
Downloaded from: https://e-space.mmu.ac.uk/624683/
Version: Accepted Version
Publisher: Elsevier
DOI: https://doi.org/10.1016/j.envsci.2019.12.001

Please cite the published version
Climate Change Policies and Agendas: facing implementation challenges and guiding responses

Environmental Science and Policy 104:190-198 01 Feb 2020

Fátima Alves1, Walter Leal Filho2, Paula Casaleiro1, Gustavo J. Nagy3, Harry Diaz4, Abul Quasem Al-Amin5, José Baltazar Salgueirinho Osório de Andrade Guerra6, Margot Hurlbert7, Harith Farooq8, Maris Klavins9, Mustafa Saroar11, Eliska Krkoska Lorenzova12, Johanna Nalau13, Jain Suresh14, Amadeu Soares15, Fernando Morgado15, Paul O’Hare16, Ulisses M Azeiteiro15, Franziska Wolf17

1 Universidade Aberta and Centre for Functional Ecology, University of Coimbra, Portugal fatimaa@uab.pt
2 European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Hamburg, Germany, and School of Science and the Environment. Manchester Metropolitan University. Manchester. UK w.leal@mmu.ac.uk
3 IECA, Facultad de Ciencias, Universidad de la República (FC-UdelaR), Montevideo, Uruguay gnagy@fcien.edu.uy
4 Department of Sociology and Social Studies, University of Regina, Regina, Saskatchewan, Canada Harry.Diaz@uregina.ca
5 International Business School (IBS), Universiti Teknologi Malaysia (UTM), Menara Razak Jalan Semarak 54100 Kuala Lumpur, Malaysia amin.cantt@gmail.com
6 Research Centre on Energy Efficiency and Sustainability (Greens), University of Southern Santa Catarina (Unisul), Florianópolis, Brazil Baltazar.Guerra@unisul.br
7 Department of Justice Studies and Department of Social Studies, University of Regina Regina, Saskatchewan, Canada Margot.Hurlbert@uregina.ca
8 Faculty of Natural Sciences, Lúrio University, Pemba, Mozambique Harith.Farooq@fcm-unilurio.com
9 University of Latvia, Riga, Latvia maris.klavins@lu.lv
10 Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh, saroar.mustafa@yahoo.com
11 Global Change Research Institute, The Czech Academy of Sciences, Bělidla, Czech Republic lorencova.e@czeglobe.cz
12 Griffith climate change response program (GCGRP) and Griffith Institute for Tourism (GIFT), Gold Coast campus, G01, Griffith University 4222, Queensland, Australia j.nalau@griffith.edu.au
13 Department of Natural Resources, TERI University, New Delhi-110070, India sureshi@teriuniversity.ac.in
14 CESAM and Biology Department, Universidade de Aveiro, Portugal fmorgado@ua.pt ulisses.azeiteiro@uab.pt
15 Manchester Metropolitan University, England PaulA.OHare@mmu.ac.uk
16 Hamburg University of Applied Sciences, Research and Transfer Centre "Sustainable Development and Climate Change Management, Ulmenliet 20, D-21033, Hamburg, Germany.

Abstract
Climate policies are known to be very important in attempts to pursue climate change mitigation and adaptation. However, there is a paucity of international studies where the status of climate change policies is analysed. Consequently, this paper reports on research undertaken in a sample of 13 highly diverse countries, in regards to their geography, socioeconomic development, vulnerability elements, adaptation, and climate-risks. The results draw attention to the spread and standardisation of climate change policies globally, through the adoption of comprehensive National Adaptation Plans/Strategies (NAPs/NASs), that include mitigation measures, and evaluation mechanisms. Although NAPs tend to include different non-governmental stakeholders, they are still mainly state-centred (e.g. in a country’s Ministry of Environment) in most of the 13 studied countries.

The results show that NAPs objectives translate more a global agenda and less the national/regional vulnerabilities and contexts. In fact, despite the different human and socioeconomic development, diverse climate-risks, and dissimilar vulnerability and readiness status among countries, the examined NAPs usually refer to the same critical sectors and objectives. Notwithstanding the similarities, our results highlight two different logics of adaptation reflected on the NAPs: one focused on economic risks and opportunities, characteristic of developed countries; and other focused on the natural resources and conservation, characteristic of developing countries. The implications of the study are analysed, and prospects are described.

Keywords:
Climate Change; Climate change policies; National adaptation plans; Global/Local vulnerabilities; Definition/Implementation of Climate Change Policies

Highlights
- Climate change policies are central to mitigation and adaptation strategies
- There are many implementation challenges which hinder the design or appropriate responses
- In order to succeed, National Adaptation Plans/Strategies (NAPs/NASs) need broad support
- Mitigation measures need to be complemented by evaluation mechanisms
- Limited participation of non-governmental stakeholders in the development of NAPs constraint the effectiveness of responses.
Introduction

1.1. Background

The growing threat of global climate change induced by human activity requires climate change policies addressing this problem at global, national and local levels of governance. There are two types of climate change management, mitigation policies, and adaption policies. United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol, the Cancún Adaptation Framework (CAF), Durban Platform for Enhanced Action and Paris Climate Agreement are some of the relevant climate management policies.

The UNFCCC (1992) defined such terms as ‘adverse effects of climate change', ‘emissions' and ‘greenhouse gases'. The Convention's ultimate objective to "stabilise greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system" (United Nations, 1992) underlay following climate change policies. The document entered into force in March 1994 and had been ratified by 195 countries (UNFCCC, 2018). Also, the latest agreement was adopted by 195 nations at the Paris Climate Conference (Conference of the Parties “COP21”) in December 2015. The Paris agreement is due to enter into force in 2020 (European Commission, 2018a). The deal aims to strengthen the global response to climate change by keeping the average global warming to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels (UNFCCC, 2018).

Adaptation is a crucial component of climate policy, yet we have a limited and fragmented understanding of if and how adaptation is currently taking place (Ford et al. 2015). Adaptation in the Paris Agreement establishes "enhancing adaptive capacity, strengthening resilience and reducing vulnerability to climate change" and adaptation communications (periodically submit an adaptation communication to the UNFCCC) should include a nationally determined contribution (NDC), a national adaptation plan (NAP) and/or a national communication (NC).

The CAF enables parties to formulate and implement NAPs as a means of identifying medium- and long-term adaptation needs and developing and implementing strategies and programmes to address those needs. (https://unfccc.int/topics/adaptation-and-resilience/workstreams/national-adaptation-plans).

The Paris Agreement Article 7.9 encourages all Parties to engage in the formulation and implementation of NAPs. Together with the NAPs, the national adaptation monitoring and evaluation systems is considered by the UNFCCC as a condition of adapting to climate change, "enabling Parties to better address climate risks, improve the effectiveness of adaptation..."
measures, and increase accountability" (Vallejo, 2017) to strengthening vertical integration in NAPs processes (Dazé et al., 2016) and Climate Resilient Development Framework (Kim et al., 2017).

This paper focuses on the formalised NAPs that have been designed for adoption by national policymakers across various socio-economic, cultural, environmental and geographical regions. NAP's are a powerful policy tool for countries for its comprehensive approach to the climate change challenges and support to central climate policies, compared with other sectoral and/or national isolated instruments. Simultaneously, it is also a powerful analytical tool that enables systematic comparison and analysis across different countries in terms of environmental policies and challenges. The designation, structure, and focus of the NAPs differ between countries, but often they provide a comprehensive overview of the main impacts and vulnerabilities in a state and propose measures to adapt to the impacts projected (Biesbroek et al., 2010). In this regard, the COP22 saw a reaffirmation of the importance of NAPs, and adaptation planning, in supporting the Paris Agreement, particularly for least developed (LDC) and developing countries (COP22, 2016) but are also important in Europe and Central Asia (UNDP, 2018). A National Adaptation Programme of Action (NAPA) is a type of plan linked with NAPs submitted by LDC to the UNFCCC (http://unfccc.int/national_reports/items/1408.php).

To date, 25 European Union (EU) member states have adopted a national adaptation strategy (NAS), and 15 have developed a NAP, the latter mostly on freshwater management, flood risk management, agriculture, and forestry (EEA, 2018). Termeer et al. (2012) found several weaknesses of the governance institutions involved in the NAS in the Netherlands, the United Kingdom, Finland and Sweden, causing tensions on the long term, e.g., strong one-sided reliance on scientific experts, and tension between top-down policy development and bottom-up implementation.

The novelty of this study is the questioning of the prevailing imposition of a unique one-size-fits-all adaptation model (NAPs/NASs) at the global level which is not sufficiently suited to the local vulnerability context. That is why we also emphasise on the complementary sectoral and local-level plans.

1.2. Research Framework

The main research question addressed in this paper is: i) How are the studied countries defining NAPs (along with NDCs, NCs and NASs,) to overcome the observed climate adaptation limitations and guide their responses? This question requires understanding: i) what are the
vulnerabilities and objectives identified in the different NAPs? ii) what are the NAPs objectives similarities and differences between the involved countries? iii) how different national contexts and vulnerabilities are considered or not in the NAPs; iv) how are the primary agents placed in the NAP’s agenda? v) what kind of participatory mechanisms are being used to involve the different stakeholders into the NAP’s agenda and among other things, in responses to their climate challenges?

This paper aims to analyse and compare public climate change policies (e.g. objectives, stakeholders, participatory mechanisms) based on the NAPs on the one hand, and complementary plans and measures (e.g. NASs, sectoral and local plans) on the other, of a sample of thirteen countries to:

- **understand if the national adaptation policies translate more a global agenda or their vulnerabilities and contexts;**
- understand the differences of the objectives between countries and if they are aligned with the national vulnerabilities;
- map the agents that intervene in the process and the place of bottom-up participatory mechanisms.

The originality and practical implications of this research are to identify advantages and limitations among nations to gather critical ideas, which may guide states in the definition and implementation of climate change policies, with the purpose of both serving a global agenda and guide responses which consider their local/regional or national vulnerabilities and specificities.

The working hypotheses are 1. NAPs objectives translate the global agenda instead of the national/regional vulnerabilities; 2. The formulation of NAPs tends to include different non-governmental stakeholders mainly led by the Ministries of Environment; 3. NAPs provide mechanisms of participation for non-governmental stakeholders and populations. 4. The formulation of NAPs tends to privilege economic vulnerabilities in developed countries and natural/environmental ones in developing countries and/or with high climate risk.

2 **Methodology**

2.1 **Sampled countries**
The study undertook a comparative analysis of 13 countries (Fig. 1) selected considering their geographical, socio-economic (from Least Developed Countries-LDC: Bangladesh and Mozambique, to highly developed ones: Australia, Canada, and Germany), cultural and environmental diversity, different status of vulnerability elements (exposure, sensitivity and adaptive capacity), climate-risks, and adaptation strategies, and regionally grouped as follows: Africa (Mozambique); America (Brazil, Canada and Uruguay); Asia (Bangladesh, India and Malaysia); Europe (Czech Republic, England, Germany, Latvia and Portugal); Oceania (Australia). A limitation about regional representativeness is that Africa is underrepresented.

The analysis was conducted using statistical indicators, available public materials (e.g. the NAPs), peer-reviewed national and international studies, and from reliable information sources from each country (Appendix A).

Statistical indicators from the thirteen countries were gathered from the World Bank Database (2018), the United Nations Human Development Index (HDI) (United Nations Development Program, 2016), the Global Climate-Risk Index (CRI) (Eckstein et al., 2017) and the Notre Dame University Gain Index (ND-Gain) (Notre Dame GAIN, 2016), for the characterization and comparative analysis of each country socioeconomic, vulnerability, climate-risk and adaptive capacity status. The HDI integrates three socioeconomic and human development indicators: (i) the per capita parity purchase power (PPP) and gross domestic product (GDP); (ii) education; and (iii) life expectancy, which have been successfully used for cross-comparison studies of adaptive capacity and development (Leal Filho et al., 2018a). The Global CRI analyses to what extent countries were affected by the impacts of weather-related events from 1997–2016. The states ranking highest are the ones most impacted and should see the CRI as a warning sign that they are at risk of either frequent events or rare, but extraordinary catastrophes, or a combination of both (Eckstein et al., 2017). The ND-Gain Index measures vulnerability (exposure, sensitivity, and adaptive capacity) and readiness (a country’s ability to leverage investments and convert them into adaptation actions) when it comes to climate change and climate-related impacts (Notre Dame GAIN, 2016).
2.2 Selected indicators and categories

A matrix described the comparative analysis of the National Adaptation Plans (NAPs) of the studied countries to identify indicators that allow understanding to which extent climate change formal policy exists and is implemented. NAP “include a mix of policies and measures with the overarching objective of reducing the country’s vulnerability”, and depending on the circumstances, it can be “comprehensive at a national level, addressing adaptation across sectors, regions and vulnerable populations, or it can be more limited, focusing on just one or two sectors or regions” (Niang-Diop and Bosch, 2005, 186). A set of 10 indicators corresponding to the dimensions of the different adaptation plans provides a framework to source information about them (Table 1), allowing to develop a comparison between various approaches and goals in different countries.
<table>
<thead>
<tr>
<th>Indicators</th>
<th>Goals, dimensions, categorisation and responsible for adaptation plans and sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Adaptation Strategy (NAS)</td>
<td>Assess if there is a National Adaptation Strategy</td>
</tr>
<tr>
<td>National Adaptation Plan (NAP)</td>
<td>Assess if there is a National Adaptation Plan</td>
</tr>
<tr>
<td>National Adaptation Programme of Action (NAPA)</td>
<td>Assess if there is a National Adaptation Programme of Action</td>
</tr>
<tr>
<td>Assessment and/or Evaluation Mechanisms</td>
<td>Assess if there is an Assessment and/or Evaluation Mechanisms</td>
</tr>
<tr>
<td>Sectoral Programs</td>
<td>Assess if there are Sectoral Programs</td>
</tr>
<tr>
<td>Vulnerable or Key sectors identified in NAP</td>
<td>The categorisation of the sectoral programs in sectors and main areas</td>
</tr>
<tr>
<td>Objectives of the NAP</td>
<td>Classification of the critical sectors identified in the 13 NAP’s</td>
</tr>
<tr>
<td>Who is Responsible for elaboration:</td>
<td>The categorisation of the goals (Adaptation, Mitigation or Governance)</td>
</tr>
<tr>
<td>Who is Responsible for implementation:</td>
<td>NAP Sectoral Programs</td>
</tr>
<tr>
<td>Participatory mechanisms</td>
<td>Universities/scientists, NGO, Business, Public in general, Other</td>
</tr>
</tbody>
</table>

Through a content analysis of NAPs, we classify the several sectoral programs, including natural and social systems, as well as risk-management actions (henceforth sector) mentioned in the NAP/NAS, and the critical sectors, that is to say, the most vulnerable ones identified by each country in the 13 studied NAP/NAS upon its main themes/resources into one of nine categories. Acknowledging that adaptation plans should ideally follow an integrated approach, the interrelations between economic activities, natural resources, and infrastructure, as well as the broad definition of sector, and to facilitate the analysis we group the nine categories, into the following three sector-based areas (Table 2):

i) Natural resources (Agriculture and Forestry, Water resources, Coastal Zones, and Marine Resources, Biodiversity and Ecosystems); ii) Human and socioeconomic resources (HSER) (Human health and protection, Built Environment, Infrastructure, and Economic activity); iii) Mixed (includes sectoral programs/critical sectors concerned with integrated natural, human and socio-economic resources, and risk prevention and management actions mainstreamed into the national level).

<table>
<thead>
<tr>
<th>Sector-based areas</th>
<th>Categories</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Resources</td>
<td>Agriculture and Forestry</td>
<td>Agriculture (Latvia, Czech Republic, Germany, Portugal, Canada, Brazil, Uruguay, Mozambique) Forests (Latvia, Czech Republic, Germany, Portugal, Canada, Mozambique)</td>
</tr>
<tr>
<td></td>
<td>Water resources, Coastal Zones, and Marine Resources</td>
<td>Coastal zones and sea (Portugal) Marine Ecosystems (Malaysia)</td>
</tr>
<tr>
<td></td>
<td>Biodiversity and Ecosystems</td>
<td>Biodiversity (Portugal, Mozambique) Natural ecosystems (Australia);</td>
</tr>
</tbody>
</table>
Human and socioeconomic resources

Human health and protection consists of a sectoral program/critical sector on human health, quality of life and wellbeing, and security and resilience of (vulnerable) populations; Built Environment, Infrastructure and Economic activity include sectoral programs/critical sectors on urban spaces, infrastructures (energy, transport, and communication) and economic activities, such as tourism and industry.

Mixed

Sectoral programs/critical sectors that privilege a comprehensive approach to the territory instead of one focused on one kind of sector, such as islands (India), Parks (Canada), Food and Nutritional Security (Brazil), and the risk prevention and management (here considered a critical).

Human health (Latvia, Malaysia, Germany)
Healthy and Resilient Communities (England)
Security of people and goods (Portugal)
Cities and the built environment (Australia)
Industry and energy (Czech Republic)
Transport and communications (Portugal)
Private Sector (Brazil)
Production and Consumption (Uruguay)

Each NAP objective was classified into one of three categories, Governance, Adaptation and Mitigation (also considered here because of the reference on NAPs). The Governance objectives address the political, organisational, management and participatory aspects. Mitigation objectives address the causes of climate change, whereas adaptation objectives address the impacts of climate change through an adjustment in natural or human systems in response to the actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities (IPCC, 2001). Although the focus here is on the adaptation policies to climate change, some NAPs/NASs include mitigation objectives.

In sum, through a quantitative and qualitative broad brush comparative study of 13 countries, we identify the environmental, social and policy components related to formal climate adaptation plans and also an indication of the stage of comprehensiveness, the progression of ecological, social and policy developments (implementation and evaluation). Qualitative and quantitative analysis and comparisons of the data obtained through this study will provide insight regarding formal climate adaptation strategies as a factor determining the success of adaptation plans effectiveness in the 13 studied countries.

Each section of the paper focuses on one of the key results of our analysis of the status of the public climate change policies and includes an overview of the findings as well as the situation for each of our focus thirteen countries.
2.3 Socioeconomic and climate change vulnerability characterisation of the thirteen countries

The thirteen states involved in this study reveal substantial demographic and socioeconomic differences, as well as, heterogeneous climate-risk, vulnerability, and readiness (see table 3 and figure 2). The population distribution range varies from countries that as Latvia and Uruguay (1.9 and 3.4 million, respectively) to India (1,300 million people). Furthermore, India, Canada, Brazil, and Mozambique are countries with a vast geographical area, whereas Bangladesh has a very high population density (1,265 people / km²).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>MOZ</td>
<td>799</td>
<td>28</td>
<td>0.418 (181)</td>
<td>32.9</td>
<td>40.83 (18)</td>
</tr>
<tr>
<td>America</td>
<td>BRA</td>
<td>8,5</td>
<td>208</td>
<td>0.754 (79)</td>
<td>25.0</td>
<td>84.67 (90)</td>
</tr>
<tr>
<td></td>
<td>CAN</td>
<td>9.9</td>
<td>36</td>
<td>0.920 (10)</td>
<td>8.7</td>
<td>94.00 (98)</td>
</tr>
<tr>
<td></td>
<td>URY</td>
<td>176</td>
<td>3,4</td>
<td>0.795 (54)</td>
<td>15.4</td>
<td>79.83 (85)</td>
</tr>
<tr>
<td>Asia</td>
<td>IND</td>
<td>3.2</td>
<td>1,324</td>
<td>0.624 (131)</td>
<td>26.5</td>
<td>37.17 (12)</td>
</tr>
<tr>
<td></td>
<td>MYS</td>
<td>330</td>
<td>31</td>
<td>0.789 (59)</td>
<td>n.a.</td>
<td>102.83 (113)</td>
</tr>
<tr>
<td></td>
<td>BGD</td>
<td>147</td>
<td>165</td>
<td>0.579 (139)</td>
<td>28.6</td>
<td>26.50 (6)</td>
</tr>
<tr>
<td>Europe</td>
<td>CZE</td>
<td>78</td>
<td>10.6</td>
<td>0.878 (28)</td>
<td>5.3</td>
<td>73.17 (72)</td>
</tr>
<tr>
<td></td>
<td>DEU</td>
<td>357</td>
<td>82</td>
<td>0.926 (6)</td>
<td>7.0</td>
<td>43.17 (23)</td>
</tr>
<tr>
<td></td>
<td>GBR</td>
<td>243</td>
<td>65</td>
<td>0.909 (16)</td>
<td>7.8</td>
<td>65.83 (56)</td>
</tr>
<tr>
<td></td>
<td>LVA</td>
<td>64</td>
<td>1.9</td>
<td>0.830 (44)</td>
<td>10.3</td>
<td>102.83 (113)</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>92</td>
<td>10</td>
<td>0.843 (41)</td>
<td>10.1</td>
<td>42.67 (22)</td>
</tr>
<tr>
<td>Oceania</td>
<td>AUS</td>
<td>7.7</td>
<td>24</td>
<td>0.939 (2)</td>
<td>8.0</td>
<td>52.33 (34)</td>
</tr>
</tbody>
</table>

Sources: Surface area and Population - World Bank Database (2018); HDI and Coefficient of Human Inequality - United Nations Development Program (2016); Global Climate Risk Index (CRI) – Eckstein et al. (2017)

Based on the data gathered on the country-level characteristics (see table 3 and figure 2), the essential features of the sampled countries are as follows:

- Bangladesh, India, and Mozambique show below common development indicators, high climate risk - very high in the case of BGD - and vulnerabilities and low degree of readiness to adapt. Brazil shows below average development indicators, high climate risk indicator, and medium vulnerability and readiness to adapt;
- Latvia, Czech Republic, Malaysia, and Uruguay show above average development indicators, low climate risks, and low to medium vulnerability and medium readiness to adapt; Portugal present very similar features, except a medium to high climate risk index;
- Germany, the United Kingdom, Australia, and Canada show well above average development indicators and very low to low vulnerability and a high to very high degree of readiness to adapt, but different climate risk index: high in Germany (23) and Australia (34), moderate in United Kingdom (56) and low in Canada (98);

1 The United Kingdom combines data clustered from England, Wales, Scotland and Northern Ireland.
3 Results

3.1 Climate Change National Adaptation Plans – one global agenda, multiple national speeds

Most of the analysed countries have not only a NAS and/or a NAP, reflecting the international agenda of global climate change adaptation, but also local-level and sectoral plans, as well as, evaluation and/or assessment mechanisms of the NAP, which are crucial to its effective implementation; this disparate diversity of plans, sectors and mechanisms is shown in table 4. Almost all European countries have local-level plans, whereas the majority of the states have sectoral programs, except the Czech Republic and Uruguay: 11 of the 13 countries have sectoral plans, ranging from Bangladesh (16), Brazil (12) and Portugal (10) to Germany (7) and Malaysia (5), with an average of 8.5 sectoral programs.
Table 4 - Climate Change National Adaptation Instruments by Country

<table>
<thead>
<tr>
<th>Continent</th>
<th>Country</th>
<th>NAS</th>
<th>NAP</th>
<th>Evaluation and/or assessment mechanisms</th>
<th>Sectoral Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>MOZ</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>America</td>
<td>BRA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>URY</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Asia</td>
<td>IND</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MYS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>BGD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>CZE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>DEU</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ENG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LVA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oceania</td>
<td>AUS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The overall data shows a slight prevalence of sectoral programs focused on **Human and Socioeconomic Resources** (HSER) (table 5) (see Appendix B.1). Almost all countries have sectoral plans concerned with HSER, except India, where most programs belong to the category Mixed, opting for an integrated approach to climate change programs (e.g. Agriculture, Water, Health, Coastal Regions and Islands, Knowledge Management and Capacity Building).
<table>
<thead>
<tr>
<th>Sector</th>
<th>MOZ</th>
<th>BRA</th>
<th>URY*</th>
<th>CAN</th>
<th>BGD</th>
<th>IND</th>
<th>MYS</th>
<th>CZE*</th>
<th>DEU</th>
<th>ENG</th>
<th>LVA</th>
<th>PRT</th>
<th>AUS</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural resources</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>45</td>
<td>40.2</td>
</tr>
<tr>
<td>Agriculture and Forestry</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td>18</td>
<td>16.1</td>
</tr>
<tr>
<td>Water resources</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>7</td>
<td>6.3</td>
</tr>
<tr>
<td>Coastal Zones and Marine</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>8</td>
<td>7.1</td>
</tr>
<tr>
<td>resources</td>
<td></td>
</tr>
<tr>
<td>Biodiversity and Ecosystems</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>12</td>
<td>10.7</td>
</tr>
<tr>
<td>Human and socioeconomic</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>47</td>
<td>42.0</td>
</tr>
<tr>
<td>resources</td>
<td></td>
</tr>
<tr>
<td>Human health and protection</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>13.4</td>
</tr>
<tr>
<td>Built Environment,</td>
<td></td>
</tr>
<tr>
<td>Infrastructure and Economic</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>32</td>
<td>28.6</td>
</tr>
<tr>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>Integrated or Mixed</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>17.9</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>112</td>
<td>100</td>
</tr>
</tbody>
</table>

Mean of Sectoral Programs by Country = 8.5 (without URY and CZE)

*Main strategic sectors identified in NAP
Table 5 presents the Sectoral Programs by category and country, corroborating the slight prevalence of the HSER main area (42% of the sectoral programs). The built environment, Infrastructure, and Economic Activity is the category with more sectoral plans (28.6%), followed by Agriculture and Forestry (16.9%) and Human Health and protection (13.4%).

Besides, if Agriculture and Forestry were included within HSER, this area would reach 59%. Germany, Portugal, England, Canada, Bangladesh, and Brazil even have more than one sectoral program focused on "Built environment, Infrastructure, and Economic Activity". Note that this category is more significant in the European countries, Brazil and Canada, countries that have above average development indicators. On the contrary, the states with development indicators below average, such as Bangladesh, India and Mozambique privilege sectoral programs focused on Natural Resources. In the Czech Republic and Uruguay, there are no sectoral programs; however, the main strategic sectors identified in NAP coincide with the sectoral plans defined by other countries: Built Environment Infrastructure and Economic activity and Agriculture and Forestry.

3.2 Climate Change National Adaptation Plans—standardisation of the objectives

National Adaptation Plans in these 13 countries reflects, in principles, the international agenda of global climate change adaptation efforts. Figure 3 presents the main goals of the NAP of each state organised into three areas (see Appendix B.3): governance, adaptation, and mitigation (because mitigation is mentioned in most NAPs).

Figure 3 - NAP Objectives. The results were obtained through the categorisation of the objectives mentioned in each NAP.
Governance is a critical part of all National strategies. The establishment of integrated policies, suitable institutional arrangements and procedures, proper intergovernmental coordination and communication about Climate Change, and the involvement of all stakeholders guide the NAP objectives in almost every country. Governance objectives reveal the need to ensure that NAP has the (local, regional and national) institutional and funding support that is needed to implement plans.

The adaptation objectives are similar in every country. All countries include the maintenance and improvement of the adaptability of natural/social/infrastructure or/and economic systems, reducing vulnerability, risks and increase responsiveness and assist/protect the vulnerable populations. Although the focus is on the adaptation policies to climate change, most countries (Australia, Bangladesh, Brazil, Canada, England, Germany, India, Latvia, Malaysia, Mozambique, and Uruguay) also include some mitigation objectives in their NAS.

3.3 Climate Change Sectoral Programs: Homogeneity of adaptation plans vs heterogeneity of contexts and vulnerabilities.

As referred above, the overall analysis shows absolute uniformity in the approach to climate change in the NAP, which does not reflect the different characteristics and specificities observed in each country. The development of Sectoral Programs can partially solve these
adding social, economic, cultural, political national features to the agendas and adding context vulnerabilities and risks. That is the reason why we explored whether the Programs in each country indicate any efforts to undertake an aligned policy with the vulnerable/critical sectors identified in the NAP.

All thirteen studied countries report critical sectors based on their critical vulnerabilities mentioned in the NAP (table 6) (see also Appendix B.2) ordered as follows: Built Environment, Infrastructure and Economic activity followed by Agriculture and Forestry, and Biodiversity.
Table 6 - Critical sectors in the NAP

<table>
<thead>
<tr>
<th>Sector</th>
<th>Africa</th>
<th>America</th>
<th>Asia</th>
<th>Europe</th>
<th>Oceania</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural resources</td>
<td>MO</td>
<td>BRA</td>
<td>CA</td>
<td>URY</td>
<td>IN</td>
<td>MYS</td>
<td>BGD</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Agriculture and Forestry</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Water resources</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coastal Zones and Marine resources</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Biodiversity and Ecosystems</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Human and socioeconomic resources</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Human health and protection</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Built Environment, Infrastructure,</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>and Economic activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Risk prevention and management</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>13</td>
<td>19</td>
<td>16</td>
<td>19</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

Countries mean = 15,2
Table 7 presents the comparison between critical sectors in the NAPs and the programs in each country, analysed above in tables 5 and 6. Based on the data gathered, the most important features are as follows:

- Bangladesh, Portugal, Australia, and Mozambique Sectoral Programs align with the vulnerable sectors identified in the NAP.
- In England (3), Germany (2), Malaysia (2), India (1), Latvia (1), and Canada (2) there is a gap between the vulnerable sectors identified in the NAP and the Sectoral Programs.
- England, Malaysia, Latvia, and Canada identified Risk Prevention and Management as a key or vulnerable sector and did not foresee any program, on contrary Brazil has a sectoral plan towards Risk Prevention and Management, and it does not consider this a critical sector.
- Similarly, Canada identified Human Health and protection as one of the critical sectors and did not foresee any program, while Malaysia and Latvia have a sectoral plan and do not consider this a critical sector.

Table 7 – Comparison of between Critical Sectors in the NAPs and Sectoral Programs

<table>
<thead>
<tr>
<th>Critical sectors/Sectoral Program</th>
<th>Agriculture and Forestry</th>
<th>Water resources</th>
<th>Coastal Zones and Marine resources</th>
<th>Biodiversity and Ecosystems</th>
<th>Human health and protection</th>
<th>Built Environment, Infrastructure and Economic activity</th>
<th>Risk prevention and management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>MOZ</td>
<td>Yes/Yes</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>America</td>
<td>BRA</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>No/Yes</td>
</tr>
<tr>
<td></td>
<td>CAN</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Asia</td>
<td>IND</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>MYS</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>No/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>BGD</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>DEU</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>ENG</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>LAV</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>No/Yes</td>
<td>Yes/Yes</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>No/No</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>No/No</td>
</tr>
<tr>
<td>Oceania</td>
<td>AUS</td>
<td>Yes/Yes (M)</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
</tr>
</tbody>
</table>

Legend: M – Integrated or Mixed
Table 7 also shows that in 11 (of the 91 total possible combinations) cases the vulnerable sectors identified have not a correspondent program. On the contrary, the number of the sectoral plan that does not reflect vulnerable areas is less frequent but still exists in three cases (Latvia, Malaysia, and Brazil).

3.4 Climate Change National Adaptation Plans Definition and Implementation - numerous areas of intervention, a single ministry

A critical part of the climate change National Adaptation Plans success consists in the establishment of suitable institutional arrangements and the involvement of all stakeholders. Climate action traditionally falls under the primary mandate of environment ministries, as is the case with most of the selected countries: Australia, Bangladesh, Malaysia, India, Canada, Brazil, Latvia, Czech Republic, and Mozambique. NAP outlining in Germany, Portugal, Uruguay, and England, on the contrary, extends beyond the mandate of a single ministry and involves several institutional actors (i.e. sectoral line ministries, government agencies, subnational authorities). In Germany, Portugal, and Uruguay the definition is of inter-ministerial responsibility (although the Ministry of the Environment led the process) and in England a new entity has been specially created to advice government on building a low-carbon economy and preparing for climate change (and create the NAP), the Climate Change Committee, an Independent Statuary Committee. Countries have in general a similar approach to the definition process of NAP, and the Sectoral Plans, India, Canada, and Brazil stand out for adopting inter-ministerial responsibility in the Sectoral Programs.

Table 8 shows that Ministries of Environment is, as referred, the driving force behind the process of NAP outlining; however, the NAP implementation usually involves other institutional actors (i.e. sectoral line ministries, government agencies, the private sector, NGOs). Only the Ministries of Environment of Latvia and Malaysia are responsible both for the definition and implementation of NAP. In Australia, the application of the NAP depends at which scale of particular government actions are proposed: all national activities are handled by the Federal (national) government, but if steps need to be implemented at other scales, as states, then implementation falls to state governments and agencies. In England, some of the policies and proposals implementation are the sole responsibility of the national government, but local government, industry, communities and civil society play an essential role to in some areas of joint responsibility that need shared solutions.
In what concerns the participatory mechanisms, the majority of NAP foresees some participation of the experts, NGO, Business (associations or not) and General Public in the definition and implementation process (Table 9). However, Latvia, the Czech Republic, and Canada did not include the involvement of some stakeholders in the implementation, especially of the general public.

Table 9 - Stakeholders involvement in NAP definition and implementation by country

<table>
<thead>
<tr>
<th>Continent</th>
<th>Country</th>
<th>Experts</th>
<th>NGO</th>
<th>Business</th>
<th>General Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>Mozambique</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>America</td>
<td>Brazil</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Asia</td>
<td>India</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Malaysia</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Bangladesh</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Europe</td>
<td>Czech Republic</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>England</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Latvia</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Oceania</td>
<td>Australia</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Legend: ■ participation in NAP definition ◇ participation in NAP implementation

The mechanisms of participation are similar among countries despite their different socio-cultural characteristics. Our results show a proactive movement towards the involvement of...
the various stakeholders, in the definition and (foreseen) implementation. Most of the countries establish different participatory mechanisms for each stakeholder, as follows: experts with scientific consultation, and advisory and participation in conferences; NGO – participation in focus groups and meetings; Business/Associations – participation in dialogues; broad public participation through online consultation and public hearings. It seems that a close relationship with the experts is privileged, while the involvement of NGO and Business/Associations is required through direct dialogues and the involvement of the citizens is more distant and relies on their will to participate. On the contrary, Australia, Brazil, and Mozambique establish for all stakeholders similar participatory mechanisms: discussion and participation through public hearings. The mechanisms of engagement are identical among countries despite their different socio-cultural characteristics.

4 Discussion

This article examines the state of climate change agenda and policies in 13 highly diverse countries in regards to their geography, socioeconomic development, vulnerability, adaptation, climate-risks, and climate management policies, allowing for a worthful cross-comparison. For instance, the CRI world rank varies from countries with low climate risk (e.g. Latvia, 113th), high risk (India, 12th), to very high risk (Bangladesh, 6th), whereas the socio-economic development ranges from the least developed countries (Bangladesh, Mozambique) to top world countries (Australia, Germany, and Canada).

Firstly, most of the selected countries have begun to show evidence of overall adaptation strategies to be delivered by plans such as NAP/NAS, Regional and/or Sectoral Plans. However, an exclusive focus on national adaptation policy obscures the complexity of the emergence of adaptation across multiple scales. National policy development does not always result in local implementation or policy (Keskitalo et al., 2013).

The growing adoption and diffusion of climate change adaptation policies can be the result of several drivers (Massey et al., 2014):

- Internal drivers: Extreme weather events; increased public awareness; recognising the benefits of policy; Domestic political pressure; scientific research.
- External drivers: Efforts by an international organisation; Efforts by European Union; Financial support from foreign funds; Pressure from NGOs; Motivated by progress in other countries.
Lesnikowski et al. (2013) classify the states as "leaders" and "laggards" (top-bottom 10% respectively) based on their Adaptation Initiative Index (AII) score (adaptation initiatives and recommendations) reported through the national communications to the UNFCCC. These authors found that most adaptation actions (63%) are being implemented through mainstreaming into existing frameworks, policies, institutions, and programs, and that impact/vulnerability assessment prevails. Australia, Canada, and Uruguay are among the "leaders". However, several authors (e.g. Villamizar et al., 2017; Leal Filho et al., 2018b) argue that the AII is, due to the lack of the assessment of implementations actions, more useful to define the level of planning behind (potential) preparedness of the countries than their actual capacity to reduce vulnerabilities. Despite that the assessment of implemented adaptation measures and policies should be prioritised, our analysis focuses on strategies rather than on implementation. In this regard, some of our informants refer, on the one hand, to the concrete impossibility of implementing measures and policies in the political and socio-economic context of countries (e.g. Mozambique), and, on the other hand, to the disbelief that the process of implementation is possible. However, in the LDC highly vulnerable Bangladesh, adaptation implementation is improving over the last decade, particularly in coastal areas (Leal Filho et al., 2018b).

Secondly, there are still steps to be made in the sectoral adaptation actions and regional plans, as well as in the levels of response. Through sectoral programs, countries may adopt specific and directed policies towards their vulnerabilities and needs. However, the Czech Republic and Uruguay do not have such plans (Uruguay will have a coastal NAP by the end of 2019, www.mvotma.gub.uy/napcostas) and except for Bangladesh, Portugal, Australia, and Mozambique, all other countries with sectoral programs present some gaps between the critical sectors identified in the NAP and the sectoral plans defined. Nonetheless, further assessments are needed to determine which climate scenarios and statistics are being used in planning, as a means to assess progress on adaptation.

In respect of regional plans, most European countries only have them at some local levels. However, the EU supports the engagement of cities in climate policy with such initiatives as the Mayors Adapt (Covenant of Mayors, 2018), and Smart Cities Initiative (European Commission, 2018b). An analysis of the Local Climate Plans of 885 Urban Audit cities of EU-28 showed that approximately 66% of towns have a mitigation plan, 26% adaptation plan, and only 17% joint plan (Reckien et al., 2018). The results of the research surveyed 200 European cities show that many cities are proactive on climate change and have a substantial commitment to mitigation (64%) and adaptation (23%) (Heidrich et al., 2016). Countries from other
continents tend to have local-level plans (except Australia), which can be traced back to specific national vulnerabilities and/or existence - or lack of - international funding from the UN, World Bank that promotes specific programs in developing countries (such as Climate Change Technical Assistance Project for Mozambique of the World Bank (2012)).

Thirdly, the analysis shows that regardless of the socioeconomic, vulnerability, adaptation, and climate-risk differences, Built Environment, Infrastructure, and Economic Activity is central in the NAPs programs and critical sectors identified, which may reflect the neglecting of other areas related to the Natural Resources and Health and Human Resources. Nonetheless, the category of Natural Resources is still significant among the less developed countries.

Fourthly, most of the countries include mitigation objectives in their NAPs (except Portugal, Australia, and the Czech Republic); yet, the Australian NAS mentions about mitigation. In the past, both mitigation and adaptation have evolved along different pathways. However, addressing climate change challenges through only one lens (either mitigation or adaptation) can lead to trade-offs, and one could undermine the other (Klein et al., 2007). Mitigation and adaptation are two different strategies for addressing climate change that complement each other. There may be great potential in creating synergies between mitigation and adaptation and implementing climate policy options more cost-effectively. So it is understandable that one of the objectives of Latvia, Malaysia, Bangladesh, India, Canada, Brazil and Mozambique NAP’s is the “integration with mitigation policy”.

Actually, it is essential to note that the climate change policies of the EU, which plays a leading role internationally (Bäckstrand & Elgström, 2013; Rayner & Jordan, 2013), have been mostly focused on the mitigation of climate change through a reduction of greenhouse gas emissions (European Environment Agency, 2013). Only with increasing evidence of adverse climate impacts, has the topic ‘adaptation’ appeared on the political agenda (Biesbroek et al., 2010). In Latin American countries climate management focuses on coping with extreme events and disaster risk management, particularly after the increased climate variability and disasters observed since 1998 (IPCC, 2012; Magrin et al., 2014; Villamizar et al., 2017). However, the development of NAPs and sectoral programs focus on adaptation and do not ignore mitigation; on the contrary, they tend to integrate it in a more balanced approach.

Finally, the overall analysis let us find that the NAPs definition/outline responsibility is concentrated in a single ministry, while the foreseen implementation responsibility is shared governmentally. Climate action traditionally falls under the primary mandate of environment ministries (Rizzo and Maro, 2018); furthermore, the formulation of NAPs is generally less an inclusive governance approach than optimally desired. For instance, adaptations reported from
African and low-income countries are primarily being driven by national governments, NGOs, and international institutions, with minimal involvement of lower levels of government or collaboration across nations (Ford et al., 2015). Thus, National governments are central actors in climate change policies and are well positioned to play a crucial role in national adaptation planning through NAPs. Although developed countries usually have a high adaptive capacity potential due to their resources and human capital (see table 2), these factors do not necessarily translate into adaptation itself (readiness). In practice, national governments are often constrained by existing institutional arrangements, such as conflicting mandates or fragmentation, or low political or public prioritisation of climate change, which may reduce actual readiness. These findings are in agreement with the tension between top-down policy development and bottom-up implementation stated by Termeer et al. (2012) in Europe. The analysis of NAPs shows two different logics of adaptation: while in the studied developed countries, the focus is tendentially on the economic risks and opportunities, in the developing countries the centre is more on the natural resources and conservation. Moreover, as stated above, there remains a potential gap between planned adaptation, and it is implemented in practice. Although the NAP is a central government document, its ultimate objective is to enable adaptation practices at multiple levels of governance through time and space, but local and regional representatives are most often neglected (Biesbroek et al., 2010). Furthermore, the complexity and multi-level nature of climate change require governance systems able to manage and resolve conflicts of interests across multiple scales and among diverse policy actors. Within the Global South, this is the more important, as priorities are likely to be influenced by powerful international interests (Di Gregorio et al., 2019).

According to the analysis, countries tend to involve different stakeholders, in the definition and (foreseen) implementation of NAPs because that way they can be implemented more efficiently, and the responses to climate challenges can better meet the local needs. The usual procedure is to establish different participatory mechanisms for each stakeholder: placing experts at the centre of the decision as consultants and limiting the broad public participation to an online consultation and public hearings. Besides that Latvia, Czech Republic, India, and Canada even exclude the involvement of some stakeholders in the implementation of NAPs, specifically the general public. Moreover, Malaysia foresees the participation of other stakeholders only in the definition of NAP.

A drawback of this study is that from the 13 studied countries, seven are from Europe, Australia and Canada; hence, some of the findings are not generalisable, e.g. the importance given to natural resources and biodiversity is very likely underestimated, particularly for Africa.
Conclusions

The main implications of the study are as follows:

a) NAPs objectives translate more a global agenda and less the national/regional vulnerabilities (Hypothesis 1), particularly in developing countries.

b) The examined NAPs/NASs usually refer to related critical sectors and objectives, which justifies and expresses the gap between these and the vulnerable areas. The symbolic imposition of a unique one-size-fits-all model at the global level, the less than optimal level of participation of stakeholders at the national level (Hypotheses 2 and 3), and the socio-economic conditions of each country, undermine the adequacy of policies to the local reality and compromise the implementation of sectoral plans to face the country’s climate problems.

Our analysis also illustrates both the tensions and the gaps between climate policies on the one hand, and their adequacy and implementation on the other, an issue which needs further attention and research. It should be stated that despite the wide range of countries studied, it is not appropriate to generalise the study. This is also a limitation of the paper.

Despite the above constraints, the paper has allowed the identification of two different logics of adaptation reflected on the NAPs. One option, typical of developed countries, concentrates on economic risks and opportunities. Another option, usually in developing countries, concentrates on the natural resources and conservation, which supports hypotheses 4 and 5. This finding also needs further research to understand the role played by external aid and financing in promoting a country’s efforts towards climate change adaptation.

The development of NAPs is mainly state-centred in most of the 13 studied countries. The participatory mechanisms for each stakeholder group should be put in place so that public participation is not only restricted to an online consultation and public hearings (more in the definition than in the implementation of plans).

The examined plans illustrate the complexities of climate change adaptation policies and national agendas that need further research and reflection from the scientific community regarding the interdependencies between the global and national scales, participatory and local grounded governance, and the integration of top-down and bottom-up planning and implementation.
Abbreviations and Acronyms

AII - Adaptation Initiative Index
AUS – Australia
BGD - Bangladesh
BRA - Brazil
CAN – Canada
COP – Conference of the Parties
CRI - Global Climate-Risk Index
CZE – Czech Republic
DEU - Deutschland
EEA - European Environmental Agency
ENG - England
EU – European Union
GBR – United Kingdom
HDI - United Nations Human Development Index
HSER - Human and socioeconomic resources
IND - India
LVA - Latvia
MOZ – Mozambique
MYS - Malaysia
NAP – National Adaptation Plan
NAS – National Adaptation Strategy
Nd-Gain - Notre Dame University Gain Index
PRT - Portugal
UNFCCC - United Nations Framework Convention on Climate Change
URY – Uruguay

References

Notre Dame GAIN, 2016. ND-GAIN Country Index. The University of Notre Dame: Notre Dame, IN, USA, Available at: https://gain.nd.edu/our-work/country-index/. [Accessed 12 July 2018].

Appendix A. Countries legal references

Bangladesh

Siddiqui, M H (UD) A Report on Climate and Energy Framework Bangladesh. Royal Danish Embassy Dhaka, Bangladesh

Mozambique

Brazil

Canada

Uruguay

India

Malaysia

Ministry of Natural Resources and Environment, 2011. Malaysia Second National Communication to the UNFCCC. Ministry of Natural Resources and Environment, Malaysia.

Czech Republic

Germany

England

Latvia

The Ministry of Environmental Protection and Regional Development, 2018. On a way towards development of National AdapPlanon plan. Available at:
Portugal

Australia