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Abstract: A flaw or drift from expected operational performance in one electronic module or 
component may affect the reliability of the entire upper-level electronic product or system. Therefore, 
it is important to ensure the required quality of each individual electronic part through qualification 
testing specified using standards or user requirements. Qualification testing is time-consuming and 
comes at a substantial cost for product manufacturers. Many electronics manufacturers have access to 
large historical sets of qualification testing data from their products which may hold information to 
enable optimisation of the respective qualification procedures. In this paper, techniques from the 
domain of computational intelligence are applied. The development of data-driven models capable to 
forecast accurately and in-line the end result of a sequence of qualification tests is discussed and 
presented. Data-driven prognostics models are developed using test data of the electronic module by 
Neural Network (NN) and Support Vector Machine (SVM) techniques. The performances of the models 
in predicting the qualification outcomes (pass or fail) are assessed.  

1. INTRODUCTION 

The global market for the electronic product is 

projected to reach US$2.4 trillion per year by 2020 

[1]. This growth has led to intense competition 
between manufacturers to minimise the time-to-

market for their products. However, qualification 

testing, which is time-consuming and resource-
intensive, is a major bottleneck for the quick release 

of electronic products to the market. Therefore, 

researchers and engineers have to ensure the 

reliability of each electronic module during 
qualification testing within the shortest possible time. 

Qualification testing is conducted by 

manufacturers through measuring numerous test 
parameters related to the functioning of individual 

electronic part. The test outcome is defined either pass 

or fail based on the measured values fall within the 

specified range or not. The number of measured 
parameters and logical tests performed on an 

electronic module could vary from only a few to 

potentially hundreds. Therefore, an optimum 
qualification testing procedure is an essential 

requirement to minimise the long test time. The 

shorter test time would be highly advantageous, as it 
will ultimately reduce the production cost and time to 

introduce the product in the market. One way of 

reducing the test time is accurately forecasting the 

final test outcomes (pass/fail) using prognostics 
models developed by the historical data obtained from 

fully completed qualification tests. 

Data-driven approaches such as machine learning 
techniques learn from historical data or training data 

to capture changes in test parameters monitored 

during qualification testing. Anomaly detection is 

accomplished by comparing in-situ data against 
healthy baseline data that is collected under several 

modes and load conditions under which a product is 

anticipated to operate [2-3]. Jaai et al. have reported a 
multivariate state estimation technique and executed a 

sequential probability ratio test to detect the onset of 

failure in ball grid arrays subjected to accelerated 

temperature cycling (ATC) tests [3]. Furthermore, a 
comparison performed between resistance data 

monitored during ATC and the baseline data to detect 

anomalies. Ideally, data-driven approaches in 
qualification testing is capable of capturing outliers in 

monitored data and they are effective for detecting 

intermittent failures while the test parameters are 
monitored in situ. Sohan and Lee [4] have proposed a 

canonical correlation analysis in order to investigate 

the relationship between multiple process control 



monitoring (PCM) variables and various probe bin 

variables of IC semiconductor. Polynomial regression 

is used to determine the critical values of the PCM 

variables that affect the performance yield. Firstly, the 
experiments performed involve splitting the values 

related to the threshold voltage in order to assure the 

performance yield of a device and avoid difficulties 
for handling all the PCM data. The PCM variables 

were the contact resistance, sheet resistance, and 

Isat_P4H as well as threshold voltage. Secondly, 
typical values of Vtl_P4H and Isat_P4H greater than 

±10% difference between the critical value and the 

currently-used average value should be changed in 

order to maximise the performance yield. The 
polynomial regression is useful as a methodology for 

identifying optimal PCM variables. The proposed 

method is useful for optimising the IC process to 
improve yield and as a problem-solving approach. 

Currently, manufacturers have adopted standards-

based qualification testing [5] to ensure reliability of 
electronic product used in various applications. The 

lack of correlation between field use and test 

conditions promote to the inadequate qualification that 

causes unexpected product failure during operation 
and great financial losses. This is especially true for 

manufacturers whose product lifetimes are longer. 

Sometimes, harsher environments such as high 
temperature cause severe failures of electronic 

module. In general, computational techniques based 

on the historical test data have not been fully 

developed yet to reduce the qualification test time, to 
achieve better test outcome and to predict 

performance accurately. Hence, an extensive 

computational framework for optimising qualification 
test procedure, underpinned by accurate methods is 

required to address the challenges of predicting the 

test outcomes. 

The aim of this study is to investigate the 

capability of computational intelligence algorithms 

such as Support Vector Machine (SVM) and Neural 

Network (NN) in predicting qualification test outcome 
of an electronic module. Prediction accuracies from 

both approaches are compared and reported.  

2. METHODOLOGY  

The research methodology for predicting the 
qualification test outcomes is presented in Fig. 1. 

First, a qualification test data set of an electronic 

module is obtained from a manufacturer to develop 

prognostics algorithms and optimise test procedure. 

The data set contains measured values of different 

tests for individual modules tested with a test outcome 

of pass and fail. The data related to pass and fail 
modules are separated at the data preprocessing stage. 

A programme has been developed in MATLAB to 

automatically detect and eliminate outliers from the 
data set. Then the measured values for individual tests 

are normalised to make all data within a range 

between 0 and 1. The master data set is organised to 
develop training sets with different combinations of 

data related to pass and fail modules and their 

corresponding test outcomes. The training data sets 

are employed to develop machine learning models 
with Neural Network (NN) and Support Vector 

Machine (SVM). A validation or test data set (pass 

and fail) is also generated from the master data set to 
predict test outcomes from the trained models. 

Finally, the performance of each model is evaluated 

by calculating prediction error.  

 

Fig. 1. Research methodology for predicting qualification 

tests outcome  

3. MACHINE LEARNING METHODS 

3.1. Neural Network (NN) 

Neural Network (NN) has high efficiency in 

prediction purposes. Arbitrary function approximation 
and nonlinearity are the key significance of NN. It is 

well capable of establishing an effective relationship 

within data and showing the vibrant performance of a 
system.  

It is essential to formulate different data sets to 

avoid over-fitting of data for training with the 
network. Training and validation are two different 

data sets required to run and validate the model. Fig. 2 

shows the computational steps for building a NN 

model using the qualification test data of the 
electronic module and predicting the test outcomes.  



 

Fig. 2. Computational steps of Neural Network 

Feed forward NN and Levenberg Marquardt (LM) 

learning algorithm are used to construct a complete 
NN model. Feed forward NN is selected for predicting 

the test outcomes of the qualification data. Levenberg 

Marquardt (LM) learning algorithm is used to train the 
neural network [6]. Gradient descent method and the 

Gauss-Newton method are combined in this network. 

The algorithm has the capability to solve nonlinear 

problems using its standard technique. Training 
performance is evaluated using mean squared error to 

simplify the construction of a network by minimising 

the sum of the squared errors. The sum of squares is 
estimated by Hessian matrix as H = J

T
J, where J is 

Jacobian matrix and computed gradient as g = J
T
e 

where e is network error. The Levenberg-Marquardt 
training algorithm is represented by Eq. 1. 
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X denotes connection weight, μ represents scalar 

combination coefficient that performs a 

transformation to gradient descent or Gauss-Newton 
algorithm and I represents as Identity matrix. Gradient 

descent learning rule is very common in NN training 

process. Error function can compute the error between 

the outcome of training and the desired output. This is 
completed by determining the sum of the squared 

errors of the total number of input and desired output 

patterns of the training set. The error function is given 
by Eq. 2. 

 , pp ft   (2) 

Where tp is the desired output and fp is the actual 

output. The target of this learning rule is to find the 

appropriate values that can minimise the error as 

illustrated in Fig. 3 [7]. 

 

Fig. 3. Gradient descent rule of Neural Network [7] 

3.2. Support Vector Machine (SVM)  

Predictor and response data sets are required to create 

and train a model with SVM. Fig. 4 shows a complete 
process to build and validate the SVM model. After 

training, a new data set is required to validate the 

model. However, the SVM model is also capable of 
holding data from the training set for automatic model 

validation. 

 

Fig. 4. Computational steps of Support Vector Machine 

SVM is a supervised machine learning algorithm 
mainly used for binary classification problems that 

can minimise generalisation errors. It is also used for 

multiclass problem. The fundamental concept of this 

algorithm is to separate classes of objects in the data 
space with the use of kernel function and functional 

margin. Kernel functions solve nonlinear problems 

with higher dimension as feature space. Then the 
functional margin minimises the generalisation errors 

of classifier by finding optimal hyperplane. This 

hyperplane creates the finest split-up boundary 
between two classes (Fig. 5). To separate training data 

linearly, SVM technique can help to prepare the 



training data for classification into a higher-

dimensional space [7].  

 

Fig. 5. Optimal hyperplane for separating data [7] 

Assume {xi-yi} (i = 1----N) a set of training data 

sample where each sample xi ∈ R
n
, n is measurement 

of the input space which belongs to a class. The class 

is expressed as yi ∈ {−1, 2,····k} (k denotes 

classification category). Hyperplane equation can be 

expressed by Eq. 3. 

  0 bwx  (3) 

Where, w is the hyperplane vector and b represents 

a real number. Hyperplane has the ability to distribute 

all data according to the same level on the same side. 
This is how w and b maximise the margin in optimal 

separating hyperplane. The distance of the nearest 

points to hyperplane can be deducted using projection 

vector. Assuming equation of two boundaries (L1 and 
L2) is wx + b = ±1 whereas wxi + b = +1 and wxi + b 

= -1. To divide and fulfil maximum margin of training 

sample, minimising is completed under the constraint 
yi (wxi + b) >1 which combines yi (wxi + b) ≥+1, yi = 1 

and (wxi + b) ≤ -1, yi = 1. This is how linear SVM is 

built and can be formulated by Eq. 4 for optimisation 
purposes.  
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Eq. 4 is a convex programming that is consisted of 

convex function and constraint. To divide and fulfil 
maximum margin of training sample, minimising is 

completed under the constraint yi (wxi + b) >1 which 

combines yi (wxi + b) ≥+1, yi = 1 and (wxi + b) ≤ -1, yi 
= 1. Finally, optimal separating hyperplane decision 

function is expressed using Kuhn-Tucker optimisation 

theorem defined by Eq. 5, where, a* represents 
corresponding optimal solution [7]. 
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4. DEMONSTRATION STUDY CASE 

4.1 Qualification test data  

The qualification test of the electronic module 

contains data from different types of tests (e.g., 
logical, electrical etc.) and a total of 95 sequential 

tests are conducted for each module to determine 

whether it passes or fails. Measured values for each 
sequential test are arranged in column wise for each 

module in a row. However, no further test is carried 

out once a module is failed. Hence, no test data will 

be available for the module from the point of failure.  

4.2 Prognostics models  

Three different data sets for a total of 1164 

modules are developed as training data sets from the 

master data set by varying the ratio between the no of 
pass and fail modules to build NN and SVM models. 

The ratio of no of failed and passed modules is 

expressed as R by Eq. 6.  

 
modules PASS of No

modules FAIL of No
R Ratio,   (6) 

The training sets contain data for 60 tests, and the 
outcomes are known for each module from the master 

data set. The models are trained to predict outcomes 

(fail or pass) for the validation data set. Again, a new 

data set is developed from the master data with 80 
modules (40 pass and 40 fail) to validate the 

performance of the models in all cases. Table 1 shows 

the data arrangement for the training data sets with 
their corresponding ratios and the validation data set. 

The neural network is comprised of three layers as 

input, hidden and output layers as shown in Fig. 6.  

 

Fig. 6. Neural Network (NN) model structure. 

In the NN model, data of 60 sequential test 

measurements for 1164 modules are considered as 

input and corresponding actual pass (1) and fail (0) 
outcomes are considered as target data. 



Table 1. Data arrangement for training and validation in 

SVM and NN 

Machine 

learning 

algori-

thms 

Training 

data sets 

Ratio of no 

of fail and 

pass 

modules 

Valida-

tion 

data set 

Support 

Vector 

Machine 

(SVM) 

582 pass and 

582 fail 
1.00 

80 (40 

pass and 

40 fail) 

764 pass and 
400 fail 

0.52 

964 pass and 

200 fail 
0.21 

Neural 

Network 

(NN) 

582 pass and 
582 fail 

1.00 
80 (40 

pass and 

40 fail) 

764 pass and 

400 fail 
0.52 

964 pass and 

200 fail 
0.21 

 

In SVM, the same 60 sequential tests 

measurements for 1164 modules are used as the 

predictor data and corresponding actual pass (1) and 
fail (0) are considered as response data to train and 

build an SVM model (Fig. 7).  
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Fig. 7. Support Vector Machine (SVM) training model 

4.3 Validation  

Validation of pass/fail outcome prediction for 80 
new modules (40 pass and 40 fail) is completed with 

the trained NN and SVM models. For both models, 

validations are conducted considering both data from 

pass and fail modules separately. 

The comparison of prediction accuracies of the test 

outcomes between the SVM and NN models are 

presented in Fig. 8. Both models show high prediction 
accuracy since the validation is done with the pass 

data only. The prediction accuracies of the SVM 

models are gradually increasing with a decrease of the 

ratio possibly due to an increase of the pass data in the 

training sets. On the contrary, the prediction 
accuracies by the NN models remain constant to 

100% for all the ratios.  
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Fig. 8. Qualification test outcome prediction using SVM 

and NN models when validated with the pass data only  

Fig. 9 demonstrates the prediction accuracies for 

both models after validating with the failed data only. 
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Fig. 9. Qualification test outcome prediction using SVM 

and NN models when validated with the fail data only 

It is very clear from the figure that best prediction 

accuracy is achieved by the SVM model (92.50%) 

when the ratio is 1. On the contrary, NN models show 
significantly lower prediction accuracies compared to 

the SVM models. In both cases, prediction accuracy 

decreases with a decrease of the ratio possibly due to a 
reduction of fail data in the training sets. 

Table 2 presents the prediction performance of 

SVM and NN models for validation with the pass and 

fail data separately. Overall, it seems SVM models 
can predict with better accuracy than the NN models 

for the all ratios. 



Table 2. Prediction performances comparison between 

SVM and NN models 

Machine 

learning 

algorithm  

Ratio of no 

of fail and 

pass 

modules 

Prediction 

with PASS 

validation 

data only 

Prediction 

with FAIL 

validation 

data only 

Support 

Vector 

Machine 

(SVM) 

1.00 90.00% 92.50% 

0.52 97.50% 77.50% 

0.21 97.50% 67.50% 

Neural 

Network 

(NN) 

1.00 100.00% 65.00% 

0.52 100.00% 55.00% 

0.21 100.00% 52.50% 
 

Fig. 10 shows an overall scenario for predicting the 

qualification test outcomes. The models can predict 
the test outcomes (pass or fail) with a small number of 

sequential test data (60) instead of conducting all 95 

tests. This will reduce the test time in production and 

time to supply the products to the customers.  

 

Fig. 10. Prediction scenario for qualification test outcome 

5. CONCLUSIONS 

This study develops a computational approach for 
predicting qualification test outcome of an electronic 

module using historical test data obtained from a 

manufacturer. It has been demonstrated that data-
driven predictive models based on Neural Network 

and Support Vector Machine can predict the 

qualification test outcomes, which can reduce the 
overall test times by reducing the number of tests at 

the production stage. For both models, the prediction 

accuracy varies with the ratio of number of failed and 

passed modules used in the training data sets. 
However, the variation is much higher when the 

measurement data for only failed modules is used in 

the validation data set. Prediction accuracies are 
improved when the ratio increases or the number of 

failed modules in the training data sets increases. 

Overall SVM models show better prediction 

accuracies over the NN models for all ratios. 

Further studies will be conducted with different 

data arrangements both in the training and validation 
data sets to gain further improvement in the prediction 

performance of the SVM and NN models. The effect 

of larger training data sets with different ratios and the 
variation in the number of tests in the training and 

validation data sets will be explored. 
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