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Tropical forests and coral reefs host  a disproportionately large share  of  global
biodiversity and provide ecosystem functions and  services  used  by millions of
people. Yet, ongoing climate change is leading to an increase  in frequency and
magnitude  of  extreme  climatic  events  in  the  tropics,  which, in  combination
with  other  local  human  disturbances,  is  leading  to  unprecedented negative
ecological  consequences  for tropical forests and coral reefs.  Here, we provide
an  overview  of  how  and  where climate extremes are affecting the most biodi-
verse  ecosystems  on  Earth  and  summarize  how interactions between global,
regional  and local stressors are affecting tropical forest and coral reef systems
through  impacts  on  biodiversity  and  ecosystem  resilience.  We  also  discuss
some  key  challenges  and opportunities to promote mitigation and adaptation
to a changing climate at local and global scales.
     This  article  is  part  of  the  theme  issue  ‘Climate  change  and  ecosystems:
threats, opportunities and solutions’.

1.Introduction
The  tropics  contain  the  overwhelming  majority  of  Earth’s  biological diversity [1]
disproportionately  distributed   in   two  key  ecosystems:  tropical  forests  and  coral
reefs.  Tropical forests cover less than 12% of  the planet’s  ice-free  surface  but  host
more  than  two-thirds  of  all  terrestrial  species [1]. They provide  the largest contri-
bution  to  Earth’s  productivity   from   any   biome [2]   and   play  a  critical  role  in
overall  climate  regulation  by storing 25% of the carbon in  the  terrestrial  biosphere
[3]. Equally  important  are tropical coral reefs (hereafter ‘coral reefs’),  covering  just
0.1% of the ocean surface yet holding the highest species diversity of any marine eco-
system [4]. They also sustain crucial ecosystem processes for more  than  500  million
people  who  use  coral  reefs and reef  products  for food  provisioning, fisheries  and
tourism [5,6], and through providing coastal protection against natural hazards [7].
       Despite their global importance, tropical forests and coral reefs  are  subject  to  a
complex mixture of more localized pressures  such  as  overexploitation,  habitat  loss
and  degradation,  pollution  and  global  climate change [1,8]. Growing evidence also
suggests   that   anthropogenic   climate   change   is   increasing   the  periodicity  and
intensity  of  some  climate  extremes  (e.g. [9–11]),  which can  be  defined  as abrupt
climatic    events,    such    as    abnormally    intense    storms,    hurricanes,     floods,
heatwaves,   droughts   and   associated   large-scale   wildfires  [12].  The   ecological
impacts  of   these extreme  climate  events  can  be  exacerbated  by  ongoing gradual
changes in temperature  and  precipitation,  as  well  as  local anthropogenic pressures,
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Figure 1.  Tropical forest and coral reef  locations  ecologically  affected  by  climate  extremes.   Tropical  forest  biome  (green)  was  defined  following  the  ecoregions

‘Tropical & Subtropical Dry Broadleaf Forests’ and ‘Tropical & Subtropical Moist Broadleaf Forests’ [33]. The tropical marine biome (darker blue polygons) was defined

as the extent of shallow-water coral-forming ecoregions [34] on the basis of sea-surface temperature  (mean minimum monthly 18°C  sea-surface  isotherm  between

1988 and 2018; [1]). Colour-coding of the dots on the map indicates different extreme climatic events: drought/fires (red), flooding (blue), heatwaves (yellow) and

hurricane/cyclones (orange). Purple-coloured dots show high-intensity bleaching reports from ReefBase (www.reefbase.org) between 1990 and 2010. Data sources

and references for each number are presented in the electronic supplementary material, tables S1 and S2, respectively.
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2. Where and how are climate extremes
affecting tropical forests and reefs?
(a) Storms and floods
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such   as   land-use  change   [13,14].  Understanding  how
tropical  rainforests  and  coral  reefs  respond   to  climate
extremes—and  their interactions with other  stressors—is
therefore essential to achieve  global conservation   targets
[15] and sustainable development goals [16]. Evidence of
the  influence  of  gradual  climate  changes  and  extreme
climatic events is growing, and many studies explore their
interactions with  other  more localized  human  pressures
that threaten tropical forests and  reefs  (e.g.  [1,13]).  Yet,
the existing literature is patchy and our  ability  to  protect
and manage these ecosystems is limited  by two important
knowledge  gaps.  First,  no  study  to  our  knowledge has
summarized where climate extremes are known to already
affect both tropical forests and  coral  reefs  worldwide, or
which  extreme  events  drive  ecological changes in these
two ecosystems.  Second, despite a  growing  literature on
the   subject,  it   is  not   clear  how  interactions  between
gradual climate change, extreme climatic events and local
disturbance  are  influencing  tropical   forests  and   reefs.
These  two  knowledge gaps motivate the first and second
part of our review. The final part explores how our current
understanding    of   ecosystem    responses    to   multiple
pervasive    pressures    could    be   applied    to     inform
management  and  conservation  strategies.  Although  we
primarily  focus  on  tropical  forests  and  coral  reefs, the
interactions among climate-related and local human-driven
stressors are also major threats to other global ecosystems
both in tropical and extratropical regions [17–19].

     

 

driver of changes in inshore reef dynamics [24]. Not surpris-
ingly, cyclonic storms have been shown  to  trigger   regime
transitions, from  coral  to  macroalgal  dominance, through
interactions  with   local   stressors   (e.g.   overfishing   and
diseases)  that  drive  coral  cover  declines  [25].   Tropical
forests are also being affected—hurricanes frequently affect
tropical forests  in the Caribbean and Central America [26–
28],  and  heavy  storms  have  caused  severe  landslides in
Venezuela [29]  and  floods  in  the  Amazon basin  (e.g.  in
Brazil   and   Peru  [30–32]; figure 1).  Some  of   the   most
extreme hydrological  events  have been associated with La
Niña-induced changes in precipitation  and  river  flow (e.g.
1989, 1999, 2009 and 2012) [32,35,36].  The 1998/1999 La
Niña, in particular, brought one of  the  strongest  hurricane
seasons ever  recorded  in  the  North  Atlantic, while in the
Indian Ocean over  50%  of  Bangladesh  was flooded [37]. 
Consequently,   a     range    of    post-hurricane   ecological
consequences has been recorded in tropical forests,  such as
reductions   in   non-tree  resources  for   nectarivorous  and
frugivorous fauna [38]; changes in plant-herbivore networks
(e.g.  negative  effects  on   network   size   and   specificity,
but  increased  network  connectance  and  robustness) [39];
and  greater  than  50%  declines in rates of occupancy,  and
even  local  and   global   extinctions   of   forest   birds   on
Caribbean islands [26,40].

Extreme  temperatures  and droughts have been recently re-
corded across much of southern Africa,  Southeast Asia and
South America  [41].  In recent decades,  marine heatwaves
have provoked widespread coral bleaching  [42]  (figure 1),
leading to fundamental  changes  in  coral  reef  ecosystems
(e.g. [43–45]).  In particular, the extremely high sea-surface
temperatures across most of  the  tropical  and  extratropical
oceans during the 2015/2016 record-breaking anomaly [46]
caused  one  of  the  strongest  mass  bleaching  events on a
worldwide scale [47],  resulted  in  unprecedented  levels of
coral  mortality  [48]  and  altered  community composition
of  both corals and fish on the GBR  [49].  Other heatwave-
induced  ecological   impacts   include   flattening   of   reef
structure  [50]  and   loss   of   carbonate   production   [51],
formation of persistent novel fish communities  [43],  shifts
to macroalgal regimes [44] and  synchronous  multi-trophic
ecological  disruptions   in  marine,  but  also  in  terrestrial,
ecosystems  (e.g.  coral  bleaching  and  tree  die-off )  [52].

(b) Heatwaves and droughts

 

Climate  change  is  causing  more  intense   and   frequent
cyclonic  storm   systems   (i.e.  hurricanes,  cyclones  and
typhoons)  [10],  with  more  extreme  events  expected  in
regions already  affected  by  tropical  cyclones,  including
Central America and the Caribbean, East Africa,  most  of
Asia, as well as in Australia  and  the  Pacific  islands [20].
Although  their   impacts   on   coral   reefs   are   primarily
physical, for example, through reef structural damage [21],
storms   and   hurricanes  can   strongly   influence   marine
ecosystems   [22,23].    On    the   Great   Barrier   (GBR),
for example, heavy rainfall  was  associated  with  negative
trends in live coral cover, and storms emerged as the major

 



The  combination  of  extreme  high  temperatures  with longer
and more severe  dry  seasons  has  also  led  to  the  spread  of 
unprecedented and large-scale wildfires in tropical forests [53,
54] (figure 1). For example, forests in the Amazon  basin  and
Indonesia have witnessed at least four ‘mega-droughts’ in  the
last  three decades  [55,56].  Some of these  heat  and  drought
events were aggravated by the El Niño  Southern  Oscillations
(ENSO),    such    as   in   2015/2016   when   fires  devastated 
around 1 Mha of Amazonian forests [57,58]  and  greater  than
4.6  Mha across  Sumatra, Kalimantan  and  West  Papua [54].
As  a  result of more frequent,  extensive  and intense  drought
and fire  events, tropical  forests  have  been  affected  through
elevated tree mortality [59–61], impoverishment of  biological
communities [59,62–64] and loss of specific functional groups
(e.g.   evergreens   and   softwoods   [65]).    For   instance,  in
Amazonia, hotter and  drier  seasons  impose  additional water
stress for trees even in the wetter  environments  [66], and tree
recruitment has shifted species composition towards more dry-
affiliated species, accompanied by increased mortality of wet-
affiliated  species  [67].  These drought-related impacts can go
beyond  taxonomic  and   functional   changes   to   effects   on
ecosystem resilience and stability (box 1),  and in combination
with wildfires, have led to reduced plant growth  (e.g. [82] but
see  [83])  and  ecosystem  primary production [82,84]—all of 
which  negatively  affect  the  forest  carbon  cycling [85,86].

Following the framework proposed by Didham et al.  [18], the
interactions   between   climate-related   stressors    and   local
disturbances  can  result   in  ‘chain’ and ‘modification’ effects
(figure 3).  The interaction chain effects occur  when  multiple
stressors  have  direct  ecological  impacts,   with   one   driver
amplifying the magnitude of another  (a direct  and synergistic
interaction;  e.g. land-use change  increases   climate warming
via  albedo  effects  or  carbon  release   [87]).    By    contrast,
interaction modification effects occur when the per unit or per
capita  influence  of  one  stressor  is  modified by another  (an
indirect  interaction),   such   as   when  habitat  fragmentation
prevents species  from   migrating   to   track   their   preferred
climate   niche   [88].    These  modification  effects can occur
through   additive,   antagonistic   or   synergistic   interactions
between stressors (reviewed by Côté et al.[89]). Regardless of
how they interact and the scale on which  they operate  (figure
3), climate change, extreme climatic events and local stressors
are likely to act as strong and  interacting environmental filters
[69,90].   As only a small  subset of the original species pool is
likely to respond  positively to  multiple stressors   [1,91],  this
potential  filtering  of  biological  communities  can   result  in
subsequent effects  on  ecosystem functioning  and  functional
stability  of  tropical  coral   reef   and  forest  systems.   These
impacts, however, are  likely  to  be  ecosystem-dependent,  as
demonstrated   by   the   empirical   evidence   from   Brazilian
Amazon forests and Seychelles  coral  reefs (box 1). 

Climate     stressors     and     land-use     change,     principally
deforestation   for   food   production   and   human  settlement
provision, have been exerting multi-taxa  and  -trophic  effects
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3. How do interactions among climate change,
      extreme climatic events and human-driven
      local stressors affect the resilience of
      studied ecosystems?

(a) Climate and deforestation interactions threaten
      tropical forests and coral reefs

on  terrestrial  and  marine  systems  [1,92–95],   and   causing
disproportionate  biodiversity  loss—particularly in the tropics
[13].   Although   climate   change   is   considered   the   most
important  threat   to  coral   reefs  [77],  deforestation impacts
are   also  projected  to outweigh future climate-change-driven
declines  in  river  flow and sediment load  to  reef  systems in
some   regions   [95].    However,   the   complex   interactions
between these stressors can make it  challenging to tease apart
their  independent  effects [89,96].
       Deforestation has two effects on climate. First,  it  favours
climate change through effects  on greenhouse  gas  emissions
and  surface  fluxes  of   radiation,   moisture  and   heat   [87].
Second, it increases the  likelihood,  intensity  and  extent   of
regional   climatic   extremes  [97–99].   Consequently,   many
ecological    responses    to   deforestation   and  fragmentation
likely result from interaction modifications with climate.   For
instance,  a  global  terrestrial  analysis  of  1319 papers  found
that  habitat  loss  impacts  on  biodiversity  were   greatest   in
regions experiencing higher  temperatures  and  lower  rainfall
[100]. Interaction modification effects would  also  imply that
climate extremes occur under conditions of  altered  resilience
generated   by   previous   forest   conversion.   For   example,
deforestation can indirectly reduce the ability of tropical forest
and reef biota to resist further climate disturbances by creating
hostile landscapes  and  ocean  conditions  that  hinder species
capacity  to  track  and  achieve climate envelopes  with  more
suitable  conditions   [88,101,102].   Moreover,  habitat   area,
quality, heterogeneity  and  configuration  can  also  affect  the
biota sensitivity and recovery after climatic  disturbances  [96,
103,104].

Most remaining tropical forests are currently subject  to  some
form of anthropogenic disturbance [105]. Many of  these alter
forest  microclimates—selective  logging  and   wildfires,   for 
example,   increase  tree  mortality,   which  results  in  greater
canopy openness [106,107] and drier understoreys [108]. These
processes, combined with increasingly hotter  and  longer  dry
seasons, enhance forest flammability [109] and the  likelihood
of  escaped  fires  ignited  on  agricultural  lands  [110] to burn
neighbouring forests [111,112].  Although  many  tree  species
have  molecular and physiological mechanisms that help them
resist short-lived heat and drought [84], tropical rainforests are
fire-sensitive  and   have    few    fire-resistant   species   [113].
Post-disturbance   changes   in   carbon    cycles    [105]    and
evapotranspiration rates—a  key source  of  aerial  moisture—
are  also  likely  to   affect   atmospheric   circulation   patterns
through  biogeochemical  feedbacks   mediated   by   pollution
through the release of CO2 and other aerosols [114,115], which
have  been shown  to suppress  cloud  formation  and  regional
precipitation [116,117].  Another  example  of   an   interaction
modification  effect  occurs  when  climate change exacerbates
the  many  negative  impacts  of   ongoing   forest  degradation
through  declines  in  rainfall  [59,118]  that  can  enhance tree
mortality through physiological mechanisms related to carbon
starvation  and  hydraulic failure   [84,119].   As  rising  global
temperatures promote the occurrence and  severity of  extreme
droughts  [120]  and  wildfires  [121],   their  interaction  chain
effects are also likely to be common in tropical forests  (figure
3).    Climate   changes    can   also    indirectly    modify    the 

(b) Enhanced heat and drought vulnerability within
       human-modified tropical forests

 



 susceptibility of tropical forests to climate extremes. For example, if
cloud cover is  declining over  midlatitudes  [122]  and  elevated CO2

levels  are  enhancing  liana biomass [123],  then  this could  increase   

Box 1.  Empirical examples of how climate extremes impact taxonomic and functional diversity, affecting the resilience and  stability  of
tropical forests and coral reefs.

Securing functionally stable and resilient ecosystems is a pressing issue under ongoing global  change.  It is  assumed  that
biodiversity increases ecosystem functioning and climate-resistance  [68],  and that functional trait-based  approaches   can
better quantify disturbance consequences on ecological function and ecosystem stability [69]. However, the literature lacks
evidence from the tropics [70,71]. To explore how an El Niño-related extreme drought and marine heatwave can affect the
functional stability and ecosystem functioning of tropical forests and coral reefs, we used empirical data from dung beetles
—which are important insects for secondary seed dispersal and seedling establishment processes in tropical forests [72,73]
—within primary Amazonian forests  and  herbivore parrotfish within reefs throughout the inner Seychelles.  We measured
functional traits of dung beetles and parrotfish, along with two key ecosystem functions: secondary seed dispersal rates by
dung beetles in forests and grazing rates by herbivorous parrotfishes on reefs.   All  datasets were sampled before and after
the onset of the 2015–2016 El Niño  (forest: 2010 and  2016;  reef: 2014 and 2017;  for further  details  see  supplementary
material and [44,74]). We, hence, compared post-El Niño functional diversity metrics and biodiversity-ecosystem function
(BEF) relationships with those from pre-El Niño surveys.
  Our findings suggest that climate extremes could reveal the importance of tropical biodiversity for ecosystem functioning,
increasing  the  range of  ecological  niches occupied  by functional  groups  (functional richness),   and  reducing  the  trait
dissimilarity among  communities  (functional dispersion)—but  these  impacts  are  ecosystem-dependent  [75]  (figure 2).
Specifically,  lower  seed  dispersal  rates  occurred  in  forests  with  reduced beetle richness after the 2015–2016  El Niño
drought (figure 2a,b), whereas  positive BEF relationships were found in both pre- and post-El Niño surveys on Seychelles
reefs (figure 2e,f ).  Although these findings focus only on the short-term responses,  they suggest that  disturbances  could
make tropical forests more dependent on biodiversity for their functioning [76]; while  demonstrating that not only climate
change, but also climatic extremes,  may have filtering effects for terrestrial biological communities [17].  In addition,  the
maintenance of high post-disturbance  grazing  rates—under  some specific ecological contexts [77]—may promote  long-
term coral recovery and  stability  by controlling competitive algae and reducing the likelihood of ecosystem  transitions to
algal-dominated  states  [44].
   After the El Niño event in the Amazon, dung beetle functional richness was higher  (figure 2c)  and functional dispersion
was lower  (figure 2d).  Similar  results  were found for ground beetle functional responses to flood disturbance in German
grasslands  [78].  These  patterns  could  be  explained  by  the  loss  of species with very distinctive traits and an increased
dominance of functionally similar species such as generalists (often found in more disturbed environments [39,79,80]). By
contrast,  the lack of changes in functional richness and dispersion in the marine example (figure 2g,h) indicates no overall
variation in the number  of  different  functional  traits  and  groups  in  parrotfish  communities.  Thus, the high taxonomic
richness  on  coral reefs may support high functional redundancy,  enabling functional groups to persist despite the El Niño
event. Previous studies have similarly found  no  change in  functional  indices,  including richness and dispersion, of coral
reef fishes following habitat degradation due to storms or bleaching  [49,81]. However,  functional originality of coral reef
fishes often decreases following climate extremes [49,81], which could make them more susceptible to future disturbances
and to the interacting effects of climate change, climate extremes and local stressors (figure 3).

Figure 2.  Drought  and  bleaching impacts on tropical biodiversity-ecosystem functioning links, functional richness and functional dispersion in tropical forests

and coral reefs, respectively. Dung beetle (a–d) and herbivore parrotfish communities (e–h) were surveyed before ( purple)  and  after  (blue)  the  2015/2016 El

Niño drought within Brazilian Amazonian forests and heatwave in Seychelles reefs, respectively. The x-axis shows dung beetle (a,b) and parrotfish (e–f )  species

richness, and pre- and post-drought/heatwave surveys (c,d/g,h). The y-axis represents rates of dung beetle-mediated secondary seed dispersal (a,b), parrotfish

grazing  rates  (e,f ),  functional  richness  (c,g) and  functional  dispersion  (d,h).   Further  details  on  functional traits,  analyses and results are described in the

electronic supplementary material. (Online version in colour.)
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the  mortality  rates  of  drought-stressed  trees  even  in otherwise
undisturbed tropical forests [124].



The current coral crisis is the result of a combination  of  large-
scale climatic stressors and localized non-climatic disturbances
[125]. Coral reef ecosystems are already widely  threatened by
local stressors  such  as  overharvesting,  land-based  pollution,
diseases, sedimentation and nutrient loading [125]. At a global
scale, climate change is increasing the frequency, duration and
intensity of  marine  heatwaves  [46],  resulting  in  interaction
chain  effects  (figure  3)  that  are  pushing coral communities
towards  their  physiological  stress  limits  [126]  and  causing
widespread coral bleaching (figure  1). For example, the 1997/
1998 and 2015/2016 bleaching events affected  approximately
75%  of  well-studied  coral reefs across the globe [47] and, in
some  regions,  led  to  greater  than 90% declines in live coral
cover [127].   The   individual   effects   of   local   and   global
stressors  on  coral  reefs are relatively  well-understood,  but
recent  insights  suggest  that  the impacts of  climate extremes
can also be exacerbated by  local stressors. Corals on the GBR,
for  example,  contend   with   multiple disturbances  including
sedimentation,  nutrient  run-off  and  crown-of-thorns starfish
outbreaks [22]—and interactions  between  these  disturbances
determine coral resilience to bleaching (figure 3). For instance,
coral  declines  are   greatest  and  coral recovery is slowest on
reefs where overfishing has compromised ecosystem processes
such  as  predation   and   herbivory  [128]. Furthermore, reefs
adjacent  to  turbid river outflows have  a  lower probability of
bleaching  mortality  due  to lower light  stress [23], providing
an example of  an  antagonistic  interaction.  By contrast, reefs
with elevated nutrient levels have reduced coral recovery rates
by 12–27%  [23],  which  signals   an   additive  or  synergistic
interaction.
    Although the magnitude of impacts of climate extremes will
depend on the direct and indirect  interactions  with  local  and
global pressures (figure 3), even isolated and relatively pristine
reefs are vulnerable to both climate change and  extremes  [47,
129].  Thus,   local    management   alone   is  not  expected  to
promote coral reef resilience in the face  of   climate   stressors
[130,131],  although limited evidence shows that local stressor
alleviation   favoured   post-bleaching   recruitment  and  coral
recovery  in  the  GBR [128], Caribbean [132], Mesoamerican 
[133]   and   Kenyan   reef   systems  [134].  In   othe   regions,
ecosystem  protection  of  coral  reefs   can    fail   to   mitigate 

tropical forests

coral reefs

climate change

climate extremes

local stressors

global warming
ocean acidification

heatwaves
droughts/wildfires

hurricanes/cyclones
storms/floods

land-use change
habitat degradation

overexploitation
pollution

global

regional

local

Figure 3. Framework of interactive effects between climatic and anthropogenic stressors on tropical forests and reefs. Interactions may occur through modification

effects, whereby the impacts per capita/per unit of one stressor is influenced by another pressure (dashed arrows), or through chain effects that may occur when

both stressors have a direct influence, with one amplifying the severity of the other (adapted from the framework proposed by Didham et al. [18]). Photos represent

a coral bleaching event in Moorea and landslides after massive thunderstorms in Peruvian cloud forests, by K. Chong-Seng and M. Dehling, respectively. (Online

version in colour.)
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(c) Climate-induced disturbances exacerbate
      impacts of local stressors on coral reefs

(a) Climate-smart protected areas

bleaching impacts  when  compliance  is  weak  and  protected
areas  are  small  [135,136].

We have herein outlined various examples of how climate
extremes pose a broad range of  challenges  to  tropical forests
and coral reefs  (figure   1   and   box   1),   particularly   when
combined with ongoing  climate change  and   more  localized
human  pressures. Guarding against  negative  impacts  on  the
world’s  most  biodiverse  ecosystems  will be challenging and
dependent on  local  and  global  actions for climate adaptation
and  impact  mitigation,  while  more  traditional  conservation
strategies will need to be renewed to ameliorate the impacts of
multiple interacting threats (figure 3). 

Networks   of   connected   protected   areas   have   been    the
cornerstone  of  efforts   to   conserve   biodiversity;   however,
interactions  between  local  and  climatic  stressors  (figure  3)
require  a   new  focus on functional and  climate connectivity,
with the particular aim of allowing species  range shifts  along
climate  gradients  [88].  The global extent of marine protected
areas protects  just  7.66%  of  the ocean, and  the  size  of  the
tropical network is far smaller than  in  the  rest  of  the  world
[137].  Although  the  largest  percentage  of  forest area under
protected  status  (greater than  26%)  is  found  in  the  tropics
[138],  most  tropical  reserves are smaller than 100 km2 [139].
The  coverage  of  tropical forest and marine protected areas is
therefore  too  small  to  allow  long-distance   range  shifts  by
species, and  over 62% of the tropical forests have been shown
to  be  likely  to   fail   in   facilitating   species   movements to
analogous  future  climates [88].
     To  enhance  climate  connectivity   and   hence   resilience,
decision-makers  should  also  focus  on viable  patch-linkages
and  habitat   corridors    among    protected   areas   preferably
distributed along climate gradients and where connectivity loss
and species vulnerability to climate  are  high  [88]. Achieving
successful reserves will also require the protection of habitat in
the wider landscape—such as private lands—to ensure reserves
remain functionally connected if  climate  change  and  extreme
events  result  in  enhanced  environmental  stochasticity  [140],
and species need to  travel  longer  to  find  suitable  bioclimatic
conditions [88,141].

4.The way forward

 

 



In addition, protected areas may also play a key role for both climatic
mitigation and adaptation  through  reducing  emissions from tropical
deforestation [142], alleviating regional  flood  (drought)  occurrence
during  extremely   rainy  (dry   and    hot)   seasons   [143–145],  and
avoiding  overexploitation  and  loss   of   organisms   and   processes
important  for  post-disturbance ecosystem recovery  (e.g. [128,146]).
However,  to  fulfil  their  role  as an insurance policy for biodiversity
and  climate-mitigation,  current  protected  area  networks need to be
well enforced and funded [147], while new marine and forest reserves
should    be   strategically   placed    where    they    increase   climate
connectivity [88] and/or are predicted to escape the burden of climate-
associated stressors  [130].  This  is  important  because even  regions
under  low  direct  anthropogenic  stress  may  be  subject  to  impacts
from regional and global stressors [77].

As  human populations and per capita consumption continue  to grow 
[148], the fate and future benefits provided by tropical forest and reef 
systems will also  depend greatly on  how well  these  ecosystems are
managed. Their long-term resilience to climate  change and extremes
will require  the  collective  effort of  a  broad  range  of  stakeholders
at distinct levels. Acting locally is important, and  there  are  different
approaches to avoid further on-the-ground disturbance. For  instance,
the post-disturbance resilience of tropical ecosystems and  biota  may
be enhanced through approaches for climatic adaptation  such  as  the
implementation   of    well-planned   landscapes,    reinstatement    of 
connectivity    and    energy  flows   among   ecosystems   [149]   and
improvements in habitat quality  through  ecological  restoration  (e.g.
green firebreaks in China  [150]).  Addressing the many distal drivers
of  degradation   in  tropical  ecosystems  is   essential   to   foster  the
effectiveness   of   these   approaches  [1,125]. Research and climate-
mitigation strategies are also more likely to have an effect if engaging
with local actors,  such as tropical  scientists,  managers,  citizens and
institutions  [151–153],   and    encouraging   land-   and   marine-use
practices  that   respect   local   needs  and   diverse   socio-ecological
conditions (e.g.  fire-safe  agriculture  in  tropical  forests  [154]   and
community-based management programmes for  coastal  populations
that depend on corals and small-scale fisheries [155]).
    Managing locally may not be enough  if  we  do  not  tackle  global
climate change issues [77]. Redoubling efforts to limit anthropogenic
climate   changes   remains   critical   and   is   the    most    important
mitigation  option  we have where climate stressors cause widespread
damage  independent  of  other  local  nonclimatic  disturbances. This
issue  needs  to  be  addressed  by  local,  national   and   international
stakeholders, while  balancing  the  needs for  economic  growth  and
environmental  sustainability, a  particular   challenge    for    tropical
countries   [156].   For  this,  both   tropical   and extratropical nations
will need to  develop  strategies  such  as  low-carbon technologies to
reduce  the  emissions  of  greenhouse  gases  while   avoiding   forest
destruction  to  increase  carbon   intake   [105].   Controlling  climate
change  may  also  reduce  the risks  of   more  severe   and   frequent
weather  extremes  [46,157],   and,   consequently,   the   need   for   a
considerable amount of investments to prepare regions that  are  more
vulnerable to them.

(b) We are all in the same boat: multi-level actions
      to tackle different stressors

5. Conclusion
Our review shows that climate  extremes  are  impacting  forests  and
coral  reefs  throughout  the  tropics  (figure 1),   but  their  ecological
consequences for ecosystem resilience and stability are likely to differ
across   realms   (box 1).   The   fate  of   these   ecosystems  will   be
determined by a complex interplay between the impacts of  local  and
climate-associated stressors [1,17]  (figure 3).  Ecological  studies  on
species-specific  physiological   tolerance  [158],    changing   species
composition  [60,159]  and  ecosystem  recovery  trajectories  [27,48]
may help us to inform management decisions where climatic stressors
are  the  main  drivers  of  disturbance.   However,  where   local   and
climate-related   stressors  are  jeopardizing   ecosystems services, we
need to develop better  predictive  models  to  understand  how  chain
and  modification interactions  with  local  stressors  can  mediate  the
ecological consequences of  climate  change  and  climatic  extremes.
Such integrated  approaches  can  better  inform  policy  and  climate-
adjusted  management   solutions   to  ameliorate  further  disturbance
impacts,  helping  to  promote  ecosystem  adaptation  and  resilience.
We   urge   the   creation   of   conservation    initiatives    to   develop
interventions  that  effectively curb  local disturbances, but  these will
be of  limited  success  if  they are not accompanied  by  international
actions to decrease CO2 emissions and therefore slow  global climate
changes. Conserving the hyperdiverse  biota  of  tropical  forests  and
coral   reefs   for   future   generations   will   require   much    greater
cooperation   between   nations  and  the   involvement  of  a  broader
range of stakeholders in the development of solutions.

             Surveys  in  Brazilian  protected  areas   occurred   with   appropriate
state  and  federal  permits  (Brazil: SISBIO no. 24164  in 2009, and  53271 in
2016-2017.
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799db965-3ce7-4e9b-8590-de6a8624d652 (figure2).

Data accessibility.

                                              F.M.F.    and    J.B.    conceived,    designed   and
structured  the  review  idea with essential support from G.P., C.E.B,  J.P.W.R.
and N.A.J.G. Data were provided by F.M.F., N.A.J.G. and J.L., while  F.M.F.,
C.E.B. and J.P.W.R. carried out  the analyses  with  critical  inputs  from  G.P.,
J.M.T. and N.A.J.G. The manuscript was drafted by F.M.F.,  J.B., G.P., C.E.B.
and   J.P.W.R.; and reviewed  by A.C.L,  N.A.J.G.,  J.F.,  E.B. and  J.M.T.  All
authors gave final approval for publication.

Author's contributions.

We declare we have no competing interests.Competing interests.
                  This   work   was  supported  by  grants   from   CNPq   (grant nos.
574008/2008-0,    458022/2013-6,    400640/2012-0),    CNPq-CAPES-PELD 
(project 88887.136261/2017-00; grant no.441659/2016-0; scholarships 88887.
186650/2018-00 and 88887.358233/2019-00  for  F.M.F.,  and 307788/2017-2
for  J.F.), FAPESP  (grant no. 2012/51872-5) and EMBRAPA (grant no. SEG:
02.08.06.005.00), and The Nature  Conservancy,  in Brazil.  Funding was also
provided by the Darwin Initiative  (grant no.  17-023)  and  NERC  (grant nos.
NE/F01614X/1,        NE/G000816/1,        NE/K016431/1,       NE/F015356/2,
NE/l018123/1 and NE/P004512/1), in  UK;  and the  Swedish Formas (2013-
1571). G.P. was supported by the Marsden Fund (grant no. UOC1705). C.E.B.
was   supported   by   the  Bertarelli  Foundation   as   part   of   the   Bertarelli
Programme in Marine Science.

Funding.

                                         We thank Andrew Hoey for providing the  parrotfish
feeding data; and Simon Jennings, Laís F.  Maia,  Fernando  Z.  Vaz-de-Mello,
Victor  Hugo  F.  Oliveira,  Rodrigo  F.  Braga  and  the   numerous   field  and
laboratory    assistants    that    supported    us    with    data    collection,   trait
measures and fauna identification. Institutional support was provided by LBA
Program (INPA) and ICMBio in Santarém.

Acknowledgements.



Prep
rin
t

viiReferences

1. Barlow J et al. 2018 The future of hyperdiverse
     tropical ecosystems. Nature 559, 517–526. 
     (doi:10.1038/s41586-018-0301-1)
2. Zhao M, Running SW. 2010 Drought-induced
     reduction in global terrestrial net primary
     production from 2000 through 2009. Science
     329, 940–943. (doi:10.1126/science.1192666)
3. Bonan GB. 2008 Forests and climate change:
     forcings, feedbacks, and the climate benefits of
     forests. Science 320, 1444–1449. (doi:10.1126/
     science.1155121)
4. Roberts CM. 2002 Marine biodiversity hotspots and
     conservation priorities for tropical reefs. Science
     295, 1280–1284. (doi:10.1126/science.1067728)
5. Burke L, Reytar K, Spalding M, Perry A. 2011 Reefs
     at risk revisited. Washington, DC: World Resources
     Institute.
6. Buddemeier RW, Kleypas JA, Aronson RB. 2004
     Coral reefs and climate change: potential
     contributions of climate change to stresses on coral
     reef ecosystems. Washington, DC: Pew Center on
     Global Climate Change.
7. Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-
     Simal P, Fernández F. 2018 The global flood
     protection savings provided by coral reefs. Nat.
     Commun. 9, 2186. (doi:10.1038/s41467-018-
     04568-z)
8. Carpenter KE et al. 2008 One-third of reef-building
     corals face elevated extinction risk from climate
     change and local impacts. Science 321, 560–563.
     (doi:10.1126/science.1159196)
9. Fischer EM, Knutti R. 2015 Anthropogenic
     contribution to global occurrence of heavy
     precipitation and high-temperature extremes.
     Nat. Clim. Change 5, 560–564. (doi:10.1038/
     nclimate2617)
10. Patricola CM, Wehner MF. 2018 Anthropogenic
     influences on major tropical cyclone events. Nature
     563, 339–346. (doi:10.1038/s41586-018-0673-2)
11. Sobel AH, Camargo SJ, Hall TM, Lee C, Tippett MK,
     Wing AA. 2016 Human influence on tropical cyclone
     intensity. Science 353, 242–246. (doi:10.1126/
     science.aaf6574)
12. IPCC. 2019 Glossary of acronyms and specialised
     terms on the Intergovernmental Panel on Climate
     Change (IPCC) and Data Distribution Centre (DDC)
     website. Definition of terms used within DDC page.
     http://www.ipcc-data.org/guidelines/pages/
     glossary/glossary_e.html (accessed on
     1 February 2019).
13. Newbold T et al. 2019 Climate and land-use
     change homogenise terrestrial biodiversity, with
     consequences for ecosystem functioning and human
     well-being. Emerg. Top. Life Sci. 3, 207–219.
     (doi:10.1042/ETLS20180135)
14. Ghedini G, Russell BD, Falkenberg LJ, Connell SD.
     2015 Beyond spatial and temporal averages:
     ecological responses to extreme events may be
     exacerbated by local disturbances. Clim. Change
     Responses 2, 6. (doi:10.1186/s40665-015-0014-8)

Prep
rin
t

15. Convention on Biological Diversity. 2014 Aichi
     biodiversity targets. Strategic Plan 2011-2020.
     https://www.cbd.int/sp/targets/#GoalB (accessed
     on 19 August 2015).
16. SDG. 2018 Sustainable development goals. https://
     sustainabledevelopment.un.org/sdgs (accessed on
     20 January 2018).
17. Gibb H et al. 2015 Climate mediates the effects of
     disturbance on ant assemblage structure.
     Proc. R. Soc. B 282, 20150418. (doi:10.1098/rspb.
     2015.0418)
18. Didham RK, Tylianakis JM, Gemmell N, Rand T,
     Ewers R. 2007 Interactive effects of habitat
     modification and species invasion on native species
     decline. Trends Ecol. Evol. 22, 489–496. (doi:10.
     1016/j.tree.2007.07.001)
19. Brook BW, Sodhi NS, Bradshaw CJA. 2008 Synergies
     among extinction drivers under global change.
     Trends Ecol. Evol. 23, 453–460. (doi:10.1016/j.tree.
     2008.03.011)
20. IPCC. 2013 Climate change 2013: the physical
     science basis. In Contribution of working group I to
     the fifth assessment report of the intergovernmental
     panel on climate change (eds TF Stocker et al.),
     p. 1535. Cambridge, UK: Cambridge University
     Press.
21. Madin JS, Connolly SR. 2006 Ecological
     consequences of major hydrodynamic disturbances
     on coral reefs. Nature 444, 477–480. (doi:10.1038/
     nature05328)
22. De’ath G, Fabricius KE, Sweatman H, Puotinen M.
     2012 The 27-year decline of coral cover on the Great
     Barrier Reef and its causes. Proc. Natl Acad. Sci. USA
     109, 17 995–17 999. (doi:10.1073/pnas.
     1208909109)
23. MacNeil MA, Mellin C, Matthews S, Wolff NH,
     McClanahan TR, Devlin M, Drovandi C, Mengersen K,
     Graham NAJ. 2019 Water quality mediates resilience
     on the Great Barrier Reef. Nat. Ecol. Evol. 3,
     620–627. (doi:10.1038/s41559-019-0832-3)
24. Lam VYY, Chaloupka M, Thompson A, Doropoulos C,
     Mumby PJ. 2018 Acute drivers influence recent
     inshore Great Barrier Reef dynamics. Proc. R. Soc. B
     285, 20182063. (doi:10.1098/rspb.2018.2063)
25. Hughes TP. 1994 Catastrophes, phase shifts, and
     large-scale degradation of a Caribbean coral reef.
     Science 265, 1547–1551. (doi:10.1126/science.
     265.5178.1547)
26. Wiley JW, Wunderle JM. 1993 The effects of
     hurricanes on birds, with special reference to
     Caribbean islands. Bird Conserv. Int. 3, 319–349.
     (doi:10.1017/S0959270900002598)
27. Schowalter TD, Willig MR, Presley SJ. 2017
     Posthurricane successional dynamics in abundance
     and diversity of canopy arthropods in a tropical
     rainforest. Environ. Entomol. 46, nvw155. (doi:10.
     1093/ee/nvw155)
28. Dunham AE, Erhart EM, Wright PC. 2011 Global
     climate cycles and cyclones: consequences for
     rainfall patterns and lemur reproduction in
     

     southeastern Madagascar. Glob. Change Biol. 17,
     219–227. (doi:10.1111/j.1365-2486.2010.02205.x)
29. Takahashi T, Nakagawa H, Satofuka Y, Kawaike K.
     2001 Flood and sediment disasters triggered by
     1999 rainfall in Venezuela: a river restoration
     plan for an alluvial fan. J. Nat. Disaster Sci. 23,
     65–82.
30. Espinoza JC et al. 2012 From drought to flooding:
     understanding the abrupt 2010–11 hydrological
     annual cycle in the Amazonas River and tributaries.
     Environ. Res. Lett. 7, 024008. (doi:10.1088/1748-
     9326/7/2/024008)
31. Espinoza JC, Ronchail J, Frappart F, Lavado W,
     Santini W, Guyot JL. 2013 The major floods in the
     Amazonas river and tributaries (Western Amazon
     Basin) during the 1970–2012 period: a focus on the
     2012 flood. J. Hydrometeorol. 14, 1000–1008.
     (doi:10.1175/JHM-D-12-0100.1)
32. Marengo JA, Espinoza JC. 2016 Extreme seasonal
     droughts and floods in Amazonia: causes, trends
     and impacts. Int. J. Climatol. 36, 1033–1050.
     (doi:10.1002/joc.4420)
33. Dinerstein E et al. 2017 An ecoregion-based
     approach to protecting half the terrestrial realm.
     Bioscience 67, 534–545. (doi:10.1093/biosci/bix014)
34. Kleypas JA, McManus JW, Meñez LAB. 1999
     Environmental limits to coral reef development:
     where do we draw the line? Am. Zool. 39,
     146–159. (doi:10.1093/icb/39.1.146)
35. Satyamurty P, da Costa CPW, Manzi AO, Candido LA.
     2013 A quick look at the 2012 record flood in the
     Amazon Basin. Geophys. Res. Lett. 40, 1396–1401.
     (doi:10.1002/grl.50245)
36. Chen JL, Wilson CR, Tapley BD. 2010 The 2009
     exceptional Amazon flood and interannual
     terrestrial water storage change observed by GRACE.
     Water Resour. Res. 46, 1–10. (doi:10.1029/
     2010WR009383)
37. Kunii O, Nakamura S, Abdur R, Wakai S. 2002 The
     impact on health and risk factors of the diarrhoea
     epidemics in the 1998 Bangladesh floods. Public
     Health 116, 68–74. (doi:10.1038/sj.ph.1900828)
38. Scanlon AT, Petit S, Tuiwawa M, Naikatini A. 2018
     Response of primary and secondary rainforest
     flowers and fruits to a cyclone, and implications for
     plant-servicing bats. Glob. Change Biol. 24,
     3820–3836. (doi:10.1111/gcb.14103)
39. Luviano N, Villa-Galaviz E, Boege K, Zaldívar-Riverón
     A, Del-Val E. 2018 Hurricane impacts on plantherbivore
     networks along a successional
     chronosequence in a tropical dry forest. For. Ecol.
     Manage. 426, 158–163. (doi:10.1016/j.foreco.2017.
     09.011)
40. Lloyd JD, Rimmer CC, Salguero-Faría JA. 2019 Shortterm
     effects of hurricanes Maria and Irma on forest
     birds of Puerto Rico. PLoS ONE 14, e0214432.
     (doi:10.1371/journal.pone.0214432)
41. Christensen JH et al. 2013 Climate phenomena and
     their relevance for future regional climate change. In
     Climate change 2013: the physical science basis.



Prep
rin
t

viii

     Contribution of working group I to the fifth assessment
     report of the intergovernmental panel on climate
     change (eds TF Stocker et al.), pp. 1217–1308.
     Cambridge, UK: Cambridge University Press.
42. Baker AC, Glynn PW, Riegl B. 2008 Climate change
     and coral reef bleaching: an ecological assessment
     of long-term impacts, recovery trends and future
     outlook. Estuar. Coast. Shelf Sci. 80, 435–471.
     (doi:10.1016/j.ecss.2008.09.003)
43. Robinson JPW, Wilson SK, Jennings S, Graham NAJ.
     2019 Thermal stress induces persistently altered
     coral reef fish assemblages. Glob. Change Biol. 25,
     2739–2750. (doi:10.1111/gcb.14704)
44. Graham NAJJ, Jennings S, MacNeil MA, Mouillot D,
     Wilson SK. 2015 Predicting climate-driven regime
     shifts versus rebound potential in coral reefs. Nature
     518, 94–97. (doi:10.1038/nature14140)
45. Wernberg T, Smale DA, Tuya F, Thomsen MS,
     Langlois TJ, de Bettignies T, Bennett S, Rousseaux
     CS. 2013 An extreme climatic event alters marine
     ecosystem structure in a global biodiversity hotspot.
     Nat. Clim. Change 3, 78–82. (doi:10.1038/
     nclimate1627)
46. Frölicher TL, Fischer EM, Gruber N. 2018 Marine
     heatwaves under global warming. Nature 560,
     360–364. (doi:10.1038/s41586-018-0383-9)
47. Hughes TP et al. 2018 Spatial and temporal patterns
     of mass bleaching of corals in the Anthropocene.
     Science 359, 80–83. (doi:10.1126/science.aan8048)
48. Hughes TP et al. 2018 Global warming transforms
     coral reef assemblages. Nature 556, 492–496.
     (doi:10.1038/s41586-018-0041-2)
49. Richardson LE, Graham NAJ, Pratchett MS, Eurich JG,
     Hoey AS. 2018 Mass coral bleaching causes biotic
     homogenization of reef fish assemblages. Glob.
     Change      Biol. 24, 3117–3129. (doi:10.1111/
     gcb.14119)
50. Couch CS, Burns JHR, Liu G, Steward K, Gutlay TN,
     Kenyon J, Eakin CM, Kosaki RK. 2017 Mass coral
     bleaching due to unprecedented marine heatwave in
     Papahānaumokuākea Marine National Monument
     (Northwestern Hawaiian Islands). PLoS ONE 12,
     e0185121. (doi:10.1371/journal.pone.0185121)
51. Lange ID, Perry CT. 2019 Bleaching impacts on
     carbonate production in the Chagos Archipelago:
     influence of functional coral groups on carbonate
     budget trajectories. Coral Reefs 38, 619–624.
     (doi:10.1007/s00338-019-01784-x)
52. Ruthrof KX et al. 2018 Subcontinental heat wave
     triggers terrestrial and marine, multi-taxa responses.
     Sci. Rep. 8, 13094. (doi:10.1038/s41598-018-
     31236-5)
53. Nobre CA, Borma LDS. 2009 ‘Tipping points’ for the
     Amazon forest. Curr. Opin. Environ. Sustain. 1,
     28–36. (doi:10.1016/j.cosust.2009.07.003)
54. Lohberger S, Stängel M, Atwood EC, Siegert F. 2018
     Spatial evaluation of Indonesia’s 2015 fire-affected
     area and estimated carbon emissions using
     Sentinel-1. Glob. Change Biol. 24, 644–654. (doi:10.
     1111/gcb.13841)
55. Marengo JA, Souza CM, Thonicke K, Burton C, Halladay
     K, Betts RA, Alves LM, Soares WR. 2018 Changes in
     climate and land use over the Amazon region: current

Prep
rin
t

     and future variability and trends. Front. Earth Sci. 6,
     228. (doi:10.3389/feart.2018.00228)
56. ESCAP, RIMES, UNDP. 2016 Assessment of El Niño
     associated risks: the step-wise process. https://www.
     unescap.org/resources/assessment-el-ni%C3%B1o
     associated-risks-step-wise-process.
57. Withey K et al. 2018 Quantifying immediate carbon
     emissions from El Niño-mediated wildfires in humid
     tropical forests. Phil. Trans. R. Soc. B 373, 20170312.
     (doi:10.1098/rstb.2017.0312)
58. Jiménez-Muñoz JC, Mattar C, Barichivich J,
     Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino
     JA, van der Schrier G. 2016 Record-breaking
     warming and extreme drought in the Amazon
     rainforest during the course of El Niño 2015–2016.
     Sci. Rep. 6, 33130. (doi:10.1038/srep33130)
59. Allen CD et al. 2010 A global overview of drought
     and heat-induced tree mortality reveals emerging
     climate change risks for forests. For. Ecol. Manage.
     259, 660–684. (doi:10.1016/j.foreco.2009.09.001)
60. Barlow J, Peres CA. 2008 Fire-mediated dieback and
     compositional cascade in an Amazonian forest. Phil.
     Trans. R. Soc. B 363, 1787–1794. (doi:10.1098/rstb.
     2007.0013)
61. Lwanga JS. 2003 Localized tree mortality following
     the drought of 1999 at Ngogo, Kibale National Park,
     Uganda. Afr. J. Ecol. 41, 194–196. (doi:10.1046/j.
     1365-2028.2003.00428.x)
62. Peres CA, Barlow J, Haugaasen T. 2003 Vertebrate
     responses to surface wildfires in a central
     Amazonian forest. Oryx 37, 97–109. (doi:10.1017/
     S0030605303000188)
63. Cleary DFR, Mooers AØ. 2006 Burning and logging
     differentially affect endemic vs. widely distributed
     butterfly species in Borneo. Divers. Distrib. 12,
     409–416. (doi:10.1111/j.1366-9516.2006.00256.x)
64. Barlow J, Haugaasen T, Peres CA. 2002 Effects of
     ground fires on understorey bird assemblages in
     Amazonian forests. Biol. Conserv. 105, 157–169.
     (doi:10.1016/S0006-3207(01)00177-X)
65. Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E,
     Costa F, Poorter L. 2019 Amazonian rainforest tree
     mortality driven by climate and functional traits.
     Nat. Clim. Change 9, 384–388. (doi:10.1038/
     s41558-019-0458-0)
66. Esquivel-Muelbert A et al. 2017 Seasonal drought
     limits tree species across the Neotropics. Ecography
     (Cop.). 40, 618–629. (doi:10.1111/ecog.01904)
67. Esquivel-Muelbert A et al. 2019 Compositional
     response of Amazon forests to climate change. Glob.
     Change Biol. 25, 39–56. (doi:10.1111/gcb.14413)
68. Tilman D, Isbell F, Cowles JM. 2014 Biodiversity and
     ecosystem functioning. Annu. Rev. Ecol. Evol. Syst.
     45, 471–493. (doi:10.1146/annurev-ecolsys-120213-
     091917)
69. Mouillot D, Graham NAJ, Villéger S, Mason NWH,
     Bellwood DR. 2013 A functional approach reveals
     community responses to disturbances. Trends Ecol.
     Evol. 28, 167–177. (doi:10.1016/j.tree.2012.10.004)
70. Clarke DA, York PH, Rasheed MA, Northfield TD.
     2017 Does biodiversity–ecosystem function
     literature neglect tropical ecosystems? Trends Ecol.
     Evol. 32, 320–323. (doi:10.1016/j.tree.2017.02.012)

71. Stroud JT, Feeley KJ. 2017 Neglect of the tropics is
     widespread in ecology and evolution: a comment
     on Clarke et al. Trends Ecol. Evol. 32, 626–628.
     (doi:10.1016/j.tree.2017.06.006)
72. Griffiths HM, Bardgett RD, Louzada J, Barlow J.
     2016 The value of trophic interactions for ecosystem
     function: dung beetle communities influence seed
     burial and seedling recruitment in tropical forests.
     Proc. R. Soc. B 283, 20161634. (doi:10.1098/rspb.
     2016.1634)
73. Andresen E. 2002 Dung beetles in a Central
     Amazonian rainforest and their ecological role as
     secondary seed dispersers. Ecol. Entomol. 27,
     257–270. (doi:10.1046/j.1365-2311.2002.00408.x)
74. França FM et al. In press. El Niño impacts on
     human-modified tropical forests: consequences for
     dung beetle diversity and associated ecological
     processes. Biotropica. (doi:10.1111/btp.12756)
75. Hooper DU et al. 2005 Effects of biodiversity on
     ecosystem functioning: a consensus of current
     knowledge. Ecol. Monogr. 75, 3–35. (doi:10.1890/
     04-0922)
76. Manning P, Slade EM, Beynon SA, Lewis OT. 2017
     Effect of dung beetle species richness and chemical
     perturbation on multiple ecosystem functions. Ecol.
     Entomol. 42, 577–586. (doi:10.1111/een.12421)
77. Bruno JF, Côté IM, Toth LT. 2019 Climate change,
     coral loss, and the curious case of the parrotfish
     paradigm: why don’t marine protected areas
     improve reef resilience? Ann. Rev. Mar. Sci. 11,
     307–334. (doi:10.1146/annurev-marine-010318-
     095300)
78. Gerisch M, Agostinelli V, Henle K, Dziock F. 2012
     More species, but all do the same: contrasting
     effects of flood disturbance on ground beetle
     functional and species diversity. Oikos 121,
     508–515. (doi:10.1111/j.1600-0706.2011.19749.x)
79. Tylianakis JM, Morris RJ. 2017 Ecological networks
     across environmental gradients. Annu. Rev. Ecol.
     Evol. Syst. 48, 25–48. (doi:10.1146/annurev-ecolsys-
     110316-022821)
80. Torres JA. 1992 Lepidoptera outbreaks in response
     to successional changes after the passage of
     Hurricane Hugo in Puerto Rico. J. Trop. Ecol. 8,
     285–298. (doi:10.1017/S0266467400006544)
81. Brandl SJ, Emslie MJ, Ceccarelli DM, Richards ZT.
     2016 Habitat degradation increases functional
     originality in highly diverse coral reef fish
     assemblages. Ecosphere 7, e01557. (doi:10.1002/
     ecs2.1557)
82. Reichstein M et al. 2013 Climate extremes and the
     carbon cycle. Nature 500, 287–295. (doi:10.1038/
     nature12350)
83. Berenguer E et al. 2018 Tree growth and stem
     carbon accumulation in human-modified
     Amazonian forests. Phil. Trans. R. Soc. B 373,
     20170308. (doi:10.1098/rstb.2017.0308)
84. Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD. 2014
     Plant growth and mortality under climatic extremes:
     an overview. Environ. Exp. Bot. 98, 13–19. (doi:10.
     1016/j.envexpbot.2013.10.004)
85. Frank DD et al. 2015 Effects of climate extremes on
     the terrestrial carbon cycle: concepts, processes and



Prep
rin
t

iv

     potential future impacts. Glob. Change Biol. 21,
     2861–2880. (doi:10.1111/gcb.12916)
86. Silva CVJ et al. 2018 Drought-induced Amazonian
     wildfires instigate a decadal-scale disruption of
     forest carbon dynamics. Phil. Trans. R. Soc. B 373,
     20180043. (doi:10.1098/rstb.2018.0043)
87. Betts RA. 2005 Integrated approaches to climate–
     crop modelling: needs and challenges. Phil.
     Trans. R. Soc. B 360, 2049–2065. (doi:10.1098/rstb.
     2005.1739)
88. Senior RA, Hill JK, Edwards DP. 2019 Global loss of
     climate connectivity in tropical forests. Nat. Clim.
     Change 4, 164–166. (doi:10.1038/s41558-019-
     0529-2)
89. Côté IM, Darling ES, Brown CJ. 2016 Interactions
     among ecosystem stressors and their importance in
     conservation. Proc. R. Soc. B 283, 20152592.
     (doi:10.1098/rspb.2015.2592)
90. Balmford A. 1996 Extinction filters and current
     resilience: the significance of past selection
     pressures for conservation biology. Trends Ecol. Evol.
     11, 193–196. (doi:10.1016/0169-5347(96)10026-4)
91. Vinebrooke RD, Cottingham KL, Norberg J, Scheffer
     M, Dodson SI, Maberly SC, Sommer U. 2004 Impacts
     of multiple stressors on biodiversity and ecosystem
     functioning: the role of species co-tolerance. Oikos
     104, 451–457. (doi:10.1111/j.0030-1299.2004.
     13255.x)
92. Tylianakis JM, Didham RK, Bascompte J, Wardle DA.
     2008 Global change and species interactions in
     terrestrial ecosystems. Ecol. Lett. 11, 1351–1363.
     (doi:10.1111/j.1461-0248.2008.01250.x)
93. Kroon FJ, Thorburn P, Schaffelke B, Whitten S. 2016
     Towards protecting the Great Barrier Reef from
     land-based pollution. Glob. Change Biol. 22,
     1985–2002. (doi:10.1111/gcb.13262)
94. Voigt W et al. 2003 Trophic levels are differentially
     sensitive to climate. Ecology 84, 2444–2453.
     (doi:10.1890/02-0266)
95. Maina J, de Moel H, Zinke J, Madin J, McClanahan
     T, Vermaat JE. 2013 Human deforestation outweighs
     future climate change impacts of sedimentation on
     coral reefs. Nat. Commun. 4, 1986. (doi:10.1038/
     ncomms2986)
96. Oliver TH, Morecroft MD. 2014 Interactions between
     climate change and land use change on
     biodiversity: attribution problems, risks, and
     opportunities. Wiley Interdiscip. Rev. Clim. Change 5,
     317–335. (doi:10.1002/wcc.271)
97. Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW. 2007
     Global evidence that deforestation amplifies flood
     risk and severity in the developing world. Glob.
     Change Biol. 13, 2379–2395. (doi:10.1111/j.1365-
     2486.2007.01446.x)
98. Findell KL, Berg A, Gentine P, Krasting JP, Lintner BR,
     Malyshev S, Santanello JA, Shevliakova E. 2017
     The impact of anthropogenic land use and land cover
     change on regional climate extremes. Nat. Commun.
     8, 1–9. (doi:10.1038/s41467-017-01038-w)
99. Baker JCA, Spracklen DV. 2019 Climate benefits of
     intact Amazon forests and the biophysical
     consequences of disturbance. Front. For. Glob.
     Change 2, 47. (doi:10.3389/ffgc.2019.00047)

Prep
rin
t

100. Mantyka-pringle CS, Martin TG, Rhodes JR. 2012
     Interactions between climate and habitat loss
     effects on biodiversity: a systematic review and
     meta-analysis. Glob. Change Biol. 18, 1239–1252.
     (doi:10.1111/j.1365-2486.2011.02593.x)
101. Eigenbrod F, Gonzalez P, Dash J, Steyl I. 2015
     Vulnerability of ecosystems to climate change
     moderated by habitat intactness. Glob. Change Biol.
     21, 275–286. (doi:10.1111/gcb.12669)
102. Oliver TH, Gillings S, Pearce-Higgins JW, Brereton T,
     Crick HQP, Duffield SJ, Morecroft MD, Roy DB.
     2017 Large extents of intensive land use limit
     community reorganization during climate warming.
     Glob. Change Biol. 23, 2272–2283. (doi:10.1111/
     gcb.13587)
103. Oliver TH, Brereton T, Roy DB. 2013 Population
     resilience to an extreme drought is influenced by
     habitat area and fragmentation in the local
     landscape. Ecography (Cop.). 36, 579–586. (doi:10.
     1111/j.1600-0587.2012.07665.x)
104. Piessens K, Adriaens D, Jacquemyn H, Honnay O.
     2009 Synergistic effects of an extreme weather
     event and habitat fragmentation on a specialised
     insect herbivore. Oecologia 159, 117–126. (doi:10.
     1007/s00442-008-1204-x)
105. Baccini A, Walker W, Carvalho L, Farina M, Sulla-
     Menashe D, Houghton RA. 2017 Tropical forests are
     a net carbon source based on aboveground
     measurements of gain and loss. Science 358,
     230–234. (doi:10.1126/science.aam5962)
106. Asner GP, Keller M, Pereira Jr R, Zweede JC, Silva JNM.
     2004 Canopy damage and recovery after selective
     logging in Amazonia: field and satellite studies. Ecol.
     Appl. 14, 280–298. (doi:10.1890/01-6019)
107. Slik JWF. 2004 El Niño droughts and their effects on
     tree species composition and diversity in tropical
     rain forests. Oecologia 141, 114–120. (doi:10.1007/
     s00442-004-1635-y)
108. Lindenmayer DB, Hunter ML, Burton PJ, Gibbons P.
     2009 Effects of logging on fire regimes in moist
     forests. Conserv. Lett. 2, 271–277. (doi:10.1111/j.
     1755-263X.2009.00080.x)
109. Brando PM et al. 2014 Abrupt increases in
     Amazonian tree mortality due to drought-fire
     interactions. Proc. Natl Acad. Sci. USA 111,
     6347–6352. (doi:10.1073/pnas.1305499111)
110. Uhl C, Buschbacher R. 1985 A disturbing synergism
     between cattle ranch burning practices and selective
     tree harvesting in the Eastern Amazon. Biotropica
     17, 265. (doi:10.2307/2388588)
111. Nepstad D, Lefebvre P, Lopes da Silva U, Tomasella
     J, Schlesinger P, Solorzano L, Moutinho P, Ray D,
     Guerreira Benito J. 2004 Amazon drought and its
     implications for forest flammability and tree growth:
     a basin-wide analysis. Glob. Change Biol. 10,
     704–717. (doi:10.1111/j.1529-8817.2003.00772.x)
112. Nepstad DC, Stickler CM, Filho BS, Merry F. 2008
     Interactions among Amazon land use, forests and
     climate: prospects for a near-term forest tipping
     point. Phil. Trans. R. Soc. B 363, 1737–1746.
     (doi:10.1098/rstb.2007.0036)
113. Cochrane MA. 2003 Fire science for rainforests.
     Nature 421, 913–919. (doi:10.1038/nature01437)

114. Betts RA, Cox PM, Collins M, Harris PP, Huntingford
     C, Jones CD. 2004 The role of ecosystem-atmosphere
     interactions in simulated Amazonian precipitation
     decrease and forest dieback under global climate
     warming. Theor. Appl. Climatol. 78, 157–175.
     (doi:10.1007/s00704-004-0050-y)
115. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin
     S, Denvil S. 2013 Robust direct effect of carbon
     dioxide on tropical circulation and regional
     precipitation. Nat. Geosci. 6, 447–451. (doi:10.1038/
     ngeo1799)
116. Staal A, Tuinenburg OA, Bosmans JHC, Holmgren M,
     Van Nes EH, Scheffer M, Zemp DC, Dekker SC. 2018
     Forest-rainfall cascades buffer against drought across
     the Amazon. Nat. Clim. Change 8, 539–543. (doi:10.
     1038/s41558-018-0177-y)
117. Andreae MO. 2004 Smoking rain clouds over the
     Amazon. Science 303, 1337–1342. (doi:10.1126/
     science.1092779)
118. Spracklen DV, Garcia-Carreras L. 2015 The impact of
     Amazonian deforestation on Amazon basin rainfall.
     Geophys. Res. Lett. 42, 9546–9552. (doi:10.1002/
     2015GL066063)
119. Allen CD, Breshears DD, McDowell NG. 2015 On
     underestimation of global vulnerability to tree
     mortality and forest die-off from hotter drought in
     the Anthropocene. Ecosphere 6, art129. (doi:10.
     1890/ES15-00203.1)
120. Yeh S-W et al. 2018 ENSO atmospheric
     teleconnections and their response to greenhouse
     gas forcing. Rev. Geophys. 56, 185–206. (doi:10.
     1002/2017RG000568)
121. Fernandes K, Verchot L, Baethgen W, Gutierrez-
     Velez V, Pinedo-Vasquez M, Martius C. 2017
     Heightened fire probability in Indonesia in nondrought
     conditions: the effect of increasing
     temperatures. Environ. Res. Lett. 12, 054002.
     (doi:10.1088/1748-9326/aa6884)
122. Norris JR, Allen RJ, Evan AT, Zelinka MD, O’Dell CW,
     Klein SA. 2016 Evidence for climate change in the
     satellite cloud record. Nature 536, 72–75. (doi:10.
     1038/nature18273)
123. Phillips OL et al. 2002 Increasing dominance of
     large lianas in Amazonian forests. Nature 418,
     770–774. (doi:10.1038/nature00926)
124. McDowell N et al. 2018 Drivers and mechanisms of
     tree mortality in moist tropical forests. New Phytol.
     219, 851–869. (doi:10.1111/nph.15027)
125. Hughes TP et al. 2017 Coral reefs in the Anthropocene.
     Nature 546, 82–90. (doi:10.1038/nature22901)
126. Pratchett MS, McCowan D, Maynard JA, Heron SF.
     2013 Changes in bleaching susceptibility among
     corals subject to ocean warming and recurrent
     bleaching in Moorea, French Polynesia. PLoS ONE 8,
     1–10. (doi:10.1371/journal.pone.0070443)
127. Goreau T, McClanahan T, Hayes R, Strong A. 2000
     Conservation of coral reefs after the 1998 Global
     Bleaching Event. Conserv. Biol. 14, 5–15. (doi:10.
     1046/j.1523-1739.2000.00011.x)
128. Mellin C, MacNeil MA, Cheal AJ, Emslie MJ, Caley
     MJ. 2016 Marine protected areas increase resilience
     among coral reef communities. Ecol. Lett. 19,
     629–637. (doi:10.1111/ele.12598)
     



Prep
rin
t

x

129. Gilmour JP, Smith LD, Heyward AJ, Baird AH,
     Pratchett MS. 2013 Recovery of an isolated coral
     reef system following severe disturbance. Science
     340, 69–71. (doi:10.1126/science.1232310)
130. Côté IM, Darling ES. 2010 Rethinking ecosystem
     resilience in the face of climate change. PLoS Biol.
     8, e1000438. (doi:10.1371/journal.pbio.1000438)
131. Hughes TP et al. 2017 Global warming and
     recurrent mass bleaching of corals. Nature 543,
     373–377. (doi:10.1038/nature21707)
132. Mumby PJ, Harborne AR. 2010 Marine reserves
     enhance the recovery of corals on Caribbean reefs.
     PLoS ONE 5, e8657. (doi:10.1371/journal.pone.
     0008657)
133. Carilli JE, Norris RD, Black BA, Walsh SM, McField M.
     2009 Local stressors reduce coral resilience to
     bleaching. PLoS ONE 4, e6324. (doi:10.1371/journal.
     pone.0006324)
134. McClanahan TR. 2008 Response of the coral reef
     benthos and herbivory to fishery closure management
     and the 1998 ENSO disturbance. Oecologia 155,
     169–177. (doi:10.1007/s00442-007-0890-0)
135. Graham NAJ et al. 2008 Climate warming, marine
     protected areas and the ocean-scale integrity of
     coral reef ecosystems. PLoS ONE 3, e0003039.
     (doi:10.1371/journal.pone.0003039)
136. Selig ER, Casey KS, Bruno JF. 2012 Temperaturedriven
     coral decline: the role of marine protected
     areas. Glob. Change Biol. 18, 1561–1570. (doi:10.
     1111/j.1365-2486.2012.02658.x)
137. UNEP-WCMC, IUCN. 2019 Marine protected planet.
     https://www.protectedplanet.net/marine (accessed
     on 16 July 2019).
138. Morales-Hidalgo D, Oswalt SN, Somanathan E. 2015
     Status and trends in global primary forest, protected
     areas, and areas designated for conservation of
     biodiversity from the Global Forest Resources
     Assessment 2015. For. Ecol. Manage. 352, 68–77.
     (doi:10.1016/j.foreco.2015.06.011)
139. UNEP-WCMC, IUCN. 2019 Protected planet: the
     world database on protected areas (WDPA). www.
     protectedplanet.net (accessed on 16 July 2019).
140. Cormont A, Malinowska AH, Kostenko O, Radchuk V,
     Hemerik L, WallisDeVries MF, Verboom J. 2011

Prep
rin
t

     Effect of local weather on butterfly flight behaviour,
     movement, and colonization: significance for
     dispersal under climate change. Biodivers. Conserv.
     20, 483–503. (doi:10.1007/s10531-010-9960-4)
141. Williams JW, Jackson ST, Kutzbach JE. 2007
     Projected distributions of novel and disappearing
     climates by 2100 AD. Proc. Natl Acad. Sci. USA 104,
     5738–5742. (doi:10.1073/pnas.0606292104)
142. Soares-Filho B et al. 2010 Role of Brazilian Amazon
     protected areas in climate change mitigation. Proc.
     Natl Acad. Sci. USA 107, 10 821–10 826. (doi:10.
     1073/pnas.0913048107)
143. Brauman KA, Daily GC, Duarte TK, Mooney HA. 2007
     The nature and value of ecosystem services: an
     overview highlighting hydrologic services. Annu.
     Rev. Environ. Resour. 32, 67–98. (doi:10.1146/
     annurev.energy.32.031306.102758)
144. Weng W, Luedeke MKB, Zemp DC, Lakes T, Kropp
     JP. 2017 Aerial and surface rivers: downwind
     impacts on water availability from land use changes
     in Amazonia. Hydrol. Earth Syst. Sci. Discuss. 22,
     911–927. (doi:10.5194/hess-2017-526)
145. Bhattacharjee K, Behera B. 2018 Does forest cover
     help prevent flood damage? Empirical evidence
     from India. Glob. Environ. Change 53, 78–89.
     (doi:10.1016/j.gloenvcha.2018.09.004)
146. Ashton LA et al. 2019 No termites mitigate the
     ecosystem-wide effects of drought in tropical
     rainforest. Science 177, 174–177. (doi:10.1126/
     SCIENCE.AAU9565)
147. Kuempel CD, Adams VM, Possingham HP, Bode M.
     2018 Bigger or better: the relative benefits of
     protected area network expansion and enforcement
     for the conservation of an exploited species.
     Conserv. Lett. 11, e12433. (doi:10.1111/conl.12433)
148. IPCC. 2019 IPCC special report on climate change,
     desertification, land degradation, sustainable land
     management, food security, and greenhouse gas
     fluxes in terrestrial ecosystems. In Climate change
     and land (eds A Arneth et al.), p. 1542. Cambridge,
     UK: Cambridge University Press.
149. Graham NAJ, Wilson SK, Carr P, Hoey AS, Jennings
     S, MacNeil MA. 2018 Seabirds enhance coral reef
     productivity and functioning in the absence of

     invasive rats. Nature 559, 250–253. (doi:10.1038/
     s41586-018-0202-3)
150. Cui X, Alam MA, Perry GL, Paterson AM, Wyse SV,
     Curran TJ. 2019 Green firebreaks as a management
     tool for wildfires: lessons from China. J. Environ.
     Manage. 233, 329–336. (doi:10.1016/j.jenvman.
     2018.12.043)
151. Baker K, Eichhorn MP, Griffiths M. 2019
     Decolonizing field ecology. Biotropica 51, 288–292.
     (doi:10.1111/btp.12663)
152. Balvanera P et al. 2017 Key features for more
     successful place-based sustainability research on
     social-ecological systems: a Programme on
     Ecosystem Change and Society (PECS) perspective.
     Ecol. Soc. 22, 45. (doi:10.5751/ES-08826-220114)
153. Waylen KA, Fischer A, McGowan PJK, Thirgood SJ,
     Milner-Gulland EJ. 2010 Effect of local cultural
     context on the success of community-based
     conservation interventions. Conserv. Biol.
     24, 1119–1129. (doi:10.1111/j.1523-1739.2010.
     01446.x)
154. Carmenta R, Coudel E, Steward AM. 2018 Forbidden
     fire: does criminalising fire hinder conservation
     efforts in swidden landscapes of the Brazilian
     Amazon? Geogr. J. 185, 23–37. (doi:10.1111/geoj.
     12255)
155. Cinner JE et al. 2012 Comanagement of coral reef
     social-ecological systems. Proc. Natl Acad. Sci. USA
     109, 5219–5222. (doi:10.1073/pnas.1121215109)
156. Edelman A et al. 2014 State of the tropics – 2014
     report. https://researchonline.jcu.edu.au/35471/.
157. Cai W et al. 2015 Increased frequency of extreme La
     Niña events under greenhouse warming. Nat. Clim.
     Change 5, 132–137. (doi:10.1038/nclimate2492)
158. Santiago LS, De Guzman ME, Baraloto C, Vogenberg
     JE, Brodie M, Hérault B, Fortunel C, Bonal D. 2018
     Coordination and trade-offs among hydraulic safety,
     efficiency and drought avoidance traits in
     Amazonian rainforest canopy tree species. New
     Phytol. 218, 1015–1024. (doi:10.1111/nph.15058)
159. Darling ES, McClanahan TR, Côté IM. 2013 Life
     histories predict coral community disassembly under
     multiple stressors. Glob. Change Biol. 19,
     1930–1940. (doi:10.1111/gcb.12191)


