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ABSTRACT 28 

The aim of this study was use surface EMG activity to assess changes in co-activation of knee flexors and 29 

extensors muscle groups during elastic-band exercise after 5 weeks of high-velocity elastic-band training in 30 

basketball players. College male basketball players (n = 18) were randomly divided into one of two groups: 31 

(1) The elastic-band training group performed low-load and high-velocity - lying prone - hamstring curls 32 

training three times per week on top of their usual training; (2) The control group did not do any additional 33 

training. Pre- and post- training assessment included concentric knee extension and flexion at 60°/s and 240°/s, 34 

and the frequency of knee flexion and extension with elastic bands in the prone position. The EMG of the 35 

rectus femoris, semitendinosus muscles and the long head of the biceps femoris were assessed during these 36 

activities, and 30-m sprint running speed was measured from a stationary start and a running start. It was shown 37 

that high-velocity elastic-band training was 1) feasible, 2) increased movement velocity and 3) muscle strength, 38 

4) altered neural control such that excessive lengthening of the hamstring muscle, and hence strain-injuries, 39 

may be prevented and 5) improved sprint performance in basketball players. In addition, these results suggest 40 

that high-velocity elastic-band training may be a tool to prevent hamstring strain-injuries in basketball players. 41 

  42 
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1. Introduction 43 

 44 

Power sports are associated with a high incidence of hamstring muscle strain-type injuries  (Ekstrand et 45 

al., 2016; Freckleton and Pizzari, 2013; Mendiguchia et al., 2012). Eighty percent of hamstring injuries occur 46 

in the long head of the biceps femoris  (Chumanov et al., 2011; Opar et al., 2012) during high-speed actions 47 

(e.g., sprinting and jumping), especially at a longer-than-optimal length (Askling et al., 2007; Schache et al., 48 

2010). The semimembranosus–tendon connection is more susceptible during activities such as high kick or 49 

decelerating actions (Askling et al., 2012). 50 

Muscle weakness is an important risk factor for hamstring injury  (Foreman et al., 2006). Resistance 51 

training using weight machines or own body weight, such as Nordic hamstring exercise, are the most prevalent 52 

training programmes to increase hamstring strength as a means to prevent such injuries  (Bourne et al., 2018; 53 

Franchi et al., 2014; Mjølsnes et al., 2004; Potier et al., 2009; Schache et al., 2012). Yet, the success of these 54 

programmes is limited, as the incidence of hamstring muscle injuries remains high (Ekstrand et al., 2016). One 55 

of the causes may be that the applied exercises are mainly performed at low speed while most injuries occur 56 

during high-speed actions. It has hitherto not been investigated whether high-velocity exercises may provide 57 

a better protection against hamstring injuries. 58 

The feasibility of high-velocity training modalities to increase hamstring strength is illustrated in non-59 

athletes by the increase in knee extensor and knee flexor strength after elastic-band exercise training with a 60 

high frequency of knee flexion and extension (lying prone curls) (Janusevicius et al., 2017). In addition to 61 

increased strength, they observed a decrease in hamstring co-activation at high muscle contraction velocities 62 

that translated in better sprint performance. Part of these adaptations seem to be associated with neural 63 

adaptations, but it should be noted that neural adaptations were deduced from the EMG activity during 64 

isokinetic contractions, but not during knee flexion and extension during elastic-band exercise. It also 65 

important to note that the previous study (Janusevicius et al., 2017) was performed with non-athletes, who are 66 

likely to exhibit a stronger response to any exercise than athletes, and therefore benefits of such training for 67 

athletes remains to be established.  68 

Therefore, the main objective of the current study was to determine changes in co-activation of knee 69 

flexors and extensors muscle groups during elastic-band exercise after 5 weeks of high-velocity elastic-band 70 

training in basketball players using surface EMG. We hypothesized that elastic-band training enhances muscle 71 
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co-activation particularly during knee flexion and during transition from the flexion to the extension phases 72 

because elastic band provides greater resistance at the end of the hamstring concentric action, where more 73 

control of antagonistic muscle length is required (Israetel et al., 2010). The results will show not only whether 74 

elastic-band training is feasible in athletes, but also whether it results in changes that are conducive to prevent 75 

strain injuries, particularly during high-end performance. If the outcome of the study is positive, the next stage 76 

will be to study the efficacy of this programme to reduce the incidence of hamstring injuries in basketball 77 

players. 78 

 79 

2. Methods 80 

 81 

2.1. Subjects 82 

 83 

Subjects were Lithuanian college division II male basketball players (mean ± standard deviation (SD)) (n 84 

= 18, age 21.5 ± 1.7 years, weight 83.5 ± 8.9 kg, height 192.5 ± 5.4 m) who had trained 5 to 10 years. They 85 

were randomly divided into one of two groups: (1) The elastic band training (EBT, n = 10) group performed 86 

low-load and high-velocity - lying prone - hamstring curls training on top of their usual training; (2) The 87 

control (CON, n = 8) group that did not do any extra training. The 2 groups did not differ significantly in age, 88 

body mass and height. The experiment was performed during the off-season period when basketball players 89 

were supposed to rest and they were encouraged to avoid additional intense activities during the study. 90 

Potential participants were excluded from the study if they had performed plyometric or resistance training 91 

during the last 2 months. The regional ethics committee approved the study. Written informed consent was 92 

obtained from each subject. 93 

 94 

2.2. Training program 95 

 96 

The training program consisted of 5 weeks of hamstring curl exercise performed with TheraBand™ silver 97 

rubber bands at maximum velocity for 4 s with full range of motion while lying prone. The subjects all started 98 

with a 1-m length. When the subject increased movement rate by one cycle per 4 s, resistance was added by 99 

increasing the band length by 1 m (100% elongation). The hamstring curls were filmed with a Sony 25-Hz 100 

Hans Degens
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Digital camera to calculate the number of movements per s. The subjects performed 4–6 sets with a 5-min rest 101 

between sets. TheraBand™ silver rubber provides 4.6 kg resistance at 100% elongation. Most subjects were 102 

able to reach 300% elongation during the training program.  103 

The warm-up consisted of 15 min of slow jogging, 10 min of dynamic stretching and 5 min of running 104 

drills at intensities of 70%, 80%, and 90% of maximum. Participants performed a total of 15 sessions over 5 105 

weeks, three times per week on Mondays, Wednesdays and Fridays, with ≥48 h between each session. Each 106 

single training session lasted for 1 h. 107 

 108 

2.3. Procedure 109 

 110 

Testing was performed 1 week before and 3–4 days after the training period. On each day of testing, age, 111 

body height (to the nearest 0.1 cm, Martin, GPM instrument, Siber Hegner, Switzerland), and body mass (to 112 

the nearest 0.1 kg, TBF-300 Body Composition Analyzer, Tanita, Philpots Close, UK) were measured. Then 113 

the participants performed a standardized warm-up for 15 min, which comprised 10 min of bicycle pedalling. 114 

After the warm-up, the concentric peak torque of the knee extensor and flexor muscles was measured at 60°/s 115 

and 240°/s using an isokinetic dynamometer (System 3; Biodex Medical Systems, Shirley, NY, USA). 116 

Electromyographic activity (EMG) of the rectus femoris (RF), semitendinosus muscles (ST) and the long head 117 

of the biceps femoris (BF) was assessed during dynamometry using an MP150 system (Biopac Systems, Inc., 118 

Goleta, CA, USA). The EMG of these muscles was also recorded during hamstring curls, while lying prone. 119 

On the next day, participants performed a standardized warm-up for 20 min comprising 10 min of slow jogging, 120 

5 min of dynamic stretching and 5 min of running drills. They then completed four 30-m runs, with 5 min rest 121 

between: two from a stationary starting position and two after a run-up as a measure of speed after a flying 122 

start. All assessment procedures were repeated in the same order after the training program. The study was 123 

partly blinded as training, testing and analysis were performed by different researchers, while only one 124 

researcher took part at each study stage.  125 

 126 

2.4. Dynamometry 127 

 128 
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An isokinetic dynamometer (System 3; Biodex Medical Systems) was used to measure concentric peak 129 

torque of the knee extensor and flexor muscles. The participants were strapped with a double shoulder seat 130 

belt to stabilize the upper body. The distal ends of the thigh and shank were strapped to the seat and the 131 

dynamometer arm, respectively. The rotational axis of the dynamometer was aligned with the knee joint axis. 132 

The subjects performed three maximal contractions at angular velocities of 60°/s and 240°/s. Sampling rate 133 

was 100 Hz. Each contraction was separated by a rest of at least 2 min to prevent the development of fatigue. 134 

The highest peak torque for each test was used for further analysis. Intra-class correlation coefficient of peak 135 

torque varied from 0.85 to 0.95 depending on exercise mode and velocity. 136 

 137 

2.5. Electromyography 138 

 139 

Electromyograms (EMG) were obtained with a MP150 system (Biopac Systems, Inc.). Three self-140 

adhesive disposable Ag–AgCl electrodes (10-mm diameter, Ceracarta, Forlì (FC), Italy) were placed over the 141 

hamstring and quadriceps muscles with a 20-mm inter-electrode distance, and the ground electrode was 142 

positioned on the knee. The skin at the electrode sites was shaved and cleaned with alcohol wipes. After 143 

positioning the electrodes, a quality check was performed to ensure EMG signal validity. The EMG was 144 

acquired with a 1000-Hz sampling frequency and filtered using analogue high-pass (10 Hz) and low-pass (500 145 

Hz) filters. Muscle activation was assessed using the root mean square (RMS) of the EMG signal during 146 

flexion, the transition between flexion and extension (flexion-extension), extension, and the transition between 147 

extension and flexion (extension-flexion) during the hamstring curls with elastic bands (Fig 1). The RMS 148 

values were averaged during each phase and expressed as a percentage of the peak RMS during isokinetic knee 149 

flexion and extension (references to 100%). Intra-class correlation coefficient of the RMS of the EMG signal 150 

varied from 0.66 to 0.85 depending on exercise mode and velocity.  151 

 152 

 153 

Figure 1 about here 154 

 155 

 156 
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2.6. Running time registration 157 

 158 

To record the sprint times over 30 m, a Brower Timing System (Draper, UT, USA) was used with photo 159 

gates placed at 0 m and 30 m. Two trials were performed from the starting position, which was 70 cm from 160 

the first photo-sensing element, and two additional trials were performed from 25-m run up. All trials were 161 

completed at maximum velocity. A recovery of about 5 min was allowed between each trial. The best result 162 

was used for analysis. Running time registration accuracy is ± 1 ms according to the instrument’s manual. 163 

High reliability was observed for these tests with the intraclass correlation coefficients above 0.95. 164 

 165 

2.7. Lying prone hamstring curls  166 

 167 

We used a Sony 25-Hz digital camera to record knee flexion and extension movement frequency. Each 168 

participant lay in a prone position on a mattress with the knees straight. He then lifted each foot, by bending 169 

the knee to bring the foot toward the buttocks. Both feet were tested at the same time. The movements were 170 

performed as quickly as possible for 4 s. The frequency and each curl phase duration were counted. The intra-171 

class correlation coefficient of knee flexion and extension frequency was 0.85. 172 

 173 

2.8. Statistical analyses 174 

 175 

The data are presented as the arithmetic mean ± SD. The Shapiro–Wilks test showed that all data were 176 

normally distributed. Independent samples t-test was used to compare pre-training values between groups. The 177 

effects of group (EBT vs CON) and time (pre vs post training) on the measured variables were compared using 178 

a two-way general linear model repeated-measures ANOVA with appropriate Greenhouse–Geisser correction 179 

for sphericity as required. The same method was used to establish the effect of contraction phase (flexion, 180 

flexion-extension, extension and extension-flexion) or muscle group (RF, BF and ST) and time (pre vs post 181 

training) separately in each group. If a significant interaction was found, a one-way ANOVA was performed 182 

to locate the differences between means. Pearson's correlation coefficients were calculated to examine the 183 

relationship between variables in each group. Correlation magnitudes were: nearly perfect (r > .9), very large 184 

(7 < r < .9), large (5 < r < .7), moderate (3 < r < 5), small (1 < r < 3), or trivial (r < 1) according to Hopkins 185 
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(2000). For all statistical tests, differences were regarded as significant when p<0.05. All of the analyses were 186 

performed using SPSS 20.0 softwares (SPSS Inc., Chicago, Illinois, USA).  187 

 188 

3. Results 189 

 190 

Figure 2 about here 191 

 192 

Movement frequency and duration. Training increased hamstring curls from 9.0 ± 1.9 to 11.2 ± 1.4 per 4 193 

s in the EBT group (by 25.7 %, P<0.05) and from 9.4 ± 1.3 to 9.7± 1.5 per 4 s in the CON group (by 2.6 %, P 194 

> 0.05). This was accompanied with a reduction in single curl duration in the EBT group (P<0.05, Fig 2), 195 

which was evident for each phase of the curl (Fig. 2). In the CON group, there were no significant main effects 196 

of duration for any parameter (P > 0.05 for all comparisons). 197 

 198 

Figure 3 about here 199 

 200 

Electromyography. There was no significant time x contraction phase interaction for RMS (p > 0.05 for 201 

both groups) indicating that changes over time were similar for each contraction phase. There was a significant 202 

time x group interaction for the normalized RMS, reflected by different changes in the EBT and CON group 203 

over time (P < 0.05, Fig. 3A & C). The RMS increased for BF and RF in EBT group (P < 0.05) but not for ST 204 

muscle whereas there were no significant alterations in RMS in the CON men (Fig. 3BC. In addition, the 205 

duration of EMG activity was significantly shorter for the ST and BF during flexion, and the RF, BF and ST 206 

during extension and flexion-extension (P < 0.05, Fig. 3B). The EMG duration was longer for the RF during 207 

flexion, and for the BF and ST during extension after training (P < 0.05, Fig 3 B), but no change was seen in 208 

the CON group (Fig. 3D). Hamstring curl frequency was related with the increase in antagonist muscle 209 

activation during flexion (r = 0.48 for RF muscle, p < 0.05) while other correlations were not significant.  210 

 211 

Figure 4 about here 212 

 213 

Hans Degens
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Muscle strength and running performance. Although there were significant main effects of time, group 214 

and contraction type (P < 0.05 for all cases, Fig. 4), the significant time x velocity interaction was reflected by 215 

a 21.5% increase at low and 25.8% at high velocities in EBT group (P < 0.05 for both velocities, Fig. 4), but 216 

not in the CON group. 217 

Running performance over 30 m was improved by 1.6% from the starting position and by 2.1% from 218 

flying start (p < 0.05). Hamstring curls frequency was moderately related to running performance from starting 219 

position (r = -0.43, P < 0.05) but there was no significant relationship between performance and strength during 220 

flexion or extension (r = 0.33 and r = 0.29, P > 0.05). There was an inverse correlation between increase in 221 

flying start performance and increase in ST and RF activation duration during hamstring curl flexion phase (r 222 

= -0.52 and r = -0.44, P < 0.05).  223 

 224 

Figure 4 about here 225 

 226 

4. Discussion 227 

 228 

The main observations of the present study are that high-velocity elastic-band hamstring training not only 229 

results in a slight improvement in sprint performance, but more importantly increases in knee flexion strength 230 

and altered hamstring muscle recruitment during flexion-extension cycles that likely prevent excessive 231 

lengthening of muscles during exercise, such as basketball playing. These benefits of high-velocity hamstring 232 

elastic-band training may well translate into a lower incidence of strain-type injuries in the hamstrings. Future 233 

studies will explore this further.  234 

It was anticipated that the maximal velocity of movement increases markedly with elastic-band training 235 

in basketball players as demonstrated in non-athletes (Janusevicius et al., 2017). Although one might expect a 236 

less pronounced adaptation, as basketball players already regularly perform power and strength exercise 237 

(Montgomery et al., 2010), the magnitude of the training effect was similar to that seen in non-athletes 238 

(compared indirectly with (Janusevicius et al., 2017)). This similar adaptation may be related to the training 239 

being off-season, when training load and volume are low. It also important to note that elastic-band training 240 

was unfamiliar to both groups. 241 
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Neural adaptations have been proposed as the main mechanism for improved performance after high-242 

speed training (DeWeese et al., 2015; Ross and Leveritt, 2001). In line with this we observed an increased 243 

activation of the BF and RF muscles (but not for ST). Such an enhanced activation of BF and RF may 244 

reciprocally protect the muscles against excessive length changes during explosive force production (first 50-245 

75 ms), possibly as a result of increased motor unit recruitment in the hamstring muscles (Del Vecchio et al., 246 

2019; Grazioli et al., 2019; Maffiuletti et al., 2016). Enhanced motor-unit firing at high frequencies and earlier 247 

recruitment of motor units has been previously demonstrated after explosive resistance training (Cormie et al., 248 

2011; Folland and Williams, 2007; Griffin and Cafarelli, 2005). Contrary to our hypothesis, similar changes 249 

in muscle activation occur at different contraction phases even though loading was greater during knee flexion 250 

than during extension. Furthermore, the antagonist muscle activity duration remained the same or increased 251 

despite much shorter knee flexion or extension duration after training. While increased antagonist muscle 252 

activity does not stop movement, it has to switch-on earlier in case of high-speed movement. This indicates 253 

that not only activation magnitude but also task-specific improvements in cooperation between muscles is 254 

essential for high-speed performance  255 

Our data are in agreement with other researchers who have found an increase in muscle strength after 256 

elastic band training (Colado et al., 2010; de Oliveira et al., 2017; Ghigiarelli et al., 2009; Lopes et al., 2019). 257 

We found that low-resistance/high-speed training particularly favours the development of torque at high 258 

velocities. It was less expected that both knee flexors and knee extensor torque increased. While knee extensors 259 

are less loaded during concentric contraction lying prone than when sitting, their activity is high during flexion 260 

deceleration in their antagonistic role. In this context it is interesting to note that the gains in force after training 261 

are not so much related to activation level, but rather to gains in the force generating capacity (Calatayud et 262 

al., 2015), that in addition is at a given activation level also higher during eccentric than concentric 263 

contractions. 264 

The eccentric and concentric strength gains were more pronounced at high than low velocity contractions 265 

in both knee extensors and flexors and suggest altered force–velocity–power relationships (Israetel et al., 2010) 266 

that would favour sprint performance. Comparable results have been demonstrated for squat and bench press 267 

after training with elastic bands (Baker and Newton, 2008; Israetel et al., 2010) or sprint performance after 268 

resisted sled training (Alcaraz et al., 2018). However, rather than changes in the force-velocity-power 269 

relationship, the observed adaptations may be related more to neural adaptations, as indicated by the changes 270 
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in recruitment during elastic-band exercise we observed, and the expected absence of muscle hypertrophy after 271 

training with elastic bands for a short period (Van Cutsem et al., 1998). Also other peripheral mechanisms may 272 

play a role, such as increased tendon stiffness that enhances effective force transmission (Kubo et al., 2007), 273 

but so far we are not aware of studies on the effect of elastic-band training on tendon properties.  274 

It is of interest to note that an elastic band provides resistance in a way that makes it possible to initially 275 

reach high velocities, as at the start the contraction is almost unloaded. High velocities are considered essential 276 

for speed and power training (Behm and Sale, 1993; Cronin et al., 2002; Haff and Nimphius, 2012; Mazani et 277 

al., 2018). The programme also follows other power training recommendations, such as short exercise duration 278 

(4 s), sufficient rest between repetitions to avoid fatigue (3-5 min) and low training volume to avoid overall 279 

neuromuscular system fatigue (up to six repetitions three times per week). No concurrent training was applied 280 

during the study period. All these settings were important to achieve greater speed, force and power. We do 281 

not expect that this training will interfere with the usual training programmes in season, but this is something 282 

for further study.  283 

Our observations do not enable us to conclude that elastic-band high-velocity training is an efficient 284 

approach to prevent hamstring injury incidence in athletes. However, muscle weakness (Bourne et al., 2018; 285 

Croisier, 2004; Opar et al., 2012; Shadle and Cacolice, 2017; Shield and Bourne, 2018; Yeung et al., 2009), 286 

low strength at high velocities and lack of muscle activation are associated with a high risk of hamstring injuries 287 

(Ekstrand et al., 2012). Therefore, the increased muscle strength and altered recruitment pattern of the 288 

hamstring muscles we observed are promising. We acknowledge that it has been reported that most of 289 

isokinetic knee flexor, knee extensor and hip extensor outputs at angular velocities ranging 30-300°/s had 290 

moderate or strong evidence for no association with future hamstring injury (Green et al., 2018). However, we 291 

believe that the combination of enhanced strength and altered neural control after high-velocity elastic-band 292 

training is a potential approach to reduce the incidence of hamstring injuries in basketball players. 293 
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The small sample size may be a study limitation but is rather typical for training studies 294 

(Kamandulis et al., 2012; Pliauga et al., 2018; Snieckus et al., 2013). Another limitation was that eccentric 295 

torque assessment has not been carried out during isokinetic measurements, which may have provided 296 

further insight in the changes induced by high-velocity elastic-band training. We also cannot exclude 297 

the possibility that some difficulties with test standardization, such as a controlled range of 298 

movement, during hamstring curls may have influenced some of the data. We think this will have a 299 

minor impact on the data as we made intra-individual comparisons.  300 

 301 

5. Conclusions 302 

 303 

The results of this study demonstrated that high-velocity elastic-band training was 1) feasible, 2) increased 304 

movement velocity, 3) muscle strength, 4) altered neural control such that excessive lengthening of hamstring 305 

muscles and hence strain-injuries may be prevented and 5) improved sprint performance in basketball players. 306 

These results are promising and suggest that high-velocity elastic-band training may be a tool to prevent 307 

hamstring strain-injuries in basketball players. 308 
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Figures captions 458 

 459 

Fig. 1. Outline of EMG signal recording for rectus femoris (RF), long head of the biceps femoris (BF) 460 

and semitendinosus (ST) muscles during hamstring curls lying prone extension, extension-flexion, flexion and 461 

flexion-extension phases 462 

 463 

Fig. 2. Duration of A) flexion, B) flexion-extension, C) extension and D) extension-flexion phases during 464 

hamstring curls lying prone in elastic band training (EBT) and control (CON) groups (average ± SD). ∗P < 465 

0.05 compared to pre-exercise (Pre) value. 466 

 467 

Fig. 3. (A, C) Root mean square (RMS) and (B, D) duration of the EMG signal changes for rectus femoris 468 

(RF), long head of the biceps femoris (BF) and semitendinosus (ST) muscles during hamstring curls lying 469 

prone in elastic band training (A, B) and control (C, D) groups (average ± SD). RMS data were reported as a 470 

percentage of the maximum voluntary concentric contraction at angular velocity of 60°/s. ∗P < 0.05 compared 471 

to pre-exercise (Pre) value. 472 

 473 

Fig. 4. Peak torque of knee extension (A, C) and flexion (B, D) and 30-m running (E, F) performance 474 

changes in elastic band training (EBT) and control (CON) groups (average ± SD). ∗P < 0.05 compared to pre-475 

exercise (Pre) value. 476 
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