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Abstract

Metaheuristic approaches to solving combinatorial optimization problems have many attrac-
tions. They sidestep the issue of combinatorial explosion; they return good results; they are often
conceptually simple and straight forward to implement. There are also shortcomings. Optimal
solutions are not guaranteed; choosing the metaheuristic which best fits a problem is a matter of
experimentation; and conceptual differences between metaheuristics make absolute comparisons
of performance difficult. There is also the difficulty of configuration of the algorithm - the process
of identifying precise values for the parameters which control the optimization process.

Quantum annealing is a metaheuristic which is the quantum counterpart of the well known
classical Simulated Annealing algorithm for combinatorial optimization problems. This research
investigates the application of quantum annealing to the Vehicle Routing Problem, a difficult
problem of practical significance within industries such as logistics and workforce scheduling. The
work devises spin encoding schemes for routing and scheduling problem domains, enabling an
effective quantum annealing algorithm which locates new solutions to widely used benchmarks.
The performance of the metaheuristic is further improved by the development of an enhanced
tuning approach using fitness clouds as behaviour models. The algorithm is shown to be further
enhanced by taking advantage of multiprocessor environments, using threading techniques to
parallelize the optimization workload. The work also shows quantum annealing applied success-
fully in an industrial setting to generate solutions to complex scheduling problems, results which
created extra savings over an incumbent optimization technique. Components of the intellectual
property rendered in this latter effort went on to secure a patent-protected status.
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Glossary

BKS Best Known Solution, Best Known Score. The leading score given by an objective function

for a particular problem instance and which is cited in literature.

CVRP Capacitated Vehicle Routing Problem. A variant of the Vehicle Routing Problem for

which solutions must conform to a vehicle capacity constraint whilst servicing varying levels of

customer demands.

EA Evolutionary Algorithm. A metaheuristic which takes inspiration from nature wherein facets

of an optimization problem are analogous to biological adaptations - the fittest of which may

evolve and be propagated through generations of breeding.

ESPT Energy-based Scaled Parameter Tuning. An improved method of predicting a good value

of the temperature parameter for the algorithm FJ-QACVRP.

FJ-QACVRP Fixed JΓ Quantum Annealing for the Capacitated Vehicle Routing Problem. A

derivative version of the quantum annealing metaheuristic which employs a constant field inter-

action strength, simplifying the prediction of other tunable parameters in order to solve vehicle

routing problems.

FQA Full Quantum Annealing. In the domain of Field Service Scheduling, the name given to

the metaheuristic which implements a complete Path-Integral Monte Carlo version of quantum

annealing. This helps distinguish the algorithm from other derivatives in the same domain e.g.

Quasi-Quantum Annealing.

FSS Field Service Scheduling A highly-constrained and dynamic industrial combinatorial opti-

mization problem which shares features with the Technician Routing and Scheduling Problem,
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and Shop Scheduling Problems. A changeable backlog of jobs with a range of requirements

must be assigned dynamically to a workforce which possess varying skills. A schedule must be

provided to each worker which conforms to rosters and constraints such as location, inventory,

service window, etc.

GA Genetic Algorithm. A metaheuristic whose mechanics are inspired by natural selection and

genetics. Solutions are encoded as analogues of genomes which through successive generations

mutate and hybridize, and so evolve to retain the features (genes) which are fittest whilst the

weakest are suppressed.

KTP Knowledge Transfer Partnership. A UK government scheme, overseen by Innovate UK,

with the aim of quickly transferring research and knowledge from academia to business. The

partnership consists of a company, a university and a student who collaborate on a project

to deliver innovations in areas such as services, technology, science, manufacturing or business

processes.

OR Operations Research. A field of research which concerns itself with the use of analytical

methods to improve decision making, planning and process management with the aim of pro-

ducing savings through finding solutions to complex and usually intractable problems.

PIMC Path-Integral Monte Carlo. A statistical sampling method used to calculate quantum

mechanical effects. As more sampling points (replicas) are included in the calculation, the

accuracy of integral increases and will eventually approach the correct quantum result.

PQA Parallelized Quantum Annealing. The name given to variants of the quantum annealing

metaheuristic which leverage multi-core processors and multithreaded environments, distribut-

ing the workload of Path-Integral Monte Carlo method to decrease the time taken to return a

solution.

PT Tuning Effective quantum temperature tuning. A method of determining the temperature

parameter for the algorithm QACVRP.

QA Quantum Annealing. A metaheuristic which can be viewed as the quantum counterpart of

Simulated Annealing. The physical process of quantum tunneling is simulated using the Path-
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Integral Monte Carlo method to provide an additional means by which the search performed by

an optimizer can escape entrapment at local minima.

QACVRP Quantum Annealing for the Capacitated Vehicle Routing Problem. The quantum an-

nealing metaheuristic which employed the Path-Integral Monte Carlo method as a single process

to solve vehicle routing problems. The work performed in researching and implementing this

algorithm is the foundation of this thesis.

QQA Quasi-Quantum Annealing. In the domain of Field Service Scheduling, the name given

to the prototype version of the quantum annealing metaheuristic. Instead of employing the

Path-Integral Monte Carlo method, the population of replicas is maintained using small random

changes in interaction energy.

SA Simulated Annealing. A gradient-descent metaheuristic which employs a probabilistic accep-

tance criteria which allows a search to escape entrapment from local minimum. The mechanism

behind this was inspired by the field of statistical thermodynamics, with the probability of ac-

cepting inferior solutions being dependent upon a temperature value which decreases during a

analogue of the physical process of annealing.

SASO Simulated Annealing for Service Optimization. In the domain of Field Service Scheduling,

the name given to a proprietary application of Simulated Annealing by ServicePower Technologies

Plc.

SSP Shop Scheduling Problem. A broad category of combinatorial optimization problems which

are concerned with finding schedules for a set of jobs to be performed upon a set of machines.

The problems specify that solutions obey such constraints as precedence, and conform to machine

restrictions such as no-wait and recirculation requirements, breakdowns and setup times. The

objective function may combine such measures as tardiness, makespan (completion time of the

last job), and maximum lateness (longest completed job).

TRSP Technician Routing and Scheduling Problem. An optimization problem with significance

in several practical domains e.g. telephone network engineering. A set of jobs must be assigned

to a workforce, providing constraint-conforming schedules to each individual, along with a route

which minimizes the travel distance or time.

TS Tabu Search. A metaheuristic which employs a memory consisting of previous moves which
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are referred to with the expectation of reduced search repetition, increased diversification, and

escaping entrapment at local minima. Each time a solution is added into memory or reused, it

is assigned a timer during which it is marked as ‘taboo’. Once the timer has expired, the search

may revisit the solution.

TSP Traveling Salesman Problem. A combinatorial optimization problem with the objective of

assigning to an agent (salesperson) the shortest route which visits each of a collection of points

(cities) once.

VRP Vehicle Routing Problem. A generalization of the Traveling Salesman Problem where many

routes can be assigned to several or all of a set of agents (vehicles) to collectively form a solution

with the shortest total distance.
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Chapter 1

Introduction

1.1 Background

With contemporary society relying increasingly upon digital commerce, growing pressure is

placed upon the infrastructure and activities which underpin businesses, especially those which

involve online retailing and field servicing. Assets and functions such as vehicle fleets and service

pools, storage and distribution hubs, manufacturing centers, and human resources are called

upon to increase their efficiency, helping to sustain competitiveness as new products and service

innovations are offered continually to customers, sold as improvements in convenience and thrift.

In the past, external costs were rarely considered unless government regulations demanded the

attention of businesses were turned towards environmental and social concerns. Recently how-

ever, governments around the world are collectively motivated to address environmental matters

such as reducing greenhouse gas emissions, caused by the energy consuming activities of hu-

mankind. It has become more important than ever that efficiencies are found which not only

increase the profitability of business but also reduce or eliminate environmental impacts. The

field of operations research (OR) can be stated [1] to concern itself with matters such as these

- applying analytical methods to improve decision making, planning and process management

with the aim of producing savings through finding solutions to complex and usually intractable

problems.
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Consider a logistics business whose main activity is the delivery of products to geographically

distributed customers using a fleet of vehicles. Within this process there may be many opportu-

nities to find savings. For example, if the distances traveled by the fleet could be minimized, or

the number of vehicles reduced, this would incur fuel savings and a reduction in CO2 emissions.

This simple restatement is the essence of the Vehicle Routing Problem (VRP), a combinatorial

optimization problem perhaps first elucidated in 1959 [2]. VRP is a generalization of the famous

Traveling Salesman Problem (TSP), first studied mathematically in the 1930s [3][4] to solve a

bus routing problem. Whereas TSP is concerned with a single agent who joins up nodes to form

a route, VRP consists of several agents (or a fleet) who each require a route of their own.

VRP can likewise be generalized as a scheduling problem such that the route describes a

sequence of jobs instead of connecting customers, and where operatives (workers, technicians)

replace the fleet. This collection of sequences would then form a work schedule. The reformulation

of VRP instances into Shop Scheduling Problem (SSP) instances and vice-versa was accomplished

[5], pointing to the relationship between these domains. However, the algorithms used to produce

solutions were each tailored to their respective domains and showed indifferent performance upon

the transformed problem instances. It was conjectured by the authors of this work that differences

in the structural features of the problems were the cause of poor performance in the algorithms.

Left unconsidered were the values and the tuning of the controlling parameters for the chosen

algorithms.

The algorithms used to solve routing and scheduling problems are generally described in OR

as optimizers, in that they search for better configurations by stepping through solution space,

usually by making improvements to the current configuration. Improvements are judged by

criteria defined in an objective function which often supplies a scalar value by which solutions

can be ranked. The choice of objective function has a major effect upon the quality of the

solution returned. It also plays a key role in the determination of the path followed through

solution space. The space itself can affect the search. The space may be disjoint so that the

best solutions are unreachable from the current, or the fitness landscape formed by the objective

function contains steep-sided valleys which can entrap the search, or have shallow basins with

little differentiation between solutions causing the search to stagnate. Watson [6] stresses the

importance of understanding the behaviour of the search algorithm as it navigates the fitness
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landscape, proposing the use of cost models to capture this information.

The choice of neighbourhood operators is also a determinant of solution quality. A neigh-

bourhood operator defines how a solution might change; it selects the possible directions that the

search might take. Simple operators might move or swap the positions of singular elements in a

solution to form a new configuration. Others might randomize a series. More complex and pow-

erful operators exist which are domain-specific. In TSP and VRP there is the λ-optimal heuristic

(Lin [7]), or 2-Opt move, which can ‘unkink’ crossed paths. For VRP and scheduling problems

there is the cyclic k-transfers operation (Thompson and Psaraftis [8]) which transfers elements

from many sequences or routes, simultaneously and in a cyclic fashion. The set of neighbourhood

operators define what is termed the local search method. Bräysy and Gendreau [9] classify this

as an approximation heuristic. It is important for the local search to contain enough different

operators so that the solution space becomes non-disjointed. A typical design for an optimizer

would also include a metaheuristic, which provides an overarching strategy to guide the local

search scheme or to help it escape when it becomes stuck at minima in solution space. Bräysy

and Gendreau [10] mention several strategies which the metaheuristic might include to restrict

or reduce the complexity of search space. Garcia et al [11] state that in Tabu Search (TS) for

VRP it is beneficial to prevent the neighbour operators from performing moves which involve

customers who are too far apart. TS, by Glover [12], is a metaheuristic that allows inferior

moves to be taken by the local search scheme whilst also attempting to prevent the search from

revisiting configurations and needlessly repeating explorations of the same regions of solution

space.

Perhaps the most famous metaheuristic is Simulated Annealing (SA) by Kirkpatrick [13] who

applied it to TSP, and which was simultaneously proposed by Černý [14]. SA is a metaheuristic

which takes inspiration from the thermodynamics of the process of annealing. At the core

of SA is an implementation of the Metropolis-Hastings algorithm [15][16] which provides the

thermodynamical statistics for the simulation of a system of particles. Attributes of the physical

system are mapped to a combinatorial optimization problem. System states become feasible

solutions; temperature becomes the controlling parameter of the acceptance criteria; energy

becomes the objective cost. As SA is relatively simple to implement (being little more than a

gradient descent algorithm incorporating a probabilistic mechanism which allows ascents) it has
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found widespread applications in fields as diverse as circuit design [17] and biology [18][19][20].

Also inspired by a physical process, Quantum Annealing (QA) uses simulated quantum me-

chanical tunneling effects to guide the local search. Brooke et al [21], and later Santoro et al

[22] showed that because of tunneling, QA converged faster than SA. Battaglia et al [23] pre-

sented QA as a metaheuristic applied to satisfiability problems but had equivocal results, with

SA performing better. Battaglia’s conclusions suggest that field-cycling and better tuning would

improve the results of QA. In the closely-related graph coloring problem, Titiloye and Crispin

[24][25] had better results after expending effort upon tuning the controlling parameters.

The tuning of metaheuristics appears to be a neglected area of research. Often, the values of

the controlling parameters of an algorithm are stated with little reason given for their selection.

Some tuning schemes are performed by hand, and as such are incomplete or superficial. The

tuning of SA is often left to the program itself via a cooling schedule [26], or adaptive mechanism

[27]. Other algorithms can be employed to determine values of controlling parameters, techniques

such as meta-optimization [28] and racing [29]. Meta-optimization techniques show some promise

in tackling the automated tuning of metaheuristics with many parameters however, research in

this field is limited to nature-inspired techniques such as Evolutionary Algorithms (Evolutionary

Algorithm (EA)). The results of this kind of automated tuning may be indifferent owing to the

choice of the problem/s [30], the choice of representative instance set, and mis-tuning of the meta-

optimizer itself. Further, meta-optimization compounds one combinatorial optimization problem

with another, and this restricts insight of the dynamic behaviour of the subject metaheuristic to

views through the lens of the tuning metaheuristic. Finally, meta-optimization techniques like

F-Racing [31] assume the interactions between parameters to be linear but this is not the case

for many metaheuristics including QA, and so such techniques are unsuited for this research.

1.2 Optimization

Simply stated, an optimization process is a search for a particular configuration of an object

within a space of all possible configurations. The search may be directed or random, and the

space might be bounded (though large) or infinite.
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Consider a car; say, a Toyota Corolla. The Corolla is made up of some number of atoms;

say, on the rough order of 1029. If you consider all possible ways to arrange 1029 atoms, only

an infinitesimally tiny fraction of possible configurations would qualify as a car; if you picked

one random configuration per Planck interval, many ages of the universe would pass before you

hit on a wheeled wagon, let alone an internal combustion engine. Even restricting our attention

to running vehicles, there is an astronomically huge design space of possible vehicles that could

be composed of the same atoms as the Corolla, and most of them, from the perspective of a

human user, won’t work quite as well. We could take the parts in the Corolla’s air conditioner,

and mix them up in thousands of possible configurations; nearly all these configurations would

result in a vehicle lower in our preference ordering, still recognizable as a car but lacking a

working air conditioner. So there are many more configurations corresponding to nonvehicles,

or vehicles lower in our preference ranking, than vehicles ranked greater than or equal to the

Corolla. Similarly with the problem of planning, which also involves hitting tiny targets in a huge

search space. [32] - Eliezer Yudkowsky

Fortunately, most practical search problems are far less extreme than the one quoted above.

In scheduling problems, the space of possible solutions though still vast, is far smaller. The search

space can be further reduced by specifying that it contain viable schedules only, and clever use

of structures inherent to the problem helps to carve the volume into promising regions which can

then be intensively searched.

Many real-world problems fall into the mathematical field of combinatorial optimization.

This topic seeks optimal solutions, ordinarily with a collection of constraints, from a finite set

of possible solutions. Often the number of possible solutions is so large that it is impossible to

exhaustively enumerate them such that the best can be found. For example, TSP can be defined

as follows:

An imaginary salesperson has to find a cyclic route which visits each of a number of cities

only once whilst minimizing the total distance traveled.

Although easily stated, it is not so easily solved. TSP belongs to a class of combinatorial

optimization problems described as NP-hard, meaning that an algorithm which has to find an
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optimal solution by enumerating every route would run in exponential time i.e. the worst-case

running time is bounded by T (n) = O(2n ∗ n2). The number of permutations of n cities is given

by the factorial (n− 1)! For values of n ≤ 14, when the number of permutations ranges into the

low billions, it is possible to employ a brute-force search to find the optimal route in a reasonable

amount of time. However, practical (useful) formulations of the TSP such as those found in

OR, like the VRP, are not so trivially bounded and business requirements place strict limits

upon resources and computation time. A more realistic way to approach NP-hard problems

is to use heuristic algorithms which, instead of attempting to find an absolute best solution,

seek approximations or results ‘good enough’ within a permissible time. This relaxation of the

constraint of optimality has allowed the production of a variety of algorithms and specially-

tailored procedures which practically solve (and in some instances, to optimality) such problems.

These algorithms may be categorized into three broad groups: construction, improvement and

metaheuristic algorithms.

1.2.1 Construction, Improvement and Metaheuristic optimizers

Construction algorithms build a solution from nothing using simple, often greedy rules. These

algorithms can be used to efficiently generate an upper bound by which to measure the perfor-

mance of subsequent optimization methods. In VRP, construction heuristics work by creating

routes by inserting customers (vertices) into partial routes or combining sub-routes taking into

consideration capacities and costs. The Clarke and Wright saving method [33] is an example of

a construction heuristic which starts by assuming that a single vehicle services a single customer

and then constructs routes by calculating the saving that can be obtained by merging customers

and servicing them with a single vehicle.

Improvement algorithms refine an existing solution by iteratively comparing (usually random)

modifications to the current solution. Modifications are produced by defining a local search

scheme consisting of a set of local or neighbourhood operators. New solutions are assigned a cost

value provided by an objective function. This measure determines the replacement of inferior

solutions with superior candidates. These kinds of local optimization methods and other descent

procedures (hill-climbers) nearly always become ’stuck’ in a local minimum. Unable to backtrack,
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they are fixed into the downhill path laid out by the selection of the last best known solution.

The design of neighbourhood operators is key to the success of improvement algorithms - it is

critical that the search be able to reach any (often enforced, feasible) solution in a single or series

of changes. In summary, improvement heuristics seek to iteratively enhance a feasible solution

(often initially generated by a construction heuristic) by replacing/swapping a set of elements

locally.

Metaheuristics try to intelligently guide an improvement algorithm. These schemes are at-

tractive because they can help the optimizer to escape from local minima by accepting inferior

yet promising solutions from which to continue a local search. This assistance can take the form

of backtracking either by maintaining a ’memory’ of such solutions as in TS [34], or by making

a stochastic selection as in EAs and SA.

A metaheuristic can be thought of as a top-level strategy which guides local improvement

operators to find a global solution. Groër et al. [35] describe a library of local search heuristics

for VRP.

1.2.2 Trajectory and population methods

A metaheuristic is described as a trajectory method [36] if it describes single path as it searches,

moving sequentially from solution to solution through the space of possible solutions. TS, Late

Acceptance Hill Climbing [37] and SA [13] are examples of trajectory methods.

A metaheuristic that maintains and updates many solutions simultaneously, is termed a

population method. Members of the population may interact with one another, trading features

which may enhance the fitness of the ensemble such as in Genetic Algorithm (GA)s and EAs.

Others may maintain a ranked and perhaps diminishing population of best solutions such as in

Ant Colony Optimization. At the simplest conception, a population method can be thought of

as a multiple-trajectories method, which is able to explore many different paths simultaneously

through solution space.
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1.2.3 Energy-based metaheuristics

Metaheuristic inspired by physics, map energy minimization processes onto their optimization

method. The objective function takes on the role of potential energy, and the sought-after

optimal solution the ground state of a physical system. The process of searching the solution

space becomes analogous the thermodynamical evolution of the chosen physical system.

1.3 Aims

The overriding goal of this research was to prove that QA, implemented using current technolo-

gies, is a practical and scalable alternative to SA. To achieve this, the key problem areas which

would discourage the application of QA would need to be exposed and then addressed. Any

deficiencies that were discovered during the research would likewise be made a priority to be

addressed. The approach taken to this work was much like that of a software development pro-

duction albeit one involving many experiments; if an unforeseen issue arises in design or outcome,

a solution, workaround or alternative must be found lest the product fail.

An appropriate [30] problem domain with practical applications would need to be chosen.

Given that QA was found to perform well for TSP [38], it would seem VRP is a good choice.

VRP generalizes TSP, and has many variants with industrial applications. Additionally, since it is

a well-researched domain, benchmarks exist with which to verify the behaviour and performance

of the software. Thus the first goal was to produce a working version of QA for VRP with which

to acquire empirical proof that it is at least as effective as SA in this domain.

Although it was known beforehand that a method of tuning would need to be formalized, it

was found to be a critical issue during the development of QA for VRP. Algorithmic performance

is dependent upon the structure of the problem’s fitness landscape, an abstract topology formed

by the combination of the set of all possible solutions (search space), an objective function,

and move (neighbourhood) operators. Since a metaheuristic is the strategy for exploring this

structure, the process of identifying precise values for the controlling parameters is of great

importance. Metaheuristics possess one or more control parameters which must be chosen with

great care before the algorithm is run. This is often done by beginning with best-guesses and

then painstakingly refining over a series of experiments. Choosing the wrong parameters, even
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when out of adjustment by a fraction of a percent, can mean at best, sub-optimal results and

at worst, the algorithm will never converge. With so many interdependent controlling variables,

tuning the QA algorithm was difficult and slow. Hence the next goal was to simplify and perhaps

automate the configuration of the algorithm. Results needed to show their worth compared to

the resources expended in tuning the algorithm. Competitive or new best solutions were sought.

As the tuning research expanded the number of benchmarks used and their complexity in-

creased, running time issues became a bottleneck upon delivery of experimental results. In

industrial settings, it would be an unacceptable situation to be waiting upon schedules to be

produced. Hence improving the runtime performance became an important aim, with the main

direction being to take advantage of modern computing platforms and scalable architectures.

Midway through these goals, another objective arose - an opportunity to apply QA and

supplant SA in an industrial setting. ServicePower Technologies Plc, requiring improvements in

schedule quality for actual workforces, sought a partnership to develop a practical application of

quantum annealing.

1.4 Overview

This thesis is divided into four parts, in approximately chronological order. The time line starts

with the foundational work for the quantum annealing algorithm, and ends with an industrial

application having proven uses.

• Chapter 2: Quantum Annealing Algorithm for the Vehicle Routing Problem

This chapter presents the first application of quantum annealing in the domain of the

Vehicle Routing Problem. It demonstrates a somewhat effective method for tuning the

algorithm, and presents an empirical comparison with Simulated Annealing using well

known benchmarks. The comparisons are on the basis of solution quality and success rate

as a percentage.

• Chapter 3: Tuning QA for the Vehicle Routing Problem This chapter documents

the effort to improve the tuning methodology. Given the number of controlling parameters

that quantum annealing possesses and complexities which arise because of their interde-
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pendence, the work attempts to reduce their number and formalize a method of predicting

the correct temperature value. The work also extends the empirical study to include larger

benchmarks and support solving the distance-constrained variant of the problem.

• Chapter 4: Quantum Annealing Algorithm: Enhancements and Variations This

chapter shows how the workload of the algorithm may be distributed such that the running

time is improved. Designs are shown for two threading models, along with program pseudo-

code, and empirical comparisons with the previous algorithms. Results are compared in

terms of the wall-clock time taken for the algorithms to find equivalent (optimal) solutions

for well-known benchmarks.

• Chapter 5: The Industrial Domain of Field Service Scheduling This chapter

documents the application of quantum annealing in an industrial scheduling domain. Em-

pirical studies were performed upon datasets drawn from real life scenarios (client names

redacted), the results compared with those of an existing product built upon Simulated

Annealing. The quantum annealing algorithm goes through several revisions resulting in a

multithreaded version delivering results at high speed. It should be noted that some of the

work is intellectual property owned by a private company, and so could not be reproduced

here.

1.5 Contributions

1. First application of QA to VRP So far as is known, this work is the inaugural ap-

plication of QA to the vehicle routing problem. Specifically, a Path-Integral Monte Carlo

(PIMC) method is implemented and quantum fluctuations are simulated in order to solve

the capacitated variant of the problem which is mapped on to an Ising model.

2. Encoding of VRP as a spin matrix The mapping of the problem onto an Ising model is

at the core of simulating quantum effects upon a classical computer. The research presents

an intuitive method for the encoding of the specifics of the problem as a set of {+1,−1}

spin values. Consequently, memory consumption was minimized, (resulting in fewer misses

of the cpu data cache and a reduction in latency) and faster execution of the program.
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3. Energy-based Scaled Parameter Tuning method The dynamic cost model [6] which

described the run time behaviour of QA provided the key insight which was needed to

develop a new tuning method entitled Energy-based Scaled Parameter Tuning (ESPT).

The fitness cloud representation of the behaviour showed that the topology of the fitness

landscapes (within classes of instances) was similar enough for the predicted temperature

value to succumb to tuning by a scaling factor. As well as simplifying the task of hand

tuning, the steps of this new method can be captured as instructions for a script or program,

potentially culminating in automated tuning process. Fitness clouds have previously been

used in the study of evolutionary algorithms to estimate the difficulty of problem instances.

Their use as behaviour models in the study of energy-based metaheuristics such as QA, as

far as is known, has never been tried before.

4. New best solutions in benchmarks Although the competitive testing paradigm is non-

productive [6] in research such as this, it should be pointed out that these new best solutions

were generated as a consequence of studying the fitness landscape, the problem domain, and

the QA metaheuristic. Acknowledging this achievement will hopefully encourage others to

work to understand why their algorithms perform well.

5. New parallelized algorithm for QA After the issue of the difficulty of tuning QA

was addressed, it was natural and desirable to enhance the runtime performance of the

algorithm. If QA is to become a solid choice of metaheuristic to supplant SA, then all

key objections to deploying it must be quashed. It should be noted that unlocking the

performance of QA strictly requires a platform capable of hosting a large population of

threads. The effort to improve the performance of QA is the subject of an article [39]

under review and awaiting publication.

6. First practical application of QA in industry To the best of our knowledge, this is

the first time QA has been used in an commercial role. That it is able to solve complex

scheduling problems as well as idealized academic benchmarks is a notable achievement.

Section 1.5.2 documents the publicity generated by the research efforts expended in the

Field Service Scheduling (FSS) domain.
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7. Three new QA-based algorithms for Field Service Scheduling The path to the

completion of a new scalable optimizer for FSS was punctuated with three milestones

- Quasi-Quantum annealing (QQA), Full Quantum Annealing (FQA), and Parallelized

Quantum Annealing (PQA). QQA, a derived algorithm developed first, was a vital step

which proved that a population-based metaheuristic was a good fit for the industrial do-

main. As a proof of concept, it was shown to also be a minimum viable product since it

could optimize nearly as well as FQA.

8. Patent approved for spin encoding The design for the spin encoding of a FSS prob-

lem was awarded a patent [40] by the US Patent Office. This underscores the novelty

of matrix arrangement whilst also accruing valuable intellectual property and marketing

opportunities for ServicePower.

1.5.1 Research outputs from this work

1. Conference paper with presentation

Alan Crispin and Alex Syrichas. Quantum annealing algorithm for vehicle scheduling. In

2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, October

2013. doi: 10.1109/smc.2013.601. URL https://doi.org/10.1109/smc.2013.601

2. Journal article

A. Syrichas and A. Crispin. Large-scale vehicle routing problems: Quantum annealing,

tunings and results. Computers & Operations Research, 87:52–62, November 2017. doi:

10.1016/j.cor.2017.05.014. URL https://doi.org/10.1016/j.cor.2017.05.014

3. Journal article, submitted and under review

A. Syrichas and A. Crispin. A parallelized quantum annealing algorithm for vehicle routing

problems. Operations Research Perspectives, 2019. (Under review)

4. US Patent awarded

A. Syrichas and A. Crispin. Encoding of a schedule into a binary structure, 2017. US

Patent 9,841,990
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1.5.2 News and public engagement articles

The following is a selection of news and intrest articles garnered by this research.

1. Manchester Metropolitan University Press Release (2018)

Manchester Metropolitan University Press Release. Quantum physics-based algorithm

helps companies better manage mobile workforces: University’s patented code powers field

service management software, 2018. URL http://www2.mmu.ac.uk/news-and-events/

news/story/7359. Accessed 23 June 2019

2. Manchester Metropolitan University Press Release (2017)

Manchester Metropolitan University Press Release. Servicepower case study: State of the

art software helps industry improve vehicle logistics by up to 10%, 2017. URL https:

//www2.mmu.ac.uk/business/success-stories/detail/service-power.php. Accessed

23 June 2019

3. Electronics Times (2017)

Electronic Times: Software Simulations Now. Quantum computing uses standard hard-

ware, 2017. URL https://www.eetimes.com/document.asp?doc_id=1331768. Accessed

23 June 2019

4. Field Service News (2017)

Field Service News. Is quantum computing the future of customer experience and service

optimisation?, 2017. URL http://fieldservicenews.com/quantum-computing-future-

customer-experience-service-optimisation. Accessed 23 June 2019

5. Manchester Metropolitan University Press Release (2016)

Manchester Metropolitan University Press Release. Quantum computing solves logistics

conundrum. algorithm helps lorries deliver goods efficiently, 2016. URL http://www.mmu.

ac.uk/news/news-items/4204. Accessed 23 June 2019

6. ServicePower Whitepaper (2016)

ServicePower Inc. David and goliath: Redefining field service with quantum annealing, 2016.
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URL https://www.servicepower.com/understanding-quantum-annealing-awareness-

lp. Accessed 23 June 2019

7. World News Press Release (2016)

World News. Quantum computing solves logistics conundrum, 2016. URL http://article.

wn.com/view/2016/03/10/Quantum_computing_solves_logistics_conundrum_Manchester_

Metr. Accessed 23 June 2019

8. ServicePower Press Release - Patents applications (2015)

ServicePower Inc. Servicepower applies for various quantum annealing patents, 2015. URL

https://www.servicepower.com/blog/servicepower-applies-for-various-quantum-

annealing-patents. Accessed 23 June 2019
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Chapter 2

Quantum Annealing Algorithm for

the Vehicle Routing Problem

2.1 Introduction

This chapter proposes a new strategy for solving the Capacitated Vehicle Routing Problem

(CVRP) using a Quantum Annealing (QA) algorithm. CVRP is a variant of VRP being charac-

terized by capacitated vehicles which contain goods up to a certain maximum capacity. QA is

a metaheuristic that uses quantum tunneling in the annealing process. A spin encoding scheme

is discussed and devised for solving CVRP with a QA algorithm and an empirical approach for

tuning parameters. The effectiveness of QA is studied in comparison with best known solutions

for a range of benchmark instances

CVRP is a variant of VRP [2] in which all vehicles have the same capacity. It has impor-

tant industrial applications as optimal solutions enable transportation costs to be reduced and

customer service levels to be improved. The underlying structure of the CVRP is an undirected

graph G = (V,E), where V = {v0, v1, ...vn} is a vertex set and E = {(vi, vj)|vi, vj ∈ V, i < j}

is an edge set. The restriction i < j ensures that the problem is symmetric i.e. the distance

between two vertices is identical in both directions. Vertex v0 is the depot from where a fleet

of m(m ≥ 1) identical vehicles, which may contain goods up to a certain maximum capacity Q,
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must serve exactly n customers represented by the set of n vertices {v1, v2, ...vn}. A nonnegative

cost dij can be defined in terms of a distance or time between vertices (customers) vi and vj .

Each customer has a non-negative demand for goods qi. The cost of the problem solution is the

sum of the costs of its routes.

Rose and Macready [51] describe how QA can be used to solve optimization problems. In

order to implement QA on a classical computer, it is necessary to use a stochastic variant such as

PIMC, see Titiloye and Crispin [24]. This requires the development of a Hamiltonian consisting

of the sum of two terms Hp and Hk where Hp represents the classical potential energy of a

given problem configuration and Hk is a suitable kinetic energy term, devised for the problem,

to provide quantum fluctuations during a Monte Carlo cycle. The kinetic energy term consists

of a population of candidate solutions, encoded as spin matrices, with each member of the

population known as a replica. In essence, QA is a population heuristic as it uses a number of

current solutions (replicas) and combines them to generate new solutions. Consequently, Monte

Carlo QA shares features with both Simulated Annealing (SA) and an Evolutionary Algorithm

(EA). However, whereas SA attempts to overcome barriers thermally, Monte Carlo QA simulates

quantum tunneling between the replicas to escape barriers to the ground state. The analogy with

EA is drawn as both are based on the interaction of member solutions in a population.

The Path-Integral Monte Carlo Quantum Annealing algorithm has been applied with success

to the Traveling Salesman Problem (TSP) [38]. An undirected TSP tour is represented in terms

of Boolean variables by defining a connection matrix from which Ising spin variables are defined.

A 2-opt move is used to attempt to improve a tour configuration in the Monte Carlo algorithm.

A 2-opt move is a local improvement operator which tries to improve a tour configuration by

removing two edges in the tour and replacing them with two new edges. In essence, TSP is a

simplified variant of the VRP where the goal is to find the shortest possible tour, in terms of

total distance, which visits each of the cities exactly once. This corresponds to a VRP where

there is only one vehicle, no capacity restrictions, and the cost is only dependent on, and directly

proportional to, the distance. The similarity between TSP and VRP suggests that a QA heuristic

could be established for vehicle scheduling and [38] identifies the use of constrained Boolean

variables to represent the problem as a key factor to success.

This section is organized as follows. Section 2.2 describes the quantum annealing scheme for
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the CVRP. Section 2.3 provides pseudo-code for the PIMC quantum annealing algorithm and

details of parameter tuning are given in section 2.4. In section 2.5 results from computational

experiments on CVRP benchmark data sets are presented and compared against a SA algorithm.

Section 2.6 analyzes the QA algorithm. Concluding remarks are given in section 2.7.

2.2 QA Scheme for CVRP

In the quantum PIMC approach, the statistical behavior of the quantum spin model is approx-

imated to a classical simulation model by using a Suzuki-Trotter transformation [52]. With

PIMC, the quantum system is mapped onto a classical model consisting of P ferromagnetically

coupled spin matrices or replicas. The total Hamiltonian energy H can be written as [23]:

H =
Hp

P
− JΓ∆Hk (2.1)

Here Hp is the potential energy summed over the P replicas so that Hp/P is the average

value and JΓ is the transverse ferromagnetic coupling term given by:

JΓ =
−T
2

ln tanh

(
Γ

PT

)
(2.2)

In equation (2.2), T is the temperature and Γ the tunneling field strength parameter. The

term PT is called the effective quantum temperature [23]. The change in kinetic energy term

∆Hk provides a disturbance during a Monte Carlo iteration cycle for escaping local minima and

is calculated from replica interactions. To do this a set of P spin matrices has to be defined

with each matrix randomly initialized. The idea is that the change in kinetic energy ∆Hk should

decrease to zero over time as the replicas become similar so that H tends to the average potential

energy value. The strength of JΓ determines the importance of the ∆Hk term relative to the

potential energy term. Notice that JΓ is positive for ferromagnetic interaction.

To apply QA to a problem requires finding an intuitive way to encode the problem in terms

of a set of spin matrices or replicas. The spin matrix σij is defined from a connectivity matrix

which describes all routes in a VRP schedule. Figure 2.1 shows an example of the spin encoding

scheme. In this example there are fifteen customers (vertices) which are served from a depot (v0)
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by four routes, one for each vehicle. Rows i and columns j are labeled 0 to 15 and represent the

vertices in the network. Each cell represents a connection between two vertices and σij = 1 is

defined if vertex i is connected to vertex j in a route and σij = 0 otherwise. In general, the size

N of the spin matrix is equal to the number of vertices in the problem and all diagonal elements

are zero. As connections in the network are bi-directional the spin matrix is symmetric. The

potential energy Hp for the system can be defined as:

Hp =
∑
P

∑
i,j

d
P,i,j
σ

P,i,j
(2.3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex

0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 8D8E

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0005

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0003

3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0011

4 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0028

5 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0050

6 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 00A0

7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0041

8 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0201

9 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0500

10 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0201

11 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1001

12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2800

13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 5000

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 A000

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4001

Figure 2.1: Example of routes encoded as a spin matrix. Customer-customer connections are
represented using single bits. The matrix is encoded row-wise to form hexadecimal (Hex) words
which are stored in memory as an array.

In equation (2.3), dz,i,j is the distance between vertex i and vertex j in the zth replica and
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< i, j > is used to signify counting each connection only once [38]. In any one replica the classical

potential energy is the total length of all routes. It is because the potential energy is calculated

over a set of P replicas that Hp is divided by P in equation (2.1) to determine the average

value. The Hp/P term represents the solution sought, provided vehicle capacity is treated as a

constraint so that a customer cannot be added to a route if the vehicle capacity Q is exceeded.

The solution space can be repeatedly sampled until a route configuration is found which does

not violate vehicle capacity constraints and this is the approach used in this work.

To calculate a kinetic energy each spin matrix (replica) needs to know the state of its neigh-

bours. The kinetic energy of the entire system is calculated as:

Hk = JΓ

∑
P

∑
i

σ
P−1,i

σ
P,i
σ

P+1,i
(2.4)

Here the first term of equation (2.4) is the sum of products of the current replica with its

previous replica over all P replicas where z is the replica index. Likewise, the second term is the

sum of products of the current replica and its next replica over all P replicas. The first and last

replicas are connected to make a circular list so that they can be provided with previous and

next neighbours. Like [38], no use is made of single spin-flips. Instead, local VRP neighbourhood

operators are used when attempting to improve a configuration to ensure that a valid network

results and a constrained Ising model is maintained.

2.3 Quantum Annealing Algorithm

The pseudo-code for the Path-Integral Monte Carlo QA algorithm for CVRP is shown as fig-

ure 2.2.
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Variables: P : number of replicas, T : temperature, Γ : magnetic field, ∆Γ : decrement value
of magnetic field, MC : number of Monte Carlo steps, N : set of neighbourhood operators, n:
chosen operator, S: set of replicas, Sbest : best solution, s′: candidate solution, z: index of
current replica.

1: S ← circular list of feasible randomized solutions
2: Sbest ← S0

3: while MC > 0 do
4: JΓ ← (−T/2)ln(tanh(Γ/PT ))
5: z ← 0
6: while z < P do
7: randomly choose n ∈ N
8: s′ ← n(Sz)
9: ∆Hp ← Hp(s′)−Hp(Sz)

10: ∆Hk ← Interact(Sz−1, s
′, Sz+1)− Interact(Sz−1, Sz, Sz+1)

11: ∆H ← (∆Hp/P ) + JΓ∆Hk

12: if ((∆Hp <= 0) or (∆H <= 0)) then
13: Sz ← s′

14: else if exp(−∆H/T ) > random(0, 1) then
15: Sz ← s′

16: end if
17: if Hp(Sz) < Hp(Sbest) then
18: Sbest ← Sz

19: end if
20: z ← z + 1
21: end while
22: Γ ← Γ+∆Γ
23: MC ←MC − 1
24: end while
25: return Sbest

Figure 2.2: Quantum Annealing for Capacitated Vehicle Routing Problems.

Quantum Annealing for the Capacitated Vehicle Routing Problem (QACVRP) requires the

following input parameters: the number of replicas P , the temperature T , gamma Γ , the rate

of decrease of gamma ∆Γ , the maximum number of Monte Carlo steps MC and a set of N

neighbourhood operators (insert, swap, 2-opt, cross, scramble, string-insert and 2-opt-Star).

The insert operator moves one customer from one route to another route. The swap operator

randomly chooses two customers from different routes and exchanges them. The 2-opt operator

randomly selects two non-adjacent edges of a single route, and then reverses the connection

order of the customers between the outer endpoints. The cross operator randomly chooses two

sequences from different routes and swaps them. The scramble operator randomly chooses two
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customers from one route and shuffles the connection order between them. The string-insert

operator removes a sequence of connections from one route and places it into a different route.

The 2-opt-Star operator exchanges random length end portions of two routes, preserving the order

of connections between customers. For a further discussion on VRP neighbourhood operators

see Bräysy and Gendreau [9].

On line 1, S is computed S as an initial set of spin matrix replicas forming a circular list. The

initial population of P spin replicas is generated using a random constructive algorithm so that

a diversified set of spin matrix replicas is built. The construction algorithm randomly chooses a

number of routes and then randomly selects and inserts vertices, one at a time, into partial routes

until a feasible solution is obtained taking capacity constraints into account. On line 2 the best

spin matrix replica solution is initialized. On line 3 the Monte Carlo loop is started using the

Monte Carlo maximum step value MC . JΓ is calculated on line 4 and on line 5 the initial value

of the index z is set to be zero, the first replica. On line 6 the replica loop is started. On line 7 a

local operator is randomly chosen from the set of operators (insert, swap, 2-opt, cross, scramble,

string-insert and 2-opt-Star) which is then applied (line 8) to create a modified replica solution

s′. On line 9 the difference in potential energy is found using the modified replica solution s′ and

the unmodified replica Sz. On line 10 the difference in spin products is calculated, again using

both the modified replica solution s′ and the unmodified replica Sz to determine if the kinetic

energy has changed. The total energy change is calculated on line 11.

On line 12 if either the change in potential energy ∆Hp or the change in total energy ∆H

has decreased the modified solution is assigned to Sz (line 13). If the cost value of the modified

replica solution is worse than the previous value it can still be accepted (line 14) using the criteria:

exp(−∆H/T ) > random(0, 1). That is, the value exp(−∆H/T ) is compared to a random number

between 0 and 1 and, if greater, the modified solution s′ is assigned to Sz. The acceptance of

a worse solution (Metropolis criteria) is controlled by the change in total energy ∆H and the

temperature, providing a mechanism for accepting worse solutions with the aim of escaping local

minima.

On line 17 the potential energy of the current replica solution Sz is calculated and if it is

better than the current best potential energy, then Sz is assigned as the current best solution

(line 18). Line 20 increments the current replica index z and ends the inner replica calculation
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loop. Line 22 provides an option to decrement gamma. Line 23 decrements the Monte Carlo

step value ending the Monte Carlo step loop. Line 25 returns the best replica solution found.

Notice that the algorithm calculates changes in energy rather than calculating the Hamilto-

nian energy for the entire system at every iteration which would be computationally expensive

especially for non-trivial problem instances where P is large. ∆Hp is calculated simply as the

difference between the potential energy of the candidate s′ and the previously calculated poten-

tial energy value. ∆Hk is calculated as the difference between the spin product of the candidate

s′ and the previously calculated spin product state.

Variables: Sz−1, Sz, Sz+1: spin matrices belonging to previous, current, and next replicas, i, j:
matrix dimensions, E: interaction energy.

1: E ←
∑
i,j

Sz,i,jSz−1,i,j

2: E ← E +
∑
i,j

Sz,i,jSz+1,i,j

3: return E

Figure 2.3: Interact: calculates the interaction energy between neighbouring replicas

Figure 2.3 shows the pseudo-code for the Interact(Sz−1, Sz, Sz+1) function used when calcu-

lating the kinetic energy difference.

The QACVRP algorithm described in figures 2.2 and 2.3 has been implemented in C++

using the Qt framework and compiled using GNU GCC on a PC running a Linux operating

system (see appendices A.1 and A.3). The computer hardware set-up consisted of two cores

and independent simulations were run on each of the cores to obtain the experimental results

discussed in section 2.5.

With the PIMC scheme, the accuracy of the quantum simulation increases for larger values

of P but using larger P requires more memory and computation [23]. However, the VRP spin

encoding system for QACVRP is extremely memory efficient allowing the use of a large value

for P (e.g. P = 40) in the simulations that follow. The chosen format of the spin matrix

(see Figure 2.1) optimizes the memory storage for a VRP network. Since connections between

customers can be represented in a single bit, memory usage can be reduced by storing each row of

the matrix in a bit-stream represented as a hexadecimal number in Figure 2.1. On a 64-bit based

30



system each memory word can store up to 64 connections; so for example, a problem instance

of 128 customers, with a matrix of (128x128) can be stored with 2x128 memory words. This

allows the change in kinetic energy between matrices to be calculated efficiently. Sampling the

bit-streams in whole memory words and using logical rather than arithmetic operations allow 64

spin products to be calculated together.

2.4 Parameter Tuning

The QA algorithm in figures 2.2 and 2.3 requires that the parameters P , T , Γ and ∆Γ be tuned

to ensure robust and high performance. To simplify tuning and to make a quantum annealing

algorithm more robust, the rate of decrease of gamma can be set to zero, provided gamma itself

is carefully chosen for the problem instance [25]. With this approach only three parameters (P ,

T , Γ ) need to be tuned for good performance. This work devises a methodology for tuning the

QA parameters based on empirically measuring the success rate of obtaining a known CVRP

optimal value as the parameters are systematically changed. The problem instance p-n101-k4

(101 nodes and 4 routes) was chosen as the tuning instance which has a known optimal value of

681:4 (best length of 681 with 4 routes). The objective was to determine a set of P , T , Γ values

which result in a 100% success rate. A series of computational experiments was performed to

enable the success rate to be plotted against an effective quantum temperature PT for different

values of P . That is, the effective quantum temperature was changed by keeping P fixed and

increasing T . In these experiments the Monte Carlo maximum steps value MC was set to 5×106

and Γ = 3. The computational experiments showed that the success rate of finding the best

solution for p-n101-k4 increases with the number of replicas used in the simulation. For P = 10

the success rate peaks at PT = 0.9 with a value of 77%. For P = 20 the success rate peaks at

PT = 0.9 with a value of 91%. When P = 40, the success rate is 100% in the range 0.9 < PT < 1,

as shown in Figure 2.4.
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Figure 2.4: Tuning of the effective quantum temperature for the CVRP instance P-n101-k4. As
temperature T is increased, the success rate (percentage of optimal results) is improved until a
cut-off point is reached. The number of replicas P is held constant to simplify the process of
tuning. The best values for T and P are found where the success rate peaks.

In all cases the success rate steadily increases as PT is increased and after reaching a peak

value it then declines steeply. It is clear by inspecting Figure 2.4 that PT = 0.9 results in 100%

success rate and so P = 40, T = 22.5×10−3, Γ = 3 with MC = 5×106 have been used as the

base set of tuned parameters for this study.

2.5 Experimental Results

Table 2.1 shows results of experiments for QACVRP for a set of well-known benchmark instances.

Column 1 shows the names of the problem instances, and column 2 the best known solutions

(BKS) found using the branch and cut method [53]. Column 3 contains the results obtained from

the QACVRP algorithm for 100 independent runs for statistical significance and is subdivided

into the best value obtained by the QACVRP algorithm, the wall clock time and the percentage

success rate of obtaining the best known solution for a particular instance. In all instances, except

Mn121-k7 and F-n135-k7 (discussed below), the parameters P = 40, T = 22.5×10−3, Γ = 3 with

MC = 5×106 were used. Column 4 contains the results obtained for a fixed temperature SA for

100 independent runs using the same local operators as QA on the same hardware configuration.

To allow for a fair comparison both algorithms were run for the same number of iterations (i.e.
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the SA was run for 200×106 iterations which is equivalent to QA with a 40 replica inner loop

and 5×106 outer Monte Carlo loop). The SA temperature was initially tuned for the p-n101-k4

instance (i.e. T = 1) and then, if necessary, optimized for other instances to obtain the best

possible results.

Table 2.1: Computational results for benchmarks.

Instance Best known QA SA

Score Time Success % Score Time Success %
P-n40-k5 458:05 458:05 00:00:50 100 458:05 00:00:26 100
P-n45-k5 510:05 510:05 00:01:53 100 510:05 00:36:51 93
P-n50-k7 554:07 554:07 00:09:14 100 554:07 00:04:45 100
P-n50-k10 696:10 696:10 08:27:14 63 696:10 03:57:49 28
P-n51-k10 741:10 741:10 01:12:35 100 741:10 02:39:49 50
P-n55-k7 568:07 568:07 01:11:40 100 568:07 00:30:58 99
P-n55-k10 694:10 694:10 10:14:24 35 694:10 02:26:43 31
P-n60-k10 744:10 744:10 01:07:38 100 744:10 01:27:26 73
P-n60-k15 968:15 968:15 08:48:46 79 968:15 03:12:11 79
P-n65-k10 792:10 792:10 01:01:47 100 792:10 00:30:04 100
P-n70-k10 827:10 827:10 13:23:50 78 827:10 05:25:02 61
P-n76-k4 593:04 593:04 14:50:56 52 593:04 03:50:16 44
P-n76-k5 627:05 627:05 10:16:25 87 627:05 04:38:44 22
P-n101-k4 681:04 681:04 07:56:20 100 681:04 00:46:35 97
B-n50-k8 1312:08 1312:08 01:34:54 100 1312:08 00:10:10 100
B-n52-k7 747:07 747:07 00:09:06 100 747:07 00:00:46 100
B-n56-k7 707:07 707:07 00:20:34 100 707:07 00:01:55 100
B-n57-k9 1598:09 1598:09 00:40:50 100 1598:09 00:04:31 100
B-n63-k10 1496:10 1496:10 12:49:30 26 1496:10 02:37:01 25
B-n64-k9 861:09 861:09 01:04:16 100 861:09 00:17:23 100
B-n66-k9 1316:09 1316:09 08:56:25 91 1316:09 02:45:03 44
B-n67-k10 1032:10 1032:10 15:42:00 42 1032:10 01:14:48 88
B-n68-k9 1272:09 1272:09 11:30:52 69 1272:09 01:29:32 87
B-n78-k10 1221:10 1221:10 07:10:29 97 1221:10 00:36:48 99
M-n121-k7a 1034:07 1034:07 03:08:51 90 1034:07 04:57:44 76
F-n135-k7b 1162:07 1162:07 00:45:25 11 1162:07 02:59:43 4
a P = 50, T = 12×10−3, Γ = 3, MC = 5×106
b P = 50, T = 6×10−3, Γ = 3, MC = 10×106

As can be seen from Table 2.1, the QACVRP algorithm matches or outperforms SA in terms

of success rate for every case except three of the Augerat set B instances. The QACVRP results

are also competitive compared to those reported in the literature for other population heuristics.

For example with p-n50-k7, QA finds the BKS with a success rate of 100% whereas the genetic

algorithm result [54] differs from the BKS by up to 7.27%. For p-n101-k4, QA again has a success

rate of 100% whereas the result for the memetic algorithm [55] shows best and worst values.
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With more difficult instances, for example M-n121-k7 and F-n135-k7, it is necessary to re-

tune the P , T and Γ parameters. The problem instance F-n135-k7, which represents a day of

grocery deliveries, is particularly difficult for VRP algorithms [56]. With PT set to 0.3, (i.e. a

temperature value of 0.006 with the replica number fixed at 50) and Γ set to 3, QA was able

to obtain the optimal value. The success rate of obtaining the optimal value was 5% when the

number of Monte Carlo steps was set to 5×106. Increasing the Monte Carlo steps to 7.5×106

resulted in a success rate of 10%. The best success rate obtained was 11% with the Monte

Carlo steps set to 10×106. Increasing the maximum number of Monte Carlo steps extends the

simulation time.

Overall, QA reaches a maximum success rate in 50% of the instances versus 31% for SA,

and outperforms SA 89% of the time. However, the success rate can swing as low as 11% which

indicates that the values of the parameter set are not universally ideal.

2.6 Analysis of QA

The QACVRP algorithm requires that a maximum number of Monte Carlo steps is defined.

Consequently, it was investigated how the best solution averaged over 100 runs changes as the

maximum number of Monte Carlo steps is increased. The results for p-n101-k4 with P = 40,

T = 22.5×10−3 and Γ = 3 are shown in Figure 2.5 where the best solution equates to the sum

of lengths over four routes. Increasing the maximum number of Monte Carlo steps results in the

optimal solution (i.e. 681) being obtained when MC > 1×106.
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Figure 2.5: The effect of increasing the number of Monte Carlo Steps upon convergence towards
the optimal solution.

Looking at the wall clock times for QACVRP for the benchmark instances shown in Table 2.1,

observe that in some instances this is larger than the SA wall clock time but in most cases this

results in a higher success rate. It is important to note that because QACVRP obtains the

BKS values in all cases, this implies that the choice of the spin encoding scheme to compute

the kinetic energy term is effective in exploring the energy landscape of all these VRP instances.

The artificially induced fluctuations provide an effective solution diversification strategy guiding

the search to unexplored regions.
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Figure 2.6: Acceptance ratio for two different effective quantum temperatures. The ratio is
defined as the number of inferior moves taken, divided by the total number of moves. The lower
temperature setting shows a better convergence as there is a higher rejection of inferior moves
upon the approach to optimal solution.

Using the parameters P = 40, T = 22.5×10−3, Γ = 3 and MC = 5×106 the acceptance ratio

was calculated for p-n101-k4 by sampling solutions over all iterations. As shown in Figure 2.6

the curve slowly declines over time and then stabilizes to a plateau level. In this case the effective

quantum temperature (PT ) is equal to 0.9 and as seen in Figure 2.4, yields 100% success rate

when finding the optimal solution. However, as Figure 2.4 shows, changing the effective quantum

temperature to PT = 1.1 impacts the solution quality. The same acceptance ratio experiment

was repeated with PT = 1.1 (i.e. P = 40 and T = 27.5×10−3) and although the acceptance ratio

curve has the same form, a plateau is reached earlier (see Figure 2.6), often leading to premature

convergence to a local optimum rather than the global value.

2.7 Conclusion

As far as could be determined, this chapter is the first study of the use of quantum annealing

for solving the Capacitated Vehicle Routing Problem. An important step in applying QA to

a problem is to find an intuitive way to encode the problem in terms of a set of spins, such
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that operators can be used by the QA algorithm to generate new valid solution configurations.

The novelty of this encoding approach is the mapping of VRP connectivity to the spin matrix,

and using VRP local neighbourhood operators when attempting to improve a configuration, as

this ensures that a valid network is always created. This encoding scheme allows the replicas

to communicate between each other in a consistent manner. The performance of the quan-

tum annealing algorithm has been measured by undertaking experiments using standard CVRP

benchmarks and compared against a fixed temperature SA algorithm.

The primary conclusion is that the quantum annealing algorithm finds BKS values for all

benchmarks used in this study and outperforms SA in terms of success rate in the majority of

cases.
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Chapter 3

Tuning QA for the Vehicle Routing

Problem

3.1 Introduction

In Chapter 2, Quantum Annealing was applied to the vehicle routing problem and the results were

promising. For all benchmark instances, optimal results were obtained. However, 100% success

rate was not achieved in every case, and tuning the control parameters for larger instances proved

cumbersome. This chapter addresses the remaining difficulties by investigating methods of tuning

the parameters of QA using vehicle routing problems. VRP is a class of NP-hard combinatorial

optimization problems in which the objective is to find optimal routes (number and length)

used by a fleet of vehicles, each with a given capacity and stationed at one or more depots, to

serve a set of customers and satisfy all demands. The objective is to minimize the number of

routes and/or total route length. Each route starts and ends at a depot and the customers are

visited only once by one vehicle. The computational effort required to solve a VRP instance

increases exponentially with the problem size, and adding constraints such as time windows and

back-hauling further complicates the search. Consequently, heuristic methods are employed to

obtain approximate solutions, in a reasonable time, that are of sufficient accuracy for practical

purposes.
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Proposed here are tuning schemes for QA, which could be automated and applied to any

problem instance. Behaviour (cost) models are developed and evaluated to determine their

usefulness in uncovering relationships between the fitness landscape and the strategy used by the

heuristic to navigate it, revealing good values for the controlling parameters. In these regards,

a factorial Design of Experiments (DoE) method was employed to help identify which control

parameters contribute the most to the search strategy, and Fitness Clouds were plotted and

used as behaviour models. Further, the research suggests schemes which can be generalized and

applied to any heuristic.

VRP is chosen for this work as it is a well understood problem - there exists a large body

of research and a wide variety of heuristics have been used to solve it. There are also plenty

of familiar benchmark instances with deterministically proven optimal solutions. This allows

comparisons between heuristics in absolution terms e.g. success rate. VRP also extends into

other domains which have industrial applications such as staff rostering, and the Technician

Routing and Scheduling Problem (TRSP).

An empirical approach is taken wherein measurements of run-time behaviour are exploited

to transform existing good values of control parameters so that they can be used successfully for

other problem instances. The methods shown both simplify hand-tuning so that the heuristic

performs successfully when applied to larger instances, and establish control parameter values

for instances which belong in broadly defined groupings. In addition, new best known solutions

for large-scale instances, and initial results for the distance-constrained variant of the vehicle

routing problem are presented.

The previous chapter demonstrated the effectiveness of Quantum Annealing (QA) for solving

many instances of the Capacitated Vehicle Routing Problem (CVRP). Optimal results were

obtained for all benchmark instances by applying a single set of values for the algorithm’s control

parameters - values which were methodically determined to achieve the maximum success rate

for a reference instance. The success rate is the percentage of the number of times the algorithm

finds the best known score for a given instance over a number of runs.

Table 3.1 shows an excerpt of the instances for which this parameter set was unable to achieve

100% success rate. An indication of the complexity of each instance can be inferred from the

name. P-n101-k4 for example, has 101 nodes/customers served by 4 vehicles whereas M-n121-k7
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has 121 served by 7 (the initial letter indicates the benchmark collection from which the instance

is drawn). Notably, the scores for smaller instances were much lower than for the reference

instance. This is contrary to intuition, that one might expect parameters giving the best results

for a larger instance would perform easily as well for smaller instances. (One may expect also that

parameters for smaller instances will not work well for larger ones.) Given that the local search

method is effective enough to allow the metaheuristic to find the optimal solution in at least 11%

of the experiments, and that many of the instances appear less complex than the reference, one

can conclude that the values of the control parameters are incorrect. If the temperature value

is set too high or the magnetic field is too strong, convergence to a minimum is slowed down

or inhibited completely. If set too low, the rate of convergence is high and entrapment at poor

local minima is likely. If the population size is too small, the search of solution space covers

only a reduced area which may not contain optimal solutions. It seems clear that the universal

application of a single set of control parameters will not guarantee consistently good performance

and the algorithm requires tuning on a case-by-case basis.

Table 3.1: An excerpt of Table 2.1) showing that the parameter set tuned in Chapter 2 was not
globally applicable. QACVRP was not able to deliver 100% success rate (number of optimal
solutions found) in about half of the chosen experimental instances.

Instance QA Success % SA Success %

P-n101-k4 (reference) 100 100
P-n50-k10 63 28
P-n55-k10 35 31
P-n60-k15 79 79
P-n70-k10 78 61
P-n76-k4 52 44
P-n76-k5 87 22
B-n63-k10 26 25
B-n66-k9 91 44
B-n67-k10 42 88
B-n68-k9 69 87
B-n78-k10 97 99
M-n121-k7 90 76
F-n135-k7 11 4

How then does one tune metaheuristic control parameters for best results? One could apply

the tuning methodology for every instance, providing a specific set of control parameters for each.

To save time, the processes of the methodology could be captured, encoded, and then left to a
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computer program to automatically decide the parameters. These approaches work because feed-

back can be derived from information known beforehand about the optimal result. Benchmark

instances are often supplied with deterministically proven optimal solutions. However, for larger

benchmarks, and in dynamic or industrial applications where problem instances are created in

real-time, such information is limited or non-existent.

Additional tuning difficulties are presented by metaheuristics with two or more control pa-

rameters, each of which may be tightly interdependent. For example, the coupling term used

in QA is a non-linear function of magnetic field strength and effective temperature. This term

is extremely sensitive to variations in either parameter, and tuning is further complicated be-

cause the Metropolis criteria [15] is simultaneously dependent upon temperature. A Design

of Experiments (DoE) method [57] can be helpful in uncovering major dependencies between

such variables, but a course of factorial experiments can be time-consuming, and predicting the

ranges for numerous and sensitive variables is difficult without once again resorting to guesswork

or serially hand-tuning.

It is for reasons like these that metaheuristics with fewer control parameters are attractive -

they are simpler to tune. Late Acceptance Hill Climbing [37] has a single parameter controlling

the size of a fitness array which acts as a ‘memory’ of good solutions. Cuckoo Search is reported

[58] to be superior to Genetic Algorithms in part because of having only two parameters - nest

abandonment rate and population size. In QA, it has been shown [24] that the number of

parameters can be reduced by one, by setting the magnetic field value to be constant. This idea

can be greatly extended by making the whole coupling term a constant, thereby removing the

mutual dependence of the effective temperature and magnetic field parameters. With the key

parameters uncoupled from one another, time is saved when determining their values by hand.

Large-scale problems and instances of the Distance-constrained Capacitated Vehicle Routing

Problem (DCVRP) may be tackled without tedium. Furthermore, if some means other than

hand-tuning can predict the value of temperature, a single variable remains to be tuned - the

replica count (population size).
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3.2 Quantum Annealing

Quantum Annealing is an energy-based metaheuristic which uses the Path-Integral Monte Carlo

(PIMC) method [23] to approximate the ground state of the Ising Model. The fitness function

is described (3.1) by the Hamiltonian

H = Hp +Hk (3.1)

Where the cost H is the sum of potential energy Hp and fluctuations in kinetic energy Hk.

Hk is the term which represents the quantum mechanical phenomenon of ‘tunneling’, where a

particle trapped in a low energy state, can ‘tunnel’ through high potential barriers into a lower

state. This effect can be simulated in a metaheuristic by using an Ising Model representation of

the optimization problem. In simple terms, this is maintaining a population P of simultaneously

evolving solutions called replicas, where Hk is calculated from an interaction between adjoining

replicas.

When QA is applied to an optimization problem, Hp takes the role of the cost of a solution

(for VRP, see (3.4)), while Hk is a scaled sum of the spin interactions between P neighbouring

solutions held in a circular list.

Hk = JΓ

∑
P

∑
i

σ
P−1,i

σ
P,i
σ

P+1,i
(3.2)

Each replica represents the solution as a spin matrix σ containing i elements which can assume

values of {−1,+1}. The interaction energy between the spins of adjoining replicas is generated

by the term, σ
P−1,i

σ
P,i
σ

P+1,i
. This is formulated in such a way that it is maximally positive

when spins are aligned, tending negatively otherwise. In this respect, the interaction energy can

be thought of as a measure of similarity. If the replicas are identical, the energy is higher.

JΓ is the coupling term which is normally varied during the annealing process via adjustments

to the magnetic field strength Γ , amplifying or attenuating the interactions between replicas.

JΓ =
−T
2

ln tanh

(
Γ

PT

)
(3.3)
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Consequently, this contributes towards the acceptance of H in the Metropolis criteria.

3.2.1 QA for CVRP, and the PT tuning method

CVRP is a variant of VRP in which all vehicles are subject to the same capacity constraint Q.

CVRP is an undirected graph G = (V,E) consisting of the vertex set V = {v0, v1, ...vn} and edge

set E = {(vi, vj)|vi, vj ∈ V, i < j}. The restriction i < j ensures the distance between a pair of

vertices is identical in both directions. The first vertex is usually considered to be the depot from

which a fleet of trucks m serves n customers, whose locations are represented by a vertex set,

and have varying demands for goods qi . The goal is to minimize the number of routes and/or

total distance traveled by the trucks dij .

QA for CVRP (QACVRP) uses a two-dimensional spin matrix in which the elements represent

customer-customer connections that form routes for each truck. A non-zero cell in the matrix

indicates a path between two vertices and because these connections are bi-directional, the spin

matrix is symmetric. Figure 2.1 in Chapter 2 shows this arrangement using an example of 15

customers serviced by 4 vehicles. The hexadecimal value shows how rows of connections, each

expressed as a single bit, may be encoded into a single memory word. In any one replica, the

classical potential energy is the total length of all routes and so Hp for the whole ensemble is

given by (3.4).

Hp =
∑
P

∑
i,j

d
P,i,j
σ

P,i,j
(3.4)

The local search scheme used in QACVRP is comprised of a set of neighbourhood operators

N={Move, Swap, Move-string, Swap-string, 2-Opt, 2-Opt∗} from which one is selected at random

and applied repeatedly until a feasible configuration is found. The Move operator selects a

customer and transplants randomly to another position. The Swap operator selects two customers

at random and exchanges them. Array-based counterparts of these operators are Move-string and

Swap-string which work with randomly sized sets of contiguous customers instead of individuals.

The 2-Opt operator selects at random two non-adjacent edges of a single route and then reverses

the connection order of the customers between the outer endpoints. 2-Opt∗ exchanges randomly-

sized end portions of two routes, preserving the order of the connections between customers.
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Figure 3.1 shows the QACVRP implementation used previously. Lines 1 and 2 initialize

the replicas with randomized feasible solutions, setting the current best solution from the first

replica. Lines 3 and 24 define the outer loop which terminates when the number of remaining

iterations (Monte Carlo steps) reaches zero in line 23. For each iteration of the outer loop, JΓ is

calculated from the current parameter values (line 4) and the replica index is reset (line 5).

Variables: P : number of replicas, T : temperature, Γ : magnetic field, ∆Γ : decrement value
of magnetic field, MC : number of Monte Carlo steps, N : set of neighbourhood operators, n:
chosen operator, S: set of replicas, Sbest : best solution, s′: candidate solution, z: index of
current replica.

1: S ← circular list of feasible randomized solutions
2: Sbest ← S0

3: while MC > 0 do
4: JΓ ← (−T/2)ln(tanh(Γ/PT ))
5: z ← 0
6: while z < P do
7: randomly choose n ∈ N
8: s′ ← n(Sz)
9: ∆Hp ← Hp(s′)−Hp(Sz)

10: ∆Hk ← Interact(Sz−1, s
′, Sz+1)− Interact(Sz−1, Sz, Sz+1)

11: ∆H ← (∆Hp/P ) + JΓ∆Hk

12: if ((∆Hp <= 0) or (∆H <= 0)) then
13: Sz ← s′

14: else if exp(−∆H/T ) > random(0, 1) then
15: Sz ← s′

16: end if
17: if Hp(Sz) < Hp(Sbest) then
18: Sbest ← Sz

19: end if
20: z ← z + 1
21: end while
22: Γ ← Γ+∆Γ
23: MC ←MC − 1
24: end while
25: return Sbest

Figure 3.1: Quantum Annealing for Capacitated Vehicle Routing Problems.

Lines 6 and 21 define the inner loop which terminates when the replica index reaches the

number of replicas in line 20. Line 7 selects an operator at random from the set of neighbourhood

operators. On line 8 the solution belonging to the replica which is currently indexed is modified

by the chosen operator until a feasible candidate is returned. The difference in potential energy
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is calculated on line 9 using the candidate and the replica solutions. On line 10 the difference

in kinetic energy is calculated by computing the interaction terms (3.2) between the candidate

and the replica solutions. The total change in energy is calculated on line 11. Line 12 checks if

the difference in potential energy or total energy has decreased and if so, the candidate solution

is assigned to the current replica (line 13). If the energy difference has increased (the solution

cost is worse) the candidate solution can still be accepted (line 15) if the probabilistic check on

line 14 is passed. The acceptance of a worse solution is controlled by the change in total energy

and the temperature (Metropolis criteria). On line 17 the cost of the current replica solution is

calculated and compared with the best recorded solution. If better, it is assigned as the best

solution on line 18.

Once all replicas have been updated in this manner, the inner loop relinquishes control to

the outer whereupon the magnetic field value is adjusted (line 22) for use in the next iteration.

Once all outer loop iterations are complete, the best solution found is returned on line 25.
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Figure 3.2: PT tuning using instance P-n101-k4. Γ and P are held constant while T is increased.
The success improves with P until a threshold determined by T is reached. Success rate is defined
as the number of optimal solutions delivered in each set of experiments. How should an effective
value of T be chosen without resorting to such a series of experiments?

Previously, QACVRP was employed to solve CVRP instances with a single set of control pa-

rameters determined using a method entitled PT Tuning (effective quantum temperature tuning)
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PT Tuning. A factorial DoE study was first undertaken to expose any dominance amongst con-

trol parameters for the chosen variable assignments (Table 3.2). Since there are five parameters

and two adjustments (+1/-1) allowed to their nominal values, 25 experiments were performed,

each consisting of 100 attempts to solve the same CVRP instance. Table 3.3 shows the effect of

parameter interactions upon average solution cost. From this, contributions can be calculated

for all possible interaction sets. For any chosen set, an average is taken from the scores where

the product of the adjustments is equal to 1, and another is taken where the product is equal

to -1. The two averages are used as endpoints to form a line, the steepness of which indicates

the size of the contribution for the chosen set. The absolute gradient value for each parameter

interaction set is presented in Figure 3.3.

Although this shows that P alone makes the greatest single contribution, it is awkward to

adjust P and maintain good success without also making compensatory adjustments to T and

Γ . (This observation motivated subsequent research efforts to uncouple the parameters to ease

tuning). However, the study supports the idea of tuning P and T as a single term with the

evidence that PT makes the second greatest contribution to average solution cost. Monte Carlo

stepsMC , and then magnetic field start and end values (G0, G1) are the next largest contributors.

Naturally, larger values of MC improve results by allowing longer search times. Temperature by

itself has the lowest single contribution, with the effects of T likely being swamped by high values

assigned to the magnetic field (3.3).

Table 3.2: Variable assignments for factorial experiments. Nominal values specify the baseline
setting for each parameter. Each experiment in the factorial study was conducted with baseline
offset by the {+1,−1} values for each paramter.

T G0 G1 P MC

Nominal 80 3000 1050 10 5,000,000
+1 2.5 500 500 4 500,000
-1 -2.5 -500 -500 -4 -500,000
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Table 3.3: Results of factorial experiments using CVRP instance P-n101-k4. Each row repre-
sents 100 runs of the QACVRP algorithm, with the baseline parameter values adjusted for all
combinations of the +1,−1 variables (see Table 3.2).

T P G0 G1 MC Av. Score
-1 -1 -1 -1 -1 685.608
-1 -1 -1 -1 +1 684.863
-1 -1 -1 +1 -1 685.585
-1 -1 -1 +1 +1 685.485
-1 -1 +1 -1 -1 685.748
-1 -1 +1 -1 +1 685.580
-1 -1 +1 +1 -1 685.954
-1 -1 +1 +1 +1 684.804
-1 +1 -1 -1 -1 683.009
-1 +1 -1 -1 +1 682.610
-1 +1 -1 +1 -1 682.012
-1 +1 -1 +1 +1 681.913
-1 +1 +1 -1 -1 682.312
-1 +1 +1 -1 +1 681.997
-1 +1 +1 +1 -1 681.758
-1 +1 +1 +1 +1 681.579
+1 -1 -1 -1 -1 685.134
+1 -1 -1 -1 +1 684.793
+1 -1 -1 +1 -1 685.542
+1 -1 -1 +1 +1 685.055
+1 -1 +1 -1 -1 685.140
+1 -1 +1 -1 +1 684.523
+1 -1 +1 +1 -1 684.895
+1 -1 +1 +1 +1 684.945
+1 +1 -1 -1 -1 684.128
+1 +1 -1 -1 +1 683.732
+1 +1 -1 +1 -1 683.084
+1 +1 -1 +1 +1 682.725
+1 +1 +1 -1 -1 682.924
+1 +1 +1 -1 +1 682.609
+1 +1 +1 +1 -1 682.561
+1 +1 +1 +1 +1 682.224
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Figure 3.3: Summary of the factorial experiments which show the main and interaction (com-
bined) effects of parameters P , Γ (G0, G1), T and MC upon solution cost. Adjusting P and T
together as single term, while leaving the other paramters constant, is the second-best approach
to tuning. Adjusting P alone gives the best, but it is important to somehow determine T .

As shown in [24], Γ was held constant during PT tuning whilst suitable values for temperature

T and P were determined by experimentation. The effective quantum temperature PT was

plotted (Figure 3.2) against the success rate over a series of experiments using a reference instance.

The reference instance was selected because it has the approximate median number of customers

within the chosen benchmarks of [41], which range from 50 to 262 customers. This was deemed

to be of average complexity since there are 91 instances with fewer than 100 customers and only
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10 instances with 100+ customers [53]. While varying T against several fixed values of P , the

value of PT which gave the best success rate was noted. The values of Γ , P , and T at this point

formed the reference control parameter set Cref = {Γref , Pref , Tref}. It was then assumed that

applying Cref to any benchmark instance in the study would yield good success rates.

3.2.2 Simplifying tuning: Parameters uncoupled

When attempting to tune the algorithm for use with larger or more complex instances, the

difficulty of adjusting non-linearly codependent variables is compounded with the need to allow

increased run times.

Effective quantum temperature and magnetic field strength are the variables used to calculate

the coupling term JΓ which scales the energy generated by interactions of spins amongst the

replica ensemble. Consequently, the value of Hk is highly sensitive to small changes in P , T or

Γ , and because T is also the variable which governs probabilistic acceptance in the Metropolis

criteria, tuning is frustrating. This situation is exacerbated when larger instances are involved.

The computational workload increases exponentially with problem size, and so results which can

provide feedback to re-tune the parameters are delivered at longer intervals.

If JΓ was established beforehand and kept constant whilst annealing, Γ can be ignored while

T would have a role limited to governing thermal effects via the Metropolis criteria. In QACVRP,

the Hamiltonian took the form

H =
∆Hp

P
− JΓ∆Hk (3.5)

Removing the averaging term P from (3.5) uncouples another control parameter and would

further simplify tuning - P could be increased, regardless of temperature, to improve the success

rate. The Hamiltonian for such an arrangement is shown in (3.6).

H = ∆Hp − JΓ∆Hk (3.6)

The isolation of T requires that the annealing process be divided into two phases, each

separately taking advantage of Hp and Hk. In the first phase, higher temperatures may be

chosen so that Hp dominates Hk in (3.6). This ‘thermal’ phase results in a process akin to
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Simulated Annealing (SA) but which includes small, non-negligible quantum fluctuations. In the

second phase, the temperature should be drastically lowered so that Hk dominates in H. In this

‘quantum’ phase, optimization relies almost exclusively upon the state of the replica ensemble

and the interactions therein. In both phases, P may be adjusted without incurring the need to

re-tune the other parameters. It may be increased to improve the accuracy of PIMC, with the

expectation that a better result may be found at the expense of run time. Conversely, P may

be decreased to speed up annealing at the expense of accuracy.

This two-phase approach may be employed to ease the tuning process, by repeating the ther-

mal phase with small values for P and MC to establish a good value for T . With T established,

a final run of the first phase can be done with increased P and MC . The resulting solution from

this run may be supplied as a starting point for the quantum phase, in a similar fashion to a

construction algorithm which supplies an improvement algorithm with an initial solution.

Figure 3.4 shows the revised QA algorithm which uses a fixed value of JΓ and on line 10, the

altered Hamiltonian (3.6).
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Variables: P : number of replicas, T : temperature, JΓ: magnetic coupling strength, MC :
number of Monte Carlo steps, N : set of neighbourhood operators, n: chosen operator, S: set of
replicas, Sbest : best solution, s′: candidate solution, z: index of current replica.

1: S ← circular list of feasible randomized solutions
2: Sbest ← S0

3: while MC > 0 do
4: z ← 0
5: while z < P do
6: randomly choose n ∈ N
7: s′ ← n(Sz)
8: ∆Hp ← Hp(s′)−Hp(Sz)
9: ∆Hk ← Interact(Sz−1, s

′, Sz+1)− Interact(Sz−1, Sz, Sz+1)
10: ∆H ← ∆Hp + JΓ∆Hk

11: if ((∆Hp <= 0) or (∆H <= 0)) then
12: Sz ← s′

13: else if exp(−∆H/T ) > random(0, 1) then
14: Sz ← s′

15: end if
16: if Hp(Sz) < Hp(Sbest) then
17: Sbest ← Sz

18: end if
19: z ← z + 1
20: end while
21: MC ←MC − 1
22: end while
23: return Sbest

Figure 3.4: Fixed JΓ Quantum Annealing for Capacitated Vehicle Routing Problems.

3.2.3 Determining temperature: Energy-based Scaled Parameter Tuning

With the parameters uncoupled from one another in FJ-QACVRP (Fixed JΓ Quantum Annealing

for the Capacitated Vehicle Routing Problem), a systematic means of establishing T for the first

annealing phase would be of benefit when tackling groups of problem instances, such as the

benchmarks of Augerat et al [59] as attempted by QACVRP under the PT Tuning scheme. It

would be ideal to identify and then reproduce for any instance, the runtime behaviour of the

algorithm while it is successfully (and consistently) solving a reference instance.

Even though success rates in Table 3.1 were inconsistent, there is promise in using Cref

since optimal results were found for every instance. To improve this, some factor needs to be

discovered which relates a subject to a reference instance. This factor would have to reliably
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transform Cref into a subject parameter set Csubj = {Γsubj , Psubj , Tsubj}. To find this factor,

the fitness landscape [6] of the problem needs to be considered.

The fitness landscape for a problem instance is the abstract topology formed from the com-

bination of all possible solutions, an objective function, and neighbourhood operators. For a

combinatorial optimization problem like CVRP, it is impossible to visualize this landscape. Each

point in the landscape represents a possible solution and is a vector composed of the solution cost

and configuration, and must be connected to all possible neighbouring solutions. As a whole,

this multidimensional topology is difficult to conceive and so must be greatly simplified if to be

of any practical help in discovering relationships between instances. To assist with this discovery,

the fitness landscape is reduced to an energy landscape. Measurements of potential energy Hp

can be recorded and these are equivalent to the cost component of vertices in the landscape.

Kinetic energy Hk can also be recorded, but is of less immediate use as a measure of similarity,

it gives indirect evidence of how connections between vertices are grouped in the landscape. (In

a single phase of FJ-QACVRP with high T , Hamiltonian energy H is imagined to form a similar

topology to that formed by Hp, given that Hk makes a relatively tiny contribution to the total

energy.) The energy landscape which is explored by a metaheuristic while it solves a problem

can be visualized in the form of a scatterplot or Fitness Cloud [60]. The geometric features of

the plot give a visual indication of the run-time behaviour of the algorithm, and therefore may

be regarded as a dynamic cost model [6]. Fitness Clouds were originally invented to study how

mutation and crossover operators caused solutions to evolve in Genetic Programming. They were

further analysed to produce metrics for characterizing and measuring the difficulty of optimiza-

tion problems [61]. For this work, they provide visual substance to support the proposal that

there are commonalities in the energy landscapes of different problem instances which may be

exploited to assist with tuning.
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Figure 3.5: Fitness clouds of instances sampled from the benchmarks of Augerat et al [59]. They
were generated by QACVRP and are similar in structure. Each data point represents the change
in cost (energy) as the optimizer steps from the current solution s to the next s′. When the
optimal cost opt was reached or when the number of Monte Carlo iterations were exhausted, the
sampling of the QACVRP landscape was halted.
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Figure 3.6: Fitness clouds sampled from the instances in the benchmarks of Taillard [62]. Similar
as with the previous Figure 3.5, they were generated by QACVRP the sampling of which was
halted when the best-known score bks was attained or exceeded, or when the Monte Carlo
simulation ended.

Several plots were made from the recordings of energy values as QACVRP solved selected

CVRP instances. A cursory analysis of the plots show that in each case, there is quick convergence

to, and an intensive search of a region around the optimal solution. More encouragingly, there is

a good similarity in shape and structure, which lends support to the idea that one landscape may

be approximately transformed into another through the use of scaling or affine transformations.

(In CVRP, the fitness cloud shows a distribution of the changes to the geometry of the routes,

with ∆Ep essentially being a change in distance. Therefore, it should be possible to remap one

instance to another.) With such transformations, the aim is to adapt a set of parameters for a

reference instance for use in a subject.
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For the first phase of FJ-QACVRP, we propose that a useful factor which correlates fitness

landscapes is some measure or function of ∆Hp since it has the greatest impact (3.1) in the

Metropolis criteria. If the ratio of such measures from subject and reference instances were

known, and since the coupling term JΓ (3.3) is now constant, then T for the subject instance can

be calculated as the product of this ratio and the reference effective temperature PrefTref . This

would then remove the necessity of tuning the temperature parameter. Peak changes in accepted

potential energy ∆Hp have already been sampled for several CVRP instances using QACVRP.

The coupling term JΓ can be thought of as a factor which amplifies or attenuates similar-

ities between population members (3.2). A good value for JΓ was discovered in the course of

determining the parameters of the reference instance, P-n101-k4 in [41]. The value of JΓ which

was successful for solving one instance may be used as a constant in solving another, if the

temperature is suitably scaled.

When a subject instance is optimized by FJ-QACVRP, the peak change in accepted potential

energy ∆Esubj is scaled by the normalization constant (3.7) to provide the value of temperature

Tsubj (3.8).

k =
PrefTref
∆Eref

(3.7)

Tsubj = k∆Esubj (3.8)

The following is a brief, stepwise description of the new tuning method, tentatively entitled

Energy-based Scaled Parameter Tuning (ESPT):

1. With QACVRP solving the reference instance, use the PT tuning method (or other) to

identify the parameter set Cref which gives the best possible success rate.

2. With QACVRP solving the reference instance using Cref , record the peak change in ac-

cepted potential energy ∆Eref . The constant k (3.7) can now be calculated.

3. With QACVRP solving the subject instance using Cref , record the peak change in accepted

potential energy ∆Esubj .

4. Use FJ-QACVRP to solve the subject instance using a constant value of JΓ calculated with
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Cref , Tsubj = k∆Esubj , Psubj = Pref + p where p is a discretionary increase in the number

of replicas.

Simple modifications were made to the acceptance function of the software in order to sample

the changes in accepted potential energy. QACVRP then solved selected instances 20 times each

with Cref = {3, 40, 22.5×10−3} determined in [41], and with Monte Carlo steps MC = 10×106.

Table 3.4 shows measurements made using steps 2 and 3 for several instances listed in Table 3.1.

Table 3.4: Peak changes in accepted potential energy. Changes in cost are captured in the
acceptance function of QACVRP while an instance is optimized. The algorithm uses a set of
reference parameters - values which produce optimal results 100% of the time for the instance
P-n101-k4. The largest recorded change is used to predict the value of temperature parameter
in the ESPT method.

QACVRP

Instance ∆E

P-n101-k4(reference) 13
P-n50-k10 15
P-n55-k10 14
P-n60-k15 14
P-n76-k4 17
P-n63-k10 16
P-n67-k10 15
B-n68-k9 17

3.3 Experimental results

Although multicore processor architectures allow for programs to be written to achieve paral-

lelization of their workload, FJ-QACVRP was designed to take advantage in a different way.

Rather than breaking the algorithm into parallelizable components, FJ-QACVRP was coded to

place a whole experimental run on a separate thread so that it would be allocated to a single

CPU core. This design allows many runs to occur simultaneously and so will output results

much more quickly. FJ-QACVRP was coded in C++ using the Qt cross-platform application

framework. The processor employed was the Intel Xeon E5-2683 v3, having 14 cores with a clock

speed of 2GHz, running the Linux operating system.
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3.3.1 Large and very large scale results

For each of the moderately sized to very large-scale instances, a batch of (14) runs equal in size

to the number of CPU cores was performed simultaneously across a range of temperatures. For

speed whilst tuning in this first phase, the number of replicas and Monte Carlo steps were kept

low, with P ≤ 20 and MC ' 20×106. When the batch was completed, the value of T from

the run with the best score was considered the most useful and, if necessary, reused with higher

values of P to seek further improvements.

The best solution from phase 1 was used to initialize each replica in phase 2. A percentage

of the replica ensemble was perturbed by applying a randomized selection of the neighbourhood

operators for a fixed number of iterations. A low temperature T = 0.14 and higher values of P

(40, 60, 80, 160) and MC = 50×106 formed the parameter set for runs in the second phase of

FJ-QACVRP.

The results of this method are shown in tables 3.5 to 3.9 and any improvements to the best

known scores in literature are shown in bold. Combined run times are shown together with the

total number of iterations MC taken for each instance.

Table 3.5: Computational results of FJ-QACVRP using CVRP instances of Taillard [62].

Phase 1 Phase 2a Total

Problem n Best Score Time (s) Score Time (s) Time MC×106

tai75a 75 1618.36b 1618.357 7 - - 0:00:07 0.031
tai75b 75 1344.64b 1344.619 4 - - 0:00:04 0.019
tai75c 75 1291.01b 1291.008 5 - - 0:00:05 0.033
tai75d 75 1365.42b 1365.419 6 - - 0:00:06 0.021
tai100a 100 2041.336b 2043.405 92 2041.337 3 0:01:35 0.213
tai100b 100 1939.9[63] 1939.904 1144 - - 0:19:04 2.778
tai100c 100 1406.202b 1406.965 721 1406.202 2 0:12:03 1.487
tai100d 100 1581.25b 1582.112 156 1580.458 269 0:07:05 1.183
tai150a 150 3055.23b 3057.395 608 3055.232 366 0:16:14 2.538
tai150b 150 2727.67[63] 2730.304 958 2727.669 24618 7:06:16 14.478
tai150c 150 2341.84b 2361.424 1754 2358.659 1989 1:02:23 12.898
tai150d 150 2645.39b 2647.713 28146 2645.391 1 7:49:07 37.942
tai385 365 24422.5[64] 24449.046 235760 24395.411 84561 88:58:41 138.535

a 50% replicas perturbed for 5 iterations before annealing.
b As reported by Alba et al. [65].

Table 3.5 shows the results of FJ-QACVRP on the CVRP instances in the benchmarks of

Taillard [62]. In all but one instance (tai150c) the best known score was found or improved
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upon (tai75b and tai385), and the majority required both optimization phases. In phase 1,

temperature ranges were bounded by 1.18 ≤ T ≤ 1.82 with intervals of 0.04. Combined run

times ranged from 7 seconds to 65 hours.

Table 3.6: Computational results of FJ-QACVRP using various CVRP instances.

Phase 1 Phase 2a Total

Problem n Best Score Time (s) Score Time (s) Time (s) MC×106

E-n101-k14 100 1067[64] 1067 216 - - 0:03:36 1.564
M-n151-k12 150 1015[64] 1015 456 - - 0:07:36 1.617
M-n200-k16 199 1274[66] 1274 11709 - - 3:15:09 14.004
M-n200-k17 199 1275[66] 1275 29959 - - 8:19:19 13.893
G-n262-k25 261 5530[67] 5530 78974 5526 20 21:56:34 46.060
a 50% replicas perturbed for 5 iterations before annealing.

Table 3.6 shows the results of FJ-QACVRP on the moderately sized CVRP instances in the

benchmarks of Christofides and Eilon [68], Gillett and Johnson [69], and Christofides, Mingozzi

and Toth [70]. In phase 1, temperature ranges were bounded by 0.6 ≤ T ≤ 1.4 with intervals of

0.05. For all instances except G-n262-k35, the best known score is suspected to be optimal. Since

no better results were achieved by significantly increasing the running time or population size of

FJ-QACVRP (MC ≥ 350×106, P ≥ 640), and because no improvements have been published for

over two years, the second phases were omitted. Combined run times ranged from 3.6 minutes

to 21.9 hours.

Table 3.7: Computational results of FJ-QACVRP using Golden et al [71] CVRP instances.

Phase 1 Phase 2a Total

Problem n Best Score Time (s) Score Time (s) Time MC×106

9 255 583.39b 579.713 16738 - - 4:38:58 99.984
10 323 741.7[64] 737.512 133303 737.412 71 37:02:54 42.440
11 399 918.45b 914.341 84969 912.770 141287 62:50:56 23.084
12 483 1107.19b 1102.542 469021 1102.120 52312 144:48:53 88.583
13 252 859.11b 857.189 19232 - - 5:20:32 18.273
14 320 1081.31b 1080.830 106996 1080.553 22 29:43:38 33.608
15 396 1345.23b 1340.241 140262 - - 38:57:42 38.508
16 480 1622.69b 1611.503 153502 - - 42:38:22 68.110
17 240 707.79b 707.992 39557 707.756 192 11:02:29 24.406
18 300 998.73b 998.354 67251 995.984 110 18:42:41 18.509
19 360 1366.8578[64] 1368.291 61744 1366.591 1187 17:28:51 189.301
20 420 1821.15b 1825.057 75826 1818.949 23950 27:42:56 140.475

a 50% replicas perturbed for 5 iterations before annealing.
b As reported by Alba et al. [65].
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Table 3.8: Computational results of FJ-QACVRP using Golden et al [71] DCVRP instances.

Phase 1 Phase 2a Total

Problem n Best Score Time (s) Score Time (s) Time MC×106

1 240 5627.54b 5624.119 39441 5623.469 43 10:58:04 33.042
2 320 8447.92[72] 8464.495 12007 8447.920 4599 4:36:46 11.112
3 400 11036.23[72] 11047.007 56584 11036.223 8085 17:57:49 110.986
4 480 13624.53[72] 13632.913 51109 13624.526 26960 21:41:09 41.205
5 200 6460.98[72] 6460.980 39913 - - 11:05:13 24.670
6 280 8412.88[72] 8412.902 2966 - - 0:49:26 1.143
7 360 10195.56[72] 10200.543 5148 10195.587 2845 2:13:13 7.849
8 440 11663.55b 11681.035 29603 11672.111 70097 27:41:40 50.312

a 95% replicas perturbed for 30 iterations before annealing.
b As reported by Alba et al. [65].

Tables 3.7 and 3.8 show the results of FJ-QACVRP on the benchmark of Golden et al

[71], which include larger sized CVRP and DCVRP instances. For the CVRP instances the

temperature ranges for phase 1 were bounded by 0.26 ≤ T ≤ 1.4 with intervals of 0.02. FJ-

QACVRP performed well and delivered improvements over the best known score in all cases.

For problems 9, 13, 15 and 16, scores from the second phase yielded no improvements over the

first and are not shown. Combined run times for problems using both phases ranged from 11.2

to 144.8 hours.

For the DCVRP instances, FJ-QACVRP matched the best known in 4 problems and ap-

proached to within a negligible fraction of a percent in 3 while new best scores were found for

problems 1 and 3. For phase 1 the temperature ranges were within 1.8 ≤ T ≤ 3 with intervals

of 0.1. Combined run times for problems which required both phases ranged from 4.6 to 27.7

hours.
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Table 3.9: Computational results of FJ-QACVRP using Li et al [73] DCVRP instances.

Phase 1 Phase 2a Total

Problem n Best[73] Score Time (s) Score Time (s) Time MC×106

21 560 16212.83 16232.347 12550 16212.826 59302 19:57:32 8.303
22 600 14641.64 14632.952 230304 14586.109 363701 165:00:05 26.302
23 640 18801.13 18824.837 37464 18801.131 83571 33:37:15 17.021
24 720 21389.43 21411.744 78209 21389.432 12344 25:09:13 23.895
25 760 17053.26 16905.233 57344 16851.976 10479 18:50:23 16.214
26 800 23977.74 23998.635 56315 23977.733 16977 20:21:32 43.214
27 840 17651.6 17621.849 266076 17508.388 51211 88:08:07 41.357
28 880 26566.04 26586.149 16027 26566.035 69905 23:52:12 3.474
29 960 29154.34 29176.634 54894 29154.337 93270 41:09:24 7.919
30 1040 31742.64 31774.909 100519 31742.640 580037 189:02:36 17.655
31 1120 34330.94 34361.727 287648 34330.941 239826 146:31:14 29.521
32 1200 36919.24 37352.460 304073 37331.111 2139 85:03:32 25.061

a 95% replicas perturbed for 30 iterations before annealing.

Table 3.9 show the results of FJ-QACVRP on the benchmark of Li et al which is comprised

of procedurally-generated [73] very large-scale DCVRP instances. In all cases but problem 32,

FJ-QACVRP equals or improves best known scores. In phase 1 the temperature ranges were

within 1.8 ≤ T ≤ 3.2 with intervals of 0.1. All attempts required both phases to execute and

their combined run times ranged from 18.8 to 189 hours.

3.3.2 ESPT results

Table 3.10 shows the outcome of performing step 4 of the ESPT method, in which the temperature

value for each instance was predicted for use in FJ-QACVRP. For a valid comparison with

QACVRP, the chosen benchmarks were those as used in [41] - sets B and P benchmarks of

Augerat et al [59]. Both sets contain instances which cluster the locations of customers and are

likely to have similar geometric structures in their fitness clouds.

Using Cref and ∆Eref , k (3.7) and JΓ (3.3) were calculated. For each subject instance, Tsubj

(3.8) was calculated using k and ∆Esubj (Table 3.4). With the parameter set {JΓ, Pref +p, Tsubj}

and p ∈ [−30,+120], FJ-QACVRP was used to solve each subject instance 100 times, after which

the success rate was recorded.

In almost all cases, at P ≥ 20, the success rate is increased beyond that achieved by QACVRP.

At P = 40 there are significant increases for P-n76-k4, P-n76-k5, P-n55-k10 and B-n63-k10, in-

stances that proved troublesome for QACVRP. Figure 3.7 shows the effectiveness of FJ-QACVRP
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upon the latter three and with values of T determined beforehand, that P may alone be adjusted

until a desired rate/time balance is obtained. Also encouraging for the ESPT method is that for

P ≤ 20 the results almost entirely improve over QACVRP, indicating the potential to improve

running speed.

As expected, in all cases increasing P improves the success rate. The temperature component

has been scaled using potential energy ratios and successfully applied to subject instances.

Table 3.10: Success rates after application of ESPT.

Success %

QACVRP[41] FJ-QACVRP
P=40 (time) P=10 P=20 P=30 P=40 (time)

P-n101-k4 100 (07:56:20) 99 100 100 100 (00:14:24)
P-n40-k5 100 (00:00:50) 100 100 100 100 (00:00:04)
P-n45-k5 100 (00:01:53) 100 100 100 100 (00:00:05)
P-n50-k7 100 (00:09:14) 100 100 100 100 (00:00:17)

P-n50-k10 63 (08:27:14) 62 80 89 99 (00:26:40)
P-n51-k10 100 (01:12:35) 91 99 100 100 (00:04:15)
P-n55-k7 100 (01:11:40) 100 100 100 100 (00:02:42)

P-n55-k101 35 (10:14:24) 55 87 93 97 (00:39:21)
P-n60-k10 100 (01:07:38) 100 100 100 100 (00:02:42)
P-n60-k15 79 (08:48:46) 86 97 98 100 (00:10:06)
P-n65-k10 100 (01:01:47) 100 100 100 100 (00:01:12)
P-n70-k10 78 (13:23:50) 90 100 100 100 (00:13:38)
P-n76-k4 52 (14:50:56) 91 100 100 100 (00:37:15)
P-n76-k51 87 (10:16:25) 72 93 98 98 (00:57:48)
B-n50-k8 100 (01:34:54) 100 100 100 100 (00:03:34)
B-n52-k7 100 (00:09:06) 100 100 100 100 (00:00:18)
B-n56-k7 100 (00:20:34) 100 100 100 100 (00:01:26)
B-n57-k9 100 (00:40:50) 100 100 100 100 (00:01:06)

B-n63-k101 26 (12:49:30) 25 36 68 68 (01:12:18)
B-n64-k9 100 (01:04:16) 100 100 100 100 (00:02:12)
B-n66-k9 91 (08:56:25) 96 100 100 100 (00:15:54)

B-n67-k10 42 (15:42:00) 100 100 100 100 (00:17:46)
B-n68-k9 69 (11:30:52) 93 99 100 100 (00:33:44)

B-n78-k10 97 (07:10:29) 100 100 100 100 (00:09:42)
1 P value for 100% success shown in figure 3.7.
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Figure 3.7: With T determined using the ESPT method and Γ held constant, the success
rate increases in proportion to the last varying parameter, P which may be adjusted to sat-
isfy time/resource constraints. The instances are taken from the benchmark of Augerat et al
[59]. Even though B-n63-k10 appears to be of modest complexity, specifying k=10 vehicles to
service only n=63 customers, the number of replicas must be set high for maximum success rate
to occur. This shows it is a difficult problem instance to solve.

3.4 Conclusions

To our knowledge, this section is the first study which reduces the number of control para-

maters in QA to one (replica count) and which systematically establishes a constant value for

the temperature through the use of scaling factors determined from the analysis of fitness clouds.

In principle, the methods and techniques presented could be extended to other vehicle routing

problems such as those which use a heterogeneous fleet. A heterogeneous fleet can be represented

in a spin matrix by increasing the dimensions by the number of differing vehicles. The additional

cells would indicate which vehicle is assigned to each route. Further, the solution representation

need not prevent a vehicle going back to the depot to collect more items.

It has been shown that with suitable adjustments to the Hamiltonian and by treating the

term which scales interaction energy as a constant, QA is able to tackle very large VRP instances

without incurring the need to fine tune all the control parameters. With the tuning much

simplified, QA can be used to deliver results which are improvements over, or equal to the best-

known scores in the greater majority of large instances of CVRP and DCVRP. The primary

conclusion is that the modified QA heuristic is a good match for these kinds of vehicle routing
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problems.

A reduced number of tunable parameters in FJ-QACVRP presented the opportunity to fo-

cus subsequent tuning efforts upon establishing the temperature value through use of the ESPT

method. This significantly improves the reliability (in terms of success rate) of QA when dealing

with collections of instances which exhibit similar features in their fitness landscapes. For con-

venience, this study reused existing benchmarks containing instances with similar distributions

of customer locations. Naturally, if this method was to be generalized, extending to arbitrary

collections of instances, then some effort would need to be spent analysing their fitness clouds

in order to group them sensibly prior to the application of ESPT. This would perhaps involve

the use of more complicated affine transformations (e.g. skews, mirrors, rotations) rather than

scaling factors.
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Chapter 4

Quantum Annealing Algorithm:

Enhancements and Variations

4.1 Introduction

The Quantum Annealing algorithm was shown in sections 2.5 and 3.3 to be an effective meta-

heuristic for solving vehicle routing problems, capable of locating the optimal solution when

solving most cases of well-known benchmark instances, and competitive with established meta-

heuristics in terms of solution quality. However, the Quantum Annealing algorithm fares less

well when running times are considered. Table 2.1 in Chapter 2 shows that Simulated Annealing

achieves an almost-complete dominance over QA (in 22 of 26 instances) when time to find the

optimal solution is alone considered. The reason for this is an accurate path-integral calculation

requires a large number of solutions, or replicas, to be maintained simultaneously and if this is

deployed upon a single thread of execution performance is necessarily degraded.

The key contribution of this chapter is an improved design which, whilst preserving the

demonstrated advantages the QA algorithm, divides the processing of the replicas amongst dif-

ferent threads of execution with the goal of reducing the running time by a factor of the number

of threads used. This parallelized algorithm, entitled Parallel Quantum Annealing for Vehicle

Routing Problems (PQAVRP), is used to solve the same problem instances in the benchmark
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of Augerat el al [59] as the earlier single-threaded version, resulting in the same solution quality

but which is delivered consistently in a fraction of the original running times.

The work in Chapters 2 and 3 proved that the Quantum Annealing (QA) algorithm, in the

form of a single-threaded program, was effective for solving the graph colouring problem [24]

and the Capacitated Vehicle Routing Problem (CVRP) [41] and its distance-constrained variant

(DCVRP) [42]. Through the use of several tuning methodologies which acquired good values

for the controlling parameters of the algorthm, optimal results were obtained consistently, and

many new best known solutions were discovered. In an academic sense, these results were able

to show QA is a viable alternative to other well-known metaheuristics.

One of the strengths of QA is that it is a population-based approach to combinatorial opti-

mization. Through the use of a simulated quantum mechanical tunneling effect, a set of continu-

ously varying solutions, or replicas, interact allowing a broader inspection of the solution space.

By increasing the number of replica-upon-replica interactions, QA has an increased chance to

escape from local minima and so improve the likelihood that good solutions are returned.

However, this strength is also one of the weaknesses of QA. The running time of the algorithm

increases in approximate proportion to the number of replicas used, and when larger problems are

tackled, can become excessive. For example, it takes over 6 days for the FJ-QACVRP algorithm

[42]to solve problems 30 and 31 in the benchmark of Li et al [73] which have over 1000 customers.

In such cases, it is important to adjust the number of replicas in order to balance the requirments

of solution quality and problem size against an acceptable running time, but this imposes a limit

upon the wider practicality of QA.

There are several ways to address the issue of running time. Straight-forward code optimiza-

tions (such as unwinding loops, active cache control/awareness and machine-level programming)

are some such methods but opportunities for these enhancements are rapidly exhausted whilst

being subject to diminishing returns relative to the effort of implementation. Another approach

may be to hybridize the algorithm with another metaheuristic which offers improved performance

[74][75] in specific program components such as the acceptance function, or local search routines.

However, any extra tunable variables from the donor metaheuristic complicate configuration

of the hybrid algorithm whilst likely making obsolete the previous tuning schemes developed

specifically for QA. A lengthy study, which is beyond the scope of this thesis, would be required
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to investigate these effects and to also prove a successful hybridization. It is also difficult to

adapt any of these methods to take advantage of multi-threaded environments. They usually

consist of only a few, tightly-coupled components: a local search scheme (a set of neighbourhood

operators); a metaheurisic which guides the local search; and associated support systems (e.g.

objective function, I/O). It is not obvious which components are amenable to such fine-grained

parallelization or how gains would be achieved in a multi-core environment whilst maintaining

cohesive operation. In constrast, population-based methods of optimization are somewhat freed

from these constraints, and they offer the opportunity of coarse-grained parallelization at the

level of the metaheuristic.

The QA metaheurisic is naturally suited to parallelization. Depending upon the particular

implementation of QA, a degree of independence is afforded to each replica. In the simplest case,

it is conceivable to provide a dedicated thread of execution for the maintenance of each replica.

Further, if such a scheme was designed and engineered sensibly, it would be a solid milestone

along the way to distributing the processes for execution in a clustered environment, taking

advantage of modern scalable architectures. Parallelization of QA using threading techniques is

a sensible initial approach to improving running times, which in principle allows performance

gains scaled by the availability of computational resources.

The following sections present a means to significantly reduce the running time of the QA

algorithm, removing a major impediment in practical applications. Section 4.2 shows how the

algorithm can be reformulated to take advantage of multi-core environments by distributing the

workload of the metaheuristic using many threads to host the processing of the population of

replicas. The psuedo-code is shown and is implemented for use in experiments in section 4.3, the

results of which demonstrate the effectiveness of the multithreaded approach over the previous

QA implementations.

4.2 Parallelizing the QA Algorithm

The target platform for a parallelized QA algorithm is one which has a CPU with a multicore

architecture, and an operating system which provides multithreading support (see appendix A.2,

a 14 core processor which hosts Linux). This kind of platform allows the population of replicas to
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be divided in groups which may be simultaneously processed by individual threads of execution.

Communication between replicas must be maintained in order to calculate their interactions.

The calculation of the interaction energy requires that replicas transmit their state, and

for this to occur across execution boundaries, a predetermined communication protocol must be

established. Such a protocol may be implemented via a mutual exclusion (lock-unlock semantics)

mechanism, or a messaging system (semaphores).

Figure 4.1: Sequence diagram showing a simple thread model: the local search (LS), kinetic
calculations (Kin) and Metropolis criteria (Met) are performed for each replica in their own
thread, allowing the entire population to be processed in parallel

Figure 4.1 shows how it is possible to parallelize the processing of QA by arranging each
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replica on its own thread. Replicas asynchronously trade spin status across thread contexts for

every private iteration, until the thread has exhausted its Monte Carlo steps. The main thread

waits for all replicas to terminate before gathering results and returning the best solution. With

this kind of model it is expected that the longer the threads execute, the more they will drift

apart in time - some replicas will finish long before others and will only be able communicate their

terminal statuses - their spins will appear frozen relative to extant threads. This has implications

for the accuracy of the path integral, with the possibility that the solution trajectories (paths) of

active replica threads can become biased towards the ones which have stopped. These solutions

have ceased to evolve and there is no guarantee that any terminated thread will contain a good

enough solution to help guide the optimization which continues in the live threads.

To mitigate this possibility, it is better to place groups of replicas together on each thread,

creating subsets of the whole path integral. Running threads still have many active trajectories at

hand to compensate for the bias of those which have terminated. Grouping replicas in this manner

also reduces the amount of inter-thread communication as only the outermost positioned replicas

(first and last of each group) are required to share their spins across execution boundaries. This

also decreases the likelihood of any thread being placed into a condition where it is waiting upon

spin status information from a neighbouring thread, thus improving performance. Of further

benefit is that this scheme decouples the maximum number of replicas from the number of cores

or threads a computing system allows, thus improving the scalability of the algorithm. A low-

specification computing system may still run a reasonable number of replicas, although at the

expense of memory consumption. (With clustered and cloud computing becoming widespread,

the likelier prospect is that even larger groups of replicas will be distributed as processes which

are managed using load balancing techniques.)

The configuration of the grouping scheme shown in Figure 4.2 is flexible. It may be configured

such that a single thread processes a single replica, duplicating the behaviour of Figure 4.1. It

is therefore a generalization of the simpler scheme and is the one implemented for use in the

experiments in section 4.3.
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Figure 4.2: Sequence diagram: local search (LS), kinetic calculations (Kin) and Metropolis
criteria (Met) are performed upon replicas grouped into threads, allowing population subsets to
be processed in parallel

4.2.1 Parallelized QA for CVRP (PQAVRP)

The spin encoding and local search schemes for PQAVRP are identical to the single threaded

algorithm described in section 2.2 (Figure 2.1) and section 2.3. To recap, the replica is a two-

dimensional matrix containing bits which individually describe bi-directional connections be-

tween customers. In other words, these are edges which contribute to form an entire route for

each vehicle. The total distance of the routes in any one matrix provides the value of the clas-

sical potential energy, Hp. During the local search phase of the metaheuristic, neighbourhood
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operators N={Move, Swap, Move-string, Swap-string, 2-Opt, 2-Opt∗} repeatedly and stochas-

tically flip the state of the bits in the matrix producing a fluctuation in the kinetic energy term

Hk. Consequently the Hamiltonian is perturbed, which provides an additional mechanism by

which the search can escape from local minima within the potential energy landscape of the VRP

instance.

Variables: E: Execution contexts (threads), g: group size (replicas per thread), P : number of
replicas, T : temperature, JΓ: magnetic coupling strength, MC : number of Monte Carlo steps,
N : set of neighbourhood operators, n: chosen operator, S: set of replicas, Sbest : best solution,
s′: candidate solution, z: index of current replica.

1: S ← circular list of feasible randomized solutions
2: E ← subsets of S, each containing g contiguous replicas
3: for all E do
4: Initialize with {T, JΓ,MC , N}
5: end for
6: for all E do
7: Begin
8: end for
9: while Busy(E) do

10: Wait
11: end while
12: return Best(E)

Figure 4.3: Main thread of Parallelized Quantum Annealing.

The pseudo-code of the parallelized algorithm is shown in figure 4.3 which is the main thread,

and in figure 4.4, the child thread which processes a subset of the replica list. The main thread

is responsible for creating the circular list of replicas and initializing each with a randomized

starting solution on line 1. On line 2 child threads are created and each is supplied a subset of

the list. Lines 3 to 5 initialize each child thread with a copy of the controlling parameters. The

child threads are instructed to begin processing their replica subsets in lines 6 to 8, and the main

thread waits for all threads to finish in lines 9 to 11 after which on line 12 it returns the best

solution from amongst all the children.
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Variables: G: group of replicas, g: number of replicas, T : temperature, JΓ: magnetic coupling
strength, MC : number of Monte Carlo steps, N : set of neighbourhood operators, n: chosen
operator, sbest : best solution, s′: candidate solution, z: index of current replica, Rprev: previous
replica, Rnext: next replica, Rlast: last replica in previous execution context, R1st: first replica
in following execution context

1: sbest ← Best(G)
2: while MC > 0 do
3: z ← 0
4: while z < g do
5: randomly choose n ∈ N
6: s′ ← n(Gz)
7: ∆Hp ← Hp(s′)−Hp(Gz)
8: if z = 0 then
9: Rprev ← Sync(Rlast) {Mutex/semaphore}

10: Rnext ← Gz+1

11: else if z = g − 1 then
12: Rprev ← Gz−1

13: Rnext ← Sync(R1st) {Mutex/semaphore}
14: else
15: Rprev ← Gz−1

16: Rnext ← Gz+1

17: end if
18: ∆Hk ← Interact(Rprev, s

′, Rnext)− Interact(Rprev, Gz, Rnext)
19: ∆H ← ∆Hp + JΓ∆Hk

20: if ((∆Hp <= 0) or (∆H <= 0)) then
21: Gz ← s′

22: else if exp(−∆H/T ) > random(0, 1) then
23: Gz ← s′

24: end if
25: if Hp(Gz) < Hp(sbest) then
26: sbest ← Gz

27: end if
28: z ← z + 1
29: end while
30: MC ←MC − 1
31: end while
32: return sbest

Figure 4.4: Child thread of Parallelized Quantum Annealing.

The child thread has many similarities with the generalized algorithm (section 2.3 figure 2.2),

sharing the nested loop structure, interaction and acceptance functions, and energy calculations.

However, because it only owns a subset of the replica list, it needs to acquire spin states from

siblings (existing in their own execution contexts) when processing the first and last replicas
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in its own list. This difference is shown in lines 8 to 17 where a cross-thread communication

technique must be employed to sychronize operation. If the current replica is the first in the

subset (line 8), then the state Rprev must be acquired from the last replica held in the previous

sibling thread (line 9). Conversely, if the current replica is the last in the subset (line 11), Rnext

is acquired from the first replica in the next sibling thread (line 13). In all other cases, Rprev

and Rnext can be acquired immediately from within the current execution context (lines 15 and

16).

4.3 Experiments

The parallelized algorithm PQAVRP described in section 4.2.1 was implemented in C++ (ISO/IEC

14882:2011) as a multithreaded command-line executable program for use in the Debian GNU/Linux

8 64-bit operating system deployed on a computing platform with 32GB of RAM, and an Intel

Xeon E5-2683 v3 processor, having 14 cores and a clock speed of 2GHz.

4.3.1 Single-threaded versus Multi-threaded QA algorithms

Tables 4.1 to 4.3 compares the performance of the single-threaded algorithm, FJ-QACVRP [42]

with PQAVRP while solving the P benchmarks of Augerat et al [59]. The algorithms were

configured identically, with the controlling parameters {JΓ, T, P} identified in [42] as resulting

in extremely high success rates. For each instance 100 runs were performed and additionally

for PQAVRP, repeated with a variety of thread counts nM = {10, 25, 40, 55, 70, 85} chosen to

gradually tax the computing platform’s resources, and the operating system’s ability to supply

and effectively maintain threads. Times are shown in seconds, with ts indicating single-threaded

performance of FJ-QACVRP, and tM the multithreaded PQAVRP. These are the times taken

for the optimizers to locate the optimal solution in each instance and is termed topt

Table 4.1 shows the best possible performance of both algorithms i.e. the quickest single

run with an optimal solution. In every case, PQAVRP significantly out-performs FJ-QACVRP,

requiring at least 15 threads to do so. For P-n55-k10 with P = 80, PQAVRP uses 65 threads to

execute in 0.03% of the time of FJ-QACVRP. For P-n70-k10 with P = 60, 45 threads are needed

to find the optimal solution in 7.9% of the time.
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Table 4.2 shows the worst case performance while still locating the optimal solutions. The

same trend as before is found. In P-n55-k7 with P = 70, PQAVRP using 30 threads runs in

0.44% of the time of FJ-QACVRP, while in P-n50-k10 with P = 80 uses 75 threads to run in

5.5%.

Table 4.3 shows the average performance of each algorithm to locate optimal solutions. Here,

no change in trend is found, with PQAVRP out-performing FJ-QACVRP in every case.
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Table 4.1: Set P: Minimum time taken for the single (tS) and multithreaded (tM ) optimizers to
find the optimal solution for each problem instance. nM denotes the number of threads used by
the multithreaded optimizer. At around 15+ threads, the time for the multithreaded optimizer
is an order or more faster.

P 40 50 60 70 80 90 100

P-n40-k5
tS 150·10−3 170·10−3 180·10−3 220·10−3 200·10−3 300·10−3 310·10−3

tM 1.6·10−3 370·10−6 2.9·10−6 10·10−6 8.4·10−6 2.7·10−6 320·10−6

nM 40 25 50 60 40 65 25

P-n45-k5
tS 230·10−3 240·10−3 320·10−3 330·10−3 360·10−3 420·10−3 470·10−3

tM 75·10−6 640·10−6 1.2·10−3 350·10−6 110·10−6 140·10−6 6.2·10−6

nM 25 40 55 40 55 35 65

P-n50-k7
tS 350·10−3 430·10−3 360·10−3 540·10−3 610·10−3 490·10−3 820·10−3

tM 9.4·10−6 1.3·10−3 94·10−6 440·10−6 1.4·10−3 1.0·10−3 110·10−6

nM 35 40 55 70 60 35 80

P-n50-k10
tS 3.5 1.4 1.6 3.5 7.9 5.8 4.8
tM 98·10−3 150·10−3 120·10−3 18·10−3 32·10−3 18·10−3 3.9·10−3

nM 15 45 45 70 75 80 70

P-n51-k10
tS 250·10−3 170·10−3 370·10−3 760·10−3 670·10−3 510·10−3 670·10−3

tM 23·10−3 6.0·10−3 1.6·10−3 200·10−6 1.2·10−3 1.4·10−3 1.7·10−3

nM 30 35 35 30 75 60 20

P-n55-k7
tS 580·10−3 420·10−3 860·10−3 830·10−3 880·10−3 990·10−3 1.5
tM 710·10−6 3.1·10−3 1.6·10−3 3.2·10−3 6.3·10−3 3.3·10−3 930·10−6

nM 30 40 25 45 60 60 75

P-n55-k10
tS 1.6 700·10−3 2.0 1.5 2.0 1.2 3.4
tM 42·10−3 34·10−3 14·10−3 6.3·10−3 600·10−6 1.2·10−3 27·10−3

nM 20 20 45 35 65 60 40

P-n60-k10
tS 1.0 560·10−3 950·10−3 1.0 770·10−3 2.1 1.1
tM 9.6·10−3 3.4·10−3 20·10−3 12·10−3 18·10−3 580·10−6 2.1·10−3

nM 40 45 55 45 80 65 65

P-n60-k15
tS 490·10−3 320·10−3 890·10−3 770·10−3 1.3 1.2 1.8
tM 6.3·10−3 2.5·10−3 7.6·10−3 5.4·10−3 3.8·10−3 3.2·10−3 1.3·10−3

nM 30 50 55 55 45 60 70

P-n65-k10
tS 600·10−3 690·10−3 790·10−3 1.2 1.2 920·10−3 1.3
tM 360·10−6 2.4·10−3 1.6·10−3 1.7·10−3 700·10−6 6.1·10−3 3.5·10−3

nM 35 35 55 40 25 70 35

P-n70-k10
tS 1.8 2.6 1.4 1.4 3.5 2.5 3.0
tM 41·10−3 190·10−3 110·10−3 5.9·10−3 13·10−3 13·10−3 94·10−3

nM 30 30 45 20 60 55 25

P-n76-k4
tS 4.4 8.4 17 5.2 10 8.2 5.5
tM 470·10−3 140·10−3 310·10−3 130·10−3 72·10−3 350·10−3 190·10−3

nM 20 30 50 15 75 60 30

P-n76-k5
tS 5.1 3.4 3.9 3.3 3.9 3.1 6.8
tM 210·10−3 170·10−3 140·10−3 140·10−3 43·10−3 160·10−3 100·10−3

nM 20 45 30 65 65 50 40

P-n101-k4
tS 9.7 8.6 12 15 23 16 18
tM 320·10−3 220·10−3 390·10−3 480·10−3 370·10−3 640·10−3 650·10−3

nM 40 20 30 35 65 15 65
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Table 4.2: Set P: Maximum time time taken for the single (tS) and multithreaded (tM ) optimizers
to find the optimal solution for each problem instance. nM denotes the number of threads used
by the multithreaded optimizer. At 10+ threads, the time for the multithreaded optimizer is an
order or more faster.

P 40 50 60 70 80 90 100

P-n40-k5
tS 700·10−3 550·10−3 840·10−3 820·10−3 810·10−3 970·10−3 830·10−3

tM 11·10−3 21·10−3 15·10−3 18·10−3 17·10−3 20·10−3 20·10−3

nM 30 15 25 30 35 40 55

P-n45-k5
tS 2.3 1.5 2.2 2.2 2.0 2.0 1.3
tM 16·10−3 19·10−3 19·10−3 36·10−3 20·10−3 33·10−3 40·10−3

nM 40 35 55 60 35 45 30

P-n50-k7
tS 4.0 12 8.1 10 7.3 7.7 6.2
tM 72·10−3 60·10−3 54·10−3 82·10−3 100·10−3 150·10−3 160·10−3

nM 35 20 30 40 55 40 75

P-n50-k10
tS 780 850 720 890 550 1.2·103 720
tM 36 44 32 27 30 43 36
nM 30 45 40 20 75 10 70

P-n51-k10
tS 180 120 40 55 89 39 60
tM 1.4 630·10−3 630·10−3 720·10−3 340·10−3 570·10−3 730·10−3

nM 20 30 55 15 30 25 80

P-n55-k7
tS 58 160 93 120 94 210 73
tM 610·10−3 1.1 1.0 530·10−3 590·10−3 1.0 450·10−3

nM 25 20 15 30 70 65 40

P-n55-k10
tS 730 820 1.1·103 840 980 1.6·103 1.1·103

tM 29 23 29 34 23 24 29
nM 20 20 45 70 50 70 40

P-n60-k10
tS 55 60 87 57 63 71 36
tM 1.2 1.3 1.4 1.4 880·10−3 1.9 1.2
nM 35 35 20 65 55 80 40

P-n60-k15
tS 240 420 390 410 240 230 400
tM 3.6 5.8 7.2 5.7 5.8 2.1 3.0
nM 30 40 40 50 50 55 45

P-n65-k10
tS 19 48 60 24 50 38 41
tM 340·10−3 490·10−3 700·10−3 330·10−3 560·10−3 200·10−3 550·10−3

nM 20 20 25 40 80 55 50

P-n70-k10
tS 620 440 910 390 400 390 410
tM 12 9.9 10 12 11 12 8.3
nM 20 45 20 70 60 70 50

P-n76-k4
tS 1.0·103 1.6·103 930 860 760 1.0·103 1.0·103

tM 14 23 22 31 29 26 24
nM 35 50 35 15 55 80 65

P-n76-k5
tS 1.5·103 1.8·103 1.1·103 1.7·103 2.4·103 1.1·103 2.7·103

tM 43 44 29 39 28 46 43
nM 15 30 35 50 40 70 80

P-n101-k4
tS 360 380 330 310 240 530 300
tM 8.9 9.7 12 11 9.6 10 10
nM 25 35 50 55 65 35 50
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Table 4.3: Set P: Average time time taken for the single (tS) and multithreaded (tM ) optimizers
to find the optimal solution for each problem instance. nM denotes the number of threads used
by the multithreaded optimizer. At 10+ threads, the time for the multithreaded optimizer is an
order or more faster.

P 40 50 60 70 80 90 100

P-n40-k5
tS 290·10−3 310·10−3 390·10−3 440·10−3 460·10−3 520·10−3 540·10−3

tM 6.4·10−3 8.6·10−3 9.1·10−3 9.4·10−3 9.0·10−3 12·10−3 12·10−3

nM 30 50 25 30 40 65 55

P-n45-k5
tS 450·10−3 460·10−3 560·10−3 630·10−3 720·10−3 780·10−3 820·10−3

tM 8.2·10−3 12·10−3 11·10−3 14·10−3 13·10−3 18·10−3 21·10−3

nM 30 20 55 55 35 60 35

P-n50-k7
tS 1.5 1.8 1.6 1.9 2.0 2.1 2.3
tM 27·10−3 24·10−3 23·10−3 19·10−3 41·10−3 47·10−3 52·10−3

nM 35 20 55 40 55 60 60

P-n50-k10
tS 130 150 120 160 130 160 150
tM 8.6 11 7.2 6.4 7.5 5.5 7.0
nM 40 45 60 20 80 15 80

P-n51-k10
tS 13 12 8.9 9.2 10 8.6 8.7
tM 210·10−3 210·10−3 110·10−3 93·10−3 100·10−3 140·10−3 200·10−3

nM 30 30 45 35 30 25 15

P-n55-k7
tS 12 12 10 10 10 13 7.9
tM 64·10−3 190·10−3 150·10−3 170·10−3 190·10−3 190·10−3 170·10−3

nM 10 25 55 45 70 60 75

P-n55-k10
tS 180 180 150 160 160 170 200
tM 5.9 2.5 4.3 5.3 3.8 5.4 5.1
nM 40 20 45 25 65 70 70

P-n60-k10
tS 14 11 14 14 13 15 13
tM 230·10−3 400·10−3 340·10−3 430·10−3 370·10−3 500·10−3 320·10−3

nM 40 35 20 65 80 60 65

P-n60-k15
tS 53 46 55 47 41 38 35
tM 570·10−3 900·10−3 510·10−3 590·10−3 490·10−3 340·10−3 430·10−3

nM 35 40 40 50 45 55 45

P-n65-k10
tS 6.3 7.1 8.1 6.6 7.6 7.1 7.2
tM 87·10−3 130·10−3 190·10−3 83·10−3 170·10−3 70·10−3 180·10−3

nM 20 15 25 40 65 55 45

P-n70-k10
tS 74 78 93 97 84 99 90
tM 3.3 3.5 3.4 2.8 3.5 4.2 3.7
nM 30 45 20 20 60 15 50

P-n76-k4
tS 190 230 210 200 220 220 250
tM 5.9 8.1 7.2 9.4 10 11 9.3
nM 35 20 35 55 70 80 30

P-n76-k5
tS 250 330 270 310 240 250 310
tM 12 14 8.1 13 12 14 14
nM 15 45 35 50 25 25 70

P-n101-k4
tS 83 82 94 96 100 97 110
tM 3.2 4.7 4.0 4.4 4.7 3.9 4.9
nM 25 25 15 65 35 35 30
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Within the chosen limits of a population size restricted to P ≤ 100 occupying at most 2.5x

of the maximum available number processor cores, the performance of PQAVRP is exceptional

when compared to FJ-QACVRP. PQAVRP returns the same success rate and solution quality as

the single-threaded predecessor but in a significantly and consistently smaller fraction of time.

4.3.2 Multithreaded performance

Figure 4.5 shows the effect of increasing the thread count nM upon topt. When nM = 1, the

performance approximates that of FJ-QACVRP. topt diminishes as threads are added, with the

best improvement being in the worst-case performance - the longest time (max) to find optimal

solutions. As can be expected, when the number of threads begins to exceed the number of cores,

improvements in time begin to tail off - this can be seen to happen at around 14 threads where

the curves start to become shallow. Beyond 60 threads, average (av) and best times (min) do

not improve indicating that computer system is becoming saturated with the processes.
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Figure 4.5: Number of threads versus maximum (max), average (av), and minimum (min) time
until the optimal solution is found for P-n101-k4 with P=100.
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4.4 Conclusions

This section has been shown that for restricted running times, the multithreaded variant is able

to outperform the single-threaded QA optimizers in a comprehensive fashion. For a thread-

count which does not exceed the computing capabilities of the host platform, the coarse-grained

parallelized program was proven to deliver identical solution quality and equivalent or improved

success rates in a fraction of the wall-clock time. Additionally, since the original formulation

of the QA algorithm remains intact, employing PIMC and the Ising model, parameter tunings

from previous studies for each VRP instance could be reused. It was shown that for all the

benchmarks in this study, no retuning was required. Whether or not this situation holds true

for all VRP benchmarks is the subject for future experimentation.

With the multithreaded advantages of QA proven, it should now be possible to refactor

the program code for the replica threads, enabling them to work as a distinct process in a

distributed manner such as in clustered or cloud computing. This would mitigate the limitations

of an individual computing system which is easily overloaded by specifying an excessive number

of threads. Such technologies present additional opportunities for future investigation.
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Chapter 5

The Industrial Domain of Field

Service Scheduling

5.1 Introduction

Knowledge Transfer Partnerships (Knowledge Transfer Partnership (KTP)) [76] are organized

by Innovate UK [77], a body charged by the UK government to help businesses innovate and

grow. An academic organization, a graduate, and a company are partnered to their mutual

benefits whilst they transfer knowledge from academia, converting it to practical and economic

advantage.

Owing to the exposure of the MMU’s research into optimization of scheduling problems [41],

and the attractiveness of the Innovate UK programme, ServicePower Technologies Plc initiated

a KTP with the aim to update their Field Service Scheduling (FSS) technology with a more

effective, patented design based upon QA. Materials for and outputs of the KTP can be found

in Appendix B Knowledge Transfer Partnership Outcomes.

The KTP for applying QA to FSS was begun after the completion of the research outlined

in Chapter 2 which established the basis of the QA algorithm, and mid-way through the tuning

experiments of Chapter 3. This offered the opportunity to extend the experimental regime

already in place for VRP to include FSS. As well as furthering the applicability of the algorithm,
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it might confirm the wider applicability of the PT and ESPT methodologies.

The agreed development plan was to gradually enhance the product Simulated Annealing

for Service Optimization (Simulated Annealing for Service Optimization (SASO)) over several

stages (Figure 5.1) so that the behaviour of the software in application frameworks would remain

consistent with previous revisions. In broad terms, first the SASO data structures were modified

so that it could host a population of solutions, each processed by the existing SA metaheuristic.

Once working, the Quasi-Quantum Annealing (QQA) metaheuristic - which employed a random

kinetic energy calculation instead of an Ising Model - was added to the program. Comparative

experiments were conducted to assess the performance of both metaheuristics.

Figure 5.1: The evolution of ServicePower optimizers. Quasi-Quantum Annealing was integrated
with Simulated Annealing in 2015, with the latter being supplanted in 2016 by Full Quantum
Annealing. Multithreaded variants of the quantum algorithm were introduced in 2017 and on-
wards.

The second stage removed any trace of SA, and then included a spin encoding scheme for

FSS (section 5.4), implementing the Ising Model with which kinetic energy could be calculated.

This would be the first version of QA for FSS and is referred to here as Full Quantum Annealing

(FQA). Again, experiments were conducted to compare the metaheuristics. The third stage

involved using multithreading techniques to parallelize QQA and FQA. This was an optional

stage, development of which depended upon whether performance of FQA was sufficient for use

in production environments.

The major contribution in this chapter is the encoding scheme for FSS which is central to

implementing the Ising model. It is to our knowledge the first spin representation of a such a
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complex scheduling problem, the novelty of which is affirmed by the award of a patent. Also a key

contribution is the QAFSS algorithm - the first time QA has been applied to solve both academic

and practical real-world instances of FSS problems. Further contributions in this chapter are the

parallelized FQA algorithm PQAFSS which improves the run-time performance of QAFSS, and

the pared-down QA algorithm Quasi-Quantum Annealing which proved to be more than just a

stepping-stone along the way to FQA, demonstrating itself as an effective metaheuristic in its

own right.

Section 5.3 details the stages of the development plan, and section 5.5 presents the results of

the performance experiments. The appendices contain the outputs of the KTP programme.

5.2 Field Service Scheduling

In FSS problems, the individuals of a workforce must each be assigned a sequence of jobs from

within a schedule which is formed to service the needs of a geographically distributed collection

of customers. Field Service industries send their workforce to sites where they perform main-

tenance, emergency or otherwise, upon industrial and domestic machinery; or to deliver and

install equipment; or to perform instrumentation and measurement tasks. The workforce is a set

of heterogeneous workers with attributes such as skills, spares and capacity, location, mobility

and availability (shift pattern, vacation).

The customers have varying appointment preferences and requirements which define the kinds

of jobs which need to be assigned to the workforce. Each customer has a demand upon spares

stock and the type of skill needed to fulfill their requirements. The objective function is usually a

combination of several factors which must be minimized. For example: overtime; mean tardiness;

service level agreement fines; total travel time; etc.

FSS combines features of other scheduling problems such as in time tabling, rostering, job-

shop, and routing problems such as the Traveling Technician Problem (TTP) [78], and the

Technician Routing and Scheduling Problem (TRSP) [79]. FSS can be tackled as a dynamic

problem in which workforce and customer sets may vary continuously in size (jobs are booked

throughout hours of business, whilst workers can alter shifts) and attributes such as travel time

(affected by traffic or weather conditions) can affect jobs assignments in real time. The work
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presented here tackles the static variant of FSS, wherein appointment times are endeavoured to

be kept, shift patterns are known in advance and do not change for the given scheduling horizon,

and other variable attributes are assumed ideal e.g. spares stock is limitless (return to depots

are factored into travel times).

5.3 Development of QA for FSS

The basis of the QA algorithm for FSS (QAFSS) was established in Chapter 2, where it was

applied to the Vehicle Routing Problem (VRP) and subsequently extended and modified to

accomplish simplified tuning of the controlling parameters in Chapter 3. Wall-clock time per-

formance issues were then addressed by parallelizing the algorithm, taking advantage of modern

multi-core processors and multithreaded environments in Chapter 4. With many of the draw-

backs of QA now addressed, application in an industrial domain was feasible. The VRP and FSS

problem domains were simultaneously addressed during the latter efforts.

5.3.1 Simulated and Quasi-Quantum Annealing for Field Service Schedul-

ing

All of the optimizers in the ServicePower product Optimization on Demand (OoD) were evolved

from an implementation of SA for FSS within an application framework entitled SASO. The

program structure of the first version Quasi-Quantum Annealing (QQA) resembled coupled or

ensemble-based SA [80][81], reusing a large portion of the SA code base. It was therefore able

to co-exist within the same executable and be hosted in a slightly modified SASO framework.

The domain logic, which included objectives and a large set of constraints to encode the business

rules, was unchanged as it was necessary that existing infrastructure was reused.

5.3.2 Full Quantum Annealing for Field Service Scheduling

The development of Full Quantum Annealing (FQA) shared nothing but the domain model with

SA. QQA structures and methods were upgraded to incorporate an Ising Model (section 5.4)

for FQA whilst all traces of SA were removed. Other upgrades included objectifying structures,
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enhancing performance, removing bugs, adding features to increase robustness and support ex-

periments. Since FQA is a generalization of QQA, they co-exist in the same application -

improvements applied to any one are naturally acquired by both. Owing to these improvements,

their version numbers were increased (QQAv2, FQAv2).

5.3.3 Parallelized Quantum Annealing for Field Service Scheduling

For convenience and expediency, the SASO framework also hosted the multithreaded QA opti-

mizers, allowing a resuse of the experimental framework for previous optimizers (SA/QQA/FQA)

requiring only small adjustments and additions to the tools, scripts and code.

5.4 QA Scheme for FSS

The QA algorithm for FSS is broadly identical to figure 3.4 in Chapter 3 as used in FJ-QACVRP,

employing the PIMC method and Metropolis criteria, while also presenting the opportunity to

be tuned using ESPT (Chapter 3,section 3.2.3). The major differences are in the definition of

the spin matrix and the implementation of a set of neighbourhood operators which are tailored

specifically for local searching of scheduling problems. The SASO neighbourhood operators and

local search functions were reused in QAFSS, leaving only the spin matrix to be defined.

5.4.1 Spin Matrix for FSS

A spin matrix representation of a FSS problem must be defined in order to form the Ising

Model which is used by the QA algorithm. Elements of the schedule which must be minimized

(or maximized) are reduced to +1,-1 spin values and then mapped into a matrix of Boolean

values. Figure 5.2 shows the encoding scheme, which can be described as a table whose rows

are assignments of jobs j0 − j1 to operatives O0 − On (service technicians) over the scheduling

window which is divided into periods t0 − tn. Hard and soft constraint violations and conflicts

in the schedule are tracked in h0 − hn, s0 − sn, and c0 − cn respectively. As the local search

scheme progresses, jobs are moved stochastically amongst operatives, breaking and satisfying

constraints whilst conflicts are caused and then resolved. These changes cause the cells of each

row to flip their state {0, 1} continually during optimization, and so cause perturbations in the
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kinetic energy when this arrangement is used in the calculation of interaction energy (Chapter 2,

figure 2.3). A large number of these matrices are used to populate a circular list and so forms the

Ising Model for QAFSS. A conceptual view of the spin-spin interactions is shown in Figure 5.3.
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Table 5.1: Example scenario. Four operatives with skills and locations, to be assigned four jobs
subject to two hard and two soft constraints

Service Technicians Skills Location

O0 A LA

O1 ABC LB

O2 CD LC

O3 ABCD LD

Hard constraint Description

h0 start on time
h1 correct skills

Soft constraint Description

s0 overtime
s1 location

Job Start period Duration Skills needed Location

j0 0 2 A LA

j1 1 1 AB LA

j2 1 3 B LD

j3 2 2 C LC

Table 5.2: Example spin matrix for the scenario in Table 5.1. Four technicians O0-O3 with various
combinations of skills ABCD, located at LA-LD must be assigned jobs j0-j3 whilst obeying
constraints h0-h1 and s0-s1. As shown, there exists a boolean encoding of job assignments to
service technicians over a quartered time period having no hard constraint violations and a single
soft constraint violation with no conflicts (e.g. double-bookings)

Periods Constraints Conflicts Assignments Hexadecimal
encodingt0 t1 t2 t3 h0 h1 s0 s1 c0 c1 c2 c3 j0 j1 j2 j3

O0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 CFF8
O1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 4EF4
O2 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 3FF1
O3 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 7FF2

5.4.2 Parallelized QA for FSS

The previous versions of the ServicePower metaheuristics employed single-threaded implementa-

tions of QA. As this is a population-based method, wherein each member of the population can

be viewed as a distinct optimization process, it is clear why it is slower than SA - a trajectory

method which runs in a single process. QA has a wall-clock time which is approximately equal

to that of SA multiplied by a factor of the population size. In order to reduce this factor, several

approaches may be taken but only a few would leave enough of the algorithm intact so that it
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may still be described faithfully as ‘quantum’. Straight-forward code optimizations are one such

method but opportunities for improvements are rapidly exhausted and simultaneously subject

to diminishing returns relative to the effort of implementation. Parallelization using threading

techniques is a one-off approach which in principle allows performance gains which are scaled

by the availability of computational resources. The designs shown in figures 4.1 and 4.2 of sec-

tion 4.2 leverage this technique and were implemented for FSS. The Simple (S) and Grouped

(G) threading models were hosted together in the same program, PQAFSS, and were included

in further comparative experiments (section 5.5.3).

5.5 Experiments and comparative results

Although multicore processor architectures allow for programs to be written to achieve paral-

lelization of their workload, QQA and FQA are not implemented to support concurrent processing

of replicas. However, the experimental scripts take advantage in a different way. Rather than

breaking the algorithm into parallelizable components, QQA and FQA were invoked by a script

instructing the operating system to place a whole experimental run in a separate process which

becomes allocated to a single CPU core. This design allows runs to occur simultaneously, and

maximize core usage whilst delivering results quickly. Two CPUs were employed (Table 5.3), one

which resides locally in a workstation, and the other hosted in the cloud, each running the Linux

operating system.

Table 5.3: Processors used for QQA versus SA experiments.

Manufacturer Processor Cores Clock (GHz) Host Key

Intel Xeon E5-2683 v3 14 2.0 Workstation X1
Intel Xeon E5-2666 v3 32 2.9 AWS Cloud X2

5.5.1 Quasi-Quantum versus Simulated Annealing, Initial results

A collection of synthetic instances (Table 5.4) was used in the experimental comparisons, with

levels of complexity ranging from trivial to, by academic standards, modestly complex. The

simplest of these proved useful during the development, testing and debugging of the software
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whilst the largest give indications of the performance levels that can be expected for more

complicated data sets, and motivation to explore possibilities to optimize the software for speed.

Table 5.4: Instances used for QQA versus SA experiments

Name #Jobs #Operatives Notes

gen10-3 10 3 Useful for debugging/testing

gen22 20 5
SA & QA results equivalent in cost

gen50 50 5

gen50-10rnd 50 10 Randomized job durations
gen100 100 10 Under-resourced version of gen100-15

gen100-15 100 15 -
gen500 500 50 -

For the last four instances in Table 5.4, a batch of runs was repeated for a variety of iter-

ation values MC (Monte Carlo steps). Each batch included runs at a range of temperatures

(1≤T≤1001, ∆T=100) and for QA, at each temperature interval a range of replica counts

(10≤P≤50, ∆P=10). For statistical significance, 100 runs were performed at each interval,

and so each batch consists of an instance which is solved over 5000 times.

Tables 5.5 to 5.8 present the objective function values and wall-clock times for the best and

worst solutions found in each batch by the optimizers.

Table 5.5: Objective function values (OF) for instance gen50-10rnd (50 jobs, 10 operatives),
using a restricted number of Monte Carlo steps. SA performs well, delivering results in less than
a second. Quasi-quantum annealing (QQA) is able to perform equally in the best case when
given a population size of 10, albeit slower. In the worst case, QQA outperforms SA but requires
at least 20 replicas and more time to do so.

MC=50 MC=100

OF sec OF sec

SA best 786201 <1 78620 <1
worst 86390 <1 80465 <1

QQA best 786202 4 786202 8
worst 834203 9 786204 43

1 T=201
2 T=101, P=10

3 T=901, P=20
4 T=601, P=50
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Table 5.6: Objective function values (OF) for instance gen100

MC=5000

OF sec

SA best 10673001 91
worst 1069150 91

QQA best 10663102 1121
worst 10674303 921

1 T=101
2 T=901, P=20

3 T=801, P=10

Table 5.7: Objective function values (OF) for instance gen100-15

MC=50 MC=1000 MC=5000

OF sec OF sec OF sec

SA best 32760 1 310401 13 31050 65
worst 43740 1 31590 13 31600 66

QQA best 31640 21 309302 554 30930 666
worst 44280 12 312503 269 31140 2837

1 T=501
2 T=701, P=40

3 T=1, P=20

Table 5.8: Objective function values (OF) for instance gen500

MC=5000

OF sec

SA best 50998501 26
worst 5101970 27

QQA best 50985102 655
worst 51005703 284

1 T=501
2 T=801, P=40

3 T=201, P=10

In terms of best scores, QQA outperforms SA in nearly all instances. Where it does not,

the score is equivalent and obtained at lower values for MC (Table 5.5, MC ≤100). Regarding

worst scores, QQA generally outperforms SA except in two instances and when iterations are

at the lowest (tables 5.5 and 5.7, MC=50). This may indicate that SA is able to converge

in fewer steps than QQA which lacks the additional convergence supplied by a proper kinetic

energy component as in QA. Convergence appears to improve when MC ≥100, whereupon SA is
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consistently outperformed.

In terms of wall-clock time SA completes faster than QQA. This is unsurprising as SA is a

trajectory method, in effect having only a single replica to process. QQA for the same number of

iterations should take approximately ×P more time than SA. This is bourne out in the findings

which show the correct order of magnitude if not this precise relationship. For example, taking

the best solutions in Table 5.6, QA averages 56 seconds per replica and SA 91 seconds, and for

the worst QA averages 92.1 seconds per replica and SA 91 seconds.

Tables 5.9 and 5.10 present the mininum, maximum and average counts for unresourced

jobs. This is a contextual measure important in many use-cases as it expresses congestion in the

schedule owing to unavailability of assignees or an overloading in jobs. It can also express a lack

of performance in the optimizer. Pinpointing why is difficult because there are many potential

causes, such as inadequate tuning, problems in the local search, or not enough allotted time or

iterations.

Table 5.9: Unresourced job counts for instance gen50-10rnd

MC=50 MC=100

min max Av min max Av
SA 20 22 20.32 21 23 21.3
QQA 20 22 20.24 20 21 20.4

Table 5.10: Unresourced job counts for instance gen100-15

MC=50 MC=1000 MC=5000

min max Av min max Av min max Av
SA 0 2 0.4 0 0 0 0 0 0
QQA 0 2 0.5 0 0 0 0 0 0

Tables 5.9 and 5.10 show that at low iterations (MC=50), SA and QQA are almost equivalent

with only the averages being divergent. In the first case QQA is slightly better, in the second it

is marginally worse. At twice the iterations (Table 5.9,MC=100) QQA shows a definite improve-

ment compared to SA, with a lower minimum, maximum and average number of unresourced

jobs.
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5.5.2 Full Quantum versus Quasi-Quantum versus Simulated Annealing

The first version of the ServicePower application, SASO, employed the SA metaheuristic as the

optimization technique for FSS problems. Further development produced a second application

which employed both full-blown and simplified versions the QA metaheuristic. These versions

were entitled Full Quantum Annealing (FQA) and Quasi-Quantum Annealing (QQA) respec-

tively. With all three metaheuristics complete and deployed using the same supporting infras-

tructure it is possible to configure them similarly and provide identical experimental conditions

to compare their performance.

Table 5.11 shows the instances used in this comparison, where the data was sourced, and

indicates the complexity of each problem (number of jobs and resources to be assigned within a

scheduling window).

Table 5.11: Instances used in comparative experiments of FQA, QQA and SA

Instance Source Jobs Resources Scheduling window (days)

gen500 Synthetic 500 50 1
gen1000-90 Synthetic 1000 90 1
gen5k-600 Synthetic 5000 600 1

gen10k-12k Synthetic 10000 12000 1
aXXXXXXX_3d Real world 2429 379 3

aXXXXXXX_05012016 Real world 1045 127 1
aDXXXXX_05012016 Real world 63 31 1

cXXXXXXX_05012016 Real world 301 87 1
hXX_XXXXXX_04012016 Real world 363 21 1
OPXXXXXXXXXXXX5d Unknown 13361 9100 154
OPXXXXXXXXXXXX15d Unknown 4962 899 15

OPXXXXXXXXXXXX_05012016 Unknown 536 75 1
sXXXX_8107_F2_3day Real world 1966 339 3

sXXXX_8107_F2_23122015 Real world 1115 171 1
uXXXX4 Real world 1761 296 7

uXXXX4x0.75R Real world 1761 222 7
uXXXX4x0.50R Real world 1761 148 7
uXXXX4x0.25R Real world 1761 75 7

The method used to rank solutions is shown in Figure 5.4. Computation time is measured in

units of program iterations, and solution quality is defined using the following prioritized metrics,

with ties broken in highest (1) to lowest (4) order:
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1. Most jobs assigned

2. Least resources used

3. Weighted sum of constraint violations and business costs i.e. The Objective Function.

4. Wall-clock time

Figure 5.4: Solution quality defined as a prioritized list of metrics

5.5.2.1 Untuned optimization

The summarized results in Table 5.12 best represents the approach to tuning that occurs often out

in the field. Currently, the SA optimizer is deployed with little or no tuning i.e. Temperature

values are not systematically chosen. They are either best-guessed or copied from previous

deployments and reused. Therefore, in these experiments the optimizers are given the same

temperature value while the Quantum variants also share population sizes and magnetic field

values which are estimated from experience. As can be seen, FQA accumulates the most wins,

whereas SA is only able to compete on the basis of time and only when the other quality metrics

are tied.
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Table 5.12: Summary of results using untuned optimizers SA, QQA and FQA

Instance Best optimizer

Most jobs assigned Least resources used Solution Quality
gen500 tie tie SA

gen1000-90 FQA tie FQA
gen5k-600 tie FQA FQA

gen10k-12k tie FQA FQA
aXXXXXXX_3d tie QQA QQA

aXXXXXXX_05012016 QQA FQA QQA
aDXXXXX_05012016 tie tie SA

cXXXXXXX_05012016 tie FQA FQA
hXX_XXXXXX_04012016 tie tie QQA
OPXXXXXXXXXXXX5d FQA FQA FQA
OPXXXXXXXXXXXX15d FQA QQA FQA

OPXXXXXXXXXXXX_05012016 tie FQA FQA
sXXXX_8107_F2_3day FQA QQA FQA

sXXXX_8107_F2_23122015 tie FQA FQA
uXXXX4 QQA tie QQA

uXXXX4x0.75R FQA tie FQA
uXXXX4x0.50R QQA FQA QQA
uXXXX4x0.25R FQA QQA FQA

Total (SA : QQA : FQA : tie) 0 : 3 : 6 : 9 0 : 4 : 8 : 6 2 : 5 : 11 : 0

For every instance in the study, each untuned optimizer was run for 16.8×106 iterations. In

total, tables 5.13 and 5.14 represent 54 runs of the software.
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Table 5.13: Results of the untuned optimizers upon 1-9 problem instances (part 1 of 2)

Instance SA QQA FQA

gen500

JUR 0 0 0
RUS 0 0 0
OF 5131050 5123490 5124220
t 30 843 1015

gen1000-90

JUR 248 244 241
RUS 0 0 0
OF 988660 969920 958065
t 31 844 1008

gen5k-600

JUR 0 0 0
RUS 7 5 8
OF 51507260 51497040 51492700
t 39 1281 1439

gen10k-12k

JUR 0 0 0
RUS 0 0 2
OF 4137680 4223330 4115420
t 46 1584 1938

aXXXXXXX_3d

JUR 181 107 107
RUS 213 217 215
OF 845025456 449241102 449419784
t 23 544 693

aXXXXXXX_05012016

JUR 110 58 60
RUS 47 47 48
OF 397847727 245301213 250715470
t 23 570 734

aDXXXXX_05012016

JUR 0 0 0
RUS 10 10 10
OF 25985 25985 25985
t 12 243 285

cXXXXXXX_05012016

JUR 41 35 35
RUS 37 35 36
OF 124989130 108068305 107650425
t 17 408 509

hXX_XXXXXX_04012016

JUR 2 0 0
RUS 4 4 4
OF 7847522 600584 600667
t 55 1525 1779
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Table 5.14: Results of the untuned optimizers upon 10-18 problem instances (part 2 of 2)

Instance SA QQA FQA

OPXXXXXXXXXXXX5d

JUR 2090 1899 1809
RUS 8727 8636 8706
OF 7175576615 6586513060 6397401870
t 40 972 1218

OPXXXXXXXXXXXX15d

JUR 44 30 22
RUS 390 417 391
OF 1696531935 1629601385 1635615975
t 44 911 1006

OPXXXXXXXXXXXX_05012016

JUR 33 33 33
RUS 27 25 27
OF 99053905 99053345 99052585
t 33 667 820

sXXXX_8107_F2_3day

JUR 13 7 5
RUS 114 127 126
OF 105396292 81960904 77542484
t 23 588 747

sXXXX_8107_F2_23122015

JUR 12 3 3
RUS 47 49 50
OF 73598290 45411775 45231710
t 24 604 743

uXXXX4

JUR 27 6 7
RUS 10 10 10
OF 1796910 1213255 1188230
t 26 707 882

uXXXX4x0.75R

JUR 533 514 503
RUS 8 7 7
OF 6161480 5991755 5982740
t 29 767 906

uXXXX4x0.50R

JUR 955 914 931
RUS 5 5 7
OF 10084960 9745425 9827700
t 34 873 1179

uXXXX4x0.25R

JUR 1373 1355 1349
RUS 3 5 3
OF 13973780 13798740 13762710
t 46 1329 1613
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5.5.2.2 Tuned optimization

The summary of Table 5.15 presents the results of the tuned metaheuristics over a range of

iterations upon a selection of the problem instances. Although it is the fastest algorithm, SA

shows no wins as it is always outperformed in quality metrics 1, 2 and 3. Ties are shown to

indicate that FQA and QQA performed identically in metrics 1, 2 and 3. If the quality metric is

strictly applied then QQA wins in these cases because it is a slightly faster algorithm than FQA

and the tie can be broken using metric 4, wall-clock time.

Table 5.15: Summary of results using tuned optimizers QQA and FQA

Instance Best solution quality over N×106 iterations

N 0.5 1 1.5 2.5 5 10 20 40

aXXXXXXX_3d FQA QQA QQA QQA FQA QQA FQA FQA
aXXXXXXX_05012016 FQA QQA tie QQA FQA tie FQA tie
cXXXXXXX_05012016 tie QQA tie FQA tie QQA FQA FQA

hXX_XXXXXX_04012016 tie tie tie tie tie tie tie tie
sXXXX_8107_F2_3day QQA QQA FQA FQA FQA FQA QQA QQA

sXXXX_8107_F2_23122015 FQA QQA tie QQA FQA FQA FQA tie
uXXXX4 QQA QQA QQA QQA QQA QQA FQA QQA

uXXXXXx0.75R FQA SA SA FQA FQA QQA FQA SA
uXXXXXx0.50R QQA QQA FQA FQA FQA FQA FQA FQA
uXXXXXx0.25R QQA QQA FQA QQA FQA QQA FQA FQA

For brevity, a sample of the tuned results is presented in sections 5.5.2.3 to 5.5.2.5 below.

Over 3,600 executions of the software were performed, in various configurations of tempera-

ture, population size and magnetic field. In each configuration, runs occurred across a range of

iterations.

(Not shown is any data from which the tuning values were determined as there were over

37,000 software executions - a copious amount that could not easily be presented here. Unless

otherwise stated, control parameters were obtained from experimental suites which used 5× 106

iterations per execution.)

5.5.2.3 aXXXXXX_3d

According to solution quality (Figure 5.4), Table 5.16 shows that FQA and QQA have equal

numbers of wins, with FQA performing better at high iterations.
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Table 5.16: Tuned optimizers with increasing iterations scheduling 2429 jobs to 379 resources in
a 1-day window

Iterations ×106 SA QQA FQA

0.5

JUR 270 253 251
RUS 200 211 212
OF 1414076988 912009082 909912860
t 1 9 12

1

JUR 248 209 209
RUS 208 211 209
OF 1103110993 789607771 745025145
t 1 19 23

1.5

JUR 235 189 192
RUS 210 213 210
OF 1252516913 709683151 699090774
t 2 28 24

2.5

JUR 215 166 166
RUS 212 217 213
OF 964641643 632257554 623862294
t 3 45 59

5

JUR 189 136 133
RUS 208 215 215
OF 1100053108 535865682 526027990
t 7 91 114

10

JUR 182 120 120
RUS 210 217 212
OF 869283167 488956120 487477361
t 14 177 229

20

JUR 170 104 101
RUS 214 216 217
OF 833127551 440775590 432125823
t 28 353 460

40

JUR 160 92 90
RUS 211 217 214
OF 783653192 405086421 399130440
t 56 756 939

5.5.2.4 cXXXXXXX_05012016

Table 5.17 shows that QQA attains best solution quality 5 times versus 3 for FQA. Again, FQA

obtains best results at higher iterations.
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Table 5.17: Tuned optimizers with increasing iterations scheduling assign 301 jobs to 87 resources
in a 1-day window

Iterations ×106 SA QQA FQA

0.5

JUR 39 35 35
RUS 34 37 37
OF 120154235 108252695 108372975
t 1 14 18

1

JUR 39 35 35
RUS 35 38 37
OF 120535450 107978870 108185030
t 1 28 36

1.5

JUR 39 35 35
RUS 37 37 37
OF 119785050 108185075 108368805
t 2 42 53

2.5

JUR 39 35 35
RUS 36 37 38
OF 119487550 108368470 108068650
t 3 70 89

5

JUR 39 35 35
RUS 36 37 37
OF 119484660 108185260 108669930
t 5 139 182

10

JUR 38 35 35
RUS 35 37 36
OF 118468542 108195970 108251120
t 10 277 363

20

JUR 39 35 35
RUS 36 37 37
OF 119668785 108185755 108067420
t 21 552 707

40

JUR 39 35 35
RUS 36 37 38
OF 120029600 108068390 107768230
t 43 1134 1449

5.5.2.5 sXXXX_8107_F2_23122015

Table 5.18 shows FQA with best solution quality 5 times versus 3 for QQA. At 40×106 iterations,

QQA and FQA perform similarly with less than 2% difference in OF .

99



Table 5.18: Tuned optimizers with increasing iterations scheduling 1115 jobs to 171 resources in
a 1-day window

Iterations ×106 SA QQA FQA

0.5

JUR 83 53 46
RUS 39 48 44
OF 283073255 193798160 171796945
t 1 20 24

1

JUR 53 22 26
RUS 45 48 54
OF 195884665 105884835 115036305
t 2 39 50

1.5

JUR 39 13 13
RUS 38 52 52
OF 150498705 76347540 74995515
t 2 58 78

2.5

JUR 18 5 6
RUS 43 53 54
OF 91135620 53666135 54875005
t 4 103 127

5

JUR 11 3 3
RUS 40 54 56
OF 73291115 47370425 47915700
t 7 202 269

10

JUR 8 3 3
RUS 45 57 59
OF 63230200 44829065 45660950
t 15 409 525

20

JUR 6 3 3
RUS 37 58 59
OF 57313540 44983080 44618800
t 30 813 1100

40

JUR 5 3 3
RUS 46 59 59
OF 53656815 44438470 45211535
t 59 1638 2188

5.5.2.6 uXXXX4

Table 5.19 shows that QQA is well suited for this dataset, with the best solution quality 6 times.
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Table 5.19: Tuned optimizers with increasing iterations scheduling 1761 jobs to 296 resources in
a 7-day window

Iterations ×106 SA QQA FQA

0.5

JUR 375 371 370
RUS 10 10 10
OF 5930450 5749190 5804485
t 1 15 18

1

JUR 375 360 370
RUS 10 10 10
OF 5406200 5178565 5309265
t 2 29 36

1.5

JUR 379 367 371
RUS 10 10 10
OF 5132110 5096870 5019600
t 3 44 55

2.5

JUR 382 368 370
RUS 10 10 11
OF 4963825 4856715 4834895
t 4 70 83

5

JUR 378 362 367
RUS 14 15 16
OF 4772705 4634295 4658180
t 8 139 178

10

JUR 357 337 348
RUS 16 23 26
OF 4505600 4260580 4340785
t 15 288 353

20

JUR 336 307 300
RUS 18 28 25
OF 4247865 3935130 3857235
t 31 560 722

40

JUR 271 206 217
RUS 19 18 18
OF 3630550 2966555 3078100
t 66 1208 1439

Caveat: Owing to time and resource limitations, the values of control parameters for the

uXXXX4 dataset were determined from an experimental suite which used only 0.5×106 iterations

per run and is therefore possible that convergence of the algorithms did not occur. Were this

the case, the values of the control parameters would likely be suboptimal and their usage in the

tuned experiments could result in poor performance. A further experimental suite to tune the
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algorithms using using 10×106 iterations or more would be needed to confirm this or to improve

control parameter values.

5.5.3 Parallelized Quantum Annealing versus single-threaded optimizers

The results in section 5.5.2 presented a comparison of three single-threaded optimizers for solv-

ing Field Service Scheduling problems. Overall, QQA and FQA outperformed SA, producing

higher quality schedules for the same number of program iterations but their running times were

much longer - approximately the number of replicas used multiplied by the time taken by SA.

This motivated the development of two multithreaded variants of QA entitled the Simple (S)

and Grouped (G) models. Each model divides the processing of the replicas amongst different

threads of execution and so reduce the running time by the number of threads. In the following

experiments, both models are compared against the single-threaded optimizers using a the data

sets in previous experiments. As in section 5.5.2.1, all metaheuristics are executed in their un-

tuned state, and the controlling parameters for FQA are assigned to the S and G models in PQA.

Since wall-clock performance is at issue, the running time of the S and G models are restricted

to the durations of the best previous times of SA and FQA.

5.5.3.1 Time bounded by SA

Table 5.20 shows the performance of the G and S models when limited to the same running time

as SA (shown underlined) which terminated, as did FQA and QQA, after 16.8×106 iterations as

in the experiments in section 5.5.2, the results of which are repeated here for convenience.
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Table 5.20: Results of S and G models limited to the running time of Simulated Annealing

Data set Single threaded Multithreaded

SA QQA FQA S G

gen5k-600
JUR 0 0 0 0 0
RUS 7 5 8 46 57

t 39 1281 1439 39 39

aXXXXXXX_3d
JUR 181 107 107 161 162
RUS 213 217 215 207 208

t 23 544 693 23 23

aXXXXXXX_05012016
JUR 110 58 60 62 59
RUS 47 47 48 48 47

t 23 570 734 22.83 23

cXXXXXXX_05012016
JUR 41 35 35 35 35
RUS 37 35 36 38 38

t 17 408 509 11.69 10.03

hXX_XXXXXX_04012016
JUR 2 0 0 0 0
RUS 4 4 4 4 4

t 55 1525 1779 0.37 0.34

OPXXXXXXXXXXXX_05012016
JUR 33 33 33 32 30
RUS 27 25 27 23 25

t 33 667 820 24.8 8.77

sXXXX_8107_F2_3day
JUR 13 7 5 7 8
RUS 114 127 126 113 120

t 23 588 747 22.86 23

sXXXX_8107_F2_23122015
JUR 12 3 3 3 3
RUS 47 49 50 57 56

t 24 604 743 23.74 23.5

uXXXX4x0.75R
JUR 533 514 503 479 486
RUS 8 7 7 7 7

t 29 767 906 29 29

uXXXX4x0.50R
JUR 955 914 931 904 905
RUS 5 5 7 5 5

t 34 873 1179 34 34

uXXXX4x0.25R
JUR 1373 1355 1349 1340 1351
RUS 3 5 3 4 3

t 46 1329 1613 44.35 46

In all but one case, both models allocate more jobs (the primary metric JUR which is the

number of jobs left unresourced in the backlog, or “intray”; lower is better) than SA and so

the secondary metric of unused resources (RUS the number of operatives/resources which are
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unscheduled; higher is better) is never needed as a tie-breaker.

The most notable aspect of these results is in the amount of running time needed to com-

fortably improve upon or compete with the established single-threaded optimizers; in some

cases better results than SA were obtained much sooner than the set time limit. For ex-

ample, in OPXXXXXXXXXXXX_05012016 only 27% the time limit was required, and in

hsb_NEFSS7_04012016, it was less than 1%.

Also notable is that in several cases, the multithreaded optimizers unexpectedly improved

upon the results of QQA and FQA which were allowed to run for far longer. The G-Model outper-

forms FQA in the primary metric JUR for aXXXXXXX_05012016, OPXXXXXXXXXXXX_05012016,

uXXXX4x0.75R and uXXXX4x0.50R. Both models also outperform in sXXXX_8107_F2_23122015

and cXXXXXXX_05012016 where the secondary metric RUS breaks the tie in the primary.

5.5.3.2 Time bounded by FQA

Table 5.21 shows the performance of the G and S models when the running time is increased to

that of FQA (shown underlined) which terminated after 16.8×106 iterations as in section 5.5.2.
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Table 5.21: Results of S and G models limited to the running time of Full Quantum Annealing

Data set Single threaded Multithreaded

SA QQA FQA S G

gen5k-600
JUR 0 0 0 0 0
RUS 7 5 8 115 116

t 39 1281 1439 1432 1343

aXXXXXXX_05012016
JUR 110 58 60 57 57
RUS 47 47 48 48 48

t 23 570 734 467 295

OPXXXXXXXXXXXX_05012016
JUR 33 33 33 33 33
RUS 27 25 27 31 30

t 33 667 820 473 714

sXXXX_8107_F2_3day
JUR 13 7 5 6 6
RUS 114 127 126 111 130

t 23 588 747 672 512

sXXXX_8107_F2_23122015
JUR 12 3 3 3 3
RUS 47 49 50 57 59

t 24 604 743 742 719

uXXXX4x0.75R
JUR 533 514 503 423 423
RUS 8 7 7 9 7

t 29 767 906 900 902

uXXXX4x0.50R
JUR 955 914 931 825 847
RUS 5 5 7 5 6

t 34 873 1179 1169 1176

uXXXX4x0.25R
JUR 1373 1355 1349 1273 1271
RUS 3 5 3 3 3

t 46 1329 1613 1610 1609

The results in some cases are suggestive that the allowed time is excessive; modest improve-

ments in schedule quality indicate that convergence towards minima has occurred and the opti-

mizers are seeking diminishing returns. For example, JUR in OPXXXXXXXXXXXX_05012016

is unchanged across all optimizers and the secondary metric is necessary to break ties. In

other cases, the results for all the QA optimizers are similar. In sXXXX_8107_F2_3day,

sXXXX_8107_F2_23122015 and aXXXXXXX_05012016 there are small variations in the pri-

mary and secondary metrics which is indicative that the optimizers are searching intensively for

tiny improvements from positions located about a local miminum.

In the remaining cases, the multi-threaded variants are clearly converging much later and are
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thus able to locate larger improvements in each quality metric. In gen5k-600, they are able to

save more resources and in the uXXXX sets, schedule between 7% and 18% more jobs.

5.5.4 Conclusions

It has been demonstrated that for restricted running times, the multithreaded variants of QA

are able to outperform any of the single-threaded optimizers. It has also been shown that

for prolonged running times they are able deeply scour the space of possible schedules and

discover additional improvements in either the primary or secondary metrics. These results

appear encouraging but some reservations need to be considered:

1. The restricted running times may unfairly disadvantage SA since it may not be converge

soon enough to return a decent schedule. By virtue of maintaining many concurrent sched-

ules, the S and G models are able view search space through a larger-volumed frustrum and

so have a natural advantage in time limited circumstances. To clarify this matter, further

experiments with moderate time limits could be performed, and additonal data gathered

to trace and plot convergence behaviour.

2. This chapter used a collection of real-world and synthetic data sets. Since the number of

real data sets was limited by the number of ServicePower’s clients, this does not provide a

representative picture of all possible scheduling scenarios or use cases.

Even with these caveats, the benefits of parallelizing the workload of the Quantum Annealing

algorithm are clear. The logical next phase of development is to distribute this workload further

by employing clustered or cloud computing. Such technologies present additional opportunities

but are beyond the scope of the KTP and this work.

The benefits to the business of ServicePower are presently counted in the currency of intel-

lectual property (a US patent award with others pending), and the intangible value of marketing

and advertising opportunities which help raise the profile of the company as being at the leading

edge of technological development. Once fully integrated, tested and deployed as an end-to-

end product, it can be demonstrated to customers who will no doubt see the potential of their

workforces being scheduled by a quantum annealing algorithm.
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Chapter 6

Conclusions and Perspectives

The original aim of this research was to develop and enhance the QA metaheuristic enough to

make it a viable, scalable substitute for SA in the problem domains of VRP and FSS. Several

of the main difficulties which prevent QA from wider application were exposed, investigated

and then addressed. The creation of the spin encoding schemes highlighted ways that different

problem domains may be mapped so they can be tackled with QA. The work went on to show that

the tuner of algorithms need not resort to best-guesses, art forms, or arduous manual schemes.

Beyond this, models were presented, implemented and then proved to show how, in multicore

environments, population-based optimizers can compete with trajectory methods on the basis of

wall-clock time.

From the development of QACVRP plus a basic tuning pattern, to the enhanced tuning

method of ESPT and performance gains of PQAVRP, it is clear that the overall aim has been

achieved and in several respects, surpassed. In collaboration with a private business, the output

solution quality and performance of QA under real-world conditions was demonstrated to exceed

that of SA. Moreover, this collaboration resulted in a patent award and added a new variant of

QA (with stochastic kinetic energy) to the metaheuristic canon.
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6.1 Review of contributions

6.1.1 Contributions of Chapter 2 - Quantum Annealing Algorithm for

the Vehicle Routing Problem

Much of the work in this chapter was presented at the IEEE International Conference on Systems,

Man and Cybernetics in 2013 (speaker Alex Syrichas):

Alan Crispin and Alex Syrichas. Quantum annealing algorithm for vehicle scheduling. In

2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, October 2013.

doi: 10.1109/smc.2013.601. URL https://doi.org/10.1109/smc.2013.601

• First application of QA to VRP When the QA implementation presented in Chapter 2

is placed into the context of being the first revision of the algorithm, then the computational

results are impressive. The wall-clock times are never more than ten times slower than SA

(except in the case of B-n67-k10), and in the two largest instances is faster (M-n121-k7,

F-n135-k7). This is notable given that QA here is processing all of the replicas (40+) on a

single thread of execution, and it is not fully tuned (this could not happen until the research

of Chapter 3). Yet it is still yielding identical solution quality to SA in a reasonable amount

of time.

• Encoding of VRP as spin matrix The encoding of VRP as spins was a derivative of that

used for TSP [38], containing extensions for depots. The matrix was stored in memory in

highly optimized bit-packed form which allowed for up to 64 spin-on-spin logical operations

to occur simultaneously. It was this arrangement that enabled the run time of QA to remain

reasonable.

6.1.2 Contributions of Chapter 3 - Tuning QA for the Vehicle Routing

Problem

Much of the work in this chapter was published in the journal Computers & Operations Research

by Elsevier:

A. Syrichas and A. Crispin. Large-scale vehicle routing problems: Quantum annealing, tunings

and results. Computers & Operations Research, 87:52–62, November 2017. doi: 10.1016/j.cor.
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2017.05.014. URL https://doi.org/10.1016/j.cor.2017.05.014

• ESPT Tuning method The dynamic cost model [6] which described the run time be-

haviour of QACVRP provided the key insight which was needed to develop the ESPT

method. The fitness cloud representation of the behaviour showed that the topology of

the fitness landscapes (within classes of instances) was similar enough for the predicted

temperature value to succumb to tuning by a scaling factor.

• New best solutions in benchmarks Although the competitive testing paradigm is non-

productive [6] in research such as this, it should be pointed out that these new best solutions

were generated as a consequence of studying the fitness landscape, problem domain and

the QA metaheuristic. Acknowledging this achievement will hopefully encourage others to

work to understand why their algorithms perform well.

6.1.3 Contributions of Chapter 4 - Quantum Annealing Algorithm:

Enhancements and Variations

Much of the work in this chapter is pending publication in the journal Operations Research

Perspectives by Elsevier:

A. Syrichas and A. Crispin. A parallelized quantum annealing algorithm for vehicle routing

problems. Operations Research Perspectives, 2019. (Under review)

• New parallelized algorithm for QA of VRP After the issue of the difficulty of tuning

QA was addressed, it was natural and desirable to enhance the runtime performance of

the algorithm. If QA is to become a solid choice of metaheuristic to supplant SA, then

all key objections to deploying it must be quashed. It should be noted that unlocking the

performance of QA strictly requires a platform capable of hosting a large population of

threads.
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6.1.4 Contributions of Chapter 5 - The Industrial Domain of Field

Service Scheduling

• First practical application of QA in industry To the best of our knowledge, this is

the first time QA has been used in an commercial role. That it is able to solve complex

scheduling problems as well as idealized academic benchmarks is a notable achievement.

• Three new QA-based algorithms for FSS The path to the completion of a new scalable

optimizer for FSS is punctuated with three milestones - Quasi-Quantum Annealing, Full

Quantum Annealing, and Parallelized Quantum Annealing. QQA was a vital first step

proving that a population-based metaheuristic was a good fit for the domain. It was

a proof of concept that was shown to also be a minimum viable product since it could

optimize nearly as well as FQA.

• Patent approved for spin encoding of FSS problems The design for the spin encod-

ing of a FSS problem was awarded a patent by the US Patent Office. This underscores

the novelty of matrix arrangement whilst also accruing valuable intellectual property and

marketing opportunities for ServicePower.

6.2 Future directions of research

As with most projects that are given a latitude and (seemingly) enough time for exploration,

several directions remain uncharted. Most obviously, QA could be tried in other problem do-

mains. However, this would be the least interesting direction as the supply of domains is a

near-inexhaustible list, consisting of permutations in constraints and objectives. (There is also

the risk of entrapment in the competitive testing paradigm). The following offers future directions

with more fruitful and perhaps, practical outcomes:

• Distributed, clustered, and cloud computing. QA has been shown to benefit greatly

when the workload is distributed to separate threads of execution. The natural extension

to this arrangement is to employ a network of computers to share the load. Compute

clusters and cloud platforms seem mature enough to yield success in this direction. In
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principle, it is possible to deploy a QA optimization process which has a population of

thousands of replicas - a highly accurate PIMC method which might locate ground states

(optimal solutions) with unerring consistency. Additionally, the limit on the size of problem

instances would be raised because additional memory could be assigned upon demand. Of

course, the key here would be to find a network which can communicate states between

replicas quickly enough.

• A deeper exploration of dynamic cost models and fitness landscape analysis.

Predicting the behaviour of metaheuristics upon any problem instance, is one of the holy

grails of optimization research. Even approximate predictions can garner useful insights

and benefits. The work in Chapter 3 suggested that for QA, affine transformations might

yield more accurate parameter values - if so, then the fitness cloud might be improved by

the addition of extra dimensions.
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A Programming: Platforms and tools

Versions of the C++ language from C++11 onwards have standardized support for multithreaded

programming. Usage of the Thread Support Library eliminates the worry of cross-platform porta-

bility (previously platform-specific APIs had to be compiled or linked against to take advantage

of multithreaded environments). The latest GNU C++ compiler is used as it has repeatedly

proven itself ISO compliant (currently ISO/IEC 14882:2014 and ISO/IEC TS 19217:2015 exper-

imentally).

A Linux distribution hosted upon a multicore workstation is the ideal environment for the

development and testing of, and experimention upon, multithreaded QA algorithms.

A.1 Computing Platform 1

Operating System: Ubuntu 11.04 (natty) Kernel 2.6.38-11-generic

Computing system: Generic desktop PC

Processor: Intel(R) Pentium(R) Dual-Core CPU E5800 @ 3.20GHz

RAM: 4Gb

A.2 Computing platform 2

Operating System: Debian 3.16.51-3+deb8u1 (2018-01-08), release: 3.16.0-5-amd64

Computing system: Hewlett Packard HP Z640 Workstation

Processor: Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz

RAM: 32Gb

A.3 Software environment

The software development environment was as follows:

Compiler/Linker: GNU C (gcc) 4.9.2

IDE: Qt Creator 3.3.1

Platform framework: Qt 5.4.1
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B Knowledge Transfer Partnership Outcomes

The contents of this appendix gives an overview of the plan and a brief glimpse of the outputs

from the completed KTP project to apply quantum annealing in an industrial setting.

B.1 Project plan with outputs

The following is a reproduction of the Knowledge Transfer Programme (KTP) project plan. The

milestones are divided into 7 stages which were distributed over 24 months. One or more outputs

were aligned to each stage, and after each 4 month interval these and other progress points were

presented and discussed at the Local Management Committee (LMC) meetings. Delivery of

stages are indicated with check marks. As can be seen, Quantum Annealing for Field Service

Scheduling Problems was delivered at stage 5.1 and experiments conducted at 5.3. Owing to the

lengthy application process, output 8, consisting of four patent applications (one successful) was

completed early and out of sequence.
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QA Partnership Outcomes
On This Page:

Executive Summary
Primary KTP Outcomes
KTP Associate Outcomes

Planned Outcomes
Additional Outcomes

MMU Outcomes
Planned Outcomes
Additional Outcomes

ServicePower Outcomes
Additional Outcomes

 

Primary KTP Outcomes

Stage/Output Description Status Completed in
Phase(s) 

Notes

Stage 1.1 A comprehensive technical report developed on the
existing literature/emerging products and a
presentation to the Project Team.

LMC 1 These stages and output were included in the project
outcomes to allow the KTP Associate to come up to
speed with both Simulated Annealing and the research
into Quantum Annealing performed by Alex.

However, as Alex was selected as the KTP Associate,
these outcomes were no longer required.

Stage 1.1 Present a short review of the perceived developmental
processes to the project team and others within the
company.

Stage 1.1 A commercial viability assessment of the proposed
technology presented by the Associate, especially if
competing solutions emerge.

OUTPUT 1 Presentation to Senior Management Team to report
existing and emerging capability in scheduling
software products.

Stage 2.1 A matrix of current and required skills and
competencies for successful project completion
developed.

Stage 2.2 Project team created and training requirements
identified.

LMC 1 Initial project team of Alex, Alan Smith and Wendy
created.

Training requirements were identified (namely, training
in Quantum Annealing for Alan Smith).

Roles and responsibilities within the project team
formed were agreed.

Stage 2.2 Roles and responsibilities determined and assigned.

OUTPUT 2 Project team selected and briefed.

Stage 3.1 Capability and features of Quantum Annealing
scheduling product determined.

LMC 2 Alex and Alan Smith agreed on the basic requirements
for Quantum Annealing in a Field Service Scheduling
context.

Alex performed required training in Quantum Annealing
with Alan Smith.

Stage 3.2 Acquisition of knowledge by the Associate and Project
Team members.

Executive Summary

Every KTP project has a number of outcomes outlined in the original proposal submission which should be met during the course of the
KTP. There are outcomes for all of the KTP partnership participants:

The KTP Associate;
Manchester Metropolitan University; and
ServicePower

This page records and tracks progress against the delivery of these outcomes.
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OUTPUT 3 ServicePower staff trained in principles of Quantum
Annealing.

LMC 2 Achieved via the Stage 3.2 goal above during LMC 2.

LMC 5 Additional training in Quantum Annealing to the ensure 
Stockport development team was performed during
LMC 5.

Stage 3.3 Software development environment selected. LMC 4 Based on the development work, performance testing
and project progress to date, it was agreed that in order
to allow Quantum Annealing to be incorporated into
ServiceScheduling and Optimization on Demand by the
end of the project, the development project for the
project would be C++.

OUTPUT 4 Top level design produced and design tools selected.

Stage 4.1 Report produced on the development requirements to
scale and commercialize the Quantum Annealing
scheduling algorithm.

LMC 6  

Stage 4.2 Prototype (Quantum Annealing engine) developed. LMC 4 A prototype implementation of Quantum Annealing has
been developed in C++ (which does not utilize any
synchronization between the parallel annealing
"pathways" that a full implementation would use).

The prototype handles the same real-world constraints
as handled by ServicePower's existing Simulated
Annealing engine.

The prototype has been tested against simulated,
real-world Field Service Scheduling schedules.

The prototype is a drop-in replacement for
ServicePower's Simulated Annealing engine.

Stage 4.3 Multiple real-world constraints incorporated (into the
prototype Quantum Annealing ).engine

Stage 4.4 Software (Quantum Annealing ) tested.engine

OUTPUT 5 Quantum Annealing  developed, coded andengine
tested.

Stage 5.1  Annealing  (compatible with Quantum engine Simulate
Annealing ) developed.d engine

Stage 5.2 Quantum Annealing compared with Simulated
Annealing.

LMC 5, LMC 6,
LMC 7

Quasi-Quantum Annealing vs  comSimulated Annealing
pleted.

Full Quantum vs. Quasi-Quantum Annealing vs Simulat
ed Annealing completed.

Stage 5.3 Report produced showing how the solution scales,
documents problem areas that might need to be
addressed and identifies (e.g fuel) cost saving that can
be achieved with a Quantum Annealing algorithm as
opposed to Simulated Annealing.

LMC 6, LMC 7 Full Quantum vs. Quasi-Quantum Annealing vs Simulat
ed Annealing completed.

Stage 5.4 Scoping of scheduling product completed. (Based on a
comparison of Simulated Annealing vs. Quantum
Annealing algorithms, what updates are needed to
make a fully commercial product?)

LMC 6, LMC 7  

Stage 5.5 Software updated as required. (Create the commercial
product.)

LMC 6, LMC 7 Legacy code has been refactored - can now
accommodate further Full-QA code.

Stage 5.6 Optimization on Demand scheduling software (using
Quantum Annealing) tested.

LMC 6, LMC 7 Pending inclusion of spin-matrix (design in patents) and
Hamiltonian calculation.

OUTPUT 6 Optimziation on Demand scheduling prototype
incorporating quantum and classical algorithms
developed.

LMC 6, LMC 7  

OUTPUT 7 Optimization on Demand service scheduler (using
Quantum Annealing) launched.

LMC 7 ServicePower's Optimization on Demand product
contains the ability to be run with a version of the
Quantum Annealing algorithm, however, ServicePower
has not yet made a big PR announcement about this,
for commercial reasons. Nevertheless, this output has
been achieved, as the software is completed and ready
for use.

OUTPUT 8 Outline patent drafted and submitted. LMC 3 ServicePower has made three patent applications:

UK Application # GB 1515317.4: Encoding of a
Schedule into a Binary Structure
UK Application # GB 1515318.2: Infeasible
Schedules in a Quantum Annealing Optimization
Process
UK Application # GB 1515319.0: Interact
Calculation in a Quantum Annealing Optimization
Process

LMC 4 ServicePower has made one patent application:

UK Application # GB 1520235.1: Methods and
Apparatuses for Quantum Annealing Tuning
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LMC 5 ServicePower has made four patent applications:

US Application # 15066104: Encoding of a
Schedule into a Binary Structure
US Application # 15066390: Infeasible Schedules
in a Quantum Annealing Optimization Process
US Application # 15066412: Interact Calculation in
a Quantum Annealing Optimization Process
US Application # 15066437: Methods and
Apparatuses for Quantum Annealing Tuning

LMC 6 ServicePower has made three patent applications:

EU Application # : Encoding of a16180204.6
Schedule into a Binary Structure
EU Application # 16180217.8: Infeasible
Schedules in a Quantum Annealing Optimization
Process
EU Application # : Interact Calculation16180203.8
in a Quantum Annealing Optimization Process

Stage 7.2 Work packages (for integration of Quantum Annealing
into ServiceScheduling) specified.

LMC 7  

Stage 7.3 Training Needs Analysis (for skills necessary for the
Project Team to integrate Quantum Annealing into
ServiceScheduling) produced.

LMC 7  

Stage 7.4 Embedding workshops for key staff (to be) trained in
essential skills.

LMC 7 and
Post-KTP

Embedding workshop scheduled for December 16th.

OUTPUT 9 Staff trained in essential skills to integrate Quantum
Annealing into core products.

LMC 7 and
Post-KTP

Will be completed once Stage 7.4 above is completed.

Stage 7.5 Additional resource requirements (hardware, software
and/or staff) identified and acquisition plan agreed.

LMC 7  

OUTPUT 10 Presentation on the integration of Quantum Annealing
into the existing ServiceScheduling product.
Implementation plan agreed by senior management
team.

LMC 7  

OUTPUT 11 Final report produced. LMC 6, LMC 7
and Post-KTP

 

KTP Associate Outcomes

Planned Outcomes

Outcome Status Completed
in Phase(   

s)

Notes

Develop managerial competency in project management
– including planning and coordination of activities across
several teams.

LMC 5, LMC
6

During the course of LMC 5 and LMC 6, Alex has demonstrated that his
project management skills have reached the expected level of
competency.

Develop managerial competency in communication skills
– report writing, presentations at local management
meetings, managing meetings.

LMC 5, LMC
6

During the course of LMC 5 and LMC 6, Alex has demonstrated that his
communication skills have reached the expected level of competency.

Develop managerial competency in marketing strategy
relating to patent applications.

LMC 3, LMC
4, LMC 5

See details of patent applications made in OUTPUT 8 in Primary KTP
Outcomes table above.

 

Additional Outcomes

Outcome Status Completed
in
Phase(s)

Notes

Transfer from MPil to PhD LMC 1  

KTP Residential Module 1 Training LMC 2  
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Mentoring Experience LMC 2, LMC
4

Alex has gained valuable experience in mentoring others, through his
work mentoring Amy in her PhD.

KTP Residential Module 2 Training LMC 3 Alex learned more about the marketing and finance background aspects
of business.

Alex was part of a team that beat all previous records during the Business
Simulation task (using SIMCO software).

Patent Process Exposure LMC 3 Alex has had exposure to the process of applying for patents, which has
also helped his understanding of the mathematics of Quantum Annealing,
leading to a more robust implementation of the algorithm in code.

Academic Exposure LMC 3 The patent application process has raised Alex's profile at MMU with the
Head of School, Kieth Miller.

Training LMC 4 Alex has had exposure to new visualization techniques through MMU.

Alex has had the opportunity to be exposed to project management
through mentoring with ServicePower.

Cloud Computing Experience LMC 5 Alex has had the opportunity to use cloud-computing systems provided by
ServicePower as part of running his Quantum Annealing experiments.

Employment from ServicePower post-KTP LMC 6 Alex has been offered and accepted a contract to work for ServicePower
following on from the completion of the KTP project.

 

MMU Outcomes

Planned Outcomes
     

Outcome Status Completed
in
Phase(s)

Notes

One conference presentation (e.g. IEEE or KES) and one
journal publication (e.g. IEEE), depending on company
requirements for confidentiality and patent application
restrictions.

LMC 5, LMC
6, LMC 7 an
d Post-KTP

One journal publication submission has been made (in LMC 5) and
accepted subject to some requested changes (in LMC 7). Changes and
additional experiments to support the paper were made in LMC 7, with
re-submission planned shortly after the KTP.

Due to outcomes obtained, instead of a conference presentation, a
second journal paper has been agreed on, and has been worked on
during LMC 6 and LMC 7. Submission is expected shortly after the KTP.

Patent developed in applying Quantum Annealing to field
service scheduling.

LMC 3, LMC
4, LMC 5

See details of patent applications made in OUTPUT 8 in Primary KTP
Outcomes table above.

Two undergraduate (timetable scheduling, traveling sales
man) and postgraduate student projects (vehicle routing,
quantum computation).

Whole KTP Dr. Crispin has run numerous undergraduate and postgraduate student
projects in the related fields of scheduling and optimization problems.

Student placement and student visits. Whole KTP ServicePower has hosted two placement students over the course of the
KTP.

Industrially sponsored Ph.D. studentship (Scheduling
Algorithms).

LMC 1 Funding for Alex's PhD has been obtained.

 

Additional Outcomes
     

Outcome Status Completed
in
Phase(s)

Notes

Exposure to industrial software development practices. LMC 4 Dr. Cripsin has had the opportunity to be exposed to industrial software
development practices through collaboration with ServicePower.

Positive press for MMU. LMC 5 Press releases made by MMU about KTP progress to date.

Potential Impact Case Study for mock REF (Research
Excellent Framework) exercise.

LMC 6 Potential for including work on KTP with ServicePower in REF exercises.

KTP project included in an umbrella nomination for MMU
KE (Knowledge Exchange) award.

LMC 6 Nomination received a "Highly Commended" result.
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ServicePower Outcomes

Additional Outcomes

Outcome Status Completed
in
Phase(s)

Notes

Improvements to ServicePower's existing Simulated
Annealing engine.

LMC1,
LMC6,
LMC7

A number of bugs were identified and fixed in the ServiceScheduling
product's implementation of Simulated Annealing.

The random number generator using the Simulated Annealing engine has
been improved to have a significantly longer period (i.e. better random
numbers for better schedules), but with the same performance.

A new "scramble" operator has been added to randomly scramble an
existing schedule between two dates.

A number code optimizations and code improvements were made in the
ServiceScheduling product's implementation of Simulated Annealing.

Ideas for potential data mining R&D. LMC 2 Alex took part in ServicePower's "Hackathon" event and produced some
useful ideas re: data that ServicePower may way to collect in the future
for the purposes of data mining.

Positive press for ServicePower. LMC3,
LMC4

Press releases made by ServicePower about ServicePower's patent
applications.

Early stage QA vs. SA algorithm comparison data
provided as part of ServicePower evaluation by Gartner.

LMC 6  

Continued expanded R&D capabilities for the business. LMC 6 Alex has been offered and accepted a contract to work for ServicePower
following on from the completion of the KTP project.

Marketing material produced showing differences
between hand-crafted schedule, SA, QQA and full QA,
showing how ServicePower's solutions are better that
their competitors.

LMC 7  
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B.2 Certificate

The KTP project (KTP009600) was reviewed by Innovate UK and attained the award of "Out-

standing". The certificate showing this award is reproduced below.
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Ian Brotherston 
KTP Programme Manager 
Innovate UK 
 
 

Knowledge Transfer Partnerships   Innovate UK, A1 North Star House, North Star Avenue, Swindon, SN2 1UE 

Certificate No. KTP009600KTP009600KTP009600KTP009600

This is to certify that the Knowledge Transfer Partnership between

Manchester Metropolitan University and Servicepower Technologies plcManchester Metropolitan University and Servicepower Technologies plcManchester Metropolitan University and Servicepower Technologies plcManchester Metropolitan University and Servicepower Technologies plc

from 09/06/201409/06/201409/06/201409/06/2014 to 07/12/201607/12/201607/12/201607/12/2016

To advance the technological base by applying new optimisation algorithms to current andTo advance the technological base by applying new optimisation algorithms to current andTo advance the technological base by applying new optimisation algorithms to current andTo advance the technological base by applying new optimisation algorithms to current and
planned future service offerings, thereby growing sales, reducing operational costs and improvingplanned future service offerings, thereby growing sales, reducing operational costs and improvingplanned future service offerings, thereby growing sales, reducing operational costs and improvingplanned future service offerings, thereby growing sales, reducing operational costs and improving
customer service levels.customer service levels.customer service levels.customer service levels.

was awarded the highest grade of "OutstandingOutstandingOutstandingOutstanding" by the KTP Grading Panel for its achievement in
meeting KTP's Objectives.
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B.3 Patent

The following is a three page excerpt of the awarded US patent, the production of which was a

task highly prioritized by ServicePower:

A. Syrichas and A. Crispin. Encoding of a schedule into a binary structure, 2017. US Patent

9,841,990 It describes a method of storing a complex schedule as structured collection of bits,

allowing a compact representation of a spin matrix which can be efficiently processed during the

simulation of quantum tunneling in the annealing algorithms.
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ENCODING OF A SCHEDULE INTO A STRUCTURE 

 

TECHNICAL FIELD 

The present invention relates to a method, apparatus and system for encoding of a schedule 

into a structure for use in a Quantum Annealing (QA) optimisation process.  This is particularly 5 

useful for, but not limited to, the Field Services Scheduling (FSS) industry where complex 

schedules have to be optimised. 

BACKGROUND 

When contemplating the problem of optimising a schedule (i.e. of identifying a schedule that is 

considered as satisfactory and/or as more satisfactory than a starting schedule), several 10 

complex and interacting aspects have to be considered.  A schedule can generally be defined 

as a set of associations between tasks or jobs and workers, persons, groups of 

persons/workers or anyone/anything able to carry a task.  There can be hard constraints 

associated with the situation, for example, a worker may not have more than n tasks associated 

to it, a worker can only be associated a task if they have the minimum required skills for carrying 15 

out the task, etc.  Such hard constraints define what a feasible schedule is and what an 

unfeasible schedule is amongst the universe of possible (feasible and infeasible) schedules: a 

schedule that violates at least one hard constraint will be considered an infeasible schedule 

while all other schedules will be considered feasible schedules.  As the skilled person knows, 

for a schedule to be a suitable schedule, the schedule must be a feasible schedule such that 20 

the search for a suitable schedule should search a suitable schedule amongst the feasible 

schedules and should not select an infeasible schedule.  At the same time, the suitable 

schedule should attempt to optimise some aspects as much as possible.  Examples of aspects 

that the schedule may attempt to optimise may include for example any of: a number of soft 

constraints violated (to be reduced), a number of consecutive tasks allocated during a worker’s 25 

shift (to be increased so as to reduce the number empty slots), an amount of overtime (to be 

reduced), a travel distance (to be reduced), etc. These aspects to optimise can be taken into 

account in one or more cost functions which should be minimised (or maximised) for the best 

schedules.  The problem of finding a suitable schedule for a set of tasks and workers can 

therefore involve trying to identify a suitable feasible solution among the vast number of 30 

possible solutions for allocating the tasks to the workers, while trying optimise one or costs 

functions.  

Another point which affects the complexity of identifying a suitable schedule is that neighbouring 

or similar schedules (schedules which are very close to each other in the allocation of tasks) 

may result in very different outcomes regarding costs and/or constraint violations.  For example, 35 

while one schedule may not violate any hard constraint and have a relatively low cost compared 

to other schedules, making one minor change to this one schedule may then result in a new 

schedule with one or more hard constraint being violated and/or a cost suddenly increasing to 
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an unacceptable value.  As a result of this chaotic behaviour, conventional approaches for 

finding optimised solutions for simple problems (e.g. using dichotomy or searching for 

neighbours of relatively good solutions already identified) are not expected to be successful or 

helpful as they are expected to be more likely to miss potentially good schedules, for example 

schedules which may be remote for the schedules considered by the search. 5 

Problems of this kind are classified in the domain of computation complexity theory as NP-

complete and NP-hard, meaning that as the problem grows in size, the time taken to 

deterministically find ideal solutions increases exponentially. Consequently, for any real-life 

situation with different workers, tasks, hard and soft constraints and aspects to optimise, the 

computing resources and time required to find the best overall schedule are far too vast to make 10 

a search of the best schedule possible or realistic.  Thus, heuristic approaches are used to find 

useable, rather than ideal, feasible solutions within an acceptable amount of time.  Such 

approaches stop when a good enough solution has been identified or when the search has 

been running for a certain amount of time and the best solution amongst the solutions searched 

can be identified as the best solution that could be found.  These approaches are generally 15 

designed to work for a specific problem and can be difficult to adapt for a different problem.  In 

particular, in view of the “no free lunch theorem”, while a first search method may be optimised 

to address a specific set of problems and be expected to yield good results in a reasonable time 

with this set of problems, this first method may then be expected to be sub-optimal for another 

set of problems and a different searching method would have to be devised to optimise the 20 

identification of suitable feasible solutions to the other set of problems in a reasonable time.  In 

view of the complexity and the nature of the search, even with the vast computing capabilities 

now available in computers and computer systems, an exhaustive search is clearly out of reach 

and while a computer implementation for such a search is considered as being essential for 

attempting to identify a suitable feasible solution in a reasonable amount of time, it is considered 25 

desirable to identify any means by which the computer implementation of such a search can be 

accelerated and/or simplified. 

In other words, due to the difficulties that are faced when trying to improve a search for a 

suitable schedule, any improvements in the efficiency of the identification of suitable feasible 

schedules are generally challenging to identify.  Also, in view of the complexity of such systems 30 

and of the exponential increase for any additional factor added, any such improvements can 

translate in very significant improvements in the time needed to find a suitable feasible solution 

and/or in the computing resources required for identifying a suitable solution. 

SUMMARY 

The invention is defined by the appended claims.   35 

According to a first example of the present disclosure, there is provided a method for encoding 

first schedule data into a data structure for use in a quantum annealing optimisation process.  

The method comprises determining, by a process optimisation computing device, a schedule 

indicator value for each of a plurality of schedule data entries based on whether each of a first 
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set of recorded tasks has been allocated to one or more of a plurality of identifier data names in 

one or more of a first set of time periods in accordance with the first schedule data to generate 

schedule portion data; determining, by the process optimisation computing device, a hard 

constraint indicator value for each of a plurality of hard constraint data entries based on whether 

at least one of a plurality of hard constraints has been violated by the allocation of the first set of 5 

recorded tasks to one or more of the plurality of identifier data names in one or more of the first 

set of time periods in accordance with the first schedule data to generate hard constraint portion 

data; and generating, by the process optimisation computing device, the data structure for use 

in a quantum annealing optimisation process based on the determined schedule portion data 

and the determined hard constraint portion data, thereby encoding the first schedule data into a 10 

data structure for use in a quantum annealing optimisation process.  

Accordingly, there is provided a method for generating a data structure and data which is 

suitable for use in a quantum annealing optimisation process and for encoding a schedule 

represented by schedule data.  The schedule can thus be encoded in a data form which can be 

manipulated by a quantum annealing optimiser, e.g. a computer implemented quantum 15 

annealing optimiser.  

The data structure may be a binary data structure, wherein the schedule indicator data entries 

are binary schedule indicator data entries and wherein the hard constraint data entries are 

binary hard constraint data entries.  As will be clear from the discussion below, in addition to 

provide a method for encoding a schedule into a data structure such that it can be optimised, by 20 

encoding the schedule into a binary data structure, the schedule can be encoded to facilitate a 

quicker optimisation implementation. 

The hard constraint data entries may indicate, for each identifier data name of the plurality of 

identifier data names and for each hard constraint of the plurality of hard constraints, whether 

each of the plurality of hard constraints has been violated by the task allocations for each of the 25 

plurality of identifier data names in accordance with the first schedule data. 

The method may comprise determining, by the process optimisation computing device, a task 

assignment indicator value for each of a plurality of task assignment data entries based on 

whether each of the first set of recorded tasks has been allocated to one of the plurality of 

identifier data names in accordance with the first schedule data to generate task assignment 30 

portion data, wherein the generating the data structure is further based on the task assignment 

portion data. 

The method may comprise determining, by the process optimisation computing device, a 

conflict indicator value for each of a plurality of conflict data entries based on whether each the 

plurality of identifier data names has been allocated two or more of the first set of recorded 35 

tasks in one or more of the first set of time periods in accordance with the first schedule data to 

generate conflict portion data, wherein the generating the data structure is further based on the 

conflict portion data. 
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