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Abstract: Power electronic devices such IGBT (Integrated Gate Bipolar Transistor) are used in wide 
range of applications such as automotive, aerospace and telecommunications. The ability to predict 
degradation of power electronic components can minimise the risk of their failure while in operation. 
Research in this area aims to develop prognostics strategies for predicting degradation behaviour, 
failure modes and mechanisms, and remaining useful life of these electronic components. In this 
paper, data driven prognostics approaches based on Neural Network (NN) and Adaptive Neuro Fuzzy 
Inference System (ANFIS) models are developed and used to predict the degradation of an IGBT  
device. IGBT life data under thermal overstress load condition with square signal gate voltage bias, 
available from NASA prognostics data repository, is used to demonstrate the proposed data-driven 
prognostics strategy. The monitored collector-emitter voltage is used to identify the pattern and 
duration of different phases in the applied voltage load. The NN and ANFIS models are trained with a 
subset of the test data to predict remaining useful life (RUL) of the IGBT device under varying load 
test profiles. The predictive capability and performance of the models is observed and analysed. 

1. INTRODUCTION 

The ability to predict failure behaviour of 

electronic components while in operation can help to 

take necessary failure preventative actions and to plan 

for an effective maintenance schedule. Power 

electronic components such as Insulated Gate Bipolar 

Transistor (IGBT) play a crucial role in household 

appliances, automotive, renewable energy, etc. IGBT 

is increasingly required in many electronic systems 

with high reliability characteristics, for example in 

automotive vehicles [1].  

The gradual degradation of IGBT decreases the 

efficiency of an electronic system, and a failure of the 

device can cause failure of the whole system [1]. 

Unexpected or sudden failures of IGBT devices 

occurring in the products or systems can lead to 

excessive downtime and large losses such as high 

maintenance cost and lost revenue. There are various 

failure mechanisms in IGBT that lead to serious 

failure incident of the products and systems during 

operation. Bond wire lift off, die solder fatigue, latch 

up and degradation of substrate are the common 

extrinsic faults whereas the intrinsic failure 

mechanisms are dielectric breakdown, hot carrier 

injection and electro-migration [2, 3]. In this context, 

it is important to monitor the performance of IGBT 

during operation, assess the health of the device or 

module, and plan maintenance activities to avoid 

catastrophic failure. Diagnosis performs detection, 

isolation and identification of failure of electronic 

product where as prognostics is a methodology that 

can forecast future condition of the electronic product 

and predict future states and remaining useful life [4]. 

A number of data driven prognostic approaches 

such as Particle filters, Kalman filters, Support Vector 

Machine and other machine learning techniques are 

being employed for prognostics of electronic 

components [5]. Xiong et al [6] have proposed a 

prognostic and warning accelerated test system for 

IGBTs that are used in electric, hybrid electric and 

fuel-cell vehicles. In their approach, a computer 

controlled stress testing is conducted to record 

parametric measurement and information is used to 

raise an early failure warning based on detected 

degradation in the IGBT devices. Temperature and 

collector-emitter voltage are the used precursor 

parameters. However, this system is unable to provide 

the RUL prediction. Algassi et al [7] have proposed a 

state based prognostics model for predicting 

remaining useful life of IGBT. K-means clustering, 



evaluations of clustering and RUL calculations are the 

main computational elements of their approach. In this 

study, transition probabilities models are used to 

predict RUL. but overall the system does not provide 

high accuracy of RUL prediction and high 

performance when compared to other computational 

approaches. Sreenuch et al [1] have used Monte-Carlo 

simulation and collector emitter voltage to develop 

prognostics algorithm for the RUL prediction of 

IGBT. Gamma, exponential and Poisson distribution 

models are combined. The study concluded that the 

combined model provides better prediction 

performances compared to the statistical distribution 

models. However, the system focuses on statistical 

analysis rather than machine learning. 

Currently, significant research efforts are being 

conducted on prognostics of IGBT with particular 

emphasis on automotive electronics. However, further 

work is still required to address many remaining 

challenges on predicting RUL of IGBT. Hence, an 

extensive prognostics framework for IGBT is 

required, underpinned by accurate methods for 

predicting remaining useful life, to halt expensive 

sudden failure of these devices. 

The aim of this study is to investigate the 

predictive capability of computational intelligence 

algorithms such as Neural Network (NN) and 

Adaptive Neuro Fuzzy Inference System (ANFIS) for 

predicting RUL of IGBT devices, and more generally 

of electronic components (IGBT). Results from both 

approaches are provided in relation to RUL prediction 

capability. Performances of the two models are 

compared and reported in the paper.  

2. PROPOSED RUL PREDICTION METHODOLOGY 

In practice, the IGBT devices have thousand hours 

lifetime expectancy. However, to analyse degradation, 

the lifetime of the IGBT is required to be reduced [8]. 

IGBT accelerated aging system performs robust 

experiments to investigate prognostics by identifying 

precursor parameters of the device. In this 

investigation, the IGBT accelerated aging 

experimental platform is used for the IGBT aging test 

developed by NASA AMES laboratory [9]. Then 

degradation data sets of seven IGBT devices are 

collected. In the next step, a degradation parameter 

(collector emitter voltage) for the devices is selected 

after investigating the data sets. All the degradation 

data sets are plotted to identify any distinctive 

degradation pattern. Various degradation phase 

durations are estimated from the data sets to find out 

the actual RUL of the IGBT devices. NN is employed 

to predict RUL of the last device by using the 

degradation data sets for the first six devices. 

Subsequently, ANFIS model is also used to find out 

the prediction of RUL for the same device. Finally a 

comparison of RUL predictions and errors analysis for 

both models are conducted. Fig. 1 shows the steps of 

RUL prediction for IGBT.  

 

Fig. 1. Process of RUL prediction for IGBT  

3. IGBT DEGRADATION EXPERIMENTS AND 

DATA COLLECTION 

3.1. Accelerated aging experimental set-up 

An IGBT accelerated aging experimental system 

was developed in NASA to explore the degradation 

process of IGBT for diagnosis and prognosis 

purposes. The goal of this experiment is to develop a 

prognostics algorithm for predicting the RUL of 

IGBT. Fig. 2 shows the experimental set-up for the 

accelerated aging of IGBT [9].  

 

Fig. 2. IGBT accelerated aging test hardware [9]. 



Thermal cycling and electrical overstress are used 

in this experiment to speed up the degradation and 

failure of the IGBT. Collector-emitter voltage, 

collector-emitter current, gate-emitter voltage and 

gate-emitter current, and environmental parameters 

such as temperature are considered as the precursor 

parameters for this aging process [7, 9]. Accelerated 

aging data sets are collected and recorded from the 

aging experimental process to assist for further 

processing of the data in subsequent investigation. 

The experiment supplies prognostics data sets to 

develop and compare various data driven algorithms 

for IGBT prognostics and to estimate RUL.  

3.2. Degradation data 

The IGBT degradation data set is taken from the 

AMES laboratory of NASA [9]. Tests are carried out 

on seven IGBT devices using thermal overstress aging 

condition. Each device is tested with a load profile 

that results in seven distinctive phases for the 

measured collector-emitter voltage (VCE). The 

collector-emitter voltage is considered as a precursor 

parameter. By controlling the voltage from the power 

supply, the VCE is increased with a step of 0.5 V from 

one load phase in the profile to the next phase starting 

with 2.5V at load Phase 1. The duration of each phase 

in a full load profile applied to an IGBT varies from 

device to device and hence affects the failure time. All 

tested devices failed at some point during the last load 

phase (Phase 7). An example of a degradation profile 

of an IGBT device with the measured VCE signal is 

shown in Fig. 3.  
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Fig. 3. Degradation profile of collector-emitter voltage for 

IGBT #1. 

The step-wise profile of the measured VCE 

indicates clearly the seven phases of the applied test 

load. Table 1 provides a summary of the durations of 

the load phases (1 to 6) for the tested IGBTs. The last 

column of the table lists the failure time for each of 

the tested IGBT devices (occurring during the last 

Phase 7). The run-to-failure degradation process is 

applied on seven IGBTs under the aging experiment. 

The data are collected and listed in Table 1. 

Table 1. Duration of load phases and failure time, in 

normalised time units, identified from VCE profiles of the 

seven tested IGBT devices. 

IGBT 

No. 

Phase 

1 

Phase 

2 

Phase 

3 

Phase 

4 

Phase 

5 

Phase 

6 

Failure 

time 

1 875 502 645 1221 1602 1454 11850 

2 1112 502 1663 657 1107 1725 9360 

3 1448 0 1132 903 712 1312 10014 

4 1225 0 1160 874 650 1373 7864 

5 1284 424 1395 683 1075 3923 12068 

6 942 0 1337 985 1625 1012 14502 

7 1125 0 872 0 1237 1204 6376 

4. ARTIFICIAL NEURAL NETWORKS (NN) FOR 

RUL PREDICTION 

Artificial neural network has high efficiency in 

prediction purposes. The significance of NN is 

arbitrary function approximation and nonlinearity. 

Furthermore, it also demonstrates effective data 

relationship and vibrant behavior of systems. The 

network is consisted of three layers as input, hidden 

and output layers (see Fig. 4). The performance of NN 

is considered to predict RUL of IGBT using the 

degradation data sets.   

 

Fig. 4. Neural network (NN) model structure. 

4.1. NN approach: Computational steps 

It is important to prepare different data sets to 

avoid over fitting of data while training the network. 

Two different data sets (training and testing) are 

required to run and validate the model. Six IGBT data 



sets are considered as the training set and the data set 

for the last device is selected as the testing set. 

Degradation phase durations are taken as input data of 

six IGBT devices and the corresponding actual RULs 

calculated from the phase durations are considered as 

the target data. Testing of the network is performed 

after fully completing the training with the network 

and then RUL is predicted. Fig. 5 shows the 

computational steps for constructing a NN model 

using IGBT failure data and predicting RUL of the 

device.  

 

Fig. 5. RUL prediction steps with Neural Network 

4.2. RUL prediction using NN model 

Feed forward NN is selected for the RUL 

prediction of IGBT. Levenberg Marquardt (LM) 

learning algorithm is used to train the network [10]. It 

is a combination of gradient descent method and the 

Gauss-Newton method. The algorithm has ability to 

solve nonlinear problems using its standard technique. 

Mean squared error evaluates training performance to 

simplify construction of a network by minimizing sum 

of the squared errors. The sum of squares is estimated 

by Hessian matrix as H = JTJ (J is Jacobian matrix) 

and computed gradient as g = JTe (e is network error). 

The Levenberg-Marquardt training algorithm is 

represented by the Eq. 1. 
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where x represents connection weight, μ is a scalar 

combination co-efficient that performs transformation 

to gradient descent or Gauss Newton algorithm and I 

stands for Identity matrix [10].  

Figure 6 shows the NN model performance in 

predicting RUL at discrete time points of the test. The 

predicted values made at earlier times of the test are 

not accurate and show deviation from the actual 

RULs. This is due to the lack of information what the 

duration of the coming degradation phases will be. 

Note that the test is predefined with the result in 7 

different degradation stages; each causing the 

collector emitter voltage to increase at certain value 

but the actual durations of the phases is different in 

each test. Also, large numbers of data sets are required 

in order to train the network in recognising likely test 

duration patterns. Predicted RULs converges to the 

actual values in the later phases of the test as more 

and more data on the test history (past degradation 

phases and their durations) becomes available.  

 

Fig. 6. RUL prediction with Neural Network for an IGBT. 

5. ANFIS FOR RUL PREDICTION 

ANFIS has widely used in fuzzy control, data 

processing, system identification etc. ANFIS is 

developed using a fuzzy inference system, fuzzy rules, 

input and output variables, and membership functions 

[11]. Takagi–Sugeno rules [12] are used in ANFIS 

that is developed in this work. The membership 

functions define the fuzzy sets and calculate degree of 

membership using the values of inputs. If-then rules 

are used to obtain output depending on the values of 

known inputs. A general Sugeno fuzzy model is 

expressed according to the Eq. 2. 

  cbyaxz   (2) 

where x and y are two inputs and z is output [11]. Fig. 

7 shows the process of ANFIS RUL prediction for the 

same device tested by NN. Degradation phase 

durations and corresponding actual RULs are 

uploaded as the training data through ANFIS whereas 

the phase durations of last data sets are uploaded as 

checking data for the test. ANFIS is configured by six 



inputs and one output with membership functions. 

Training is progressed after configuring the ANFIS, 

and then checking is performed and exported the 

output from the ANFIS model. Finally, ANFIS model 

is run to predict the RULs from the checking data set. 

 

Fig. 7. RUL prediction steps with ANFIS 

5.1. ANFIS model structure 

An ANFIS model is developed. (Fig. 8). The 

model has six inputs corresponding to the respective 

phase durations and one output (actual RUL). The 

model is trained with data points generated using the 

aging profiles of the first six devices. To improve 

predictive capability and model accuracy, larger test 

data sets are required in ANFIS. 

 

Fig. 8. Representative ANFIS model structure. 

5.2 RUL prediction using ANFIS  

The last tested device, No. 7 in Table 1, is used to 

check the predictive capability of the models. The 

RUL predicted by ANFIS are compared with the 

actual RUL values obtained from the experiment (Fig. 

9). Predictions made early in the test are less accurate 

as the time duration of the coming (future) phases in 

the full load profile to which the IGBT are yet to be 

exposed are uncertain. As more information about the 

past history of the applied load becomes available, the 

RUL predictions from ANFIS become more accurate. 

 

Fig. 9. RUL prediction with ANFIS. 

6. PREDICTION COMPARISON AND VALIDATION 

Fig. 10 demonstrates the comparison of RUL 

prediction between NN and ANFIS for the device no. 

7. The predictions at the early stages for both NN and 

ANFIS showed larger errors. However, the 

predictions are becoming closer to the actual RULs in 

the last three stages calculated by both NN and 

ANFIS. 

 

Fig. 10. Comparing RUL prediction between ANFIS and 

Neural network with actual RUL 

In Table 2, RUL prediction errors are drawn for the 

last phase. The errors calculated using NN and ANFIS 

are 19.04% and 30.91% respectively. In reality, to 

achieve better prediction, larger data set are required 

for training purposes in the networks.  It is observed 

that the RULs predicted by NN is slightly more 



accurate compared to ANFIS. Therefore, NN would 

be better suited to RUL prediction for this type of 

investigation. 

Table 2. Prediction error calculation of RUL using Neural 

Network and ANFIS for the IGBT No. 7. 

RUL prediction (normalised 

time) 
Error 

Actual NN ANFIS NN ANFIS 

1938 2307.16 2537.20 19.04% 30.91% 
 

7. CONCLUSIONS 

This study investigated a computational approach 

for RUL predictions for IGBT modules. The models 

exploited degradation data obtained from accelerated 

damage tests with the aim to identify a suitable 

algorithm that can be useful for predicting accurately 

the failure time of IGBTs. Data driven approaches that 

use neural network (NN) and ANFIS models were 

employed separately and their capability to predict the 

RUL of an IGBT test device was tested. For both 

models, it was found that predicted RULs during the 

early test time phase (initial degradation period) 

cannot be done accurately due to undefined durations 

of the future degradation phases in the test. This 

makes the test condition highly uncertain. However, 

the accuracy for the predicted RULs gradually 

improves and started matching the actual RULs as the 

device goes through and completes more and more of 

the degradation phases of the test.  

A comparison of RUL predictions between NN 

and ANFIS showed that in the case of the observed 

test data and test conditions, the proposed NN-based 

technique resulted in better prediction accuracy than 

the ANFIS-based technique. On the basis of this 

investigation, NN-based technique seemed to show 

better performance and hence judged more 

appropriate to integrate within prognostics 

frameworks for evaluating RUL of IGBTs. Further 

studies on additional test datasets and also using 

different test profiles are required to gain further 

insights into the performance of the NN approach to 

this problem. 
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