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Solving Sudoku with Ant Colony Optimization
Huw Lloyd, Member, IEEE, and Martyn Amos

Abstract—In this paper we present a new algorithm for
the well-known and computationally-challenging Sudoku puzzle
game. Our Ant Colony Optimization-based method significantly
out-performs the state-of-the-art algorithm on the hardest, large
instances of Sudoku. We provide evidence that – compared to
traditional backtracking methods – our algorithm offers a much
more efficient search of the solution space, and demonstrate the
utility of a novel anti-stagnation operator. This work lays the
foundation for future work on a general-purpose puzzle solver,
and establishes Japanese pencil puzzles as a suitable platform
for benchmarking a wide range of algorithms.

Index Terms—Ant Colony Optimzation, Sudoku, Puzzle
Games.

I. INTRODUCTION

Sudoku is a well-known logic-based puzzle game that was
first published in 1979 under the name of “Number Place”.
It was popularised in Japan in 1984 by the puzzle company
Nikoli, and later named “Sudoku”, which roughly translates
to “single digits”. The puzzle gained attention in the West
in 2004, after The Times published its first Sudoku grid at
the instigation of Hong Kong-based judge Wayne Gould, who
first encountered the puzzle in 1997, and developed a computer
program to automatically generate instances. Sudoku is now
a global phenomenon, and many newspapers now carry it
alongside their existing crosswords (see [1] for a general
history of the puzzle).

The simplest variant of Sudoku uses a 9×9 grid of cells
divided into nine 3×3 subgrids (Figure 1 (left)). As we later
demonstrate, the problem scales to larger grids, but, for the
moment, we focus on the most familiar variant. The aim of
the puzzle is to fill the grid with digits such that each row,
each column, and each 3×3 subgrid contains all of the digits
1-9 (Figure 1 (right)). An instance of Sudoku provides, at the
outset, a partially-completed grid, but the difficulty of any grid
derives more from the range of techniques required to solve it
than the number of cell values that are provided for the player.

Formally, a Sudoku problem of order n = 3 is made up of a
grid of cells (or squares), arranged into 3×3 subgrids known
as boxes. A unit is a row, column or box, each containing
exactly nine cells. A problem is solved when each unit (that
is, every row, column and box) contains a permutation of the
digits 1. . . 9 [2]

Any given cell has exactly three units and 20 peers; the
units are the row, column and box in which the cell resides,
and the set of peers is made up of the other cells in those units
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Fig. 1. The structure of a Sudoku puzzle instance (left), and its solution
(right).

(that is, 2×8=16 neighbours in the relevant row and column,
plus 4 other cells occupying the same box; see Figure 2).

Sudoku is an NP-complete problem [3], as first shown in
[4] via a reduction from the Latin Square Completion problem
[5]. As such, the problem offers itself as a useful benchmark
challenge, and a number of different types of algorithm have
been proposed for its solution (see the next Section for a
more detailed discussion of these). However, we also consider
the argument that “We should develop AI methods that work
with not just one game, but with any game (within a given
range) that the method is applied to” [6]. That is, rather than
developing a multitude of algorithms to play one specific
game, we should seek methods that find broader applicability,
across a range of games. Although the algorithm we present
here is demonstrated in the context of Sudoku, we later show
how its lack of reliance on any heuristic information (that
is, game-specific “hints”) means that it may be applied to a
number of different puzzle games.

While such puzzle games may, superficially, appear to lack
“real world” relevance, they in fact offer a significant challenge
for general-purpose AI methods; as argued in [6], “We need
game playing benchmarks and competitions capable of ex-
pressing any kind of game, including puzzle games, 2D arcade
games, text adventures, 3D action-adventures and so on; this
is the best way to test general AI capacities and reasoning
skills.” While our algorithm could not be described as “general
purpose”, this does serve to underscore the importance of the
puzzle game domain.

The rest of the paper is structured as follows: in Sec-
tion II we briefly review closely-related recent work on the
application of various algorithms to Sudoku. This motivates
the description, in Section III of our own method, based on
Ant Colony Optimization (ACO), which introduces a novel
operator which we call Best Value Evaporation. In Section IV
we present the results of experimental investigations, which
confirm (1) that our algorithm out-performs existing methods,
and (2) that BVE is a necessary addition to the basic ACO
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Fig. 2. Units and peers for a specific highlighted cell. The units (from right to left, column, row, and block) are highlighted in white. The union of the three
units, that is all the white cells, are the peers.

algorithm for solving large Sudoku instances. We conclude
in Section V with a discussion of our findings, and discuss
possible future work in this area.

II. RELATED WORK

We first consider a “traditional” backtracking approach to
solving Sudoku. The Exact Cover Problem [7] is a type
of constraint satisfaction problem which may be phrased as
follows: given a binary matrix, find a subset of rows in which
each column sums to 1 (that is, find a set of rows in which
each column contains only a single 1). In [8], Knuth describes
the “dancing links” implementation of his Algorithm X (called
DLX), a “brute force” backtracking algorithm for Exact Cover.
As any Sudoku puzzle may be transformed into an instance
of Exact Cover [9], DLX naturally offers an effective solution
method for Sudoku [10].

In [2], Peter Norvig presents an alternative approach, based
on constraint propagation followed by a search process (we
discuss this in more detail shortly). Other notable approaches
to solving Sudoku include formal logic [11], an artificial
bee colony algorithm [12], constraint programming [13], [14],
evolutionary algorithms [15], [16], [17], [18], particle swarm
optimisation [19], [20], simulated annealing [21], tabu search
[22], and entropy minimization [23]. As this diverse set of
solution methods demonstrates, Sudoku offers a challenging
yet conceptually simple test-bed for the comparative analysis
of algorithms for problems involving complex reasoning.

In this paper, we focus on the application of ACO to the
solution of Sudoku. ACO is a population-based search method
inspired by the foraging behaviour of ants [24], [25], and
it has been successfully applied to a wide range of compu-
tational problems (see [26], [27] for overviews of both the
algorithm and its applications). The basic ACO algorithm uses
a population of “ants” (agents), which individually explore a
given problem space and incrementally construct a solution,
combined with a global “pheromone” data structure, which is
used to inform decisions taken by the ants. Essentially, each
ant moves individually on some problem representation (for
example, a graph), gradually building a solution and proba-
bilistically choosing its next move according to pheromone
concentrations. Components with more pheromone are more

likely to be selected. After a single population iteration, the
best solution according to some objective function is selected
from the population, and the components it contains (e.g.,
edges in the graph) are given additional pheromone. In this
way, the population rapidly converges on high-quality solu-
tions, although premature or sub-optimal convergence is dis-
couraged through the continuous “evaporation” of pheromone
concentrations. Some ACO variants include local pheromone
operators, which allow individual ants to record information
about their traversal during the solution construction process;
for example, ants may reduce the global pheromone value
associated with components as they are added to a solution,
to discourage following ants from taking the same path.

The archetypal ACO algorithm was named “Ant system”
[25], and this was applied to the well-known Travelling Sales-
man Problem as follows: each edge connecting two cities has a
pheromone value, and the probability of an edge being selected
by an ant is a function of both its pheromone concentration
and its distance from the ant’s current location. This process
thus combines the autocatalytic power of the global pheromone
network with a greedy local search heuristic. Each ant also
maintains a “tabu” list of cities that it has visited, and an ant
may not re-visit any city on its list. Once it has visited all cities,
an ant then deposits an amount of global pheromone which is
inversely proportional to the length of its tour; that is, shorter
tours deposit more pheromone. Once all ants have completed
this process, the global pheromone matrix is evaporated, thus
gradually removing the remnants of sub-optimal tours that
persist over time. Dorigo et al. [25] demonstrate that positive
feedback, combined with local search, can offer a heuristic
that is robust, versatile, broadly applicable, and amenable
to parallelization, because of its inherent population-based
structure. Since the publication of the original paper, ACO
is now a well-established method [28].

In [29], Mantere presents a hybrid ACO/genetic algorithm
approach to Sudoku, which combines global (evolutionary)
search with greedy local (ACO-based) search. Schiff [30]
and Sabuncu [31] also present relatively recent work on
applying ACO to Sudoku, but, in both cases, the performance
of the algorithm is relatively poor. Another nature-inspired
approach was used by [12], who used a variant of the artificial
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bee colony algorithm to solve 9 × 9 Sudoku puzzles. The
algorithm was able to solve some difficult instances (such as
the AIEscargot instance[32]) but the runtime performance is
relatively poor with an average solution time of over 6 minutes
for difficult instances.

For the purposes of comparison, in this paper we focus
mainly on the work of Musliu, et al. [33], who present an
iterated local search algorithm with constraint programming
which represents the state-of-the-art in stochastic search algo-
rithms for the Sudoku problem, plus the algorithms of Knuth
[8] and Norvig [2].

Fig. 3. Instance from Figure 1 (left), and (right) cell value sets after initial
pass of constraint propagation algorithm. The value sets are represented as
strings of allowable digits for the cell, for example ‘589’ represents the set
of values {5, 8, 9}.

III. OUR ALGORITHM

In [2], Norvig describes a two-component approach to solv-
ing Sudoku, using a combination of constraint propagation
(CP) and search. CP ensures that the “rules” of Sudoku are
observed, and repeatedly prunes the value set of each cell (that
is, the set of possible values that cells might take). Importantly,
by using CP during search, we effectively “parallelise” the
process, by eliminating large numbers of possible cell values
every time we fix a cell’s value; selecting a specific value for
a cell immediately rules out that value’s presence in a large
number of other cells. In [2], Norvig combines CP with a
recursive depth-first search which, at each iteration, selects
the cell with the smallest value set and then chooses the first
numeric ordered value for that cell. This essentially maximises
the probability of “guessing correctly”, and is referred to as
the Minimum Remaining Values Heuristic.

Here, we present a variant of constraint propagation inspired
by Norvig’s method, and use ACO (rather than depth-first
search) to search the space of solutions. We now describe our
CP method in more detail. For clarity, this is written in terms
of the 9×9 Sudoku puzzle, but the method generalises trivially
to larger sizes (e.g. 16× 16, 25× 25).

A. Constraint propagation

Throughout the constraint propagation (CP) process, each
cell maintains its value set – a list of possible values it might
take; every cell starts with the same value set, [1 . . . 9]. Once a
set has been reduced to a single value, we call that value fixed
for that cell. Our CP algorithm implements two basic rules,
which are applied to a cell’s peers when it has its value fixed:

1) Eliminate from a cell’s value set all values that are fixed
in any of the cell’s peers.

2) If any values in a cell’s value set are in the only possible
place in any of the cell’s units, then fix that value.

Note that since this can lead to other cells having their values
fixed, the procedure is recursive, and terminates when no
further changes are possible.

In Figure 3 we show the instance from Figure 1 after the
initial pass of our CP algorithm, which occurs when the board
is set up, and before any search is performed. For easy cases,
the application of the CP algorithm is often sufficient to solve
the board, and no further search is required (see Section IV
for a discussion). However, in most cases, some search will
be required, and we now describe our ACO-based method for
this.

B. Our ACO algorithm
Our algorithm is based on Ant Colony System (ACS),

which is a variant of ACO introduced in [34]. We first give
an informal description of the algorithm, and then formally
specify its various components.

At each population-level iteration, every ant works inde-
pendently on its own copy of the board. However, the global
pheromone matrix persists across iterations, allowing for a
combination of local search and global positive feedback to
occur (i.e., when the best ant in each iteration updates the
global pheromone). The ants move round their boards in
parallel; the ant system iterates over the ants in turn, calling a
step function which moves each ant one step. This enables ants
to discourage others from following the same path through the
local pheromone mechanism. The outer loop of the ant system
update therefore iterates c times, where c is the number of
cells, and at each iteration requests that each ant makes a
single step.

As previously stated, once the initial pass of the CP has been
completed, then most cells will have a set of possible values.
The aim of each ant, in a single population-level iteration,
is to fix as many cell values as possible. Each ant starts on
a different, randomly-selected cell, and then iterates over all
cells on the board. We simply move from one cell to the next
because what is important is not the “next cell”, but the value
assigned to the next cell encountered. Whenever it leaves a
cell that does not have a fixed value (that is, a cell with a
number of possible values), an ant must make a decision on
which element of that cell’s value set to choose, thus setting
the cell to that value. Importantly, as soon as an ant sets the
value of a cell, the constraints that it introduces are propagated
across the board.

Decisions on which value to choose are based on relative
pheromone levels, which are assigned to each possible value.
These are stored in a pheromone matrix, which keeps track
of a single pheromone amount for each possible value in
each cell. This is, for an order-3 (9 × 9) Sudoku puzzle,
a matrix of 81 × 9 values, with each cell corresponding to
the pheromone level for each possible value (1 . . . 9) in a
cell (indexed 1 . . . 81). Depending on the “greediness” of the
selection, either the value with the highest pheromone value
is chosen, or a weighted (roulette) selection is made.
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Algorithm 1: Our ACO algorithm for Sudoku

1 read in puzzle;
2 for all cells with fixed values do
3 propagate constraints (according to Section III-A);
4 end
5 initialize global pheromone matrix;
6 while puzzle is not solved do
7 give each ant a local copy of puzzle;
8 assign each ant to a different cell;
9 for number of cells do

10 for each ant do
11 if current cell value not fixed then
12 choose value from current cell’s value set;
13 fix cell value;
14 propagate constraints;
15 update local pheromone;
16 end
17 move to next cell;
18 end
19 end
20 find best ant;
21 do global pheromone update;
22 do best value evaporation;
23 end

After the cell’s value is set, the standard ACS local
pheromone operator is applied, which reduces the probability
of that value being selected by the following ant, thus prevent-
ing early convergence.

Once all ants have covered every square of the board, we
then perform the global pheromone update, which rewards
only the best solution found so far (the global best, in line
with ACS principles). We characterise the “best” solution, at
each iteration, as the sequence of value selections that lead to
the greatest number of cells having their values fixed; the best
solution is effectively the one found by the ant that “guesses”
correctly the highest number of times. However, at this point,
we introduce a novel variation to the standard ACS algorithm,
which we call best value evaporation (BVE). In what follows,
“best value” refers to an amount of pheromone that is added
to the global pheromone matrix whenever the best solution is
identified within a generation, and this value is itself subject
to evaporation, along with the component pheromone values.

In standard ACS, the global pheromone operator increases
the pheromone concentrations of all components of the global
best solution with an amount of pheromone that is directly
proportional to the absolute quality of that solution. However,
this can gradually lead to stagnation, where all ants end up
selecting the same route. Instead, the amount of pheromone
that is added globally, which we call the best value, is
measured in terms of the proportionate quality of the best
solution found so far (Equation 5). Importantly, the best value
itself is subject to evaporation over time, which prevents
“lock in”; taken together, these two components of BVE
prevent premature stagnation, which is confirmed by our later
experimental observations.

We give a pseudo-code description of our approach in
Algorithm 1, components of which we now formally specify.

Line 5: For a Sudoku puzzle of dimension d we define
a two-dimensional global pheromone matrix, τ , in which
each element is denoted as τki , where i is the cell index
(1 ≤ i ≤ d2) and k is a possible value for the cell (k ∈ [1, d]).
τki represents the pheromone level associated with value k in
cell i. Each element of the matrix is initialised to some fixed
value, τ0 (we use a value of 1/c, where c = d2 is the total
number of cells on the board).

Line 12: Where an ant has a choice of a number of values
in an “open” cell (i.e., one which does not yet have its value
fixed), then we define the value set, vi of cell i as the set of all
available values for that cell, from which we have to choose
one. We have a choice of two methods to use when making
a selection; we might make a greedy selection, in which case
the member of vi with the highest pheromone concentration
is selected, or we might make a weighted (i.e., “roulette
wheel”) selection, in which case the selection probabilities are
proportional to the pheromone associated with the available
choices. The relative probabilities of each type of selection
are determined by the greediness parameter, q0 ∈ [0, 1]. A
value selection, s, is therefore made according to

s =

{
argmaxk∈vi{τ

k
i } if q < q0

R otherwise
(1)

where q ∈ [0, 1] is a uniform random deviate, and R is a se-
lection from vi made according to the probability distribution

pki =
τki∑

j∈vi

τ ji
, k ∈ vi (2)

where pki is the probability of selecting choice k from vi.
If a cell has a value set of size zero (that is, it cannot have

its value fixed due to other cells being fixed and the constraints
thus introduced), then we mark it as a “fail cell”; the number
of fail cells is later subtracted from the number of cells to be
fixed when we calculate the quality of a solution (see note
below, for Line 20).

Line 15: The local pheromone update operator is used to
make selected values less attractive in subsequent iterations,
thus promoting exploration of the solution space. The local
pheromone update is handled as follows; every time an ant
selects a value, s, at cell i, its pheromone value in the matrix
is updated as follows:

τsi ← (1− ξ)τsi + ξτ0 (3)

with ξ = 0.1 (the standard setting for ACS).

Line 20: In order to perform the global pheromone update,
we must first find the best-performing ant. At each iteration,
each ant n of the m ants keeps track of the number of cells,
fn, n ∈ {1 . . .m}, that it has managed to set to a specific
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value. The value of fn corresponding to the iteration-best ant
is fbest, given by

fbest = max
n∈{1...m}

fn. (4)

We then calculate the amount of pheromone to add, ∆τ , as
follows:

∆τ =
c

c− fbest
(5)

where c is the total number of cells on the board. If the value of
∆τ exceeds the current “best pheromone to add” value, ∆τbest
(a quantity initialized to 0 at the beginning of the run), then
we set ∆τbest ← ∆τ , and replace the current best solution
with the solution found by the iteration-best ant.
Line 20: We then update all pheromone values corresponding
to values in the current best solution, where ρ ∈ [0, 1] is the
standard evaporation parameter:

τsi ← (1− ρ)τsi + ρ∆τbest. (6)

Note that in ACS, there is no global evaporation of pheromone;
the global pheromone update (equation 6) is only applied
to pheromone values corresponding to fixed values in the
best solution; the evaporation parameter ρ represents the
“volatility” of the deposited pheromone, and is used to tune
the convergence rate of the algorithm.

Line 22: In order to prevent “lock in”, we then additionally
apply evaporation to the current best pheromone value, ∆τbest:

∆τbest ← ∆τbest × (1− ρBVE) (7)

where ρBVE ∈ [0, 1] is a parameter which controls the rate of
evaporation of the best pheromone value.

IV. EXPERIMENTAL RESULTS

Our ant colony algorithm (ACS) was evaluated by com-
paring it with (1) iterated local search code from Musliu et
al. (ILS) [33], (2) a C++ implementation of the Dancing
Links algorithm (DLX) [35], and (3) our own implementation
of backtracking search, using the minimum remaining values
heuristic, which uses the same problem representation and
constraint propagation code as the ant colony algorithm (BS).
The code presented in [33] was itself compared against a
number of other stochastic algorithms, and was shown to
be the best performing. We include the Dancing Links and
backtracking algorithms for comparison with deterministic, ex-
haustive search. Furthermore, including a backtracking search
which uses the same underlying constraint propagation code
allows us to evaluate the effectiveness of the ant colony
algorithm in searching the problem space, independent of the
details of the underlying implementation.

We conducted experiments using a number of logic-solvable
9 × 9 instances from the literature, as well as randomly
generated 9 × 9, 16 × 16 and 25 × 25 ‘general’ instances
(which do not necessarily have a unique solution). In all the
experiments, we evaluated the algorithms for success rate over
a number of trials or instances, subject to a timeout, and the
mean time to solution. This is the same as the evaluation

conducted by [33] of their algorithm against a number of
competitors, and gives a measure of the practical applicability
of the algorithm in a time-constrained environment. In all
cases, we measured the statistical significance of results using
non-parametric tests, with a p value threshold for significance
of 0.05. In cases where multiple algorithms are compared
together, this significance threshold was modified using the
Bonferroni correction. In comparing vectors of solution times,
we use the Mann-Whitney U test in cases where the vectors
have different lengths, which occurs when the success rates in
an experiment differ. This test is appropriate for determining
significance of differences in the means of differently-sized
samples, when the distribution cannot be assumed to be nor-
mal. In cases where all algorithms solved all the instances, we
use the Wilcoxon-signed rank test, which tests for significance
of difference in the means of paired observations, again with
no assumption on the distribution. The success rates are treated
as frequencies of a nominal variable (success/fail) for which
the Pearson χ2 test is appropriate.

A. Experimental environment

All of the codes were compiled using the same compiler and
optimisation setting (g++ v5.4.0 with -O3). Experiments were
run on a machine with an Intel Xeon E5-2460v4 processor
with a clock speed of 2.4GHz, running Ubuntu Linux. The
parameter settings for the iterated local search solver (ILS)
were taken from the recommendations given in [33]. For the
ant colony code (ACS), we used the following settings: ρ =
0.9, q0 = 0.9, ρBV E = 0.005, m = 10. Our code, and all the
instance files used for the experiments, may be downloaded
from https://github.com/huwlloyd-mmu/sudoku acs.

B. Logic-solvable 9× 9 instances

We first selected instances based on known difficulty, or
on previous use in the literature. We selected the ten instances
used in [31] (labelled here sabuncu1 to sabuncu10), five named
instances identified by [36] as the most difficult (Platinum
Blond, Golden Nugget, Red Dwarf, coly013, tarx0134), and
one instance (AI Escargot) [32], commonly regarded as an ex-
tremely difficult puzzle. These instances are all logic solvable;
in other words, they each have a unique solution which can
be deduced from the given numbers. We ran the ACS, Iterated
Local Search (ILS), Dancing Links (DLX) and backtracking
search (BS) algorithms 100 times on each instance, with a
timeout of 5 seconds. The puzzles were successfully solved
in all cases by all four algorithms; there were no time-outs.
Table I shows the timing results for the four algorithms.
Since all the instances were solved in all cases, the vectors
of times per instance and algorithm are the same length; we
therefore use the Wilcoxon Signed Rank test, to determine the
significance of differences in the mean time. In all cases we
tested the fastest algorithm against the other three, using the
Bonferroni correction to lower the significance threshold on
the p value of the tests by a factor equal to the number of
tests. We also tested the times obtained by the two stochastic
algorithms, ACS and ILS, against each other.
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TABLE I
SOLUTION TIMES (MEAN AND STANDARD DEVIATION TIME OVER 100 RUNS) FOR THE LOGIC-SOLVABLE INSTANCES. FIGURES IN BOLD INDICATE TIMES

WHICH ARE SIGNIFICANTLY LOWER FOR ONE ALGORITHM COMPARED THE OTHER THREE, BASED ON A WILCOXON SIGNED RANK TEST; THE
BONFERONNI CORRECTION IS APPLIED, SO THAT p VALUES LESS THAN 0.05/3 ARE TAKEN TO BE SIGNIFICANT. ASTERISKS SHOW CASES IN WHICH THE

TIMES FOR ILS OR ACS ARE SIGNIFICANTLY LOWER THAN THE OTHER, USING THE WILCOXON SIGNED RANK TEST WITH p < 0.05.

Solution Time/s
Instance ACS ILS DLX BS

sabuncu1 (4.8± 1.84)× 10−5∗ 0.00083± 0.00047 0.00105± 0.000362 (1.58± 0.651)× 10−6

sabuncu2 (4.82± 1.73)× 10−5∗ 0.00414± 0.00143 0.000937± 0.000308 (2.18± 6.45)× 10−6

sabuncu3 0.000993± 0.000457∗ 0.112± 0.0296 0.00104± 0.000366 0.000202± 0.0000775
sabuncu4 0.000625± 0.000708∗ 0.00859± 0.00229 0.00112± 0.000346 0.0001± 0.0000378
sabuncu5 (4.62± 1.5)× 10−5∗ 0.00097± 0.000556 0.00101± 0.000384 (1.68± 0.733)× 10−6

sabuncu6 0.0107± 0.00828∗ 0.105± 0.027 0.00153± 0.00045 0.000775± 0.000273
sabuncu7 0.00106± 0.000986∗ 0.0853± 0.0206 0.00102± 0.000318 (9.67± 3.75)× 10−5

sabuncu8 0.000728± 0.000343∗ 0.007± 0.00206 0.00107± 0.000374 (7.91± 2.74)× 10−5

sabuncu9 0.00163± 0.0014∗ 0.0153± 0.00437 0.00105± 0.000345 0.00016± 0.0000579
sabuncu10 (4.73± 1.85)× 10−5∗ 0.00136± 0.000641 0.00104± 0.000363 (1.6± 0.693)× 10−6

aiescargot 0.0204± 0.0152∗ 0.152± 0.0328 0.00208± 0.000648 0.000475± 0.000182
coly013 0.0488± 0.0518∗ 0.702± 0.0685 0.007± 0.00146 0.0278± 0.00517

goldennugget 0.0374± 0.0293∗ 0.442± 0.0918 0.00545± 0.00149 0.0152± 0.00304
platinumblond 0.113± 0.0859∗ 0.131± 0.0223 0.0059± 0.00152 0.00268± 0.000923

reddwarf 0.0404± 0.0354∗ 0.299± 0.0768 0.00514± 0.00132 0.00993± 0.00212
tarx0134 0.0259± 0.0193∗ 0.851± 0.0699 0.0185± 0.00303 0.038± 0.0074

The ten puzzles from [31] (sabuncu1–sabuncu10) are gen-
erally solved in less time by all the algorithms than the six
harder puzzles. In four cases (sabuncu1, sabuncu2, sabuncu5
and sabuncu10) the puzzle is solved by a single application of
our constraint propagation procedure, so that no searching is
required for either the ACS or BS algorithms. The difference
in runtimes between the two algorithms for these instances
may be explained by the difference in set-up times; in the
case of ACS, the overhead of creating the ant colony and
initializing the pheromone matrix is clearly significant. On
these four “trivial” instances, the BS algorithm is the fastest of
all (running in times of order a microsecond). DLX requires at
least of order a millisecond to solve all the puzzles; in all but
the most difficult cases, this time is most likely dominated by
the calculations to convert the instance to and from an instance
of the exact cover problem.

Overall, we find that the deterministic solvers perform best
on these instances. Either DLX or BS is significantly fastest
for all of the instances. BS is the best performing overall, and
is fastest in twelve of the sixteen instances, with DLX fastest
in the other four. ACS is significantly faster than ILS in all
cases, and faster than DLX in seven of the sixteen instances.

Finally, we note that the times reported by Sabuncu[31] for
their ACO algorithm to solve ten of the instances used here are
typically 1 to 3 seconds. This is several orders of magnitude
slower than our times using ACS for the same instances which
are of the order of milliseconds, or less; this is more than can
be accounted for by differences in hardware or efficiency of
implementation and although we have not performed a direct
comparison with their code, we can safely assume that our
algorithm is the better performing of the two.

C. General instances

Following [14] and [33], we generated random instances for
the 9× 9, 16× 16 and 25× 25 Sudoku problem. In the latter
two cases, subgrids are of size 4×4 and 5×5 respectively, and

each row, column and subgrid must contain all of the digits
1 . . . 16 and 1 . . . 25 respectively.

These instances were generated by running the ACS code
with an initially blank grid, to produce a set of Sudoku
solutions. These are then converted into problem instances
by randomly blanking a number of the cells. The instances
generated in this way are not guaranteed to have a unique
solution. For each of the sizes 9× 9, 16× 16 and 25× 25, we
generated 100 instances for fixed cell fractions in steps of 0.05
from 0 to 0.95, giving a total of 6000 individual instances. We
ran the ACS, ILS, DLX and BS codes once on each instance,
with timeouts set to 5 seconds for the 9 × 9 instances, 20
seconds for 16 × 16 and 120 seconds for 25 × 25. These
timeouts are shorter than those used by [33]; however we
ran our experiments on a faster processor, and with compiler
optimisations enabled. Taken together, these two differences
should amount to a factor of approximately 3 in time. We
designed the experiment so that each instance is used for one
run; this is preferable to carrying out multiple runs on each of
a smaller number of instances [37].

Figures 4, 5 and 6 show the results for average execution
time (for successful runs) and success rate for the four
algorithms. Summary results are given in Table II and the
raw data is given in Table III. In Table III, we indicate in bold
quantities which are significantly best of all algorithms, and
with asterisks significant differences between the stochastic
algorithms ACS and ILS. Statistical significance is tested using
the χ2 contingency test for the success rates, and the Mann-
Whitney U test for the solution times. We use the Mann-
Whitney test here as the vectors of times will in general have
differing lengths. In cases where we test all algorithms against
each other, we apply the Bonferroni correction to modify the
p-value threshold for signficance.

As in [33] and [14], we observe a “phase transition” in
the difficulty of the instances as a function of the fixed cell
fraction; the difficulty is markedly greater at fixed cell fractions
of around 40− 50%. For low values of the fixed cell fraction,
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Fig. 4. Plots of solution time (left) and success rate (right) against fixed cell
percentage for runs of ACS, ILS, DLX and BS on the 9×9 general instances.

the search space is large, but there also exist many possible
solutions. As the grid becomes denser, the size of search space
decreases as well as the number of possible solutions. At
around 45%, the combination of rarity of solutions and the
size of the search space leads to a sharp peak in difficulty.

The most difficult puzzles are the 25× 25 instances with a
fixed cell fraction between 40% and 50%. For these fixed cell
fractions of 40% and 45%, ACS outperforms the other three
algorithms by a significant margin; ACS achieves success rates
of 98% and 85% (compared to 69% and 10% for ILS, 76%
and 49% for DLX, and 21% and 12% for BS). These are
the only instances in all the experiments presented for which
one algorithm achieved a significantly higher success rate than
the other three. The mean times achieved by ACS on these
instances are lower than the other three algorithms, but the
difference is not statistically significant – this is most likely
due to the small samples of times for the three algorithms
which recorded low numbers of successes.

It is interesting to note the difference in performance be-
tween ACS and BS. These two codes use the same underlying
problem representation and constraint propagation code; the
only difference between them is the search strategy. This
comparison is compelling evidence that ACS is very efficient
at searching the solution space, giving markedly improved
performance on the hardest instances over an exhaustive search
strategy using the same underlying evaluation routines. For
the easier instances, BS outperforms ACS, perhaps due to
the simplicity of the algorithm which requires very little
setup compared to ACS, or transformation to another problem
representation, as in DLX.

ACS returns significantly lower runtimes than ILS, the other
stochastic search algorithm, in 52 of the 60 instances, whereas
ILS is significantly faster than ACS for only two instances. The
performance of ACS on these general instances is significantly
better than that of ILS both in terms of overall runtime, and
success rate on the hardest instances.

D. Evaluation of Best Value Evaporation

In order to evaluate the effectiveness of BVE as an anti-
stagnation mechanism, we ran experiments using the logic
solvable instances (section IV-B) and general instances (sec-
tion IV-C) using the ACS algorithm with best-value evapora-
tion disabled by setting ρBV E = 0. We used all the logic-

Fig. 5. Plots of solution time (left) and success rate (right) against fixed
cell percentage for runs of ACS, ILS, DLX and BS on the 16 × 16 general
instances.

Fig. 6. Plots of solution time (left) and success rate (right) against fixed
cell percentage for runs of ACS, ILS, DLX and BS on the 25 × 25 general
instances.

solvable instances, and the 25 × 25 general instances (since
these are the most challenging). For the named 9 × 9 logic-
solvable instances, we find that ACS without BVE performs
very poorly on the harder instances (aiescargot, coly013,
goldennugget, platinumblond, reddwarf, tarx0134), failing to
solve these in most cases (see Table IV). Performance on the
ten instances from [31] is similar to BVE, with the exception
of sabuncu6, with a success rate of 95%. This suggests that
these ten instances are not sufficiently difficult to provide a

TABLE II
SUMMARY OF RESULTS ON THE GENERAL INSTANCES (20 FILLED CELL
FRACTIONS FOR ORDERS 3, 4 AND 5). THE TABLE SHOWS THE NUMBER
OF INSTANCE CATEGORIES FOR WHICH THE ALGORITHM LISTED IN THE
FIRST COLUMN (ALGORITHM 0) PRODUCES A SIGNIFICANTLY HIGHER
SUCCESS RATE, OR LOWER MEAN SOLUTION TIME, THAN THE OTHER

ALGORITHMS (ALGORITHM 1, OR ALL ALGORITHMS). SIGNIFICANCE IS
TAKEN AT THE 0.05 LEVEL FOR PAIRWISE COMPARISONS, OR 0.05/3 FOR

ONE-AGAINST-ALL COMPARISONS. THIS DATA IS SUMMARIZED FROM
TABLE III; DETAILS OF THE STATISTICAL TESTS ARE GIVEN IN

SECTION IV.

Algorithm 1
Algorithm 0 ACS ILS DLX BS All

ACS - 3 3 3 2
Success ILS 0 - 0 0 0

DLX 0 0 - 0 0
BS 0 0 0 - 0

ACS - 52 37 11 2
Time ILS 3 - 21 3 0

DLX 21 38 - 9 5
BS 48 52 45 - 40
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TABLE III
SOLUTION RATES (SOLVED INSTANCES OUT OF 100) AND TIMES (MEAN AND STANDARD DEVIATION TIME OF SUCCESSFUL RUNS) FOR THE GENERAL

INSTANCES. O IS THE ORDER OF THE PUZZLE (3 FOR 9× 9, 4 FOR 16× 16, 5 FOR 25× 25) AND F IS THE PERCENTAGE OF GIVEN CELLS. FIGURES IN
BOLD DENOTE QUANTITIES FOR WHICH ONE ALGORITHM IS SIGNIFICANTLY SUPERIOR TO THE OTHER THREE. FOR THE SOLUTION TIMES, THE VECTORS
OF TIMES ARE COMPARED USING THE MANN-WHITNEY U TEST. SUCCESS RATES ARE COMPARED USING A χ2 CONTINGENCY TEST. IN ALL CASES, THE

BONFERONNI CORRECTION IS APPLIED, SO THAT p VALUES LESS THAN 0.05/3 ARE TAKEN TO BE SIGNIFICANT. ASTERISKS SHOW QUANTITIES FOR
WHICH EITHER ILS OR ACS ARE SIGNIFICANTLY SUPERIOR TO THE OTHER, USING THE SAME TESTS WITH p < 0.05.

O F(%) Solution Rate Solution Time/s
ACS ILS DLX BS ACS ILS DLX BS

3 0 100 100 100 100 0.00187± 0.000653∗ 0.00778± 0.0022 0.00145± 0.000417 0.000433± 0.000152
3 5 100 100 100 100 0.00186± 0.000693∗ 0.00912± 0.00302 0.00132± 0.000391 0.000372± 0.000138
3 10 100 100 100 100 0.00156± 0.000563∗ 0.00974± 0.00443 0.00132± 0.000509 0.000332± 0.000109
3 15 100 100 100 100 0.00156± 0.000668∗ 0.0119± 0.00627 0.00117± 0.000373 0.000300± 000101
3 20 100 100 100 100 0.00142± 0.000569∗ 0.0152± 0.0101 0.00115± 0.00041 0.000297± 0.000293
3 25 100 100 100 100 0.00117± 0.000368∗ 0.0218± 0.0276 0.00107± 0.000338 0.000219± 0.000131
3 30 100 100 100 100 0.00091± 0.000354∗ 0.024± 0.0266 0.00107± 0.000332 0.000226± 0.000325
3 35 100 100 100 100 0.000572± 0.000256∗ 0.0202± 0.0243 0.0011± 0.000341 0.000115± 0.0000878
3 40 100 100 100 100 0.000266± 0.000207∗ 0.0102± 0.0178 0.00108± 0.000355 (4.52± 3.7)× 10−5

3 45 100 100 100 100 0.000129± 0.000111∗ 0.00625± 0.0176 0.00103± 0.000349 (2.04± 2.57)× 10−5

3 50 100 100 100 100 (7.21± 4.7)× 10−5∗ 0.00176± 0.000971 0.00113± 0.000412 (1.03± 1.06)× 10−5

3 55 100 100 100 100 (5.54± 4.98)× 10−5∗ 0.0011± 0.000671 0.00114± 0.000384 (6.06± 6.89)× 10−6

3 60 100 100 100 100 (3.87± 1.91)× 10−5∗ 0.00094± 0.000526 0.00115± 0.000382 (3.27± 3.68)× 10−6

3 65 100 100 100 100 (3.5± 1.78)× 10−5∗ 0.00076± 0.000512 0.00122± 0.000441 (2.31± 2.38)× 10−6

3 70 100 100 100 100 (3.14± 1.34)× 10−5∗ 0.0006± 0.00051 0.00127± 0.000421 (2.04± 1.72)× 10−6

3 75 100 100 100 100 (3.41± 1.72)× 10−5 0.00056± 0.000571 0.00121± 0.000388 (1.88± 1.95)× 10−6

3 80 100 100 100 100 (3.24± 1.19)× 10−5 0.00051± 0.0005 0.00126± 0.000453 (1.65± 0.876)× 10−6

3 85 100 100 100 100 (3.43± 1.31)× 10−5∗ 0.0004± 0.00049 0.00127± 0.000451 (1.57± 0.738)× 10−6

3 90 100 100 100 100 (3.21± 1.42)× 10−5 0.00055± 0.000497 0.00146± 0.00052 (1.58± 0.681)× 10−6

3 95 100 100 100 100 (3.43± 1.43)× 10−5 0.00046± 0.000498 0.00145± 0.000511 (1.49± 0.700)× 10−6

4 0 100 100 100 100 0.0327± 0.0129∗ 0.0802± 0.0205 0.0081± 0.00213 0.00363± 0.00127
4 5 100 100 100 99 0.0258± 0.0105∗ 0.0933± 0.0248 0.00739± 0.0042 0.00342± 0.000962
4 10 100 100 100 99 0.0261± 0.0103∗ 0.097± 0.0249 0.00608± 0.00167 0.0033± 0.00186
4 15 100 100 100 99 0.0231± 0.00846∗ 0.122± 0.0411 0.00583± 0.00158 0.00441± 0.00742
4 20 100 100 100 96 0.0212± 0.00958∗ 0.153± 0.0618 0.00575± 0.0012 0.331± 1.57
4 25 100 100 100 90 0.0202± 0.00885∗ 0.414± 0.945 0.00567± 0.00178 0.229± 1.87
4 30 100 100 100 89 0.0191± 0.0111∗ 0.698± 1.3 0.0346± 0.287 0.414± 2.38
4 35 100 100 100 91 0.0176± 0.0102∗ 1.84± 2.47 0.036± 0.254 0.525± 2.41
4 40 100 96 100 100 0.0127± 0.00945∗ 1.5± 1.98 0.0123± 0.0363 0.25± 1.27
4 45 100 100 100 100 0.00406± 0.00392∗ 0.246± 0.21 0.00652± 0.00165 0.00248± 0.0076
4 50 100 100 100 100 0.000588± 0.000564∗ 0.04± 0.0422 0.00596± 0.00192 0.000121± 0.000194
4 55 100 100 100 100 0.000205± 0.000162∗ 0.0125± 0.00548 0.00604± 0.00158 (2.55± 2.57)× 10−5

4 60 100 100 100 100 0.000156± 0.000106∗ 0.00736± 0.00314 0.00638± 0.00196 (1.47± 1.58)× 10−5

4 65 100 100 100 100 0.000121± 0.000059∗ 0.00476± 0.00224 0.00634± 0.00159 (8.72± 9.37)× 10−6

4 70 100 100 100 100 0.000108± 0.000050∗ 0.00314± 0.00144 0.00684± 0.00171 (6.35± 6.89)× 10−6

4 75 100 100 100 100 0.000109± 0.000050∗ 0.00241± 0.00102 0.0067± 0.00151 (4.73± 5.52)× 10−6

4 80 100 100 100 100 0.000107± 0.000041∗ 0.00183± 0.000749 0.00734± 0.00162 (3.41± 2.79)× 10−6

4 85 100 100 100 100 0.000105± 0.000044∗ 0.00141± 0.000634 0.0076± 0.0018 (2.94± 1.49)× 10−6

4 90 100 100 100 100 0.000101± 0.000041∗ 0.00128± 0.000618 0.00805± 0.00208 (2.94± 1.13)× 10−6

4 95 100 100 100 100 0.000101± 0.000033∗ 0.00111± 0.000488 0.00805± 0.0023 (2.96± 1.55)× 10−6

5 0 100 100 100 100 0.731± 0.724 0.474± 0.0598 0.0476± 0.00759 0.0178± 0.00351
5 5 100 100 100 98 0.682± 0.661 0.561± 0.114∗ 0.0582± 0.173 0.213± 0.672
5 10 100 100 100 95 0.749± 0.931 0.715± 0.185∗ 0.0347± 0.0392 0.173± 0.791
5 15 100 100 99 85 1.23± 1.41 0.943± 0.671 0.0494± 0.17 2.54± 12.1
5 20 100 100 98 78 1.33± 1.53∗ 2.27± 2.68 0.0382± 0.0281 3.27± 13.6
5 25 100 100 96 65 1.93± 1.69∗ 7.0± 6.54 1.16± 5.89 1.69± 7.03
5 30 100 100 91 50 2.85± 2.52∗ 17.2± 8.8 1.94± 11.1 5.39± 16.5
5 35 100 98 84 35 4.36± 3.4∗ 26.7± 10.5 3.57± 11.0 14.5± 29.3
5 40 98∗ 69 76 21 6.15± 5.61∗ 47.1± 25.7 10.5± 19.5 27.1± 37.3
5 45 85∗ 10 49 12 8.61± 10.1∗ 43.4± 26.8 28.3± 37.4 53.8± 42.1
5 50 93∗ 41 99 92 1.3± 4.82∗ 13.6± 21.9 1.41± 5.73 6.01± 14.9
5 55 100 100 100 100 0.00152± 0.0082∗ 0.243± 0.284 0.0278± 0.00469 0.000435± 0.00288
5 60 100 100 100 100 0.000341± 0.000153∗ 0.0857± 0.0275 0.027± 0.00411 (4.36± 3.19)× 10−5

5 65 100 100 100 100 0.000287± 0.000105∗ 0.039± 0.019 0.0269± 0.00405 (3.09± 2.19)× 10−5

5 70 100 100 100 100 0.000246± 0.000080∗ 0.019± 0.00721 0.0276± 0.00416 (2.12± 1.12)× 10−5

5 75 100 100 100 100 0.000227± 0.000063∗ 0.0109± 0.00381 0.0295± 0.00426 (1.55± 0.596)× 10−5

5 80 100 100 100 100 0.000219± 0.000050∗ 0.0077± 0.00257 0.0298± 0.00407 (1.41± 0.576)× 10−5

5 85 100 100 100 100 0.000228± 0.000061∗ 0.00584± 0.00194 0.0326± 0.00502 (1.42± 0.494)× 10−5

5 90 100 100 100 100 0.00021± 0.000047∗ 0.00399± 0.00121 0.0343± 0.00527 (1.27± 0.232)× 10−5

5 95 100 100 100 100 0.000212± 0.000051∗ 0.00289± 0.00103 0.0369± 0.00548 (1.28± 0.309)× 10−5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TG.2019.2942773

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON GAMES 9

TABLE IV
PERFORMANCE OF ACS WITH AND WITHOUT BVE ON THE SIXTEEN 9× 9 LOGIC-SOLVABLE INSTANCES AND GENERAL 25× 25 INSTANCES.

SUCCESS% IS THE NUMBER OF SUCCESSFUL SOLUTIONS FOUND IN 100 RUNS. TIMES ARE GIVEN IN SECONDS, WITH MEAN AND STANDARD DEVIATION
OVER 100 RUNS. NUMBERS IN BOLD INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN THE ALGORITHMS, DETERMINED USING THE

MANN-WHITNEY U TEST FOR THE TIMES, AND χ2 CONTINGENCY TEST FOR THE SUCCESS RATES.

Success % Solution Time/s
Instance BVE No BVE BVE No BVE

sabuncu1 100 100 (4.8e± 1.84)× 10−5 (4.55± 1.85)× 10−5

sabuncu2 100 100 (4.82± 1.73)× 10−5 (4.87± 1.82)× 10−5

sabuncu3 100 100 0.000993± 0.000457 0.000993± 0.000454
sabuncu4 100 100 0.000625± 0.000708 0.000563± 0.000277
sabuncu5 100 100 (4.62± 1.5)× 10−5 (4.8± 1.7)× 10−5

sabuncu6 100 93 0.0107± 0.00828 0.561± 0.976
sabuncu7 100 100 0.00106± 0.000986 0.00126± 0.0021
sabuncu8 100 100 0.000728± 0.000343 0.000713± 0.000334
sabuncu9 100 100 0.00163± 0.0014 0.00225± 0.00324

sabuncu10 100 100 (4.73± 1.85)× 10−5 (4.77± 1.84)× 10−5

aiescargot 100 59 0.0204± 0.0152 0.949± 1.36
coly013 100 24 0.0488± 0.0518 0.633± 1.14

goldennugget 100 34 0.0374± 0.0293 0.92± 1.15
platinumblond 100 7 0.113± 0.0859 1.05± 0.905

reddwarf 100 35 0.0404± 0.0354 1.64± 1.61
tarx0134 100 47 0.0259± 0.0193 1.5± 1.54

25× 25 0% 100 100 0.731± 0.724 0.503± 0.347
25× 25 5% 100 100 0.682± 0.661 0.469± 0.297

25× 25 10% 100 100 0.749± 0.931 0.521± 0.363
25× 25 15% 100 100 1.23± 1.41 0.581± 0.535
25× 25 20% 100 100 1.33± 1.53 0.792± 0.594
25× 25 25% 100 100 1.93± 1.69 1.08± 0.783
25× 25 30% 100 100 2.85± 2.52 1.77± 1.3
25× 25 35% 100 100 4.36± 3.4 4.59± 8.25
25× 25 40% 98 83 6.15± 5.61 8.77± 15.6
25× 25 45% 85 49 8.61± 10.1 9.14± 18.2
25× 25 50% 93 80 1.3± 4.82 1.52± 11.0
25× 25 55% 100 100 0.00152± 0.0082 0.00101± 0.00273
25× 25 60% 100 100 0.000341± 0.000153 0.000411± 0.000208
25× 25 65% 100 100 0.000287± 0.000105 0.000321± 0.000105
25× 25 70% 100 100 0.000246± 0.000081 0.000274± 0.000075
25× 25 75% 100 100 0.000227± 0.000063 0.000253± 0.000063
25× 25 80% 100 100 0.000219± 0.000050 0.000243± 0.000055
25× 25 85% 100 100 0.000228± 0.000061 0.000246± 0.000057
25× 25 90% 100 100 0.00021± 0.000048 0.000239± 0.000049
25× 25 95% 100 100 0.000212± 0.000051 0.000251± 0.000054

good benchmark for solution algorithms: the search space after
applying constraints is either too small or, as is the case for
four of the instances, non-existent.

We also evaluated BVE using the general 25×25 instances.
We see that the performance of ACS is significantly degraded
without the BVE operator. Performance with respect to solu-
tion time is degraded to some extent, with significantly shorter
times without BVE in three fixed cell fractions, compared
to nine which are faster with BVE. The number of failures
is significantly higher; for the 45% fixed cell instances for
example, the success rate is 58%, compared to 92% with BVE
enabled. The average solution time for these instances is 9.1s,
well within the timeout of 120s, suggesting that the failures
are due to the search stagnating at a local minimum.

V. CONCLUSIONS

In this paper we presented a new algorithm for the Sudoku
puzzle, based on Ant Colony Optimization. Our method in-
cludes a new operator, which we call Best Value Evaporation,
and we show that this addition to the base algorithm is essen-
tial for the prevention of premature convergence or stagnation

of solutions. Experiments show that our new algorithm signif-
icantly out-performs existing algorithms on the hardest, large
instances of Sudoku, and we provide evidence that our method
provides a much more efficient search of the solution space
than traditional backtracking algorithms for these problems.
For smaller or easier instances, we find that direct search
algorithms such as Dancing Links or Backtracking Search
outperform stochastic algorithms, but these deterministic al-
gorithms perform poorly on the hardest instances. Finally, we
find that our algorithm outperforms the state of the art Iterated
Local Search algorithm [33] both in terms of runtime and
success rates on hard instances.

The growing body of work on the automated solution of
pencil puzzles such as Sudoku and Nurikabe suggests that they
offer a ready-made algorithmic test-bed. As such, they may
provide an additional challenge for general-purpose algorithms
(whether AI-based or not), and offer new insights into the
solution of constraint satisfaction problems (by, for example,
suggesting new ways in which to search the solution space).

Importantly, solvers such as ours can out-perform state-of-
the-art methods without any requirement for problem-specific
heuristics, which immediately offers two possibilities for fu-
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ture work in this area. The first is a “problem agnostic” general
Japanese pencil puzzle solver, which can solve large instances
of any problem in this class. By constructing this solver in a
modular fashion, we should easily be able to incorporate any
suitable pencil puzzle, which will minimize the amount of
effort required in future research. Importantly, this will allow
for the rapid (and experimentally consistent) solution of a wide
range of pencil puzzles, which will (a) yield good solutions to
these problems per se, (b) allow for easy comparison of the
properties of those problems, and (c) provide a ready-made
platform for the subsequent investigation of problem-specific
heuristics.
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