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Tropical forests and coral reefs host a disproportionately large share of global
biodiversity and provide ecosystem functions and services used by millions of
people. Yet, ongoing climate change is leading to an increase in frequency and
magnitude of extreme climatic events in the tropics, which, in combination
with other local human disturbances, is leading to unprecedented negative
ecological consequences for tropical forests and coral reefs. Here, we provide
an overview of how and where climate extremes are affecting the most biodi-
verse ecosystems on Earth and summarize how interactions between global,
regional and local stressors are affecting tropical forest and coral reef systems
through impacts on biodiversity and ecosystem resilience. We also discuss
some key challenges and opportunities to promote mitigation and adaptation
to a changing climate at local and global scales.

This article is part of the theme issue ‘Climate change and ecosystems:
threats, opportunities and solutions’.

1.Introduction

The tropics contain the overwhelming majority of Earth’s biological diversity [1]
disproportionately distributed in two key ecosystems: tropical forests and coral
reefs. Tropical forests cover less than 12% of the planet’s ice-free surface but host
more than two-thirds of all terrestrial species [1]. They provide the largest contri-
bution to Earth’s productivity from any biome [2] and play a critical role in
overall climate regulation by storing 25% of the carbon in the terrestrial biosphere
[3]. Equally important are tropical coral reefs (hereafter ‘coral reefs’), covering just
0.1% of the ocean surface yet holding the highest species diversity of any marine eco-
system [4]. They also sustain crucial ecosystem processes for more than 500 million
people who use coral reefs and reef products for food provisioning, fisheries and
tourism [5,6], and through providing coastal protection against natural hazards [7].
Despite their global importance, tropical forests and coral reefs are subject to a
complex mixture of more localized pressures such as overexploitation, habitat loss
and degradation, pollution and global climate change [1,8]. Growing evidence also
suggests that anthropogenic climate change is increasing the periodicity and
intensity of some climate extremes (e.g. [9—11]), which can be defined as abrupt
climatic events, such as abnormally intense storms, hurricanes, floods,
heatwaves, droughts and associated large-scale wildfires [12]. The ecological
impacts of these extreme climate events can be exacerbated by ongoing gradual
changes in temperature and precipitation, as well as local anthropogenic pressures,
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Figure 1. Tropical forest and coral reef locations ecologically affected by climate extremes. Tropical forest biome (green) was defined following the ecoregions
‘Tropical & Subtropical Dry Broadleaf Forests’ and ‘Tropical & Subtropical Moist Broadleaf Forests’ [33]. The tropical marine biome (darker blue polygons) was defined
as the extent of shallow-water coral-forming ecoregions [34] on the basis of sea-surface temperature (mean minimum monthly 18°C sea-surface isotherm between
1988 and 2018; [1]). Colour-coding of the dots on the map indicates different extreme climatic events: drought/fires (red), flooding (blue), heatwaves (yellow) and
hurricane/cyclones (orange). Purple-coloured dots show high-intensity bleaching reports from ReefBase (www.reefbase.org) between 1990 and 2010. Data sources
and references for each number are presented in the electronic supplementary material, tables S1 and S2, respectively.

such as land-use change [13,14]. Understanding how
tropical rainforests and coral reefs respond to climate

extremes—and their interactions with other stressors—is

therefore essential to achieve global conservation targets
[15] and sustainable development goals [16]. Evidence of

the influence of gradual climate changes and extreme

climatic events is growing, and many studies explore their
interactions with other more localized human pressures

that threaten tropical forests and reefs (e.g. [1,13]). Yet,

the existing literature is patchy and our ability to protect

and manage these ecosystems is limited by two important
knowledge gaps. First, no study to our knowledge has
summarized where climate extremes are known to already
affect both tropical forests and coral reefs worldwide, or

which extreme events drive ecological changes in these

two ecosystems. Second, despite a growing literature on

the subject, it is not clear how interactions between

gradual climate change, extreme climatic events and local

disturbance are influencing tropical forests and reefs.

These two knowledge gaps motivate the first and second

part of our review. The final part explores how our current
understanding of ecosystem responses to multiple

pervasive pressures could be applied to inform

management and conservation strategies. Although we

primarily focus on tropical forests and coral reefs, the

interactions among climate-related and local human-driven
stressors are also major threats to other global ecosystems

both in tropical and extratropical regions [17—19].

2. Where and how are climate extremes

affecting tropical forests and reefs?
(a) Storms and floods

Climate change is causing more intense and frequent
cyclonic storm systems (i.e. hurricanes, cyclones and
typhoons) [10], with more extreme events expected in
regions already affected by tropical cyclones, including
Central America and the Caribbean, East Africa, most of
Asia, as well as in Australia and the Pacific islands [20].
Although their impacts on coral reefs are primarily
physical, for example, through reef structural damage [21],
storms and hurricanes can strongly influence marine
ecosystems [22,23]. On the Great Barrier (GBR),
for example, heavy rainfall was associated with negative
trends in live coral cover, and storms emerged as the major

driver of changes in inshore reef dynamics [24]. Not surpris-
ingly, cyclonic storms have been shown to trigger regime
transitions, from coral to macroalgal dominance, through
interactions with local stressors (e.g. overfishing and
diseases) that drive coral cover declines [25]. Tropical

forests are also being affected—hurricanes frequently affect
tropical forests in the Caribbean and Central America [26—

28], and heavy storms have caused severe landslides in

Venezuela [29] and floods in the Amazon basin (e.g. in

Brazil and Peru [30-32]; figure 1). Some of the most
extreme hydrological events have been associated with La
Nifia-induced changes in precipitation and river flow (e.g.
1989, 1999, 2009 and 2012) [32,35,36]. The 1998/1999 La
Nifia, in particular, brought one of the strongest hurricane

seasons ever recorded in the North Atlantic, while in the

Indian Ocean over 50% of Bangladesh was flooded [37].

Consequently, a range of post-hurricane ecological
consequences has been recorded in tropical forests, such as
reductions in non-tree resources for nectarivorous and
frugivorous fauna [38]; changes in plant-herbivore networks
(e.g. negative effects on network size and specificity,
but increased network connectance and robustness) [39];
and greater than 50% declines in rates of occupancy, and
even local and global extinctions of forest birds on
Caribbean islands [26,40].

(b) Heatwaves and droughts

Extreme temperatures and droughts have been recently re-
corded across much of southern Africa, Southeast Asia and
South America [41]. Inrecent decades, marine heatwaves
have provoked widespread coral bleaching [42] (figure 1),
leading to fundamental changes in coral reef ecosystems
(e.g. [43-45]). In particular, the extremely high sea-surface
temperatures across most of the tropical and extratropical
oceans during the 2015/2016 record-breaking anomaly [46]
caused one of the strongest mass bleaching events on a
worldwide scale [47], resulted in unprecedented levels of
coral mortality [48] and altered community composition
of both corals and fish on the GBR [49]. Other heatwave-
induced ecological impacts include flattening of reef
structure [50] and loss of carbonate production [51],
formation of persistent novel fish communities [43], shifts
to macroalgal regimes [44] and synchronous multi-trophic
ecological disruptions in marine, but also in terrestrial,
ecosystems (e.g. coral bleaching and tree die-off) [52].



The combination of extreme high temperatures with longer
and more severe dry seasons has also led to the spread of
unprecedented and large-scale wildfires in tropical forests [53,
54] (figure 1). For example, forests in the Amazon basin and
Indonesia have witnessed at least four ‘mega-droughts’ in the
last three decades [55,56]. Some of these heat and drought
events were aggravated by the El Nifio Southern Oscillations
(ENSO), such as in 2015/2016 when fires devastated
around 1 Mha of Amazonian forests [57,58] and greater than
4.6 Mha across Sumatra, Kalimantan and West Papua [54].
As a result of more frequent, extensive and intense drought
and fire events, tropical forests have been affected through
elevated tree mortality [59—-61], impoverishment of biological
communities [59,62—64] and loss of specific functional groups
(e.g. evergreens and softwoods [65]). For instance, in
Amazonia, hotter and drier seasons impose additional water
stress for trees even in the wetter environments [66], and tree
recruitment has shifted species composition towards more dry-
affiliated species, accompanied by increased mortality of wet-
affiliated species [67]. These drought-related impacts can go
beyond taxonomic and functional changes to effects on
ecosystem resilience and stability (box 1), and in combination
with wildfires, have led to reduced plant growth (e.g. [82] but
see [83]) and ecosystem primary production [82,84]—all of
which negatively affect the forest carbon cycling [85,86].

Following the framework proposed by Didham et al. [18], the
interactions between climate-related stressors and local
disturbances can result in ‘chain’and ‘modification’ effects
(figure 3). The interaction chain effects occur when multiple
stressors have direct ecological impacts, with one driver
amplifying the magnitude of another (a direct and synergistic
interaction; e.g. land-use change increases climate warming
via albedo effects or carbon release [87]). By contrast,
interaction modification effects occur when the per unit or per
capita influence of one stressor is modified by another (an
indirect interaction), such as when habitat fragmentation
prevents species from migrating to track their preferred
climate niche [88]. These modification effects can occur
through additive, antagonistic or synergistic interactions
between stressors (reviewed by Coté et al.[89]). Regardless of
how they interact and the scale on which they operate (figure
3), climate change, extreme climatic events and local stressors
are likely to act as strong and interacting environmental filters
[69,90]. As only a small subset of the original species pool is
likely to respond positively to multiple stressors [1,91], this
potential filtering of biological communities can result in
subsequent effects on ecosystem functioning and functional
stability of tropical coral reef and forest systems. These
impacts, however, are likely to be ecosystem-dependent, as
demonstrated by the empirical evidence from Brazilian
Amazon forests and Seychelles coral reefs (box 1).

Climate stressors and land-use change, principally
deforestation for food production and human settlement
provision, have been exerting multi-taxa and -trophic effects

on terrestrial and marine systems [1,92-95], and causing

disproportionate biodiversity loss—particularly in the tropics [ i |

[13]. Although climate change is considered the most
important threat to coral reefs [77], deforestation impacts
are also projected to outweigh future climate-change-driven
declines in river flow and sediment load to reef systems in
some regions [95]. However, the complex interactions
between these stressors can make it challenging to tease apart
their independent effects [89,96].

Deforestation has two effects on climate. First, it favours
climate change through effects on greenhouse gas emissions
and surface fluxes of radiation, moisture and heat [87].
Second, it increases the likelihood, intensity and extent of
regional climatic extremes [97-99]. Consequently, many
ecological responses to deforestation and fragmentation
likely result from interaction modifications with climate. For
instance, a global terrestrial analysis of 1319 papers found
that habitat loss impacts on biodiversity were greatest in
regions experiencing higher temperatures and lower rainfall
[100]. Interaction modification effects would also imply that
climate extremes occur under conditions of altered resilience
generated by previous forest conversion. For example,
deforestation can indirectly reduce the ability of tropical forest
and reef biota to resist further climate disturbances by creating
hostile landscapes and ocean conditions that hinder species
capacity to track and achieve climate envelopes with more
suitable conditions [88,101,102]. Moreover, habitat area,
quality, heterogeneity and configuration can also affect the
biota sensitivity and recovery after climatic disturbances [96,
103,104].

Most remaining tropical forests are currently subject to some
form of anthropogenic disturbance [105]. Many of these alter
forest microclimates—selective logging and wildfires, for
example, increase tree mortality, which results in greater
canopy openness [106,107] and drier understoreys [108]. These
processes, combined with increasingly hotter and longer dry
seasons, enhance forest flammability [109] and the likelihood
of escaped fires ignited on agricultural lands [110] to burn
neighbouring forests [111,112]. Although many tree species
have molecular and physiological mechanisms that help them
resist short-lived heat and drought [84], tropical rainforests are
fire-sensitive and have few fire-resistant species [113].
Post-disturbance changes in carbon cycles [105] and
evapotranspiration rates—a key source of aerial moisture—
are also likely to affect atmospheric circulation patterns
through biogeochemical feedbacks mediated by pollution
through the release of CO, and other aerosols [114,115], which
have been shown to suppress cloud formation and regional
precipitation [116,117]. Another example of an interaction
modification effect occurs when climate change exacerbates
the many negative impacts of ongoing forest degradation
through declines in rainfall [59,118] that can enhance tree
mortality through physiological mechanisms related to carbon
starvation and hydraulic failure [84,119]. As rising global
temperatures promote the occurrence and severity of extreme
droughts [120] and wildfires [121], their interaction chain
effects are also likely to be common in tropical forests (figure
3). Climate changes can also indirectly modify the



Box 1. Empirical examples of how climate extremes impact taxonomic and functional diversity, affecting the resilience and stability of
tropical forests and coral reefs.

Securing functionally stable and resilient ecosystems is a pressing issue under ongoing global change. Itis assumed that
biodiversity increases ecosystem functioning and climate-resistance [68], and that functional trait-based approaches can
better quantify disturbance consequences on ecological function and ecosystem stability [69]. However, the literature lacks
evidence from the tropics [70,71]. To explore how an El Nifio-related extreme drought and marine heatwave can affect the
functional stability and ecosystem functioning of tropical forests and coral reefs, we used empirical data from dung beetles
—which are important insects for secondary seed dispersal and seedling establishment processes in tropical forests [72,73]
—within primary Amazonian forests and herbivore parrotfish within reefs throughout the inner Seychelles. We measured
functional traits of dung beetles and parrotfish, along with two key ecosystem functions: secondary seed dispersal rates by
dung beetles in forests and grazing rates by herbivorous parrotfishes on reefs. All datasets were sampled before and after
the onset of the 2015-2016 El Nifio (forest: 2010 and 2016; reef: 2014 and 2017; for further details see supplementary
material and [44,74]). We, hence, compared post-El Niflo functional diversity metrics and biodiversity-ecosystem function
(BEF) relationships with those from pre-El Nifio surveys.

Our findings suggest that climate extremes could reveal the importance of tropical biodiversity for ecosystem functioning,
increasing the range of ecological niches occupied by functional groups (functional richness), and reducing the trait
dissimilarity among communities (functional dispersion)—but these impacts are ecosystem-dependent [75] (figure 2).
Specifically, lower seed dispersal rates occurred in forests with reduced beetle richness after the 2015-2016 El Nifio
drought (figure 2a,b), whereas positive BEF relationships were found in both pre- and post-El Nifio surveys on Seychelles
reefs (figure 2e,f ). Although these findings focus only on the short-term responses, they suggest that disturbances could
make tropical forests more dependent on biodiversity for their functioning [76]; while demonstrating that not only climate
change, but also climatic extremes, may have filtering effects for terrestrial biological communities [17]. In addition, the
maintenance of high post-disturbance grazing rates—under some specific ecological contexts [77]—may promote long-
term coral recovery and stability by controlling competitive algae and reducing the likelihood of ecosystem transitions to
algal-dominated states [44].

After the El Niflo event in the Amazon, dung beetle functional richness was higher (figure 2¢) and functional dispersion
was lower (figure 2d). Similar results were found for ground beetle functional responses to flood disturbance in German
grasslands [78]. These patterns could be explained by the loss of species with very distinctive traits and an increased
dominance of functionally similar species such as generalists (often found in more disturbed environments [39,79,80]). By
contrast, the lack of changes in functional richness and dispersion in the marine example (figure 2g,h) indicates no overall
variation in the number of different functional traits and groups in parrotfish communities. Thus, the high taxonomic
richness on coral reefs may support high functional redundancy, enabling functional groups to persist despite the El Nifio
event. Previous studies have similarly found no change in functional indices, including richness and dispersion, of coral
reef fishes following habitat degradation due to storms or bleaching [49,81]. However, functional originality of coral reef
fishes often decreases following climate extremes [49,81], which could make them more susceptible to future disturbances
and to the interacting effects of climate change, climate extremes and local stressors (figure 3).
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Figure 2. Drought and bleaching impacts on tropical biodiversity-ecosystem functioning links, functional richness and functional dispersion in tropical forests
and coral reefs, respectively. Dung beetle (a-d) and herbivore parrotfish communities (e-h) were surveyed before (purple) and after (blue) the 2015/2016 El
Nifo drought within Brazilian Amazonian forests and heatwave in Seychelles reefs, respectively. The x-axis shows dung beetle (a,b) and parrotfish (e-f) species
richness, and pre- and post-drought/heatwave surveys (c,d/g,h). The y-axis represents rates of dung beetle-mediated secondary seed dispersal (a,b), parrotfish
grazing rates (e,f), functional richness (c,g) and functional dispersion (d,h). Further details on functional traits, analyses and results are described in the
electronic supplementary material. (Online version in colour.)

susceptibility of tropical forests to climate extremes. For example, if the mortality rates of drought-stressed trees even in otherwise
cloud cover is declining over midlatitudes [122] and elevated CO, undisturbed tropical forests [124].
levels are enhancing liana biomass [123], then this could increase
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Figure 3. Framework of interactive effects between climatic and anthropogenic stressors on tropical forests and reefs. Interactions may occur through modification

effects, whereby the impacts per capita/per unit of one stressor is influenced by another pressure (dashed arrows), or through chain effects that may occur when
both stressors have a direct influence, with one amplifying the severity of the other (adapted from the framework proposed by Didham et al. [18]). Photos represent
a coral bleaching event in Moorea and landslides after massive thunderstorms in Peruvian cloud forests, by K. Chong-Seng and M. Dehling, respectively. (Online

version in colour.)

(c) Climate-induced disturbances exacerbate
impacts of local stressors on coral reefs

The current coral crisis is the result of a combination of large-
scale climatic stressors and localized non-climatic disturbances
[125]. Coral reef ecosystems are already widely threatened by
local stressors such as overharvesting, land-based pollution,
diseases, sedimentation and nutrient loading [125]. At a global
scale, climate change is increasing the frequency, duration and
intensity of marine heatwaves [46], resulting in interaction
chain effects (figure 3) that are pushing coral communities
towards their physiological stress limits [126] and causing
widespread coral bleaching (figure 1). For example, the 1997/
1998 and 2015/2016 bleaching events affected approximately
75% of well-studied coral reefs across the globe [47] and, in
some regions, led to greater than 90% declines in live coral
cover [127]. The individual effects of local and global
stressors on coral reefs are relatively well-understood, but
recent insights suggest that the impacts of climate extremes
can also be exacerbated by local stressors. Corals on the GBR,
for example, contend with multiple disturbances including
sedimentation, nutrient run-off and crown-of-thorns starfish
outbreaks [22]—and interactions between these disturbances
determine coral resilience to bleaching (figure 3). For instance,
coral declines are greatest and coral recovery is slowest on
reefs where overfishing has compromised ecosystem processes
such as predation and herbivory [128]. Furthermore, reefs
adjacent to turbid river outflows have a lower probability of
bleaching mortality due to lower light stress [23], providing
an example of an antagonistic interaction. By contrast, reefs
with elevated nutrient levels have reduced coral recovery rates
by 12-27% [23], which signals an additive or synergistic
interaction.

Although the magnitude of impacts of climate extremes will
depend on the direct and indirect interactions with local and
global pressures (figure 3), even isolated and relatively pristine
reefs are vulnerable to both climate change and extremes [47,
129]. Thus, local management alone is not expected to
promote coral reef resilience in the face of climate stressors
[130,131], although limited evidence shows that local stressor
alleviation favoured post-bleaching recruitment and coral
recovery in the GBR [128], Caribbean [132], Mesoamerican
[133] and Kenyan reef systems [134]. In othe regions,
ecosystem protection of coral reefs can fail to mitigate

bleaching impacts when compliance is weak and protected
areas are small [135,136].

4.The way forward

We have herein outlined various examples of how climate
extremes pose a broad range of challenges to tropical forests
and coral reefs (figure 1 and box 1), particularly when
combined with ongoing climate change and more localized
human pressures. Guarding against negative impacts on the
world’s most biodiverse ecosystems will be challenging and
dependent on local and global actions for climate adaptation
and impact mitigation, while more traditional conservation
strategies will need to be renewed to ameliorate the impacts of
multiple interacting threats (figure 3).

(a) Climate-smart protected areas

Networks of connected protected areas have been the
cornerstone of efforts to conserve biodiversity; however,
interactions between local and climatic stressors (figure 3)
require a new focus on functional and climate connectivity,
with the particular aim of allowing species range shifts along
climate gradients [88]. The global extent of marine protected
areas protects just 7.66% of the ocean, and the size of the
tropical network is far smaller than in the rest of the world
[137]. Although the largest percentage of forest area under
protected status (greater than 26%) is found in the tropics
[138], most tropical reserves are smaller than 100 km?[139].
The coverage of tropical forest and marine protected areas is
therefore too small to allow long-distance range shifts by
species, and over 62% of the tropical forests have been shown
to be likely to fail in facilitating species movements to
analogous future climates [88].

To enhance climate connectivity and hence resilience,
decision-makers should also focus on viable patch-linkages
and habitat corridors among protected areas preferably
distributed along climate gradients and where connectivity loss
and species vulnerability to climate are high [88]. Achieving
successful reserves will also require the protection of habitat in
the wider landscape—such as private lands—to ensure reserves
remain functionally connected if climate change and extreme
events result in enhanced environmental stochasticity [140],
and species need to travel longer to find suitable bioclimatic
conditions [88,141].



In addition, protected areas may also play a key role for both climatic
mitigation and adaptation through reducing emissions from tropical
deforestation [142], alleviating regional flood (drought) occurrence
during extremely rainy (dry and hot) seasons [143-145], and
avoiding overexploitation and loss of organisms and processes
important for post-disturbance ecosystem recovery (e.g. [128,146]).
However, to fulfil their role as an insurance policy for biodiversity
and climate-mitigation, current protected area networks need to be
well enforced and funded [147], while new marine and forest reserves
should be strategically placed where they increase climate
connectivity [88] and/or are predicted to escape the burden of climate-
associated stressors [130]. This is important because even regions
under low direct anthropogenic stress may be subject to impacts
from regional and global stressors [77].

(b) We are all in the same boat: multi-level actions
to tackle different stressors

As human populations and per capita consumption continue to grow
[148], the fate and future benefits provided by tropical forest and reef
systems will also depend greatly on how well these ecosystems are
managed. Their long-term resilience to climate change and extremes
will require the collective effort of a broad range of stakeholders
at distinct levels. Acting locally is important, and there are different
approaches to avoid further on-the-ground disturbance. For instance,
the post-disturbance resilience of tropical ecosystems and biota may
be enhanced through approaches for climatic adaptation such as the
implementation of well-planned landscapes,
connectivity and energy flows among ecosystems [149] and
improvements in habitat quality through ecological restoration (e.g.
green firebreaks in China [150]). Addressing the many distal drivers
of degradation in tropical ecosystems is essential to foster the
effectiveness of these approaches [1,125]. Research and climate-
mitigation strategies are also more likely to have an effect if engaging
with local actors, such as tropical scientists, managers, citizens and
institutions [151-153], and encouraging land- and marine-use
practices that respect local needs and diverse socio-ecological
conditions (e.g. fire-safe agriculture in tropical forests [154] and
community-based management programmes for coastal populations
that depend on corals and small-scale fisheries [155]).

Managing locally may not be enough if we do not tackle global
climate change issues [77]. Redoubling efforts to limit anthropogenic
climate changes remains critical and is the most important
mitigation option we have where climate stressors cause widespread
damage independent of other local nonclimatic disturbances. This
issue needs to be addressed by local, national and international
stakeholders, while balancing the needs for economic growth and
environmental sustainability, a particular challenge for tropical
countries [156]. For this, both tropical and extratropical nations
will need to develop strategies such as low-carbon technologies to
reduce the emissions of greenhouse gases while avoiding forest
destruction to increase carbon intake [105]. Controlling climate
change may also reduce the risks of more severe and frequent
weather extremes [46,157], and, consequently, the need for a
considerable amount of investments to prepare regions that are more
vulnerable to them.

reinstatement of

5. Conclusion

Our review shows that climate extremes are impacting forests and
coral reefs throughout the tropics (figure 1), but their ecological
consequences for ecosystem resilience and stability are likely to differ
across realms (box 1). The fate of these ecosystems will be
determined by a complex interplay between the impacts of local and
climate-associated stressors [1,17] (figure 3). Ecological studies on
species-specific physiological tolerance [158], changing species
composition [60,159] and ecosystem recovery trajectories [27,48]
may help us to inform management decisions where climatic stressors
are the main drivers of disturbance. However, where local and
climate-related stressors are jeopardizing ecosystems services, we
need to develop better predictive models to understand how chain
and modification interactions with local stressors can mediate the
ecological consequences of climate change and climatic extremes.
Such integrated approaches can better inform policy and climate-
adjusted management solutions to ameliorate further disturbance
impacts, helping to promote ecosystem adaptation and resilience.
We urge the creation of conservation to develop
interventions that effectively curb local disturbances, but these will
be of limited success if they are not accompanied by international
actions to decrease CO, emissions and therefore slow global climate
changes. Conserving the hyperdiverse biota of tropical forests and
coral reefs for future generations will require much greater
cooperation between nations and the involvement of a broader
range of stakeholders in the development of solutions.
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