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Sequential synthesis scheme for carbide-phosphide composite catalysts. Inset is a TEM micrograph with 
composite catalysts supported and dispersed on MWCNT.  
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XRD plots of carbide (Mo2C), phosphide (NixPy), the composite catalysts (Ni2P@Mo2C) with molar Ni:Mo = 

1.89, and phosphide deposited on MWCNT (NixPy@MW). PDF numbers for reference patterns are listed in 

parenthesis.  
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. PXRD diffractograms of (a) as prepared nickel phosphide deposited on molybdenum carbide in the stated 
molar Ni2P:Mo2C determined via ICP-OES measurements. (b) Phosphide deposited carbides annealed in 

argon atmosphere at 500 ºC for 12 hours.  
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(a) Pyrograms of biomass in the presence of indicated Ni2P@Mo2C catalyst:biomass weight ratios. Peak 
heights are normalized to the intensity of the tallest peak in each spectrum. (b) Possible reaction pathway 

for cellulose pyrolysis to levoglucosan and subsequent reaction products.  
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Figure 5: (a) Percent of the total area under the curve represented by the peaks above the threshold (10 % 
by height) from ex-situ catalytic fast pyrolysis of biomass at 450 °C. (b) Distribution based on carbon to 

oxygen atomic ratio of products above the threshold.  
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(a) XRD plots for composite phosphide-carbide catalyst before (fresh) and after (spent) biomass upgrading. 
XPS spectra of Ni2P@Mo2C pre-catalysis corresponding to (b) Mo 3d (c) Ni 2p and (d) P 2p. Post-catalysis 
XPS spectra corresponding to (e) Mo 3d (f) Ni 2p (g) P 2p. Solid color-coded deconvolution lines in Mo 3d 

and P 2p spectra correspond to d5/2 and p3/2, respectively. Color matched dotted lines correspond to d3/2 
and p½. (h) Bar graph for atomic percent of the fresh (red) and spent (blue) catalyst surfaces determined 

via XPS.  
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 2

ABSTRACT. We have prepared composite materials of hexagonal nickel phosphide and 

molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method 

comprised of carbothermic reduction followed by hydrothermal incubation. We observe the 

monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) 

ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we 

detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We 

demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is 

achievable using the composite material as a catalyst, and we monitor the resulting product slates 

using pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors 

indicates that variation of the P:C molar ratio in the composite material affords product slates of 

varying complexity and composition, which is indicated by the number of products and their 

relative proportions in the product slate. Our results demonstrate that targeted vapor product 

composition can be obtained, which can potentially be utilized to tune the composition of the 

bio-oil downstream. 
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 3

INTRODUCTION 

Catalytic fast pyrolysis (CFP) of biomass has tremendous potential to utilize purpose-grown 

energy crops and agricultural and forest residues as a source of bio-oil.1,2 Ostensibly, bio-oil 

could be converted into valuable liquid fuels and products in a manner analogous to 

petrochemical refining. To accomplish this, however, efficient and stable deoxygenation 

catalysts for CFP are necessary because of the presence of as much as 40-50% by mass of 

oxygen in bio-oil, which has been implicated as one source of its instability.3 Accordingly, 

transition metal sulfides, nitrides, oxides, carbides, and phosphides have been broadly explored 

as catalysts for vapor-phase upgrading (VPU) and deoxygenation of pyrolysis vapors.2,4,5  

That said, transition metal phosphides (TMP) and carbides (TMC) in particular have attracted 

increased attention as catalysts for biomass valorization because they can mediate an extensive 

range of transformations, including HDO.6-9 Among TMPs, hexagonal nickel phosphide (Ni2P) 

has been investigated quite frequently and has been synthesized using numerous procedures.10 

Similarly, hexagonal beta-type molybdenum carbide (Mo2C) is one of the more frequently 

investigated TMC for biomass upgrading.11 Mo2C has been derived using multiple synthesis 

methods, templated on various carbon structures, and investigated for a range of chemical 

reactions associated with biomass valorization.12-14 Moreover, the relatively high earth 

abundance of Ni and Mo means that catalysts based on them will possess a degree of 

environmental and economic sustainability not afforded by the use of much rarer noble metals. 

Mo2C has been shown to possess both acidic and basic sites on its surface.15 The presence of 

bifunctional and multifunctional sites on a single catalyst surface is particularly advantageous in 

complex catalytic transformations such as those required for biomass valorization, where 
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 4

multiple reactions involving myriad analytes varying in molecular weight and complexity 

proceed simultaneously. Accordingly, Bhan and coworkers have demonstrated that specific sites 

on Mo2C can be selectively deactivated, which provides additional control over the catalytic 

behavior of these materials.16 The same group also demonstrated high selectivity for 

deoxygenated aromatic products when a mixture of lignin derived phenolic compounds was 

subjected to HDO over an Mo2C surface.17  

Our own recent investigation of these materials led us to produce various Ni2P@Mo2C 

composites that are capable of mediating the hydrogen evolution reaction (HER).18 Those 

experiments demonstrated the utility of the phosphide-carbide interaction to the long-term 

stability of the catalyst. Similarly, the groups of Jensen19 and Heeres20 have demonstrated that 

metal-support interaction is crucial to maintain the activity and stability of hydrotreating 

catalysts based on Ni and Ni-Cu bimetallics. Moreover, research carried out by Oyama21 and 

Lin22 has demonstrated the utility of supported nickel phosphide catalysts for the deoxygenation 

of bio-oil and lignin model compounds, respectively. Given the elegant studies involving HDO 

of biomass and related compounds using nickel phosphide and molybdenum carbide, we were 

intrigued by the possibility of using our composite material for biomass valorization via CFP. 

Herein we report structural properties of a family of Ni2P@Mo2C composite materials that 

contain various ratios of phosphide to carbide (P:C). We have employed these materials in CFP 

of Populus deltoidies (hybrid poplar) hybrid crosses. We monitored the major products of CFP 

using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) and investigated the effect 

of catalyst mass ratio and composition on the resulting vapor products. We propose that lattice 

matching and the common hexagonal crystal structure of Ni2P and Mo2C is responsible for 

carbide-phosphide composite formation. We also postulate that interfacial areas of phosphide 
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 5

and carbide result in unique bimetallic active sites. The presence of these sites affords the ability 

to tune the product slate of CFP by modulating the P:C ratio in the catalyst. Finally, we compare 

catalyst properties before and after catalysis using X-ray photoelectron spectroscopy (XPS), 

powder X-ray diffraction (PXRD) and energy dispersive X-ray spectroscopy (EDS) to 

demonstrate variations in catalyst composition and overall catalyst stability. 

EXPERIMENTAL SECTION 

Materials 

MoO3, multi-walled carbon nanotubes (MWCNT), red phosphorus, and NiCl2.6H2O were 

purchased from Sigma-Aldrich. Anhydrous ethanol, methanol, acetone, and concentrated nitric 

and hydrochloric acids were purchased from Fisher Scientific. Hydrofluoric acid, boric acid and 

naphthalene (99 %) were purchased from Acros Organics. Stock solutions for inductively 

coupled plasma optical emission spectroscopy (ICP-OES) of Ni (20 ppm), Mo (1000 ppm) and P 

(1000 ppm) were purchased from SPEX CertiPrep. All the materials were used as received 

unless otherwise stated. Biomass (hybrid poplar), organosolv fractionation derived lignin and 

cellulose were obtained from the Center for Renewable Carbon (The University of Tennessee).  

Catalyst synthesis 

Carbide synthesis was modified from the carbothermic reduction method reported 

previously.23 Briefly, a mass ratio of 20:1 ball to precursor mixture of MoO3 and MWCNT was 

ball-milled at 300 rpm for 20 hours. The resulting mixture was heated in a 1” tube furnace to 950 

ºC using a ramp rate of 1 ºC/min under argon flow at 0.5 L/min. Without any dwelling, the 

furnace was cooled to the ambient temperature and the resulting powder was ground using an 
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 6

agate mortar and pestle. Ni2P and Ni2P@Mo2C catalysts with various Ni:Mo molar ratios were 

synthesized by adopting the method described by Deng et al and described in detail in our recent 

report.18,24 For example, to obtain the catalyst with Ni:Mo = 1.89, 30 mL of an aqueous solution 

of NiCl2.6H2O (0.95 g, 4.0 mmol) was stirred at 400 rpm for 10 min. Then, elemental red 

phosphorus (0.70 g, 23.0 mmol) was added, followed by as-prepared Mo2C (0.41 g, 37 wt% 

Mo). The resulting mixture was stirred for 20 min. Then, the slurry was transferred into a Teflon 

lined hydrothermal bomb from Parr Instruments and incubated at 140 ºC for 12 hours. After 

cooling to room temperature, the black suspension was washed via centrifugation (3500 x g) 

with three 50 mL portions of DI water and one portion of anhydrous ethanol. The residue was 

dried at 60 ºC under vacuum for 6 h. The resulting powders were ground with a mortar and pestle 

and annealed in a 1” tube furnace under argon flow at 500 ºC for 12 h to remove excess 

phosphorus. Synthesis of Ni2P was identical except for the absence of Mo2C. Ni2P@MW was 

also prepared by replacing Mo2C with MWCNT, and a physical mixture of Ni2P and Mo2C was 

obtained by grinding of as-prepared Mo2C (0.41 g) and Ni2P (0.30 g) for 20 min. 

Characterization 

PXRD was conducted on a Pananalytical Empyrean diffractometer with Cu K alpha1 source 

(λ = 1.5406 Å). Instrumental broadening for Scherrer Analysis for background corrections were 

based on diffraction pattern of LaB6 standard (660) purchased from the National Institute of 

Standards and Technology (NIST). The reference patterns were obtained from PDF-4 database 

from International Center for Diffraction Data (ICDD). Thermogravimetric analysis (TGA) 

studies were conducted on a TA Discovery Series thermogravimetric analyzer with N2 (0.100 

L/min) as the carrier gas. Scanning electron micrographs and EDS maps were generated on a 

Zeiss EVO instrument equipped with EDS detector from Bruker. Transmission electron 
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 7

microscopy (TEM) was performed on a Zeiss Libra 200 HT FE MC instrument and TEM-EDS 

on a FEI Tecnai Osiris™ 200 kV scanning TEM equipped with EDS. The samples were 

supported on copper grids with formvar film on 400 square mesh. XPS analyses were performed 

using an Ulvac-PHI Versaprobe 5000. Monochromatic Al Κα X-rays (1486 eV), a 100 µm 

diameter X-ray spot, and a takeoff angle of 60 degrees off sample normal were used in each 

acquisition. Pass energies for the survey and high-resolution acquisitions were 187.7 eV and 23.5 

eV, respectively. Charge neutralization was attained using 1.1 eV electrons and 10 eV Ar+ ions. 

The powder samples were pressed into a piece of indium foil and the foil was screwed onto a 

sample puck. Minor energy shifts due to charging were corrected by placing the -CH2- type 

bonding in the carbon 1s spectrum at 284.8 eV. Calculated peak areas and sensitivity factors 

from PHI handbook were used to determine the relative atomic concentrations.25 ICP-OES 

measurements were performed on an Optima 7300 DV spectrometer from PerkinElmer after 

digestion of the catalysts using a previously described microwave assisted method.26  

Catalytic fast pyrolysis of biomass 

Pyrolysis of biomass and analysis of the resultant vapor were performed on a PerkinElmer 

Clarus 680 gas chromatograph (GC) connected to a Clarus SQ 8C mass spectrometer (MS). The 

GC-MS assembly was equipped with a Frontier EGA/Py-3030 D pyrolyzer and autosampler. The 

details of pyrolysis method and analysis of the data have been described previously.27 Briefly, 

samples were prepared by alternating layers of 0.500 mg biomass, 1 mg washed quartz wool, a 

prescribed amount of catalyst, and a final layer of 1 mg washed quartz wool in stainless steel 

autosampler cups (d = 4 mm, h = 8 mm). Naphthalene (50 µg) was added in the biomass layer as 

the internal standard (I.S.) for semi-quantitation experiments. The as-prepared cups were 

pyrolyzed at 450 °C for 12 s, and the resulting vapor was introduced into the GC in a split ratio 

Page 14 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

of 80:1. The unpacked 2 mm quartz liner injector port was maintained at 280 °C and the ultra-

high purity helium (99.9999%) was the carrier gas. The GC column (Agilent DB-1701) pressure 

was maintained at 17.3 psi and the flow rate at 1 cm3/min. The column temperature was held at 

50 °C for 4 min followed by ramping to 280 °C at 5 °C/min, and finally held at 280 C for 4 min. 

The GC fractions were analyzed using MS with source temperature and ionization voltage at 280 

°C and 70 eV, respectively. Compounds were identified by in-house prepared retention time 

library and/or comparing the fragmentation patterns with the National Institute of Standards and 

Technology (NIST) database. Each experiment was repeated at least four times for 

reproducibility and error calculations. Spent catalysts from five py-GC/MS replicates catalyzed 

by Ni2P@Mo2C(1.89) at 20:1 catalyst to biomass ratio were combined for XPS and XRD 

studies. The spent catalyst includes the quartz wool and post-pyrolysis carbonaceous material. 

RESULTS AND DISCUSSION 

Catalyst synthesis and characterization 

A sequential synthesis scheme, comprising of carbothermic reduction of molybdenum oxide with 

MWCNT followed by hydrothermal deposition of phosphide on as synthesized carbide, was 

utilized to prepare carbide-phosphide composite catalysts. Carbothermic reduction and 

hydrothermal synthesis methods were selected because of their potential towards scaled up 

synthesis. Catalyst yield is easily scaled by adjusting the tube furnace size for carbothermic 

reduction and incubator size for hydrothermal synthesis. As illustrated in Figure 1, the precursor 

mixture of oxide and MWCNT was ball-milled prior to carbothermic reduction to obtain 

homogenous mixture and thus improve dispersity of carbide nanoparticles in carbon nanotube 

matrix (Figure S1a and S1d).  
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 9

 

Figure 1. Sequential synthesis scheme for carbide-phosphide composite catalysts. Inset is a TEM 

micrograph with composite catalysts supported and dispersed on MWCNT. 

Unsupported nickel phosphide (NixPy) was synthesized in the absence of any substrate 

(Figure S1b and S1e) while phosphide supported on MWCNT (NixPy@MW) was prepared by 

adding MWCNT instead of carbide. Zhao has recently reported that under hydrothermal 

conditions and metal chlorides as precursors, phosphide formation propagates via the formation 

of metal hydroxide and elemental metal prior to phosphidation.28 Also, since Mo2C remains 

unaffected under hydrothermal conditions as reported by Tang et al.,29 we infer that formation of 

the phosphide proceeds via an analogous route in the presence of carbide. Phosphide 

nanoparticles were thus formed in-situ and hydrothermally deposited onto the carbide matrix at 

140 °C (Figure S1c and S1f). Hydrothermal synthesis of nickel phosphide requires a large molar 

excess of phosphorus (P:Ni = 5.7), the presence of which could be detrimental to catalytic 

reactivity. Given previous reports regarding the sublimation range of red P between 380-525 °C, 

we have determined by TGA that excess elemental P is conveniently removed by annealing at 

500 °C under argon (Figure S2).30,31 
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 10

 

Figure 2. XRD plots of carbide (Mo2C), phosphide (NixPy), the composite catalysts 

(Ni2P@Mo2C) with molar Ni:Mo = 1.89, and phosphide deposited on MWCNT (NixPy@MW). 

PDF numbers for reference patterns are listed in parenthesis.  

Powder X-ray diffraction (PXRD) patterns of the annealed composite materials and 

references are shown in Figure 2. Carbothermic reduction of MoO3 with MWCNT as the source 

of carbon results in phase pure hexagonal β-Mo2C (blue). Both unsupported (red) and MWCNT-

supported (black) nickel phosphide form a biphasic mixture of two hexagonal phosphides, Ni2P 

and Ni5P4. The PXRD pattern of the composite material (orange) contains peaks corresponding 

to only Mo2C and Ni2P. Peaks corresponding to the Ni5P4 phosphide phase are absent in the 

composite material. The hexagonal crystal structure of molybdenum carbide remains unchanged 

under the hydrothermal conditions utilized during the synthesis, as apparent from the diffraction 

pattern for Ni2P@Mo2C (orange), which agrees with earlier observations reported for the 

synthesis of molybdenum sulfide-carbide composite material.29 Peaks corresponding to 
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 11

molybdenum oxides, molybdenum phosphide and NiMo bimetallic alloys or compounds are also 

not observed. The broad peak around 25° 2θ for Mo2C and Ni2P@Mo2C corresponds to graphitic 

carbon 002 peak from MWCNT.32 

Figure 3 reveals the effects of Ni:Mo ratio and annealing temperature on the composition of 

the resulting materials. All as-synthesized Ni2P@Mo2C composites consist of a monophasic 

phosphide deposited on carbide (Figure 3a). However, when the materials are annealed at 500 °C 

under flowing argon, Ni2P is the only detected phosphide phase until the Ni:Mo molar ratio 

exceeds 1.89. At higher ratios, two phosphide phases are observed (Figure 3b). As apparent in 

Figure 2, annealing unsupported nickel phosphide (red) and MWCNT-supported phosphide 

(black) affords a biphasic mixture as well. Apparently, the carbide surface is saturated with 

phosphide at around 1.89 Ni:Mo molar ratio. At higher phosphide loading, any additional 

hydrothermally prepared nickel phosphide is either not in direct contact with the carbide surface 

or it is depositing on MWCNT. Evidently, a direct interaction between the phosphide and carbide 

surfaces is critical to retain a monophasic nickel phosphide under annealing conditions employed 

during the current investigation. The hydrothermal conditions were selected to preclude any 

other phosphide phases except Ni2P in as prepared composites.24 As noted by our group and 

others, Ni2P and Ni5P4 phases seem to exist in a dynamic equilibrium with the equilibrium 

temperature around 350 °C.18,33 The carbide-phosphide interaction perhaps shifts the equilibrium 

towards Ni2P phase over Ni5P4 at higher temperatures. 

As apparent from Figure S1a, there is ubiquitous bare carbon surface from MWCNT instead 

of carbide in the Mo2C matrix for the phosphide to be deposited. The apparent preference of 

phosphide to deposit on carbide instead of carbon can perhaps be attributed to the presence of 

acid and base sites on Mo2C surface.15,16,34 The presence of multifunctional sites on carbide 
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 12

surface may be facilitating the deposition of intermediate species such as nickel hydroxides and 

nickel on carbide instead of carbon, and ultimately the formation of phosphide on Mo2C.28 

 

Figure 3. PXRD diffractograms of (a) as prepared nickel phosphide deposited on molybdenum 

carbide in the stated molar Ni2P:Mo2C determined via ICP-OES measurements. (b) Phosphide 

deposited carbides annealed in argon atmosphere at 500 ºC for 12 hours.  

The carbide-phosphide composite formation can also additionally be attributed to the low 

degree of lattice mismatch between several pairs of low angle lattice planes from the two 

materials. As shown in Table 1, three out of the first four low-angle lattice planes from Mo2C are 

within 3 % mismatch to a prominent low angle lattice planes in Ni2P. The only exception is 002 

from Mo2C that does not have a corresponding plane in Ni2P within five percent mismatch. 

Page 19 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 13

Significantly, the most prominent lattice plane of Ni2P, 111, shows only 2.681 % mismatch with 

the most prominent counterpart in Mo2C, the 011 plane. 

Table 1. Lattice mismatch of first four low angle diffraction peaks for Mo2C (PDF: 00-011-

0680) with corresponding D-spacing and diffractions peaks of Ni2P (PDF: 01-072-2514).   

Mo
2
C Ni

2
P Mismatch 

(%) hkl D (Å) hkl D (Å) 

010 2.595 020 2.537 2.235 

002 2.364 111 2.214 6.345 

011 2.275 111 2.214 2.681 

012 1.748 030 1.692 3.204 
 

Analysis of the PXRD plots in Figures 2 and 3 show that the carbide crystallite size does not 

change significantly during the hydrothermal incubation or annealing. Scherrer analysis of the 

XRD peak shows that the crystallite size of molybdenum carbide is approximately 18 nm before 

(Figure 3a) and 23 nm after (Figure 3b) annealing. Thus, Mo2C is a stable catalyst support and 

remains structurally and compositionally unaffected during the synthesis and subsequent 

annealing procedures employed here. However, the nickel phosphide crystallite average size 

increases from 11 nm to 49 nm upon annealing, as apparent from Figure 3 and Scherrer analysis.   

As we have shown in a recent report, X-ray photoelectron spectroscopy (XPS) analysis of the 

catalyst surfaces reveals that the carbide-phosphide composite material is substantially different 

from the individual carbide and phosphide materials.18 We noted a shift to higher binding 

energies for Mo 3d5/2 in the composite material as compared to monophasic Mo2C. Li and Zhao 

recently reported an increase of 0.33 eV when Fe was doped into Ni compounds.35 Similarly, 
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 14

Abu and Smith had reported shifts to higher binding energies when Co was doped into Ni2P and 

MoP.36 Thus, we concluded that the higher binding energy shift (~ 0.50 eV) for Mo 3d peaks are 

the result of an intermetallic interaction between Mo and Ni in the composite material.  

Catalytic fast pyrolysis (CFP) of biomass 

We have employed py-GC/MS to investigate the effect of catalyst on the composition of the 

product slate from CFP of hybrid poplar. We initially selected a low catalyst loading (1:1 

catalyst:analyte) to retain complexity in terms of the number of products detected in the vapor 

product post-CFP. The product slate from CFP is significantly different from uncatalyzed VPU, 

as apparent from the differences in corresponding pyrograms (Figure S3). The most prominent 

difference between Mo2C- and NixPy-catalyzed systems is the ratio of levoglucosan (LGA) to 

levoglucosenone (LGO): the carbide system affords more LGA while the phosphide system 

affords more LGO. The product slate afforded by the composite material (Ni2P@Mo2C) is subtly 

different when compared to that afforded by a carbide-phosphide physical mixture. Close 

inspection of the related pyrograms reveals those differences between the relative peak heights. 

As shown in Figure 4a, increasing the catalyst to analyte ratio from 1:1 to 20:1 decreases the 

number of prominent compounds at higher RT (> 22 min) in the product slate. A decrease in the 

intensity of the peaks corresponding to primary cellulose, hemicellulose and lignin pyrolysis 

products is evident at higher catalyst loading, which indicates more of the primary product vapor 

compounds contacted the catalyst active sites. Huber and co-workers have proposed that under 

CFP conditions, the depolymerization of cellulose affords glucose, which undergoes a 

dehydration to form LGA.37 Further dehydration of LGA affords LGO, as apparent from Figure 

4b, representing a pathway for deconstruction of the cellulosic portion of biomass.38 At higher 
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 15

catalyst loading (up to 4:1), a decrease in LGA and an increase in LGO peak intensities indicates 

the utility of the catalyst material for mediating these dehydration reactions. At the highest 

loading investigated here (catalyst:biomass = 20:1), LGA and LGO are all but completely 

consumed, and acetic acid and furfural dominate the product slate. Formation of furfural and 

subsequent products such as acetic acid and CO2 from LGO has been proposed to proceed 

through a complex series of dehydration, decarbonylation and decarboxylation reactions.37-39  

 

Figure 4: (a) Pyrograms of biomass in the presence of indicated Ni2P@Mo2C(1.89) 

catalyst:biomass weight ratios. Peak heights are normalized to the intensity of the tallest peak in 

each spectrum. b) Possible reaction pathway for cellulose pyrolysis to levoglucosan and 

subsequent reaction products. 
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Deconstruction of hemicellulose is expected to produce a similar family of compounds as 

cellulose, albeit with some variations. They are both composed of sugar monomers with 

cellulose being a linear homopolymer of anhydrous glucose and hemicellulose a branched 

heteropolymer of many types of sugars.40 Lignin is a complex aromatic polymer and the 

deconstruction fragments range from relatively simple phenols to phenolic oligomers with 

molecular weights in the thousands.41 When the catalyst to biomass ratio is 20:1, phenol is the 

only lignin monomer above the threshold used for analysis, even though several lignin-derived 

molecules are detected with the py-GC/MS configuration and conditions employed in our 

investigation (Figure S5). Although we can detect molecules such as phenol, guaiacol, cresol, 

vinylguaiacol, syringol, and others when whole biomass is pyrolyzed in the presence of catalyst, 

their relative intensity is greatly decreased in comparison to the sugar-derived molecules(Figure 

S5c). 

As bio-oil typically contains hundreds of compounds, lowering the number of condensable 

products using catalysts is desirable, as this affords a bio-oil amenable to further processing and 

upgrading.41,42 However, an increase in the amount of CO2 and acetic acid is less desirable, as 

these indicate the loss of valuable carbon atoms as non-condensable gas or an increase in bio-oil 

acidity. One of the tools that can be used to tune bio-oil composition is to use a composite 

catalyst such as Ni2P@Mo2C. When the phosphide to carbide molar ratio (P:C) was varied from 

0.16 to 18.8 and CFP was performed using a 20:1 catalyst to analyte ratio, a total of 27 

molecules (Figure S4) were detected by MS. Table S1 shows fraction of each component in the 

final product based on the contribution of each molecule to the total ion current (TIC).  

The Mo2C catalyst system afforded the fewest products (Table S1 and Figure S6-S7). The 

product slate of Mo2C and low phosphide loaded composites is dominated by oxygenates, i.e. 
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 17

carbon dioxide (1), acetaldehyde (2), methyl acetate (6) and acetic acid (14). Contribution from 

these oxygenates decreases gradually with increasing phosphide loading as is evident across 

Table S1. The dominant product at the optimal phosphide loading (P:C = 1.89) is furfural (19), 

with significant contributions from methyl furan (7), 5-methyl furfural (23), and acetyl furan 

(21). At the highest phosphide loading (P:C = 18.8), and for the unsupported phosphide (NixPy), 

the product slate is dominated by furans such as 2,5-dimethyl furan (13) in addition to furfurals 

and cyclic ketones. There is a gradual increase in furans, furfurals and cyclic ketones as the 

phosphide loading increases. These patterns are seen with very high consistency up to the 

optimum carbide-phosphide ratio (1.89), beyond which the deposited phosphide appears as a 

biphasic material and the distribution patterns for many products become inconsistent. The 

results demonstrate that modification of carbide surface via deposition of phosphide at various 

P:C can be used to tune the product slate and increase the proportion of desired product 

molecules with higher C:O ratio. 

We attribute the tunability in the product slate to the presence of bimetallic interfacial sites 

formed via deposition of phosphide on carbide. Since XPS indicates intermetallic interaction 

akin to doped and alloyed bimetallic catalysts between the two transition metals,18 we infer that 

unique bimetallic active sites are generated during hydrothermal deposition of phosphide on 

carbide. Further investigations are necessary to characterize the interfacial sites to determine 

possible bimetallic active sites in addition to those present in Mo2C and Ni2P. However, the 

product slate for the catalyst system consisting of a physical mixture of phosphide and carbide 

(mix) with the same molar Ni:Mo as in the optimum phosphide deposition catalyst (1.89) is 

demonstrably different to that of the optimum phosphide deposited catalyst. The physical 
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mixture shows higher degree of complexity and the product distribution does not match any of 

the composite catalysts (Table S1). 

The unsupported phosphide (NixPy) and phosphide supported on MWCNT (MW) show 

almost identical distribution. The NixPy-catalyzed system includes 3-methylcyclopentene (8), 2-

ethylfuran (12), and cyclopentanone (15), but these compounds are absent in the MW product 

slate. Similarly, the product slate for MW contains 5-methyl furfural (23), but this product is 

absent when NixPy is used. The rest of the compounds in the two systems show an almost 

identical distribution, unlike phosphide deposited carbide composite catalysts. Evidently, 

contribution to product slate tunability from interfacial sites between NixPy and MWCNT does 

not have the same consequence as interfacial sites formed by Ni2P-Mo2C interactions. 

The distribution of products was analyzed based on the C:O ratio in each fraction, and is 

shown in Figure 5 (full representative pyrograms are shown in Figure S8-S18). As shown in 

Figure 5b, the increased deposition of phosphide on carbide increases the proportion of 

molecules with higher C:O. In addition, changing the carbide to phosphide ratio in the catalyst 

results in a product slate with varying compositions in each C:O fraction. 
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Figure 5: (a) Percent of the total area under the curve represented by the peaks above the 

threshold (10 % by height) from ex-situ catalytic fast pyrolysis of biomass at 450 °C and 20:1 

catalyst to biomass ratios. The values are the average of four independent experiments and error 

bars represent the computed standard deviations. (b) Distribution based on carbon to oxygen 

atomic ratio of products above the threshold. 

Such tunability in the composition of the product slate is afforded by synthetically tailoring the 

catalysts. The fraction distribution of the lowest phosphide-carbide ratio catalyst (0.16) 

resembles the system catalyzed by Mo2C, and the highest ratio (18.8) resembles NixPy. In 

between the two extremes, while there is a general increase in the fractions with C:O≥2 with 

higher phosphide loading and gradual decrease in fractions with C:O≤2, there is also variability 

within the higher C:O fractions. Of particular note is the increase in the contribution of the 

second fraction (2<C:O≤4) which increases up to the optimum phosphide-carbide ratio and then 
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decreases. This effect can be attributed to the interfacial sites that are formed with increasing 

population until the optimum ratio. 

Catalyst stability 

 

Figure 6: a) XRD plots for composite phosphide-carbide catalyst before (fresh) and after (spent) 

biomass upgrading. The composite catalyst is Ni2P@Mo2C(1.89) and the catalyst to biomass 

ratio is 20:1 XPS spectra pre-catalysis corresponding to b) Mo 3d c) Ni 2p and d) P 2p. Post-

catalysis XPS spectra corresponding to e) Mo 3d f) Ni 2p g) P 2p. Solid color-coded 

deconvolution lines in Mo 3d and P 2p spectra correspond to d5/2 and p3/2, respectively. Color 

matched dotted lines correspond to d3/2 and p½. h) Bar graph for atomic percent of the fresh (red) 

and spent (blue) catalyst surfaces determined via XPS. 

XRD plots in Figure 6a show that the crystal structure of composite catalyst does not change 

significantly during VPU of biomass. However, comparison of XPS spectra of composite 

materials before and after catalysis (Figure 6, b-g) reveals an increase in metallic character of the 

catalyst surfaces after catalysis. This is exemplified by the abundance of peaks pertaining to 
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oxidized nickel species before catalysis (Table S2). After catalysis, a peak corresponding to the 

more reduced nickel phosphide (853.78 eV), which accounts for 15 % of the Ni 2p peak fraction, 

is evident.43 Li and coworkers have shown previously that supported Ni2P readily forms Ni2+ 

species in air,44 and Okamoto and coworkers have noted an O-atom transfer from nickel to 

phosphorus upon heat treatment of nickel phosphide.45 Our experimental data support these 

findings, as we note a decrease in oxidized nickel species with a concomitant increase in 

oxidized phosphorus species after catalysis. Atomic composition of the surfaces in Figure 6h also 

shows slight increase in atomic percentage of transition metals and reduction in atomic 

percentage of oxygen and phosphorus.  

The EDS elemental maps in Figure S19 for as synthesized and post-VPU catalysts show 

analogous distribution of elements before and after catalysis. Absence of significant aggregation 

post-catalysis of any constituent element shows that the carbide-phosphide composite materials 

are stable during the reaction conditions employed during catalytic fast pyrolysis.  

CONCLUSIONS 

In summary, we have demonstrated that preparation of carbide and deposition of phosphide on 

carbide are both relatively simple methods that can be readily scaled up to pilot and industrial 

scale thermochemical conversion of biomass. The resulting carbide-phosphide interaction is 

critical in retaining monophasic phosphide material under annealing conditions at 500 °C in 

argon. We have further demonstrated the utility of the carbide-phosphide composites for the 

vapor-phase upgrading (VPU) of biomass. Composition of the VPU product can be tuned by 

changing the catalyst composition. VPU of CFP products using nickel phosphide and 

molybdenum carbide results in markedly different product slates. Metal carbide-phosphide 
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interfacial sites evidently provide a unique active site, unlike phosphide deposited on carbon. 

Composite materials thus can be used to engineer systems to produce targeted VPU products via 

CFP. 

ASSOCIATED CONTENT 
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