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Abstract: Power chips such as Metal Oxide Field Effect Transistors (MOSFETs) are widely used and 
can be found in many electronics and electrical products. The ability to predict the degradation of 
such power electronic devices can minimise the risk of their failure during operation and support 
maintenance planning operations. In this study, a data driven prognostics approach using system 
identification and machine learning modelling technique is developed and used to predict the time-to-
failure of MOSFET TO-220 packages associated with delamination failure mode of the die 
attachment. Run-to-failure data under thermal overstress loading conditions for power chip devices, 
available from the NASA Prognostics Centre data repository, is used to develop a data-driven 
prognostic model that can be used to predict the time-to-failure (TtF) of power MOSFETs under 
accelerated test loads. An increment in ON-state resistance of the MOSFET is used as precursor for 
device failure through die-attach degradation. Results from this research show that when monitored 
data from a damage indicator for a particular failure mode of an electronic package changes 
dynamically, data-driven modelling using engineering control techniques such as State-Space 
representation is capable of producing reliable, multi-step ahead predictions for the time-to-failure of 
the device. 

1. INTRODUCTION 

Estimating state of health or predicting remaining 

useful life of power electronic devices is crucial to 

avoiding disruption in operational performance or 

failure of an electrical or electronic system. The 

metal–oxide–semiconductor field-effect transistor 

(MOSFET) is an example of electronic chip that is 

widely used in many electronic products in 

applications such as automotive, aerospace, energy, 

etc. Degradation of MOSFET package can lead to 

power failure and subsequently the failure of the 

complete electrical system. Majority of the current 

research efforts are focusing on new MOSFET 

designs for improving performance and reducing cost 

but research on assessing reliability of the devices in 

operation is less comprehensive. The capability to 

predict when electronic components may fail without 

any prior indication while in operation or under test 

can assist in designing strategies for failure prevention 

and efficient maintenance schedule. A powerful 

approach to achieve these objectives is to perform 

assessment of the device degradation state and to 

forecast time-to-failure (respectively remaining useful 

life) using data on performance monitoring parameters 

and suitable data-driven prognostic techniques. 

Recent studies found that the sudden failure of 

electronic components occurred without any prior 

indication. It is extremely important to avoid such 

failure by obtaining early information and taking 

necessary steps based on that information. Data driven 

prognostics with the use of machine learning 

algorithms is a dominant approach to predict early 

time to failure information of the components. 

Therefore, it is important to understand the failure 

modes, mechanisms and effects for the prognostics of 

those components. 

Data driven prognostic approaches such as Particle 

filters, Kalman filters, Gaussian process regression, 

Neural Network, Support Vector Machine (SVM) and 

other machine learning techniques are being employed 

for prognostics of electronic components [1,2]. It has 

been reported that data from accelerated aging 

experiments on MOSFET devices can help to 

understand the material degradation behaviour of the 

package and to develop mathematical models for 

predicting the device performance. Furthermore, data-

driven prognostics strategies have been employed by 



taking advantage of accelerated aging experimental 

data to predict remaining life of the devices under test. 

For example, Celaya et al [3-5] have examined run to 

failure MOSFET data for the prediction of remaining 

useful life (RUL) of the device aged under thermal 

overstress condition through a controlled accelerated 

aging experiment. ON-state resistance was used as the 

primary precursor of failure of the die attach in their 

work. Gaussian process regression algorithm, an 

extended Kalman filter with a particle filter, and 

Bayesian tracking framework are among the 

techniques used within developed and demonstrated 

data-driven and/or model-based prognostics 

approaches. Investigated models were able to provide 

good prediction results. 

Zheng et al [6] have proposed a prognostic method 

with the use of relevance vector machine and a 

degradation model to predict the RUL of power 

MOSFET. Their degradation model was generated by 

fitting representative vectors and RUL of MOSFETs 

calculated by extrapolating the degradation model to a 

failure threshold. Updating of the degradation model 

is performed by using the difference between 

predicted and measured values. Results show that the 

proposed method can provide good RUL estimation 

accuracy. Wu et al [7] have discussed failure models 

and mechanisms of MOSFETs and developed a 

degradation model using track filter. The authors have 

estimated that over 34% of failures of electrical 

systems are happened due to power failure, whereas 

majority of these failures are occurred due to 

MOSFET failure. On-resistance of a MOSFET is 

identified as the key characteristics parameter for the 

degradation of the device. High temperature and 

temperature cycling have significant impact on the 

performance of power electronic devices; 55% of 

detected failures are attributed to those types of loads.  

Dusmez et al [8] have proposed a data driven 

linear approximation model for estimating remaining 

useful life (RUL) of degraded power MOSFETs under 

thermal cycling condition. Accelerated aging test bed 

was used to identify the fault precursors of the device 

in a shorter time.  The ON state resistance, in a 

logarithmic form and approximated by a linear 

function, was selected as precursor failure parameter. 

The empirical coefficients were estimated by the 

classical least squares (LS) approach, and outliers 

were identified and removed from the experimental 

data using random sample consensus (RANSAC) 

algorithm. A sliding window approach was used to 

track the nonlinearities. In addition, genetic algorithm 

was employed to optimise window size, threshold 

value, and number of samples of the data. The results 

show that the method could be useful for real-time 

failure prognosis.  

Other MOSFET related investigations are also 

available in the literature [9-13]. However, only three 

research studies reported in the public domain have 

developed predictive models for the prognostics of 

MOSFETs, and limited number of machine learning 

techniques have been considered and used for the 

problem of prognostics of MOSFET failure. The aim 

of this study is to investigate the predictive capability 

of computational intelligence algorithm (state-space 

dynamic model) for predicting TtF of MOSFETs 

electronic components using data from monitored 

failure precursor parameters. Model prediction results 

are presented and performance of the model is 

evaluated comparing actual and predicted time-to-

failure test data.  

2. PROPOSED TIME TO FAILURE (TTF) 

PREDICTION METHODOLOGY 

Accelerated aging is commonly adopted 

experimental technique to induce failure in an 

electronic component over practical timeframe and to 

identify required parameters for prognostics analysis. 

In this investigation, MOSFET accelerated aging 

experimental platform is used for the aging test 

developed by NASA AMES laboratory [4]. 

Degradation data sets of 42 individual MOSFET 

devices with various runs of them are collected. In 

addition, resistance is identified as a suitable precursor 

failure parameter, and calculated from the drain 

source current and gate voltage extracted through 

analysis of the experimental data sets. The resistance 

values are normalised to identify and compare 

presence of distinguishing degradation patterns. 

Smoothing of the normalised resistance is also carried 

out in order to understand the general trend in the 

data. State-space modelling is considered in this work 

to predict time to failure (TtF) of devices under test. 

Finally, the prediction performance of the developed 

prognostics model is evaluated. 

Figure 1 shows the framework for predicting TtF 

of the degraded MOSFETs. It details also the 

sequential steps and activities related to data gathering 

and subsequent data-driven modelling for imbedded 

prognostics in test. 



 

Fig. 1. Framework of time to failure (TtF) prediction for 

MOSFET  

3. MOSFETS DEGRADATION EXPERIMENTS AND 

DATA COLLECTION 

3.1. Accelerated aging experimental set-up 

MOSFETs accelerated aging experimental system 

was developed by AMES research center (NASA) 

with the help of Impact technologies to enable 

investigations on the degradation processes of 

MOSFETs packages, and for diagnosis and prognosis 

capability developments [4]. The main goal of the 

experimental work was to enable the development of 

prognostics algorithms for predicting TtF of 

MOSFETs. Power MOSFETs transistor, TO-220 

package, was used for conducting the aging 

experiments. The accelerated aging of the device is 

realised by applying thermal overstress generated by 

indirect thermal cycling. Changes in thermal loads 

were induced by applied electrical power cycling 

under the condition that no additional heat sink was 

used. Under thermal cycling condition, the electronic 

device is subjected to quick changes in temperature, 

which causes cyclic expansion and contraction of the 

internal elements bonded together. Owing to the 

mismatch of thermal expansion coefficient of the 

bonded elements, thermal stress is generated and over 

the time this can lead thermo-mechanical failures in 

the MOSFET such as wire lift and die attach 

degradation. The detailed description of the 

accelerated aging system can be found in reference 

[9]. 

In the accelerated aging thermal oversets test, 

maximum and minimum temperature values are set 

and used to control the power ON-OFF switching of 

the MOSFET device. If the temperature reaches below 

a set minimum level, switching mode is turned ON. 

On the other hand, if the temperature rises above a set 

maximum limit, switching mode is turned OFF. When 

device switching takes place, a large amount of power 

is dissipated and this increases the temperature of the 

device. The parameters applied at the gate causing the 

device to switch rapidly during power cycling as 

follows: applied gate voltage with a square wave 

signal and an amplitude of ~15V, a frequency of 

1KHz and a duty cycle of 40%. Figure 2 shows a high 

level schematic diagram for the accelerated aging of 

MOSFET. This setup uses a LabView (National 

Instruments) interface including data collection 

modules and control instruments [9]. The hardware 

consists of a programmable power supply as a source 

of 20V and 50A power. An infrared sensor and an 

environmental chamber are used to monitor and 

control the device temperature, humidity and pressure 

respectively.  

 

Fig. 2. Accelerated aging system for aging through thermal 

cycling (adapted from [4]). 

3.2. MOSFET Degradation data 

In this work, the experimental data for MOSFET 

package degradation under thermal overstress aging 

condition detailed in the previous section is used. The 

ON-state resistance, RDS(ON), is computed with ratio 

of drain to source voltage (VDS) and drain current (ID). 

This parameter is used as a damage indicator because 

RDS(ON) increases as die-attach degradation/ 

delamination starts to occur in the device. This 

accelerated degradation is a result of the increased 

junction temperature achieved by combined power 

cycling and externally controlled elevated temperature 

[3]. Figure 3 shows the normalised and smoothed 

resistances for a number of selected devices. It is very 

clear that the degradation patterns for the devices 7, 

38, 32, 26 and 35 are similar even though the 

individual tests times range from 41 to 125 minutes.   



 

Fig. 3. Normalised ON-state resistance (R-DS_on) 

measurements of MOSFET power chips under accelerated 

degradation tests. 

3.3. Data smoothing 

To understand actual patterns in data, a data 

smoothing technique is used to remove noise from a 

data set. As long as a predictive model is developed 

by training with smoothed data, the model prediction 

will be more accurate and realistic compared to a 

model developed by training with noisy data. 

Therefore, data smoothing is important to improve 

model prediction capability [3]. Particularly, for large 

amount of noisy data, smoothing is essential to help 

predict the actual trends of the data. Data smoothing 

can be done in various ways. 

In this case, averaging technique is used to conduct 

the data smoothing. The original raw measured values 

of the parameters in the test are gathered at high 

frequency. This data is first subjected to data 

reduction so that one parameter value per minute 

interval of test time is obtained. This is based on 

simple average of all measured values over the minute 

interval. Then, each parameter value is re-calculated 

by averaging the 10 nearest data measurements to 

provide the data into the desired smooth format. 

Figure 4 shows a typical example of the smoothed 

data and actual data trends for device #8 in the 

dataset.  

4. MOSFET FAILURE PREDICTION RESULTS 

WITH STATE SPACE (SS) ALGORITHM 

State space algorithm is effective for the analysis 

of nonlinear systems and accurately captures the 

dynamic behavior of a system. Further details about 

the algorithm can be found in references [14-16]. 

 

Fig. 4. Smoothing of degradation noisy data for device 8. 

4.1. Multistep ahead prediction using SS model 

The normalised resistance (R-DS_on) with respect 

to the virgin device condition is used to represent the 

degradation process and detect the time of failure 

represented with a threshold value of 0.055 (Figure 5). 

State space data-driven prognostic model was 

developed using the measured data for ON-state 

resistance of several MOSFETs and used to identify 

their performances and accuracies when used to 

forecast the time-to-failure of a device.  

The performance of state-space model developed 

in the study, is evaluated for different multi-step 

ahead prediction. As an example, the accuracy of the 

model predictions for device #38 data is 

demonstrated. Figure 5 shows 10 steps (20 mins) and 

15 steps ahead (30 mins) predictions with the actual 

measured data (from experiment) for the device #38.  

 

Fig. 5. ON-state resistance (R-DS_on) measured data and 

trajectories of the model multi-step ahead forecasts for 

device #38. 
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As expected, forecasts of remaining life over large 

prediction horizons become less accurate but the 

dynamic behaviour of the measured signal is captured 

well for small to medium number of forecasting steps 

over the sampling interval. Therefore, 10 steps ahead 

predictions produced more accurate results displaying 

a closer match to the measured data compared to the 

15 steps ahead predictions. This could be explained by 

the fact that more data is used during trained model 

development for 10 steps ahead prediction and thus 

generated the model with better prediction capability. 

4.2. Time to Failure (TtF) prediction using SS 

model 

Time to Failure (TtF) is calculated by subtracting 

the time at prediction from the time when predicted 

resistance value is equal to or exceed the threshold 

resistance value (0.055). Figure 6 presents the data for 

TtF at different times when predictions were made. 

For example, at time 40 min, the time required to 

reach the threshold resistance value is 66 min. 

Therefore, the time to failure at 40 min is 26 min. For 

device #38, the predictions for time-to-failure are 

found to be robust and accurate even for the early 

predictions.  

 

Fig. 6. Time-to-Failure prediction performance of 

developed state-space model for device #38. 

5. DISCUSSIONS 

In power electronics applications, MOSFETs play 

a critical role in ensuring the reliable operation of 

electronic system. Development of an accurate 

prognostic model to predict the TtF of MOSFETs is 

the first step towards implementation of prognostics 

health management capability of these electronic 

devices. 

Measurement data from the experiments with 

different devices clearly show the degradation pattern 

follows an exponential curve. The predictive model 

output also follow the pattern very closely. Smoothing 

of the raw data will have significant influence on the 

prediction outcomes and model accuracies. 

Assessment of TtF prediction performance, as evident 

from Figure 6, shows that the model features very 

good quantitative accuracy for the devices under 

investigation. The values of relative accuracies 

presented in Table 1 also supports the performance 

accuracies obtained by the model. The relative 

accuracy values reported in Table 1 are calculated 

using Eq. 1: 

𝑅𝐴(%) = 

(1 −
|𝑇𝑡𝐹𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑇𝑡𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑇𝑡𝐹𝑎𝑐𝑡𝑢𝑎𝑙
) × 100          (1) 

 

Table 1. Prediction performance estimation by SS model. 

Time at 

prediction 

Predicted 

TtF (min) 
Error 

Relative 

accuracy 

(RA in %) 

28 39.50 0.50 98.75 

32 31.50 4.50 87.50 

36 29.25 2.75 91.41 

40 26.00 2.00 92.86 

44 22.25 1.75 92.71 

48 20.00 0.00 100.00 

52 18.50 -2.50 84.38 

56 12.40 -0.40 96.67 

60 10.25 -2.25 71.88 

64 3.60 0.40 90.00 

 

A number of factors influences the predictive 

performance of a prognostic model. These include: 

a. How representative the accelerated aging 

data, gathered over shorter period, is of the 

real life degradation data (gathered over 

longer time period while device is in 

operation). 

b. The accuracy of experimental data. 



c. Processing of measured data:  data size 

reduction. normalisation and smoothing. 

d. Machine learning algorithm used. 

6. CONCLUSIONS 

This study has investigated a computational 

approach for Time to Failure (TtF) predictions of 

MOSFET device. Data driven state-space model was 

developed using experimental data from accelerated 

aging tests of MOSFETs packages and then employed 

to predict the TtF of the devices under test. The failure 

mode of interest addressed in this work was the die 

attach delamination failure caused by thermal 

overstress. The die attach degradation affected the 

measured values of the ON-state resistance of the 

device under test and hence used as precursor for the 

pending failure. Results from this work have shown 

that state-space modelling approach can provide 

accurate prognostics results for the time to failure. As 

part of the model validation checks, good agreement 

between model predictions and actual test data was 

confirmed. 
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