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Electrocatalytic Activity and Stability Enhancement
through Preferential Deposition of Phosphide on Carbide
Yagya N. Regmi+,*[a] Asa Roy+,[b, c] Gabriel A. Goenaga,[d] James R. McBride,[e] B. R. Rogers,[f]

Thomas A. Zawodzinski, Jr. ,[c, d] Nicole Labb�,[a] and Stephen C. Chmely*[a]

Introduction

Recent years have seen a tremendous surge in the develop-
ment of materials based upon earth-abundant elements that
can efficiently catalyze electrochemical water splitting. Cost-ef-
fective and scalable alternatives to Pt-, Ru-, and Ir-based cata-
lysts are critical to generate H2 in affordable and abundant
quantities.[1] Carbides and phosphides of early transition metals
are among the most promising noble-metal-free electrocata-

lysts and have been investigated for hydrogen evolution reac-
tion (HER) and oxygen evolution reaction (OER) in acidic, basic,
and neutral environments.[2] The overpotentials required to
generate the widely accepted benchmark activity of
10 mA cm�2 have approached within 50 mV of Pt/C for HER
and IrO2 for OER.[3] Strategies such as synthesis of polymorphs
and crystalline species, engineering extremely small and dis-
persed carbide and phosphide particles to populate catalytical-
ly active sites on the surface, supporting or caging nanoparti-
cles on high surface area substrates, and formation of compo-
site materials including core–shell structures have led to the
reduction in overpotentials and improved stabilities.[4]

Nickel phosphide, molybdenum phosphide, and molybde-
num carbide are among the most promising non-noble-metal-
based electrocatalysts for water splitting. Although nickel car-
bide tends to be unstable under electrocatalytic conditions,
a recent report by Fan et al. has indicated that the activity and
stability of Ni3C can be improved by encasing the carbide in
graphene.[5] Several strategies have been reported over the
years for preparing bimetallic catalysts comprised of Ni and
Mo, and these have been investigated for a variety of reac-
tions.[6] Ni3Mo3C showed improved activity over Mo2C if used
as an anode material in fuel cells, but nickel molybdenum car-
bides as hydrogen evolution catalysts with comparable activi-
ties to that of Mo2C have not been reported.[7] Bimetallic nickel
molybdenum phosphide with comparable activity to that of
either nickel or molybdenum phosphide as a water splitting
catalyst has also not been reported to the best of our knowl-
edge. Most of the successful strategies for Ni- and Mo-based
bimetallic electrocatalysts have instead been invested in either
forming composites or doping.[8]

Hexagonal molybdenum carbide in particular has been seen
as an effective host system for doping and a superior catalyst
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&&Please provide first name for Dr. Rogers&&Phosphides
and carbides are among the most promising families of materi-
als based on earth-abundant elements for renewable energy
conversion and storage technologies such as electrochemical
water splitting, batteries, and capacitors. Nickel phosphide and
molybdenum carbide in particular have been extensively inves-
tigated for electrochemical water splitting. However, a compo-
site of the two compounds has not been explored. Here, we
demonstrate selective deposition of nickel phosphide on mo-

lybdenum carbide in the presence of carbon by using a hydro-
thermal synthesis method. We employ the hydrogen evolution
reaction in acid and base to analyze the catalytic activity of
phosphide-deposited carbide. The composite material also
shows superior electrochemical stability in comparison to un-
supported phosphide. We anticipate that the enhanced elec-
trochemical activity and stability of carbide deposited with
phosphide will stimulate investigations into the preparation of
other carbide–phosphide composite materials.
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support. Previously, Leonard and co-workers have reported
that carbides show enhanced mass-normalized activities of Pt
in comparison with carbon if used as catalyst supports, and
molybdenum carbide had the highest enhancement in normal-
ized electrocatalytic activities among the transition metal car-
bides investigated.[9] Further, the same group demonstrated
that the Fe2N-type hexagonal structure (b-Mo2C) is the most
active HER catalyst among various molybdenum carbide crystal
phases.[10] Additionally, if hexagonal molybdenum carbide was
templated on multiwalled carbon nanotubes (MWCNT), the
electrocatalytic activity was significantly enhanced.[11] Nano-
structured hexagonal Fe2P-type nickel phosphide (Ni2P) has
one of the lowest HER overpotentials among non-noble transi-
tion metal compounds.[12] Nickel phosphide of various stoichio-
metries and crystal structures can be prepared by variation of
the metal precursor and reaction conditions by using a facile
hydrothermal synthesis method.[13] Moreover, numerous re-
ports detail the preparation of bimetallic alloys of nickel and
molybdenum by using a hydrothermal synthesis method that
employs metal salts as precursors.[14] Wang and co-workers re-
cently reported that molybdenum sulfide can be prepared on
a molybdenum carbide surface by using a hydrothermal syn-
thesis method without any significant changes in the structure
of the carbide itself.[15] The composite material also showed im-
proved HER activity in comparison to the constituent carbide
and sulfide. Ni2P has been supported on various carbon struc-
tures and other high surface area substrates to enhance the
activity and/or improve stability.[16] However, to the best of our
knowledge, a carbide-supported nickel phosphide composite
material has not been reported.

We report the selective deposition of hexagonal Fe2P-type
nickel phosphide (Ni2P) by using a hydrothermal synthesis
method on hexagonal Fe2N-type b-Mo2C templated on
MWCNT by the carbothermic reduction of MoO3. A facile hy-
drothermal synthesis route was selected because of the ease
of access to various phases and potential of scalability.[13] The
Ni2P phase was selected based on the reported reproducible
phase purity compared with other nickel phosphide phases.[17]

Additionally, it also possesses several low 2q lattice planes that
are within 3 % lattice mismatch of the first four diffraction
peaks in Fe2N-type Mo2C. To analyze and compare the electro-
catalytic activities of the composite materials with the corre-
sponding nickel phosphide and molybdenum carbide, we have
used HER in acidic and alkaline electrolytes as the model reac-
tion. We propose that the selectivity in deposition on carbide
instead of the ubiquitously available MWCNT surfaces is
a result of the intermetallic interaction between the two
metals under hydrothermal conditions and the analogous hex-
agonal crystal structures of the two constituent materials. We
also attribute the enhancement in catalytic activity and stabili-
ty of hydrothermally synthesized nickel phosphide to the inter-
facial sites resulting from the deposition of phosphide on car-
bide.

Results and Discussion

Synthesis and physical characterization

A modified hydrothermal route as reported by Deng et al. was
used to prepare catalysts containing various ratios of Ni2P to
Mo2C, hereafter referred to as Ni2P@Mo2C(molar ratio).[13] The
stated ratios are based on post-synthesis inductively coupled
plasma optical emission spectroscopy (ICP-OES) measurements.
Mo2C was first prepared by slight modification of a previously
reported carbothermic method.[11] To achieve uniform distribu-
tion of carbide nanoparticles, the oxide–MWCNT mixture was
ball-milled for 24 h at 300 rpm prior to carbothermic reduction
to obtain a more homogenous precursor powder. As excess
red phosphorus is necessary to drive the reaction towards the
product, all composite catalysts were annealed under an argon
flow after hydrothermal incubation and purification to remove
any unreacted phosphorus. Although phosphorus loss was ob-
served at the annealing temperatures used here, TEM images
of the phosphides and composites reveal copious amounts of
phosphorus post annealing. As phosphorus contains several al-
lotropes with a wide range of boiling points extending well
above 500 8C, the observed phosphorus layers must be com-
posed of allotropes with boiling points above 500 8C.[18] Addi-
tionally, a 5 % H2 mixture in Ar was also employed to investi-
gate the effects of annealing under reducing environments on
catalytic activities.

Based on Scherrer analysis, as-synthesized Ni2P@Mo2C con-
tains Ni2P with crystallite size around 10 nm and Mo2C with
around 20 nm, as demonstrated by the diffraction patterns in
Figure 1 a. On annealing under an argon flow at 500 8C for
12 h, Ni2P crystallites grow dramatically to about 50 nm where-
as Mo2C crystallites remain unchanged, as demonstrated in Fig-
ure 1 b. Thus, molybdenum carbide remains structurally unaf-
fected during the hydrothermal incubation and annealing.
Among the lattice planes corresponding to the first four low
2q diffraction peaks for Mo2C, only the 0 0 2 plane (D = 2.364 �)
does not have a corresponding lattice plane in Ni2P that is
within 5 % of the lattice mismatch (Figure S1 in the Supporting

Figure 1. PXRD diffractograms of (a) the as-prepared nickel phosphide de-
posited on molybdenum carbide in the stated molar Ni2P/Mo2C determined
by ICP-OES measurements. (b) Phosphide-deposited carbides annealed in an
argon atmosphere at 500 8C for 12 h. The Ni5P4 PDF number is (00-018-
0883).
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Information). More significantly, the lattice plane correspond-
ing to the most prominent diffraction peak (0 11) in Mo2C with
a d-spacing of 2.275 � shows only a very low mismatch
(2.68 %) with the most intense diffraction peak (111) in Ni2P.
The 0 1 0 and 0 1 2 lattice planes in Mo2C are also around 3 %
lattice mismatch with 0 2 0 and 0 3 0 lattice planes, respectively,
in Ni2P. Such a high degree of lattice alignments allows for the
selective deposition of phosphide on carbide upon hydrother-
mal synthesis of Ni2P in the presence of Mo2C.

Further analysis suggests that phosphide selectively deposits
on carbide instead of unreacted MWCNT until the carbide sur-
face saturates with phosphide. As demonstrated in Figure 1 a,
all as-synthesized Ni2P@Mo2C catalysts contain only Mo2C and
Ni2P, irrespective of the phosphide-to-carbide (P/C) ratio. Upon
annealing, at lower P/C ratios, only one phase of phosphide
(Ni2P) is observed, as apparent from Figure 1 b. However, if the
P/C ratio exceeds 1.89, a second nickel phosphide phase
(Ni5P4) appears. Unsupported nickel phosphide and that sup-
ported on MWCNT also contain Ni5P4 on annealing under an Ar
flow. Apparently, the carbide surface is saturated with phos-
phide around 1.89 P/C molar ratio, and any additional phos-
phide is either not directly interacting with the carbide surface
or is depositing on the ubiquitously available carbon surface.

The carbide–phosphide interaction is critical to maintain
monophasic nickel phosphide during annealing, and emer-
gence of a second phase indicates saturation of the carbide
surface with phosphide. Thus, a P/C ratio of 1.89 is referred to
as the optimum molar ratio hereafter. XRD diffractograms for
all the composite catalysts investigated here do not indicate
the formation of possible impurities, that is, crystalline mono-
metallic compounds nickel carbide, molybdenum phosphide,
and the bimetallic nickel molybdenum carbide.[5, 6, 19] The an-
nealing temperatures employed here are below the formation
temperatures reported for carbides and hydrothermal incuba-
tion of nickel chloride in the presence of Mo2C does not indi-
cate the presence of crystalline phosphides.[9]

High-resolution (HR)-STEM micrographs, high angle annular
dark field (HAADF) images, and energy-dispersive X-ray (EDX)
maps in Figure 2 b–e support the conclusion that the phos-
phide nanoparticles preferentially deposit on carbide nanopar-
ticles. The most intense regions of Mo and Ni in Figure 2 c,d
correspond to the bright areas in the HAADF image in Fig-
ure 2 b, indicating that the two transition metals are spatially
co-localized. The overlap between Ni (Figure 2 d) and P (Fig-
ure 2 e) corroborates the XRD evidence in Figure 1 for forma-
tion of nickel phosphide instead of metallic nickel nanoparti-
cles deposited on carbide. Additionally, composite catalysts are
dispersed in a network of MWCNT (inset, Figure 2 a). Prior to
annealing, spherical phosphide particles around 10 nm are de-
posited on bigger carbide particles. The apparent composite
particle size in Figure 2 b is around 50 nm, which closely
matches the estimation using Scherrer equation.

Catalyst surfaces were probed by using X-ray photoelectron
spectroscopy (Figure 3). The high-resolution Mo 3d spectrum in
Figure 3 a is analogous to the Mo2C surface described previous-
ly for carbothermic reduction derived Mo2C.[11, 20] Porosoff et al.
demonstrated that carbides have partially oxidized surfaces,

and the degree of oxidation fluctuates during the course of
a reaction cycle.[21] The 2p spectrum for Ni from NixPy in Fig-
ure 3 b indicates the presence of phosphided and oxidized
nickel in addition to the broad satellite structures at higher
binding energies.[22] Similarly, the 2p spectrum corresponding
to P from NixPy in Figure 3 c reveals peaks that have previously
been assigned as nickel phosphide and nickel phosphate.[23]

The Mo 3d spectrum for the composite material in Figure 3 d
indicates an increase in the relative intensity of peaks at lower
binding energies compared with Mo2C in Figure 3 a. There is
also a shift of about 0.5 eV to higher binding energies for all
peaks for the composite material in comparison to Mo2C
(Table S1 in the Supporting Information). The Ni 2p spectra
from the composite in Figure 3 e indicates formation of only
oxidized nickel species and the P 2p spectra in Figure 3 f re-
veals the formation of P2O5.[23a, 24] The relative growth of lower
binding energy peaks indicates an increase in the metallic
nature of the surface in the composite material with respect to
Mo2C.[25] The increase in binding energy for the 3d peaks has
previously been attributed to the increased intermetallic inter-
action between the transition metals.[23a, 26] Thus, the higher
binding energy shift suggests an intermetallic interaction be-
tween Mo from Mo2C and Ni from Ni2P that was hydrothermal-
ly deposited on Mo2C. Formation of phosphate and oxidized
nickel species on the surface has been attributed to oxidation

Figure 2. (a) High-resolution scanning transmission electron micrograph (HR-
TEM) of as synthesized Ni2P@Mo2C. Inset is the larger area TEM image with
the area corresponding to the HR-STEM image marked in the blue rectangle.
(b) High-angle annular dark field (HAADF) image of the annealed Ni2P@Mo2C
with ICP-OES measured molar Ni2P/Mo2C = 0.37. Corresponding energy dis-
persive X-ray spectroscopy (EDX) elemental maps for (b) molybdenum, (c)
nickel, and (d) phosphorus.
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upon contact with air.[27] The shift to higher binding energy for
the oxidized phosphorus peak and the absence of peaks relat-
ed to phosphide in the composite material is also consistent
with previous observations on deposition of nickel phosphide
on various supports such as alumina, silica, and nickel foam.[28]

Electrochemical characterization

Electrocatalytic activities of the carbide, phosphide, and com-
posite materials with various P/C ratios were measured in 0.5 m

sulfuric acid (pH 0.30) and 0.1 m KOH (pH 13) by using a three-
electrode rotating disc electrode. The electrolyte was saturated
with a hydrogen flow prior to electrochemical measurements
and was continuously purged during the measurements. All
potentials are adjusted to the reversible hydrogen electrode
(RHE). Current densities are calculated based on geometric sur-
face area of the working electrode and the catalyst loading is
0.2 mg cm�2. The onset potential is defined as the applied po-
tential (vs. RHE) required to generate 10 mA cm�2, unless other-
wise stated.

The XRD plot in Figure 4 a indicates that the Ni5P4 phase has
emerged at 450 8C if hydrothermally synthesized Ni2P (red) or
Ni2P supported on MWCNT (black) was annealed under argon.
We chose 450 8C instead of 500 8C so that we could compare
these results with previous reports on nickel phosphide elec-
trocatalysts.[12] Annealing Ni2P in a reducing environment (5 %
H2) increases the proportion of Ni5P4 (blue) in the nickel phos-
phide matrix. Ni5P4 has previously been reported to be
a highly active electrocatalyst for HER in acid if synthesized uti-

lizing a solvothermal synthesis method.[29] Encapsulation in or
supporting Ni2P on high surface area carbon has also been
shown to significantly improve the HER activities.[30] However,
Figure 4 b indicates that the HER activities of hydrothermally
derived Ni2P remain unchanged irrespective of annealing con-
ditions, support, or presence of Ni5P4. The initial improvement
in HER activity upon annealing at 300 8C can be attributed to
the removal of organic adsorbates on the catalyst surface as
described previously for nickel phosphide synthesized by using
trioctylphosphine.[12] Unreacted phosphorus was volatilized at
450 8C during annealing in the tube furnace with simultaneous
appearance of Ni5P4 if XRD patterns of the resulting powder
were collected post-annealing.

However, supporting Ni2P on Mo2C improves the HER activi-
ties significantly in both acidic and basic electrolytes. As listed
in Table 1, the HER overpotential generally decreases as the
molar ratio of phosphide increases, under acidic electrolyte
conditions. If the electrolyte is switched to 0.1 m KOH, the
onset potential becomes more positive up to the optimum

Figure 4. PXRD diffractograms (a) and corresponding HER polarization
curves for Ni2P annealed at various temperatures and under varying condi-
tions (b). Numbers and H2 after Ni2P in (b) represent annealing temperatures
in 8C and annealing in 5 % hydrogen in argon, respectively.

Table 1. Electrochemical parameters in acid (A, pH 0.30) and base (B,
pH 13) for catalysts annealed at 500 8C for 12 h under Ar flow at
0.5 L min�1.

Cat[a] ECSA
[cm2]

h10 vs. RHE [mV] Tafel Slope
[mV Dec�1]

Ex. Current
[mA cm�2]

A B A B A B A B

Mo2C 37 27 192 225 60 56 6 2
0.16 42 18 231 272 69 58 4 1
0.37 41 21 239 265 82 66 13 2
0.76 32 19 212 238 75 60 16 1
1.89 35 13 196 237 67 62 18 2
4.69 22 13 196 246 72 72 12 6
9.76 14 9 190 269 88 71 69 3
18.8 8 4 184 321 90 84 57 2
NixPy 3 6 217 327 110 118 44 18
MW[b] 10 9 219 464 88 119 54 7
mix[c] 19 16 185 239 74 67 30 3

[a] Numbers represent Ni/Mo ratio. [b] NixPy deposited on multiwalled
carbon nanotubes. [c] Physical mixture of phosphide and carbide in the
same ratio as 1.89 catalysts.

Figure 3. XPS spectra of (a) Mo 3d from Mo2C, (b) Ni 2p from Ni2P, (c) P 2p
from Ni2P, (d) Mo 3d from Ni2P@Mo2C, (e) Ni 2p from Ni2P@Mo2C, and (f) P 2p
from Ni2P@Mo2C. All catalysts were annealed post-synthesis prior to XPS
measurements and the data are normalized with respect to the C 1s peak
set to 284.8 eV. Lines with the same color within a spectrum but solid and
dotted are pairs of peak splitting for a bonding type.
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Ni2P loading of 1.89. At the highest Ni2P loading (18.8), the
HER activity is analogous to NixPy. The increase in Tafel slope
and decrease in electrochemical surface area (ECSA; Figure S2
in the Supporting Information) at higher ratios can be attribut-
ed to the increased coverage of Mo2C with Ni2P to form inter-
facial sites and deposition of phosphide on high surface area
MWCNT, respectively. Higher loadings of phosphide (>1.89)
result in mixed phases of nickel phosphide upon annealing,
and the HER activity continues to improve in acid electrolyte.
However, the activity starts to decrease beyond the optimum
carbide phosphide ratio in base.

Despite a significant reduction in ECSA for Ni2P@Mo2C(9.76)
and Ni2P@Mo2C(18.8), the increased HER activity in acid indi-
cates either a higher density of active sites or higher turnover
frequency (TOF) of the interfacial active sites.[31] An increased
Tafel slope to 120 mV/decade also indicates that the HER reac-
tion rate is mostly determined by the reduction of hydroniums
ion on the catalyst surface through the Volmer step.[32] The in-
crease in overpotential of the composite catalyst at low phos-
phide ratios in comparison to Mo2C can be attributed to the
deposition of phosphorus on carbide active sites that cannot
form phosphide–carbide interfaces. The P 2p peak in the X-ray
photoelectron spectroscopy (XPS) in Figure 3 F indicates forma-
tion of phosphate on the surface. Thus, the analyte may be
blocked from interacting with the active site by the surface
phosphate species. At higher phosphide loading all the active
sites on carbide must be converting to the interfacial sites and
thus the overpotential is lower.

In the absence of an accurate insight into the nature and
population of active sites on the surfaces, estimation of the
catalytic properties such as turnover frequencies (TOF) of these
materials cannot be quantified with precision. Instead, the
Tafel slope and the associated exchange current densities can
be used to infer the intrinsic catalytic properties of the materi-
als.[31] The higher exchange current in general for the catalysts
in acidic media in comparison to alkaline media in Table 1, indi-
cates enhanced comparative electrochemical interaction be-
tween the catalyst and the electrolyte at lower pH. The ex-
change current densities generally also increase in acid electro-
lyte with the increase in phosphide loading. The observations
indicate that nanocrystalline phosphides may be better electri-
cal conductors than the corresponding carbides and MWCNT.

Previous studies employed annealing in reducing environ-
ments to primarily remove the ligands adsorbed on the surface
during the solvothermal decomposition method.[12] On anneal-
ing of Mo2C and the composite catalyst with optimized phos-
phide loading (1.89) under argon and in the presence of 5 %
H2, the electrocatalytic activity of Mo2C is analogous to that of
nickel phosphide (Figure 4 a). The activity of annealed Mo2C
improves in comparison to that of as-synthesized carbide, but
remains unchanged irrespective of annealing under an inert or
reducing environment (Figure S3 a in the Supporting Informa-
tion). Annealing the composite catalyst under a reducing envi-
ronment leads to a lower HER overpotential in comparison to
annealing under an inert atmosphere, as apparent from Fig-
ure S3 b in the Supporting Information. Apparently, the passi-

vated carbide–phosphide interface leads to an improvement in
electrocatalytic activity.

However, all the Ni2P@Mo2C catalysts annealed under H2

contain two hexagonal phases (Figure S4) irrespective of phos-
phide to carbide ratio unlike in Figure 1 b, where the Ni5P4

phase was observed only at higher ratios than 1.89 on anneal-
ing under inert argon atmosphere. The apparent improvement
in overpotential could be a result of the emergence of the
second phosphide phase, Ni5P4.

A comparison of HER activities of single-phase phosphide-
deposited catalysts, that is, Ni2P@Mo2C and Ni5P4@Mo2C, was
not possible because hydrothermal synthesis could not be
used to access the single-phase Ni5P4 nanomaterial on its own
or deposited on Mo2C. Previously, Laursen et al. reported that
a solvothermal method can be utilized to synthesize phase-
pure micron-sized Ni5P4 spheres, and the catalyst showed en-
hanced HER activities.[29] The same investigation also reported
that Ni5P4 converts to Ni2P on annealing at temperatures
above 350 8C. Based on the present evidence, the two phases
seem to exist in dynamic equilibrium around 350 8C. Future en-
deavors may be worthwhile to identify a solvothermal method
to obtain Ni5P4@Mo2C and other composites of nickel phos-
phide on Mo2C and so that their activities can be compared. In
light of the evidence from Figure 4 and Figure S3 (in the Sup-
porting Information), the observed enhancements in activities
of the hydrothermally synthesized carbide–phosphide compo-
site catalysts under investigation here are primary attributed to
the interfacial interaction between the two transition metal
compounds.

The lowest overpotential (176 mV) to achieve 10 mA cm�2

activity is afforded by annealing Ni2P@Mo2C(1.89) in a reducing
environment (5 % H2). The overpotential to reach 40 mA cm�2

HER activity can be improved by 100 mV if hydrothermally syn-
thesized nickel phosphide is deposited on Mo2C (Figure 5 a). In
addition, there is an improvement in the electrocatalytic stabil-
ity of nickel phosphide if deposited on carbide, as depicted in
Figure 5 b. We employed Ni2P@Mo2C(0.76) for stability tests so
that an identical initial applied potential could be used for
both NixPy and NixPy@Mo2C. The HER overpotential increased
by 130 mV for NixPy within 18 h of constant potential electroly-
sis (CPE).

However, the corresponding increase in overpotential for
Ni2P@Mo2C(0.76) is only 20 mV (Table S2 in the Supporting In-
formation). The overpotential increases by 15 mV for Mo2C
within 18 h of CPE testing. The same composite catalyst
showed remarkable electrochemical stability for 240 h if con-
stant potential electrolysis (CPE) was conducted at 240 mV
overpotential to generate 10 mA cm�2 (Figure S5 a in the Sup-
porting Information). Comparison of the initial linear sweep
voltammetry (LSV) curve with the one collected after 240 h
showed an increase of 9 mV in overpotential (Figure S5 b in
the Supporting Information).

For comparison, a physical mixture of NixPy and Mo2C was
prepared by grinding annealed phosphide and carbide in the
same molar ratio as optimized ratio (1.89). Although the signifi-
cance of the Ni–Mo bimetallic catalyst is highlighted by the
lower overpotential than Mo2C and NixPy for the physical mix-
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ture (mix) catalyst in Table 1, the extended stability can only be
achieved if nickel phosphide is deposited and immobilized on
carbide by hydrothermal incubation and high-temperature an-
nealing. Rapid deactivation of hydrothermally synthesized un-
supported Ni2P in Figure 5 b indicates that interaction with the
support is crucial for the stability whereas bimetallic properties
are critical for activity enhancement.

Conclusions

We have demonstrated that nickel phosphide can be selective-
ly deposited on molybdenum carbide by using a hydrothermal
synthesis method. Emergence of a second phosphide phase,
Ni5P4, upon annealing at 500 8C, indicates saturation of the car-
bide surface with phosphide. Unsupported phosphide and
phosphide supported on carbon also shows a biphasic compo-
sition. The HER activity and stability of the carbide deposited
with phosphide are superior to unsupported nickel phosphide.
The enhancement in activity and stability is a result of the in-
terfacial phosphide–carbide interaction. Our investigations
demonstrate the utility of advanced carbide–phosphide com-
posite materials for electrochemical energy conversion technol-
ogies.

Experimental Section

Safety statement

Synthesis routes for nickel phosphide and phosphide-deposited
carbides utilized here require handling elemental red phosphorus
under high temperature and pressure. Under such conditions, toxic
and explosive phosphorus compounds can be released that are
known to cause health and safety hazards. All personnel involved
in such synthesis are advised to read safety documents obtained
during the purchase of the chemicals and equipment. Hydrother-
mal reactors should be allowed to equilibrate to room temperature
before opening inside a well-ventilated fume hood. Furnaces
should also be allowed to equilibrate with the fume hood temper-

ature before unloading the annealing boats containing phos-
phides.

Materials

MoO3, MWCNT (70–80 % C), P (red), and NiCl2·6 H2O were pur-
chased from Sigma–Aldrich. Ethanol, methanol, HNO3, and HCl
were purchased from Fisher Scientific. HF and H3BO3 were pur-
chased from Acros Organics. Stock solutions for ICP-OES of Ni
(20 ppm), Mo (1000 ppm), and P (1000 ppm) were purchased from
SPEX CertiPrep. Nafion solution (5 wt %, IonPower) and methanol
(99.9 % Sigma–Aldrich) were used for ink preparation for electro-
chemical half-cell experiments conducted in H2SO4 (99.9999 % Alfa
Aesar) and KOH (99.99 % Sigma–Aldrich) diluted to 0.5 m and 0.1 m,
respectively, with 18.2 MOhm cm water (Milli-Q). Ultrahigh purity ni-
trogen, hydrogen, and argon were obtained from Airgas. All the
materials were used as purchased unless otherwise stated.

Catalyst synthesis

Mo2C synthesis was modified from the carbothermic reduction
method reported recently.[11] A 20:1 ball to precursor mixture of
MWCNT and MoO3 was ball-milled at 300 rpm for 20 h to prepare
a homogenous mixture. The mixture was placed on a quartz boat
annealed in a tube furnace equipped with temperature control.
The furnace ramped to 950 8C at 1 8C min�1 under argon flow at
0.5 L min�1. The furnace was allowed to cool down to room tem-
perature naturally before collecting the powder and grinding,
using an agate mortar and pestle. Ni2P synthesis was performed as
described by Deng et al.[13] Various Ni2P@Mo2C catalysts were pre-
pared as per the synthesis route for Ni2P but with the addition of
Mo2C into the precursor mixture. Briefly, to obtain the 1.89 Ni2P to
Mo2C ratio, NiCl2·6 H2O (0.95 g) was added to deionized (DI) water
(30 mL) and the solution stirred at 400 rpm for 10 min. Red P
(0.70 g) was stirred in followed by Mo2C (0.41 g), and the mixture
stirred for an additional 20 min. Then, the slurry was transferred
into a Teflon-lined hydrothermal bomb from Parr Instruments and
heated to 140 8C for 12 h. After cooling to room temperature, the
black suspension was washed by centrifugation at 4000 rpm with
three 50 mL portions of DI water and one portion of anhydrous

Figure 5. (a) iR corrected (solids) and as-obtained (dashed) HER polarization curves in 0.5 m H2SO4 for catalysts annealed at 450 8C for 12 h under 5 % H2 blend-
ed with Ar. The ICP-OES measured molar Ni2P/Mo2C ratio was 1.89 before annealing in H2 environment. (b) Polarization curves for nickel phosphide (dashed)
and nickel phosphide-deposited Mo2C (solids) after constant potential electrolysis (CPE) to generate 10 mA cm�2 for the stated hours. The Ni2P/Mo2C was 0.76
pre-annealing in H2. The glassy carbon working electrode was rotated at 3500 rpm, Hg/HgSO4 was the reference electrode and a gold wire as the counter
electrode.
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ethanol. The supernatant was discarded and the residue was dried
at 60 8C under vacuum for 6 h. The resulting powder was ground
with a mortar and pestle and annealed in a tube furnace under
argon or 5 % H2 in argon flow at 500 8C for 12 h to remove excess
P. Ni2P@MWCNT was also prepared by replacing Mo2C with
MWCNT and a physical mixture of Ni2P and Mo2C was obtained by
grinding Mo2C (0.41 g) and of Ni2P (0.30 g) for 20 min.

Physical characterization

Powder X-ray diffraction (PXRD) patterns were collected with a Pan-
analytical Empyrean diffractometer with CuK alpha1 source (l=
1.5406 �) with the voltage and current were 45 kV and 40 mA, re-
spectively. Instrumental broadening for Scherrer analysis was deter-
mined by using a LaB6 standard (660) from the National Institute of
Standards and Technology (NIST). Scanning electron micrographs
were collected with a Zeiss Dual Beam FIB/SEM instrument. TEM
images were collected with a Zeiss Libra 200 HT FE MC instrument.
XRD, TEM, and SEM were collected at the Joint Institute for Ad-
vanced Materials (JIAM) at the University of Tennessee, Knoxville.
The transmission electron microscopy (TEM) associated with
energy dispersive X-ray spectroscopy (EDX) analysis were per-
formed with a FEI Tecnai Osiris 200 kV (S)TEM instrument equipped
with EDX. All EDX analysis was conducted at the Vanderbilt Insti-
tute of Nanoscale Science and Engineering (VINSE). The TEM sam-
ples were prepared by sonicating the catalyst (1 mg) in methanol
(5 mL) for 20 min and drop-casting 5 mL of the suspension on
copper grids with formvar film on 400 square mesh.

XPS analyses were performed by using an Ulvac-PHI Versaprobe
5000. Monochromatic AlKa X-rays (1486 eV), a 100 mm diameter X-
ray spot, and a takeoff angle of 608 off sample normal were used
in each acquisition. Pass energies of 187.7 eV and 23.5 eV were
used for the survey and high-resolution acquisitions, respectively.
Charge neutralization was accomplished by using 1.1 eV electrons
and 10 eV Ar+ ions. The powder samples were pressed into a piece
of indium foil and the foil was screwed onto a sample puck. Plac-
ing the -CH2- type bonding in the carbon 1s spectrum at 284.8 eV
corrected any minor energy shifts resulting from charging. Relative
atomic concentrations were calculated by using peak areas and
PHI handbook sensitivity factors.[33]

Ion-coupled plasma optical emission spectroscopy (ICP-OES) meas-
urements were performed with an Optima 7300 DV spectrometer
from PerkinElmer. Catalysts were digested by using a microwave-
assisted method prior to ICP-OES analysis analogous to one de-
scribed previously.[34] Briefly, the catalyst (1.0–2.0 mg) was suspend-
ed in a solution consisting of concentrated solutions of HCl (3 mL),
HNO3 (1 mL), and HF (0.2 mL). The mixture was incubated for
20 min at 1150 W by using a Multiwave 3000 microwave from
Anton Parr. After digestion and cooling, H3BO3 (1 mL) was added
and the concentration was brought to ICP-OES measurement
range by diluting with 1 m HNO3 before analysis.

Electrochemical characterization

A Pine Instruments rotating disk electrode (RDE) rotator, glassy
carbon electrodes (0.1963 cm2), electrochemical cells, and a biologic
VMP-3 potentiostat were used for all electrochemical measure-
ments. A Radiometer Analytical XR-200 Hg/HgSO4 (acid) or XR-400
Hg/HgO (base) reference electrode, and gold wire counter elec-
trode were used. The reference electrode potentials versus RHE
were determined by measuring the open circuit voltage (OCV) of
a Pt electrode in hydrogen-saturated electrolyte. All procedures

and data described are reported against RHE. Catalyst inks were
prepared by combining catalyst material (2.6 mg) with methanol
(0.5 mL) and then adding 38 mL of &&word missing? Nafion?&&

for a 60:40 ratio of catalyst to Nafion. The inks were sonicated for
at least 20 min. The required volume to achieve a catalyst loading
of 200 mg cm�2 was determined by depositing aliquots of the inks
onto aluminum foil and weighing with a Mettler Toledo XP2U bal-
ance. The volume typically ranged between 8–12 mL. Glassy carbon
(GC) electrodes were prepared by polishing with 5.0 micron then
0.05 micron alumina powders, rinsing, and sonicating in ultrapure
water for 5 min and finally sonicated in 0.5 m H2SO4 for 5 min. The
electrodes were cleaned electrochemically by scanning 10 CV
cycles at 50 mV s�1 between 0.1 and �0.8 V in nitrogen-saturated
electrolyte. The background activity of the clean GCE electrodes
was then measured by collecting 3 CVs between 0.1 and �0.8 V at
a scan rate of 5 mV s�1 in hydrogen-saturated electrolyte. Measure-
ments were made while rotating the electrode at 3500 rpm to
remove hydrogen bubbles. Afterward, the predetermined volume
of catalyst ink was deposited onto the electrode. The catalyst test-
ing was conducted in hydrogen-saturated electrolyte. The catalyst
surface was first electrochemically cleaned in a similar manner to
the bare GC electrode with the potential window selected to limit
the current to 50 mA cm�2 in acid and 20 mA cm�2 in base. These
ranges were selected because electrode delamination occurred at
higher current densities. After cleaning, the hydrogen evolution ac-
tivity was measured by collecting 5 CVs within the same potential
window at a 5 mV s�1 scan rate. Potentioelectrochemical impe-
dance spectroscopy measurements were conducted at 0 V for each
electrode to iR correct the data. The electrochemical surface area
(ECSA) of the catalysts was determined by measurement of the
double-layer capacitance (CDL). These measurements were made by
collecting CVs within the range 0–0.3 V (acid) and 0–0.4 V (base) at
100, 50, 20, 10, and 5 mV s�1 scan rates. The fifth cycle was collect-
ed for the first three scan rates and the third cycle for the latter
two to ensure stable values were selected. For most catalysts, no
faradaic processes were observed within these regions. Within the
regions where no faradaic processes are occurring, the current re-
sults from double layer capacitance according to the Equations (S1)
and (S2) in the Supporting Information, where n represents the
scan rate and ia and ic are the cathodic and anodic currents, respec-
tively. The double layer capacitance was determined by plotting
the difference between ia and ic in the middle of the potential
region versus the scan rate, where the slope is equal to twice the
double layer capacitance. The ECSA is related to CDL according to
Equation (S4), where Cs is the area-specific capacitance of an atomi-
cally smooth electrode of the same material under the same condi-
tions (e.g. , temperature, electrolyte, concentration, etc.). As Cs is
not available for these catalysts, we have chosen values of
30 mF c�2 for 0.5 m H2SO4 and 40 mF c�2 for KOH based on literature
values of Ni and Mo electrodes.[35] An example of the ECSA analysis
is shown in Figure S6 in the Supporting Information &&ok?&&

for Mo2C in acid. The Tafel slopes of each polarization curve were
determined around the onset potentials according to the method
described previously.[11] The stability experiments were conducted
for the catalysts by holding the electrode at �212 mV, the poten-
tial corresponding with a 10 mA cm�2 current density for the
Ni2P@Mo2C(0.76) and Ni2P. After 3 or 8 h, a series of five polariza-
tion curves were collected at a 5 mV s�1 scan rate. This process was
repeated after each additional 3 or 8 h for a total hold CPE time.
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