 1). Each probe
was evaluated in a customized cellular assay that tested the ability
of the probe to reduce the level of methylation of its substrate in
cells. All probes have significant, on-target cellular activity at 1
μM making them useful tools for cellular studies. Importantly
these chemical probes are highly selective for their target protein
(Fig. 1c); each has been screened against a collection of up to 34
human SAM-dependent histone, DNA and RNA methyltrans-
ferases. The chemical probes within the lysine methyltransferase
family are highly selective with measurable cross reactivity only
seen between very closely related proteins such as G9a and GLP,
or SUV420H1 and SUV420H2. Selectivity within the PRMT
family, however, is more difficult to achieve, and a greater degree
of cross reactivity is seen in this subfamily. The probes had
minimal or no off-target activities when screened against a panel
of 119 membrane receptors and ion channels, and kinases
(Supplementary Table 1).

Importantly, most chemical probes are accompanied by a
structurally similar control compound that has similar physi-
cochemical properties but is inactive or much less active on its
target enzyme (Table 1, Supplementary Tables 1 and 2). These
inactive compounds are to be used alongside the active probe to
control for unanticipated off-target activity of their common
chemical scaffold. In cases where an appropriate control
molecule could not be identified, an alternative strategy is to
use multiple chemical probes with different chemotypes that
inhibit the same target (Table 1 and Supplementary Table 2).
Many of the PMTs discussed here have two or more chemical
probes with different chemotypes, mechanisms of action, and/
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or potency profile. By using multiple diverse chemical probes
that inhibit the same target, the user can build confidence in the
link between cellular phenotype and inhibition of a specific
target.

Multiple mechanisms to inhibit PMTs. The methyl-donating
cofactor S-adenosylmethionine (SAM) and methyl-accepting
substrate of protein methyltransferases bind at juxtaposed but
distinct sites that can each be targeted by small molecule
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inhibitors (Fig. 2). Early efforts to inhibit PMTs focused on tar-
geting the SAM binding site in analogy to targeting the ATP
binding site of kinases25. However, it has been challenging to
identify cell-penetrant compounds that bind to the polar SAM
binding pocket and no universal methyltransferase inhibitor
scaffold or warhead has yet been identified.

The most frequent mode of inhibition for PMTs is binding of
the probe within the substrate pocket, thereby preventing
substrate binding (Fig. 2a)13,26–29. The high selectivity profile of
the SET-domain chemical probes is likely related to the high
degree of substrate selectivity of these enzymes30. These
substrate-competitive probes also take advantage of the structural
malleability of the substrate-binding groove to remodel the

substrate-binding loops for optimal fit (Fig. 2a, gray contours).
Interestingly, binding of many of these substrate competitive
probes is also dependent on cofactor SAM, which in some cases
directly interacts with the probe molecule, and also is known to
help stabilize formation of the substrate-binding pocket of SET
domain proteins30. These contributions of SAM can be a
confounding factor when interpreting enzyme inhibitory kinetic
data for these probes. In Fig. 2 we have focused on the
mechanism of action of each probe based on the structures of
their complexes with their target enzyme. The potent SAM
competitive inhibitors, SGC094612 (Fig. 2b) and LLY-28331, have
adenosine-like moieties with hydrophobic substituents replacing
the methionine of SAM, while UNC199911 and GSK34332 have a

Table 1 Summary of chemical probes and their chemotype-matched controls for protein methyltransferases. Related to Fig. 1a–c,
Supplementary Figs. 1 and 2

Target Probe In vitro IC50 or Kd

(nM)
Cell line: assay IC50 (nM) Control

WDR5a OICR-942914 64 HEK293: disrupt interaction of WDR5b with MLL1 &
RbBP5

223 & 458 OICR-0547

EEDa A-39535 34 RD: ↓ H3K27me3 90 A-395N
EZH2 GSK34363 4 HCC1806: ↓ H3K27me3 250
EZH2,H1 UNC199911 10,45 MCF10A: ↓ H3K27me3 124 UNC2400
DOT1L SGC094612 0.3 MCF10A,A431: ↓ H3K79me2 10,3 SGC0649
G9a & GLP A-36626 4 & 38 PC3: ↓ H3K9me2 300 Use UNC0642
G9a & GLP UNC064210 <3 PC3: ↓ H3K9me2 130 Use A-366
SUV420H1/2 A-19613 21 U2OS: ↓ H4K20me2/3 262/370

(SUV420H1)
A-197,
SGC2043

SMYD2 BAY-59829 27 HEK293, SMYD2b:↓ p53K370me 58 BAY-369
SMYD3 BAY-6035c 88 HeLa, SMYD3b:

↓ MEKK2K260me3
70 BAY-444

SETD7 (R)-PFI-227 2 MEFs and MCF7:
↑ nuclear YAP

sub-μM (S)-PFI-2

Type 1 PRMTs MS02337 30,8 (PRMT1,6) MCF7 (PRMT1), HEK293 (PRMT6b): ↓ H4R3me2a,
↓ H3R2me2a

9,56 (PRMT1,6) MS094

PRMT3 SGC70734 31 HEK293, PRMT3b:
↓ H4R3me2a

91 XY1

PRMT4 TP-06464 <10 HEK293: ↓ Med12me2a,
↓ Baf155me2a

43, 340 TP-064N

PRMT4 SKI-73d,e 11 MCF-7: ↓ Med12me2a 540 SKI-73N
PRMT4,6 MS04965 44,63 HEK293:

↓ Med12me2a (PRMT4),
↓ H3R2me2a (PRMT6b)

1400, 970 MS049N

PRMT5 GSK59128 11 Z138: ↓ SmD3me2s 56 SGC2096
PRMT5 LLY-28331 22 MCF7: ↓ SmBB'Rme2s 30 LLY-284
PRMT7 SGC3027d,f <2.5 C2C12, PRMT7b:

↓ HSP70R469me
2400 SGC3027N

aSubunits required for activity of their respective enzyme complexes
bCellular assay utilizes exogenous, transfected target
chttps://www.thesgc.org/chemical-probes/BAY-6035
dSKI-73 and SGC3027 are pro-drugs that are converted to the active compound by reductases in the cell. In vitro data are shown for the active component
ehttp://www.thesgc.org/chemical-probes/SKI-73
fhttps://www.thesgc.org/chemical-probes/SGC3027
↓= decrease; ↑= increase

Fig. 1 Summary of chemical probes. a Phylogenetic trees of human PR and SET domain lysine methyltransferases (upper tree), and the β-barrel fold
enzymes (lower tree). Trees are annotated to show chemical probes in this collection that inhibit PKMTs (turquoise circle), a Rossman fold PKMT (dark
red square), monomethyl and asymmetric dimethyl PRMTs (blue triangle), symmetric dimethyl PRMTs (orange triangle); and methyltransferase protein
complexes (purple star). The number of annotations adjacent to each target is equal to the number of chemical probes for that target. b Detailed coverage
of the major histone H3 and H4 methyl marks modulated by this collection of chemical probes. The methylated lysine (K) and arginine (R) residues are
annotated in bold font. The PMTs that write the marks are shown with green (PKMTs) or blue (PRMTs) borders, along with the chemical probes that
inhibit these PMTs. Also included are non-histone substrates (gray ovals) of PRMT5, SETD7, and SMYD2. c Selectivity of each chemical probe has been
assessed against 34 SAM-dependent methyltransferases. SKI-73 and SGC3027 are pro-drugs and selectivity was determined on the respective active
components. See also Supplementary Tables 1-3. SAM S-adenosylmethionine, SAH S-adenosylhomocysteine, me methyl, me2a asymmetric dimethyl,
me2s symmetric dimethyl, me2/3 di- and tri-methyl marks are written by the same enzyme
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Fig. 2 Structural mechanisms of PMT inhibition by chemical probes. a Inhibitors of G9a (PDB: 3HNA (GLP with H3K9 substrate) and 4NVQ (A-366));
SUV420H2 (PDB: 4AU7 (mSUV420H2 with H4 substrate) and SUV420H1 (PDB: 5CPR (A-196)); SETD7 (PDB: 1O9S (H3 substrate) and 4JLG (PFI-2));
PRMT5 (PDB: 4GQB (H4 substrate) and 5C9Z (GSK591)); SMYD2 (PDB: 3TG5 (p53 substrate) and 5ARG (BAY-598)); SMYD3 (PDB: 5EX0
(MAP3K2 substrate) and (BAY-6035)) all bind in the substrate (peptide) binding pocket. b SGC0946 binds in the SAM-binding pocket of DOT1L thereby
preventing cofactor binding (PDB ID: 3QOW (SAM), 4ER6 (SGC0946)). LLY-283 also occupies the SAM-binding pocket of PRMT5-MEP50 complex (PDB
ID: 4GQB (SAM analog) and 6CKC (LLY-283)). c Three distinct modes of allosteric inhibition of protein methyltransferases. SGC707 binds to PRMT3 in an
allosteric site that prevents productive formation of the enzyme’s activation helix (PDB ID: 4RYL). OICR-9429 binds to WDR5 and inhibits MLL1 activity by
disrupting WDR5-MLL1-RBBP5 complex (PDB ID: 4QL1). A-395 binds to the EED subunit of the PRC2 complex thereby preventing binding of activating
peptides (PDB ID: 5K0M)
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pyridone-based scaffold that binds in and near the unique pocket
of the PRC2 multiprotein complex33.

A third class of inhibitors has allosteric mechanisms that can
induce long-range structural perturbations, or take advantage of
sites of protein-protein interactions within multi-subunit PMT
complexes. The allosteric inhibitor SGC70734 occupies a pocket
that is 15Å away from the site of methyl transfer, but prevents
formation of the catalytically competent conformation of the
PRMT3 dimer (Fig. 2c, top panel). OICR-942914 and A-39535 are
antagonists that make use of the peptide binding pocket in the
essential WD40 subunits (WDR5 and EED) of the multiprotein
MLL1 and PRC2 complexes, respectively (Fig. 2c, middle and
bottom panels). OICR-9429 binds in the central pocket of WDR5
preventing the latter’s interactions with MLL and histone
peptides, resulting in diminished methyltransferase activity of
the complex14. A-395 binds in the analogous pocket of EED,
thereby preventing its interaction with trimethylated peptides that
activate the PRC2 holoenzyme35. Both chemical probes burrow
into the central cavity of their respective WD40 protein targets
occupying a remodeled binding pocket that is significantly larger
than that of the peptides which they replace. Thus, a common
feature revealed by the co-crystal structures of these probes with
their target protein is the significant remodeling of the substrate
or allosteric binding sites to selectively accommodate each probe
molecule.

A caveat of targeting scaffolding subunits of chromatin
complexes is that such proteins are often components of multiple
complexes, with diverse functions in cells. For instance, WDR5
interacts with at least 64 different proteins, including the
oncoprotein c-MYC, and disrupting the WDR5 protein interac-
tion network has diverse functional consequences beyond the
MLL complex. In this regard, chemical probes are ideal tools to
investigate the biochemical and cellular outcome of targeting a
specific protein interaction interface. Taken together, this
collection of chemical probes reveals the wide array of
mechanisms by which PMTs may be inhibited.

Reagents for specificity and protein interactome studies. Che-
mical proteomics using affinity reagents derived from chemical
probes represents a powerful approach to investigate the mole-
cular target profile of chemical probes36 and to elucidate protein
interaction networks in multiple cell types. In order to facilitate
such studies ten affinity reagents were synthesized for seven
targets. Of these reagents, three have been previously used to
verify the selectivity of their respective chemical probe for the
intended target protein11,14,27, and for an additional five probes
(for four targets) we indicate here the recommended site of
derivatization (Supplementary Table 2). These suggestions are
based on empirical data obtained during each probe discovery
program, including target/probe co-crystal structures and che-
mical structure-activity-relationships (SAR). A further three
affinity reagents were used to generate cellular selectivity data for
the DOT1L inhibitor SGC0946, the EED antagonist A-395, and
the Type I PRMT inhibitor MS02337 (Fig. 3). The EED and Type
I PRMT affinity reagents specifically enriched their cognate tar-
gets from cell lysates as demonstrated by immunoblotting (Sup-
plementary Fig. 1). This enrichment could be competed with the
respective underivitized free chemical probe suggesting a specific
interaction not affected by immobilization. Profiling of the pan
Type I PRMT inhibitor MS023 in HEK293 cell lysates using label-
free quantification (LFQ) protein mass spectrometry showed
engagement of several PRMTs including PRMT1, 3, 4, and 6 and
their respective binding partners (Fig. 3a, d, and Supplementary
Data 1). PRMT8, which MS023 is known to inhibit, was not
detected, consistent with lack of expression in HEK293 cells. The

negative control compound MS094 had no effect on PRMT target
engagement or interactome. Investigation of the EED antagonist
A-395 in G401 cell lysates revealed several well-known PRC2
complex members which were co-purified with the cognate target
EED (Fig. 3b, e, and Supplementary Data 2) similar to results
obtained with a structurally distinct EED antagonist38. As
expected, pre-treatment with the negative control A-395N even at
high concentration did not affect binding of EED and the other
PRC2 complex members to the A-395 affinity matrix, confirming
its applicability as an additional tool for EED and PRC2. Che-
moproteomic analysis of the DOT1L inhibitor SGC0946 in Jurkat
cell lysates indicated that the probe is highly specific for DOT1L,
confirming earlier results obtained with HL-60 cells39 (Fig. 3c and
Supplementary Data 3).

Approaches to use the collection. Each chemical probe can be
used to investigate the effects of inhibiting the respective PMT in
a biochemical or cellular assay. Thus, each probe and its control
(s) will be valuable tools in hypothesis-driven research projects.
We envision, however, that these tools will be equally valuable in
prospective, hypothesis-generating discovery screens to identify
specific PMTs whose inhibition is linked with a certain pheno-
type. To date, much of the research using epigenetic inhibitors
has focused on cancer research, with inhibitors of several PMT
targets progressing into clinical trials. While these oncology stu-
dies are of great interest and medical importance, we sought to
systematically investigate the landscape of PMT inhibition in a
non-cancer setting, namely CD4+ T helper (Th) cell
differentiation.

Regulation of Th cell differentiation by PMTs. Cellular differ-
entiation is guided by chromatin-mediated changes in gene
expression in response to extracellular cues. In the immune sys-
tem, naïve Th cells can adopt a wide range of cellular fates
depending upon the external signals received during activation by
antigen-presenting cells40. For example, interleukin (IL)-12 pro-
motes the development of Th1 cells that express the transcription
factor T-bet (Tbx21) and produce interferon (IFN)-γ, while
activation in the presence of IL-4 leads to Th2 cells that express
GATA-3 and secrete IL-4, IL-5 and IL-13. In addition, Th17
(RORγt-expressing and IL-17A-producing) and induced reg-
ulatory T (Treg) cells (FOXP3-expressing) develop from naïve Th
cells in the presence of TGFβ and IL-6 or TGFβ alone, respec-
tively. The magnitude of the immune response to a given stimulus
is dependent on the abundance and relative proportions of Th
subtypes, and dysregulation of the balance among Th subtypes
contributes to diseases such as autoimmunity and cancer41.
Previous studies using gene-deficient mice have identified central
roles for PMTs including MLL142, G9a43,44, and EZH245,46 in Th
cell differentiation and stability.

We tested the effect of inhibiting each methyltransferase on Th
cell differentiation, focusing first on IFN-γ-producing Th1 cells
(Fig. 4a, b, and Supplementary Figs. 2 and 3). Isolated naïve
CD4+ Th cells from the spleen and peripheral lymph nodes of
mice with a fluorescent reporter of IFN-γ expression47 (IFN-γ-
YFP mice) were activated for 4 days under Th1 polarizing
conditions in the presence of each probe and its respective control
compound (when available). Treatment with UNC1999 or
GSK343 which target the catalytic subunits of PRC2 (EZH1/2),
(but not the control compound UNC2400) significantly increased
the expression and production of the signature cytokine IFN-γ
under Th1 polarizing conditions. These results are consistent with
previous studies showing that T cell-specific deletion of EZH2
resulted in enhanced Th1 cell differentiation in mice45,46,48. We
also observed a significant increase of IFN-γ producing CD4+
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Fig. 3 Affinity Reagents for Chemoproteomics. a Volcano plot of MTM7172-enriched proteome (labeled blue) from HEK293 cell lysate, with targets
significantly (FDR=0.05, S0= 0.2) competed by 20 μMMS023 with respect to 20 μMMS094 negative control. Proteins marked in purple indicate known
interactors of the identified direct targets of MS023 close to the significance threshold. b Volcano plot of (A-395)-NH2-enriched proteome (labeled blue)
from G401 cell lysate, with targets significantly (FDR= 0.05, S0= 0.2) competed by 20 μM A-395 with respect to 20 μM A-395N negative control.
c Volcano plot of SGC2077-enriched proteome (labeled blue) from Jurkat cell lysate, with targets significantly (FDR= 0.05, S0= 0.2) competed by 20 µM
SGC0946, with respect to DMSO control. d STRING network evaluation of targets significantly competed by MS023. Lines in the STRING evaluation
represent evidenced interactions, with line thickness indicating confidence (high to low). e STRING network evaluation of targets significantly competed by
A-395. The chemical structures of the chemical biology reagents, MTM7172, (A-395)-NH2, and SGC2077, are shown in Supplementary Table 2. See also
Supplementary Fig. 1

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07905-4 ARTICLE

NATURE COMMUNICATIONS |           (2019) 10:19 | https://doi.org/10.1038/s41467-018-07905-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


T cells using A-395 (but not A-395N), an antagonist of the EED
subunit of PRC2 which prevents the latter’s enzymatic activity35,
demonstrating that the enhanced IFN-γ expression and produc-
tion was independent of the chemotype of the active probe,
further strengthening the link between PRC2 inhibition and Th1
cell differentiation. Our results also identified a role for the
H3K79 methyltransferase DOT1L in regulation of Th1 cell
differentiation. DOT1L inhibition resulted in an increase in the
frequency of viable IFN-γ+ CD4+ cells and higher production of

IFN-γ relative to the control compound and Th1 cells alone
(Fig. 4a, b, and Supplementary Figs. 3a and 3b). To further
confirm that these observed differentiation phenotypes were
related to inhibition of the methyltransferase activity of PRC2 and
DOT1L we performed western blot analyses of the histone methyl
marks deposited by each enzyme. Th1 cells treated with
UNC1999 or A-395 (but not with the control compounds
UNC2400 or A-395N, respectively) showed a significant reduc-
tion of H3K27me3 relative to untreated cells. Similarly, western
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blot analysis of H3K79me2 in the presence of SGC0946 showed
an almost complete global loss of H3K79me2, but showed no
change with the inactive SGC0649 or with the inhibitors of the
PRC2 complex (A-395 or UNC1999) (Fig. 4e and Supplementary
Fig. 5). Importantly, this specific inhibition was consistent across
Th1, Th2, Th17, and Treg cells. Thus, inhibition of specific
histone methyltransferases and subsequent loss of their specific
histone methylation marks was associated with phenotypic
changes in mouse Th cells.

PMT regulation of Th1 cell responses is conserved in humans.
To determine whether human T cells responded in a manner
similar to mouse T cells, we activated human naïve peripheral
blood CD4+ T cells for 4 days in the presence of Th1 cell-
polarizing conditions. Consistent with our results for murine Th
cells, inhibition of PRC2 (UNC1999, GSK343, A-395) and
DOT1L (SGC0946) potentiated the effects of Th1 cell activation,
resulting in a higher frequency of IFN-γ-producing Th1 cells as
well as increased IFN-γ production, while the controls had no
effect (Fig. 4c, d, and Supplementary Fig. 4). These results identify
a central role for PRC2 and DOT1L in limiting Th1 cell differ-
entiation in mice and humans.

Since to our knowledge DOT1L has not been examined in Th
cell differentiation and function, we further investigated this
enzyme using our mouse reporter system. In this four-day
polarization assay, we only observed an enhancement of IFN-γ
production with DOT1L inhibition if the cells were treated
starting from day 0 or 1 of the culture, but not if the cells were
exposed to the probe for only the last 1 or 2 days of polarization
(Supplementary Fig. 3c). This is consistent with literature
showing that reduction of histone methyl marks is dependent
on the duration of exposure to methyltransferase inhibitors, often
requiring days of exposure49,50. To explore the dynamics of
H3K79me2 during Th1 cell differentiation, we monitored the
reduction of H3K79me2 and the production of IFN-γ over a
period of 4 days (Fig. 5). Western blot analysis of global
H3K79me2 shows that the mark is reduced in Th cells following
activation in the presence of the control compound SGC0649
(Fig. 5a), suggesting that Th cell activation alone leads to a
reduction of H3K79me2 independent of DOT1L inhibition.
However, inhibition of DOT1L by addition of SGC0946 resulted
in further reduction of H3K79me2 by day 2 that was maintained
until day 4 post activation (Fig. 5a). This earlier and increased
reduction of H3K79me2 induced by SGC0946 correlated with
heightened IFN-γ levels (Fig. 5b). These data establish a
correlation between reduction of the H3K79me2 mark and
enhanced production of IFN-γ and validate that reduced
H3K79me2 correlates with increased production of IFN-γ under
Th1 cell-polarizing conditions. To assess whether DOT1L
inhibition affected T cell proliferation, we used flow cytometric
tracking of naïve Th cells labeled with a fluorescent dye (CFSE),

and stimulated under either neutral (Th0) or Th1 cell-polarizing
conditions in the presence of SGC0946 or SGC0649. We observed
no effect on T cell proliferation (Supplementary Fig. 3d),
suggesting that DOT1L inhibition likely affects the Th1 cell
differentiation program without altering proliferative capacity.

We next carried out unbiased gene expression analysis. Naïve
Th cells from IFN-γ-YFP mice were stimulated under Th1 cell-
polarizing conditions for 4 days in the presence of SGC0946 or
SGC0649. IFN-γ+ CD4+ Th1 cells were purified by cell sorting,
and RNA was isolated for RNA-Seq analysis. Comparing
SGC0946- and SGC0649-treated IFN-γ-positive Th1 cells, we
observed 750 genes that were significantly upregulated, with 208
genes downregulated when DOT1L was inhibited (Fig. 5c). We
observed that inhibition of DOT1L led to expression of non-
canonical genes for Th1 cells including perforin 1 (Prf1), α7
integrin subunit (Itga7), and Ly6G (Ly6g). Thus, our data suggest
that DOT1L-dependent mechanisms are potentially important
for limiting Th1 cell differentiation and maintaining lineage
integrity.

PMTs differentially regulate Th cell differentiation. We next
extended our analysis of the probe collection to identify PMTs
that may be involved in differentiation of not only Th1, but also
Th2, Th17 or Treg cells. We activated naïve Th cells from either
wild-type C57BL/6 mice or transgenic reporter mice (IFN-γ-YFP,
IL-4-GFP, or FOXP3-EGFP) under Th1, Th2, Th17 or Treg cell
differentiation conditions for four days in the absence or presence
of PMT probes or control compounds, and analyzed expression
of lineage-specific markers such as cytokines (Fig. 6) or tran-
scription factors (Supplementary Fig. 7). As summarized in Fig. 6,
we found a wide range of effects on T cell differentiation both
between different probes as well as between different stimulation
conditions for a single probe or chemotype. For example, inhi-
bition of DOT1L and the PRC2 complex (EZH1/2, EED)
enhanced effector cell differentiation (Th1, Th2, and Th17) with
no effect on Treg cell development, while inhibition of G9a/GLP
(UNC0642, A-366), strongly affected Treg cell differentiation.
These data are consistent with our previous results demonstrating
a key role for G9a in promoting Treg cell function43,44.

Another chemical probe that showed strong promotion of Treg
cell differentiation is MS023 which inhibits the type I PRMT
enzymes, PRMT1, 3, 4, 6, and 8. PRMT8 is a neuronal-specific
enzyme and not expressed in T cells51. MS023 was not tested on
PRMT2 because the latter has not yet been demonstrated to be an
active methyltransferase enzyme52. Comparison of this result
with that of the more selective probes for PRMT3 (SGC707),
PRMT4 (TP-064) and PRMT4/6 (MS049) all of which had little
or no effect on Treg differentiation, suggests that the primary
effect of MS023 is due to inhibition of PRMT1. This screen
suggests potential strategies for promotion of Treg cell differ-
entiation through inhibition of type I PRMTs, or PRMT1, should

Fig. 4 Differential Effects of PMT Inhibition on Murine and Human Th1 Cell Differentiation. a, b CD4+ T cells from the spleen and peripheral lymph nodes of
IFN-γ-YFP reporter mice were enriched and polarized under Th0 (IL-2) or Th1 cell conditions in the absence (Th0) or presence of indicated probes (1 μM;
red) or their controls (where available; black). a Flow cytometric analysis of intracellular YFP reporter signal (representing IFN-γ expression) was detected
at day 4. b Secreted IFN-γ was analyzed by ELISA in the supernatant of the same experiment. Each data point represents one of three biological replicates
and the data shown is representative of three independent experiments. c, d CD4+ T cells from the blood of three healthy human donors were cultured
under Th0 or Th1 cell-polarizing conditions in the presence or absence of indicated probes or their controls. c Flow cytometric analysis of intracellular IFN-γ
was detected at day 4. d Secreted IFN-γ was analyzed by ELISA in the supernatant of the same experiment. Each data point represents one of three donors.
Dotted lines visualize the mean frequency of IFN-γ-positive Th1 cells in the absence of probes (a, c) or the mean concentration of IFN-γ in the supernatant
(b, d). Significant differences are indicated with an asterisk and were calculated using one-way ANOVA (*p≤ 0.05, **p≤ 0.01, ***p≤ 0.001). e Western
blot analysis of the effect of indicated inhibitors (red) or control compounds (black) on the trimethylation of H3K27 and dimethylation of H3K79 in CD4+

T cells under Th1, Th2, Th17, Treg cell-polarizing conditions. Please see Supplementary Figs. 5a-5d for information on the MW markers. Data shown is
representative of 2 independent experiments. Error bars represent SEM. See also Supplementary Figs. 2-5
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a selective PRMT1 probe become available. Such compounds may
be beneficial to subdue aberrant inflammatory immune
responses.

Inhibition of PRMT5 using peptide competitive (GSK591) and
SAM competitive (LLY-283) chemical probes clearly down-
regulated the signature cytokines for effector cell differentiation,
but also significantly increased cell death (Supplementary Fig. 7).
PRMT5 has been shown to be required for growth and viability of
rapidly proliferating cells such as cancer cell lines53. Although the
mechanisms are not fully understood, PRMT5 knockdown slows
the cell cycle in NIH3T3 cells and induces G1 arrest in 293T and
MCF7 cells54,55. It is possible that similar mechanisms are at play
in proliferating Th cells. The effect of PRMT5 on Treg cell
differentiation is unclear since the chemical probes yielded
opposite results (even across 6 biological replicates).

Discussion
Here we present a collection of chemical biology reagents to
modulate cellular methylation signaling, especially chromatin-
mediated signaling. Each probe has been characterized for its
selectivity within the human SET and PRMT methyltransferase
families. Most of our chemical probes are accompanied by
structurally similar inactive compounds that serve as negative
controls for potential off-target effects of their common chemical
scaffold. We have annotated the chemical structure of each che-
mical probe showing where they can be chemically derivatized to
create additional reagents such as biotinylated probes for chemo-

proteomics. Using several examples of such derivatives we
demonstrate the cellular selectivity for their targets and respective
interacting proteins. Importantly, these probes and related com-
pounds may be used for research without restrictions.

Using our collection of PMT chemical probes, we identified
several PMTs that differentially regulate Th cell differentiation.
For example, inhibition of the PRC2 complex led to enhanced
Th1, Th2 and Th17 cell responses and a reduction in Treg cell
development, which is consistent with the phenotype observed in
mice with a genetic deletion of EZH245. In addition, inhibition of
G9a resulted in a significant increase in the frequency of FOXP3-
expressing Treg cells, which is in agreement with our previous
results44. Our unbiased screen also identified regulators of Th cell
differentiation. Inhibition of DOT1L promoted effector Th cell
responses with little effect on Treg cell differentiation, as did type
I PRMT inhibition. While the potential enhancement of a reg-
ulatory immune response by inhibitors of G9a or by members of
the Type I PRMT family may be beneficial to control immune
responses in inflammatory disease, an increase of pro-
inflammatory responses by inhibiting the PRC2 complex or
DOT1L might be beneficial to boost the immune response in
underperforming immune systems. These results warrant further
investigation given the intense interest in T cell biology and the
growing appreciation for the role of epigenetics in T cell differ-
entiation56–58. Thus, the PMT chemical probe library provides a
toolbox to examine the biological role of methylation-mediated
signaling in cellular assays.
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One striking finding from our results is that specific probes
displayed diverse functional effects on distinct Th cell subsets
despite global reductions in their respective specific histone
modification in all subsets examined. For example, inhibition of
DOT1L led to heightened effector T cell responses with minimal
effects on Treg cells, while inhibition of G9a primarily affected
Th17 and Treg cells. Although the precise molecular mechanisms
are yet to be elucidated, these results suggest that the targeted
epigenetic modifiers do not act in isolation but rather collaborate
with lineage-specific factors that are expressed in the specific Th
cell subsets. As the PMTs do not have sequence-specific DNA-
binding domains, Th cell subset-specific accessory factors that
target PMTs to the chromatin will be critical modulators of
function. In addition, it is possible that non-histone substrates of
PMTs are critically important in some Th cell subsets. Thus, this
chemical probe library provides tools to examine the fundamental
mechanisms associated with epigenetic regulation of Th cells.

Among the targets in our chemical probe collection, several
have agents currently in clinical trials for cancer (EZH2, EED,
DOT1L, PRMT1, and PRMT5) and additional PMT inhibitors
are in preclinical studies. The availability of well characterized,
unencumbered chemical probes for such targets will enable the
research community to better understand the mechanisms and
consequences of PMT inhibition in a wide variety of cellular
contexts providing important knowledge to help guide clinical
development, patient stratification, and novel applications of
PMT inhibitors. Of particular interest are the apparent pro-
inflammatory activities of PRC2 and DOT1L inhibitors, which
warrant further investigation in the immune-oncology setting.

Overall, our collection of 19 chemical probes to 16 PMT tar-
gets, 17 chemotype-matched controls, and 18 related chemical
biology reagents will be an outstanding resource to enable
research in methylation-dependent epigenetic regulation. Our
detailed descriptions of the potency, selectivity and structural
mechanisms of inhibition of each chemical probe provide a
comprehensive overview of this target class and should facilitate
the development of new chemical probes to other PMTs. Addi-
tional uses of the collection may include (i) synthetic lethal

screens of the probes versus genetic ablation of individual genes
in cancer, (ii) screens for optimal combinations of PMT probes
with existing standard of care therapies in cellular disease models,
(iii) investigation of endogenous PMT protein complexes in a
variety of cells without the need to introduce tagged exogenous
protein baits, and (iv) development of protein degrading reagents
through derivatization of chemical probes59.

Methods
Methyltransferase selectivity assays. The effects of chemical probes and
negative controls on the methyltransferase activities of protein, DNA and RNA
methyltransferases were tested by radiometric assays using 3H-SAM. For proteins
such as MLL1 trimeric complex, MLL3 pentameric complex, EZH1 (PRC2) pen-
tameric complex, EZH2 (PRC2) trimeric complex, as well as G9a, GLP, SUV39H1,
SUV39H2, SUV420H1, SUV420H2, SETD2, SETD8, SETDB1, SETD7, PRMT1,
PRMT3, PRMT4, PRMT5/ MEP50 complex, PRMT6, PRMT7, PRMT8, PRMT9,
PRDM9, SMYD2, SMYD3, DNMT1 and BCDIN3D the incorporation of a tritium-
labeled methyl group into biotinylated substrate (Supplementary Table 3) was
monitored using scintillation proximity assay (SPA). Briefly, a 10-μL reaction
containing 3H-SAM and substrate at concentrations close to the apparent Km
values for each enzyme (balanced conditions) was prepared. The reactions were
quenched with 10 μL of 7.5 M guanidine hydrochloride; 180 μL of 20 mM Tris
buffer (pH 8.0) were added, and the mixture was transferred to a 96-well FlashPlate
and incubated for 1 h. The counts per minute (CPM) was measured on a TopCount
plate reader. The CPM in the absence of compound or enzyme was defined as
100% activity and background (0%), respectively, for each dataset.

For DNMT1, the double-stranded DNA substrate was prepared by annealing
two complementary strands (biotinylated forward strand: B-GAGCCCGTAAGC
CCGTTCAGGTCG and reverse strand: CGACCTGAACGGGCTTACGGGCTC)
that were synthesized by Eurofins MWG Operon (Louisville, KY, USA).

For proteins which were tested with nucleosome as substrate such as DOT1L,
NSD1, NSD2, NSD3 and ASH1L, or unbiotinylated Poly(2′-deoxyinosinic-2′-
deoxycytidylic acid) (Cat# 81349-500UG, Sigma Aldrich) such as DNMT3A/3L,
and DNMT3B/3L, a filter-based assay was used. In this assay, a trichloroacetic acid
(TCA) protein precipitation protocol was employed. A 10 μL reaction mixture was
incubated at 23 °C for 1 h, followed by addition of 50 μL of 10% TCA. The mixture
was transferred to filter plates (Millipore, Billerica, MA, USA) that were centrifuged
at 931 × g (Allegra X-15R; Beckman Coulter, Brea, CA, USA) for 2 min. Samples
were washed twice with 10% TCA and once with ethanol (180 μL), and centrifuged
(as before). After drying, 100 μL MicroScint-O (Perkin Elmer) was added to each
well and the plates were centrifuged to remove the liquid. A 70-μL volume of
MicroScint-O was added and the CPM was measured with a TopCount plate
reader.

fc - fold change
* - significant cell death observed

Complex Target Chemical probe Th1 fc Th2 fc Th17 fc Treg fc

MLL1 WDR5 OICR-9429 0.9 0.8 1.2 1.0

EED A-395 1.3 1.1 1.5 1.0

GSK343 1.1 1.0 1.1 0.9

UNC1999 1.2 1.4 1.3 0.9

DOT DOT1L SGC0946 1.5 1.1 2.4 1.0

A-366 0.8 1.0 1.4 1.4

UNC0642 0.9 1.2 1.4 1.4

SUV420H1/H2 A-196 1.3 1.1 2.3 0.9

SMYD2 BAY-598 0.9 0.8 1.1 1.1

SETD7 PFI-2 0.9 1.0 1.0 1.1

PRMT type I MS023 0.9 1.5 1.0 1.5

PRMT3 SGC707 1.0 0.8 1.0 1.0

PRMT4 TP-064 1.1 1.1 1.0 1.2

GSK591 0.3 0.1 0.2 1.2

LLY-283 0.2 0.1 0.1 0.8

PRMT4/6 MS049 1.0 1.1 1.0 1.0
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Fig. 6 Overview of PMT Inhibition on Murine CD4+ T cell Differentiation. Data is presented as fold-increase (black) or decrease (red) of cytokine
production (IFN-γ, IL-13, and IL-17A for Th1, Th2, and Th17 cells, respectively) or FOXP3 expression (Treg cells) over that of the control compound-treated
(or untreated) cells. Data shown are from two to three individual experiments with three biological replicates each. *Significant cell death: *p < 0.05
compared to DMSO control. See also Supplementary Figs. 6 and 7
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Mice. C57BL/6 mice and reporter mice for IFN-γ47, IL-460, or Foxp361 on C57BL/6
background were used for the polarization assays, where possible. Where una-
vailable, intracellular staining for cytokines and transcription factors was per-
formed. All animal experiments were approved by the Monash University Animal
Care Committee.

T cell polarization, proliferation and flow cytometry. Mouse CD4+ T cells were
isolated with the CD4+ T Cell-Negative Isolation Kit (Stemcell Technologies) and
polarized for optimal results for 4 days under Th0, Th1, Th2, Th17 and Treg
conditions44. Here, 175,000 naïve CD4+ T cells were cultured under Th0 (IL-2
[10 ng mL−1)), Th1 (IL-2, IL-12 [10 ng mL−1 each], anti-IL-4 [10 μg mL−1)), Th2
(IL-2, IL-4 [10 ng mL−1 each), anti IFN-γ [10 μg mL−1]), Th17 (IL-23, IL-1β, TNF-
α [10 ng mL−1 each], IL-6 [20 ng mL−1], TGF-β [1 ng mL−1], anti-IL-4 and anti-
IFN-γ [10 μg mL−1 each] or Treg conditions (IL-2 and TGF-β [10 ng mL−1 each]
in 96-well plates (pre-coated overnight with 1 μg mL−1 of each anti-CD3 and anti-
CD28 in PBS) in 200 μL complete RPMI media (10% FCS, 2 mM L-glutamine,
100 U mL−1 penicillin, 100 µg mL−1 streptomycin, 25 mM HEPES, 50 μM
β-mercaptoethanol) in the absence or presence of indicated amounts of the che-
mical probes. Viability of the cells was determined using fixable viability dye
(ThermoFisher Cat# 65-0863-18; 1/1000). Signature cytokines and transcription
factors were detected using reporter mice or by intracellular staining 4 h after
incubation with the cytokine stimulation cocktail (ThermoFisher Cat# 00-4975-03;
1/500) and antibodies against TBET (eBio4B10; ThermoFisher Cat# 25-5825-82; 1/
200), GATA3 (TWAJ; ThermoFisher Cat# 12-9966-42; 1/200), RORγt (B2D;
ThermoFisher Cat# 17-6981-82; 1/200), Foxp3 (FJK-16S; ThermoFisher Cat# 17-
5773-82), IFN-γ (XMG1.2; ThermoFisher Cat# 25-7311-82; 1/200), IL-13
(eBio13A; ThermoFisher Cat# 12-7133-82; 1/200) or IL-17 (eBio17B7; Thermo-
Fisher Cat#12-7177-81; 1/200) using the intracellular fixation & permeabilization
buffer set (ThermoFisher Cat# 88-8824-00) or the Foxp3/Transcription factor
staining buffer set (ThermoFisher Cat# 00-5523-00) according to the manu-
facturer’s inductions. Proliferation assay of CFSE labeled mouse CD4+ T cells was
performed under Th0 or Th1 polarizing conditions and analyzed at day 3.

Naïve CD4+ T cells were isolated from blood samples of three healthy donors
using the human naïve CD4+ T Cell Isolation Kit II (Miltenyi). One hundred
twenty thousand naïve CD4+ T cells were polarized towards Th1 cells using
anti-CD3/CD28 antibodies (1 bead:5 cells ratio) in the presence of recombinant
IL-12 [10 ng mL−1], anti-IL4 antibody [10 mgmL−1] and recombinant IL-2
[10 ng mL−1] for 4 days in the presence of chemical probes or their respective
probe controls at a concentration of 1 μM which is in the range of the cellular
IC50-IC90 of most of the active chemical probes. The media was not changed and
compounds were not replenished over the duration of the experiment. Naïve CD4+

T cells were maintained in culture in the presence of IL-2 [10 ng mL−1] for 4 days
and used as a control. Cells were stained with SYTOXTM Blue Dead Cell Stain
(Thermo Fisher Scientific), fixed and permeabilized, followed by the intracellular
staining with anti-IFN-γ antibody. All healthy volunteers accepted to donate their
blood samples for research purposes by signing an informed consent (Mount Sinai
Hospital, Research Ethics Board #02-0234-E).

RNA-Seq and bioinformatics. Naïve CD4+ T cells (CD44neg (Thermo Fisher
Scientific Cat# 48-0441-80; 1/200), CD62Lhi (Thermo Fisher Scientific Cat# 25-
0621-82; 1/200)) and CD4+ T cells positive (IFN-γ+) or negative (IFN-γ) for YFP
after Th1 polarization were sorted and total RNA was extracted using the
Nucleospin RNA kit (Macherey-Nagel), according to the manufacturer’s instruc-
tions. RNA was isolated with an mRNA kit (TruSeq Stranded; Illumina, San Diego,
CA, USA) and sequenced on a MiSeq paired-end run (75 × 75, v3; Illumina).
Samples were aligned to the mm10 transcript reference using TopHat2, and dif-
ferential expression was assessed using Cufflinks (Illumina). Visualization of the
data was performed using DEGUST (https://github.com/drpowell/degust) and
represent the average expression from 3 biological replicates (x-axis) and the Log2-
fold change of SGC0946-treated cells over SGC0649-treated cells (y-axis).

Western blot assays. Enriched CD4+ T cells were cultured in the absence (Th1)
or presence of indicated chemical probes for 4 days (or as indicated in the
experiment) under Th1 polarizing conditions. Cells were harvested and pellets were
frozen at −80 °C. Histones were extracted from frozen cell pellets by incubating in
0.2 N HCl overnight at 4 °C. Supernatants were run on 12% SDS-PAGE gels.
H3K27me3 and H3K79me2 were detected using clones ab6002 and ab3594
(Abcam), respectively. A pan anti-histone H3 antibody (ab1791, Abcam) at a
concentration of 1 μg mL−1 was used as a loading control. The uncropped blots are
shown in Supplementary Fig. 5.

Chemical proteomics. G401, Jurkat and HEK293T were obtained from ATCC
(Virginia, USA) and cultured at 37 °C in a humidified 5% CO2 atmosphere in
McCoy’s Medium containing 10% FBS, RPMI-1640 containing 10% FBS, and
DMEM Medium containing 10% FBS, respectively. The cell lines are not found in
the ICLAC database for commonly misidentified cell lines, and were not authen-
ticated. All cell lines tested negative for mycoplasma contamination (MycoAlertTM
PLUS Mycoplasma Detection Kit, Lonza). For cell lysate experiments, cells were
grown until approximately 80% confluency before being pelleted and washed with

PBS. Cell pellets were subsequently lysed by addition of Buffer A (50 mM Tris pH
7.5, 0.8% v/v NP-40, 5% v/v glycerol, 1.5 mM MgCl2, 100 mM NaCl, 25 mM NaF,
1 mM Na3VO4, 1 mM PMSF, 1 mM DTT, 10 μg mL−1 TLCK, 1 μg mL−1 Leu-
peptin, 1 μg mL−1 Aprotinin, 1 μg mL−1 soy bean trypsin) on ice, followed by ten
passes through a 21G needle. Following 30 min incubation on ice, crude lysates
were cleared by ultracentrifugation (86,900 × g, 4 °C, 1 h), protein concentration
was determined and lysates stored at −80 °C until use14.

Eluted proteins were separated on polyacrylamide gels with SDS running buffer
(50 mM MES, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 7.3) and transferred
to nitrocellulose blotting membranes. Membranes were blocked with blocking
buffer (2.5% (m/v) BLOT-QuickBlocker (Merck) in PBST (Phosphate-buffered
saline with Tween: 4.3 mM Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM
KCl, 0.05% (v/v) Tween 20) before probing with the antibodies mouse anti-EED
(clone GT671; Thermo Fisher Scientific Cat# MA5-16314; 1:1,000), and CARM1
(Bethyl Laboratories Inc. Cat# A300-421A; 1:10,000). The uncropped blots are
shown in Supplementary Fig. 1.

Amine derivatized compounds were coupled to NHS-activated Sepharose 4 fast
flow beads (GE Healthcare)36. 100 μL of bead slurry (50% in isopropanol) were
used for each pull-down experiment. Beads were washed with DMSO (500 μL),
collected by centrifugation (60 × g, 3 min), and the supernatant removed. After
three wash cycles, the beads were re-suspended in DMSO (50 μL), to which the
amine (0.025 μmol) and triethylamine (0.75 μL) were added. The beads were
incubated at room temperature for 16 h, and depletion of free amine from the
supernatant determined by LC-MS analysis. Ethanolamine (2.5 μL) was then added
to block any unreacted NHS sites, and the beads incubated for a further 16 h.
Derivatized beads were then washed with DMSO (3 × 500 μL), Buffer A (3 × 1 mL),
and incubated with cell lysates (2 mg of protein per pulldown, at 6 mg mL−1) that
had been pre-treated with either compound (20 μM) or DMSO control for 30 min
at 4 °C. Beads and treated lysates were incubated for 2 h at 4 °C, before being
washed with Buffer A (5 mL), Buffer B (50 mM HEPES pH 7.5, 100 mM NaCl,
500 μM EDTA, 2.5 mL), and eluted with formic acid (100 mM, 250 μL). Samples
were neutralized with triethylammoniumbicarbonate (TEAB, 1 M, 62.5 μL) and
stored at −20 °C until preparation for proteomic analysis.

Biotin derivatized compounds were coupled to UltraLink Immobilized
Streptavidin Plus beads (GE Healthcare)6. 100 μL of bead slurry (50% in
isopropanol) were used for each pulldown experiment. Beads were washed with
Buffer A (500 μL), collected by centrifugation (60 × g, 3 min), and the supernatant
removed. After three wash cycles the beads were re-suspended in Buffer A (1 mL),
to which the biotinylated compound was added (0.05 μmol) and incubated for
30 min at 4 °C followed by a final wash step with Buffer A (2 × 1mL). Lysates were
precleared by the addition of 100 μL of bead slurry (50% in isopropanol) and
incubated for 30 min at 4 °C. After preclearing, lysates were treated with either
compound at the indicated concentration or DMSO control for 30 min at 4 °C
followed by incubation with the affinity matrices for two hours at 4 °C. Affinity
matrices were washed with buffer A (5 mL), Buffer B (50 mM HEPES pH 7.5,
100 mM NaCl, 500 μM EDTA, 2.5 mL), and proteins eluted with Buffer C (3 M
Urea, 50 mM formic acid, 10 mM DTT, 250 μL). Samples were neutralized with
triethylammonium bicarbonate (TEAB, 100 mM, 30 μL) and stored at −20 °C until
preparation for proteomic analysis. For Western blot experiments bound proteins
were eluted by addition of 100 μL of 2× sample buffer (65.8 mM Tris-HCl pH 6.8,
26.3% (w/v) glycerol, 2.1% SDS, 0.01% bromophenol blue, 50 mM DTT).

Samples were reduced with DTT (10 mM final concentration) for 30 min at
room temperature, alkylated with iodoacetamide (55 mM final concentration) for
30 min at room temperature, diluted to 300 μL with TEAB, and incubated with
trypsin (6 μL, 0.2 mgmL−1) overnight at 37 °C. The digests were then desalted
using SEPAC lite columns (Waters), eluted with 69% v/v MeCN, 0.1% v/v FA in
H2O (1 mL) and dried in vacuo. Dried peptides were stored at −20 °C before
resuspension in 2% v/v MeCN, 0.1% v/v FA in H2O (20 μL) for LC-MS/MS analysis

Mass spectrometry data were acquired at the Discovery Proteomics Facility
(University of Oxford). Digested samples were analyzed by nano-UPLC–MS/MS
using a Dionex Ultimate 3000 nano UPLC with EASY spray column (75 μm×
500 mm, 2 μm particle size, Thermo Scientific) with a 60 min gradient of 0.1% (v/v)
formic acid in 5% (v/v) DMSO to 0.1% (v/v) formic acid with 35% (v/v) acetonitrile
in 5% (v/v) DMSO at a flow rate of approximately 250 nL min−1 (600 bar per 40 °C
column temperature). Mass spectrometry data were acquired either with an
Orbitrap Q Exactive (survey scans acquired at a resolution of 70,000 @ 200m/z and
the 15 most abundant precursors were selected for HCD fragmentation), or an
Orbitrap Q Exactive High Field (HF) instrument (survey scans were acquired at a
resolution of 60,000 at 400m/z and the 20 most abundant precursors were selected
for CID fragmentation.)

Raw data was processed using MaxQuant version 1.5.0.253 and the reference
complete human proteome FASTA file (UniProt). Label Free Quantification (LFQ)
and Match Between Runs were selected; replicates were collated into parameter
groups to ensure matching between replicates only. Cysteine carbamidomethylation
was selected as a fixed modification, and methionine oxidation as a variable
modification. Default settings for identification and quantification were used.
Specifically, a minimum peptide length of 7, a maximum of 2 missed cleavage sites,
and a maximum of 3 labeled amino acids per peptide were employed. Through
selection of the ‘trypsin/P’ general setting, peptide bond cleavage at arginine or
lysine (followed by any amino acid) was considered during in silico digest of the
reference proteome. The allowed precursor and fragment ion mass tolerances were
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4.5 ppm and 20 ppm, respectively. Peptides and proteins were identified utilizing a
0.01 false discovery rate, with “Unique and razor peptides” mode selected for both
identification and quantification of proteins (razor peptides are uniquely assigned to
protein groups and not to individual proteins). At least 2 razor + unique peptides
were required for valid quantification. Processed data was further analyzed using
Perseus version 1.5.0.9 and Microsoft Excel 2010. Peptides categorized by
MaxQuant as ‘potential contaminants’, ‘only identified by site’ or ‘reverse’ were
filtered, and the LFQ intensities transformed by log2. Experimental replicates
were grouped, and two valid LFQ values were required in at least one experimental
group. Missing values were imputed using default settings, and the data distribution
visually inspected to ensure that a normal distribution was maintained.
Statistically significant competition was determined through the application of P2
tests, using a permutation-based FDR of 0.05 and an S0 of 2, and visualized in
volcano plots. Significantly competed targets were further analyzed in STRING
(http://string-db.org) and protein interaction networks generated. Basic STRING
settings were used for network analysis of enriched proteins. Specifically, network
edges represent confidence in interaction. Line thickness indicates the strength of
data support with a minimum required interaction score of 0.400. All active
interaction sources (Textmining, Experiments, Databases, Co-expression,
Neighborhood, Gene Fusion, Co-occurrence) were considered.

Syntheses of reagents. The syntheses of the reagents are described in the Sup-
plementary Information.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The proteomics data that support the findings of this study have been deposited in
the PRIDE partner repository62(ProteomeXchange Consortium) with the dataset
identifier PXD009028. The RNA-Seq data that support the findings of this study
are available at the National Center for Biotechnology Information with the
primary accession code GSE106978. All other data that support the findings of this
study are available from the corresponding author on reasonable request. A
reporting summary for this Article is available as a Supplementary Information file.
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