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Abstract 

 

 

Systemic lupus erythematosus (SLE) is associated with increased risk of cardiovascular 

disease; up to 50-fold in young women. Cardiovascular risk algorithms do not take SLE into 

account, nor are there biomarkers available to stratify patient risk. This project aimed to 

consider the role of endothelial microvesicles (EMVs) as biomarkers of cardiovascular risk 

and also as effectors through their miRNA content. 

To do so, EMVs were isolated and quantified from patient plasma by flow cytometry, before 

being correlated with QRISK cardiovascular risk scores and patient data. Key miRNAs were 

identified by data mining, and their abundance was determined in the vesicular fraction of 

patient plasma by quantitative PCR (qPCR). Thus an SLE miRNA panel was characterised. 

Finally, the effects of miRNA overexpression in endothelial cells were probed by developing 

miRNA constructs and lentiviral vectors through Gateway® cloning prior to functional tests. 

This revealed that patients with SLE demonstrated elevated QRISK3 scores, as well as 

markers of inflammation and cardiovascular risk, compared to controls. They were also 

found to have increased numbers of EMVs, which were further associated with 

cardiovascular risk. Five miRNAs were chosen to be studied and lentiviral vectors were 

successfully generated to model their overexpression. Of these, miR-126-3p was elevated 

in patients with an SLE flare, where it was associated with musculoskeletal symptoms, and 

caused a glycolytic shift when overexpressed in endothelial cells; miR-3148 was also 

elevated in SLE. MiR-93-5p, miR-320a and miR-30d-5p were reduced in SLE, but their 

overexpression resulted in impaired angiogenic tube formation in vitro, and they were 

associated with measures of fatigue in patients. 

This project supports the use of EMVs as biomarkers of cardiovascular risk in SLE, where 

they reflect disease activity and cardiovascular involvement. The identification of a miRNA 

panel further refines patient stratification and allows future identification of functional 

mechanisms and novel therapeutic targets. 
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Chapter 1 

Introduction 

 

 

1.1. Cardiovascular Disease 
 

1.1.1. The Societal Impact of Cardiovascular Disease 

According to the British Heart Foundation, approximately 7 million people in the UK are 

currently living with cardiovascular disease (CVD). Within the UK, CVD accounts for 25% of 

all deaths, meaning around 420 people die from this disease each day(1). Furthermore, 

CVD is the greatest cause of death globally. However, this is unequally distributed such that 

over 75% of these global deaths occur in countries of low or middle income(2); Manchester 

carries the highest rate of premature deaths due to CVD in the UK (140.7 deaths/100,000 

population; Figure 1.1), which is substantially higher than more affluent areas(1). This is 

likely due to a number of lifestyle factors including diet, exercise and smoking – on average, 

19.3% of Greater Manchester residents smoke compared to 17.2% across England and 

16.2% in the more affluent South East(3) – as well as the level of governmental support and 

socioeconomic factors. Indeed, the prevalence of CVD places a huge burden on the 

economy, with UK healthcare costs of £9 billion per year. Furthermore, CVD greatly impacts 

quality of life, thus when disability and other costs are taken into account, this figure is 

estimated to rise to £19 billion per year(1).  
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Figure 1.1: Premature mortality from CVD in the UK. This heatmap shows premature death 

rates grouped by local authority. ‘Premature’ defined as <75 years. Image courtesy of British 

Heart Foundation (BHF/University of Birmingham calculated rates in partnership with UK 

statistical agencies: ONS/NRS/NISRA (2014-16 data). 
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1.1.2. The Clinical Problem of CVD and its Co-Morbidities 

‘Cardiovascular disease’ is an umbrella term, encompassing a number of disorders of the 

heart and blood vessels. Examples of cardiac presentations include coronary heart disease, 

congestive heart failure, rheumatic and congenital heart disease, while vascular diseases 

range from stroke and cerebrovascular disease to peripheral arterial disease, as well as 

deep vein thrombosis and pulmonary embolism. Hypertension may also be considered a 

CVD. Although CVDs cover a spectrum of conditions, they often share similar risk factors or 

pathologies. A common link is that of damage and inflammation, whether limited to a 

certain vascular bed or spread throughout the circulatory system. Development of 

atherosclerosis or changes in blood clotting can also both predispose to acute events such 

as myocardial infarction or stroke, and can propagate chronic CVDs. Generally, common 

CVDs are associated with the same risk factors of poor diet/obesity, sedentary lifestyle, 

smoking and drinking excessive amounts of alcohol. Others, such as rheumatic heart 

disease and vasculitis, are related to the presence or history of other diseases. Further 

information can be found on the respective websites of the British Heart Foundation 

(https://www.bhf.org.uk/) and the World Health Organisation 

(https://www.who.int/cardiovascular_diseases/en/).  

Within this text, the use of ‘CVD’ will refer to conditions of the cardiovascular system 

involving damage, inflammation and increased risk of acute events. Although CVDs are 

characterised by multiple functional and physiological changes throughout the vasculature, 

this text will focus on dysfunction within the endothelial layer, the mechanisms of which 

will be further discussed.  

 

 

1.1.3. The Vascular Endothelium in CVD 

The structure of an artery is trilaminar, being composed of, in order of lumen outwards, a 

tunica intima, tunica media and an adventitia. The tunica intima comprises a monolayer of 

endothelial cells atop a collagen-rich basement membrane, the contents of which are 

produced by the smooth muscle cells of the tunica media layer below(4). Thus, the 

endothelial cells are in direct contact with the blood and exert critical functions at the 

https://www.bhf.org.uk/
https://www.who.int/cardiovascular_diseases/en/
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interface between blood and vasculature, such as prevention of inappropriate coagulation 

through surface molecules or modulation of vascular tone e.g. via release of nitric oxide 

(NO). It is therefore unsurprising that dysfunction of the vascular endothelium could 

support development of cardiovascular disease(5). 

 

 

1.1.3.1. Endothelial Activation and Dysfunction 

Endothelial dysfunction is typically characterised by reduced activity or production of NO 

by the endothelial cells, for instance due to oxidative stress, resulting in impaired vascular 

reactivity(6). The reduction in vasodilation can be detected non-invasively by flow 

mediated dilatation (FMD), a widely used method to measure endothelial dysfunction in 

the clinic, particularly in patients with rheumatological disorders(7). Endothelial 

dysfunction is often the first indication of future atherosclerotic changes, the development 

of which may then lead to cardiovascular disease(7-9).  

The formation of an atherosclerotic plaque is depicted in figure 1.2. Briefly, low density 

lipoproteins (LDL) are deposited into the intimal layer, over time forming fatty streaks along 

the vessel wall.  Monocytes are recruited from the blood into the intima, where they 

differentiate into macrophages and, further, foam cells via uptake of the oxidised LDL. The 

subsequent release of reactive oxygen species (ROS), growth factors and inflammatory 

cytokines, such as tumour necrosis factor-α (TNFα) and interferons, causes the 

proliferation of vascular smooth muscle cells (VSMCs), which then increase production of 

extracellular matrix(7-9). The result is a fibrous cap covering a necrotic core rich in lipids 

and cellular debris, accompanied by inflammation and calcification. If this is left to 

continue, extensive matrix remodelling and further infiltration by inflammatory cells 

decreases plaque stability and can result in rupture or erosion. The plaque contents are 

extremely thrombogenic, inciting thrombus formation, vessel occlusion and clinical 

symptoms of CVD(8, 9).   

The terms ‘endothelial dysfunction’ and ‘endothelial activation’ are sometimes, incorrectly, 

used interchangeably. However, they are fundamentally linked in the process of 
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atherosclerosis and so both may be used in this text, depending on the angle of 

investigation. While endothelial dysfunction describes abnormalities of vascular tone prior 

to atherogenesis, endothelial activation refers to the expression of cell-surface adhesion 

molecules, which are responsible for leukocyte recruitment and downstream propagation 

of inflammation(6, 9). It may be said that, in the process of atherogenesis, activation occurs 

before dysfunction and this has been indicated in figure 1.2. Yet it is also understood that 

NO suppresses endothelial activation, reinforcing the intricate relationships that hold 

endothelial homeostasis in balance(6, 10, 11). 
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Figure 1.2: Pathological mechanisms in atherogenesis. Long term exposure to 

cardiovascular risk factors leads to intimal LDL retention and oxidation. Upregulated 

expression of adhesion molecules supports recruitment and transmigration of leukocytes 

such as monocytes and T cells. Monocytes mature into macrophages within the intima, 

where they ingest oxidised LDL (oxLDL), becoming foam cells. Release of inflammatory 

factors such as cytokines, matrix metalloproteinases (MMPs) and reactive oxygen species 

by leukocytes contributes to development of highly inflammatory environment. Endothelial 

microvesicles are further released from the endothelium into the circulation. This 

environment stimulates vascular smooth muscle cell (VSMC) proliferation, migration and 

production of extracellular matrix, which forms a fibrous cap. VSMCs can also undergo 

calcification, reducing arterial elasticity. Cellular apoptosis causes build-up of a necrotic, 

lipid-rich core underneath the cap. Extensive matrix remodelling (such as through MMPs) 

and increased angiogenesis stimulated by hypoxia threaten plaque stability and can result 

in rupture, triggering activation of platelets and formation of a thrombus. IFN-γ, interferon-

gamma; IL, interleukin; MCP-1, monocyte chemoattractant protein; M-CSF, macrophage 

colony-stimulating factor; SR-A, scavenger receptor A; TGF-β, transforming growth factor-

beta; Th1, T helper cell type 1; Treg, T regulatory cell; VEGF, vascular endothelial growth 

factor. Adapted from Wilck and Ludwig (2014). 

 

 

1.1.3.2. Risk Factors for Endothelial Dysfunction and CVD 

Atherosclerosis is more likely to develop in ‘atheroprone’ regions such as arterial 

bifurcations and branches. This is due to a region-specific change in blood flow from 

pulsatile and unidirectional to oscillatory or turbulent(12). This difference in shear stress 

triggers alternative signalling pathways by the endothelial cells and a phenotypic switch 

that increases permeability and monocyte attachment, as is elegantly reviewed by Zhou et 

al. (2014). Indeed, endothelial cells at these regions undergo endothelial to mesenchymal 

transition, which is associated with vascular fibrosis and atherogenesis(13). Furthermore, 

changes in shear stress are associated with alterations in the endothelial glycocalyx, 

resulting in impaired mechanosensing and signal transduction(14). Therefore the 

endothelium at atheroprone sites is more susceptible to infiltration by lipids and 
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leukocytes, and phenotypic changes linked to development of atherosclerosis(12). 

Accordingly, changes in shear stress can predict plaque development(15, 16). Perturbations 

in blood pressure can further increase stress and predispose to vascular remodelling and 

endothelial dysfunction, which, as has been discussed, then results in reduced vascular 

reactivity and propagation of hypertension. Thus hypertension is often noted as a risk 

marker for CVD, and is a primary treatment target(4, 12). 

Other common risk markers pertain to diet and associated obesity.  The role of lipids, 

particularly LDL cholesterol, is described in the previous section and is well documented, 

with implications in foam cell accumulation, vascular smooth muscle proliferation and 

inflammation, especially when oxidised(17-19). While LDL is associated with atherogenesis, 

high density lipoproteins (HDL) show the inverse relationship(20). The mechanisms 

underpinning this are still under investigation, however HDL appears to have a crucial role 

in removal of excess cholesterol, as well as anti-oxidant, anti-inflammatory and endothelial-

protective functions(21-24). As such, HDL:LDL ratios may be used diagnostically to predict 

cardiovascular risk and therapeutic interventions aimed at restoring lipid balance, such as 

statins, are often prescribed to high risk individuals(20, 24). Circulating triglyceride levels 

may additionally be utilised in cardiovascular risk prediction as they appear to follow a 

positive correlation; whether this is a causal relationship or triglyceride levels solely reflect 

LDL status has historically been debated(25). Nevertheless, recent studies of individuals 

with genetic variations affecting triglycerides, including lipoprotein lipase, have begun to 

yield fascinating causal links between triglycerides and CVD(26, 27).  

Hyperglycaemia and associated insulin resistance is another major risk factor for CVD; 

elevated fasting glucose level is linked to increased risk of death, including from CVD(28). 

Hyperglycaemia affects the endothelium through formation of advanced glycation end 

products (AGEs), which bind to endothelial receptors and support dysfunction via induction 

of oxidative stress and reduced NO production(29, 30). Consequently, patients with 

diabetes develop accelerated atherosclerosis and impaired vasodilator function(30, 31). 

A third aspect of diet that increases cardiovascular risk is salt intake. Excessive salt intake 

is linked to hypertension, which then predisposes to endothelial dysfunction, as discussed 

above and is therefore a relatively simple target for preventative therapy(32, 33). Sodium 



 

30 
 

chloride may also directly affect the endothelium, independently of hypertension, through 

ROS production and impaired vasodilation(33, 34).   

In contrast, a non-modifiable risk factor for CVD is age, which is arguably the strongest 

predictor of cardiovascular health. As we age, the vasculature undergoes a series of 

changes that render it more susceptible to damage and dysfunction. Arteries lose elasticity 

and vasoreactivity through a combination of hypertrophy, extracellular matrix deposition 

and NO reduction(35, 36); they also may become subject to eutrophic remodelling, 

supporting the development of hypertension(37). Furthermore, the aged endothelium 

shows compromised barrier function and increased cytokine production, boosting the 

inflammatory environment; the combination of inflammation, endothelial dysfunction and 

vascular stiffening hastens atherogenesis(36, 38, 39).  

A final risk factor for atherosclerosis is the presence and extent of inflammation; elevated 

risk of CVD has been well documented in autoimmune conditions characterised by chronic 

inflammation, which is associated with endothelial dysfunction. Large quantities of 

inflammatory cytokines such as TNFα are present in the circulation of these patients(8, 40). 

TNFα reduces NO bioavailability as well as stimulating production of further inflammatory 

mediators(40, 41), the result of which is an activated endothelium expressing chemotactic 

and adhesion molecules, and increased atherosclerosis(8, 42). The role of infiltrating 

leukocytes in atherosclerosis is introduced in section 1.1.3.1., and can be altered by the 

specific cell subtypes present. For example, helper Th1 and Th17 T cells have been linked 

to deleterious effects on the vasculature whereas regulatory (Treg) T cells appear to be 

protective(43, 44). These cells often demonstrate a ‘skew’ in autoimmune inflammatory 

conditions, with pro-inflammatory subsets playing a greater role(44-46). Furthermore, 

increased numbers of patrolling monocyte subsets are also found in these conditions, 

predisposing to development of subclinical atherosclerosis(47, 48). The connections 

between inflammation and CVD have also opened the door to new biomarkers to quantify 

cardiovascular risk, such as high-sensitivity C-reactive protein (hsCRP), an acute phase 

protein released under inflammatory conditions(49). By improving understanding and 

knowledge of the processes underlying endothelial dysfunction and atherosclerosis in 

conditions with high risk of CVD, novel biomarkers and therapeutic targets can be identified 

and strategies developed to reduce patient mortality and improve quality of life. One such 
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inflammatory disorder that carries a high cardiovascular risk is systemic lupus 

erythematosus (SLE), which is an excellent disease model to study endothelial damage and 

vascular aging and is discussed further below.  

 

 

1.2. Systemic Lupus Erythematosus 

 

1.2. The Impact of SLE 

SLE is an autoimmune condition characterised by autoantibody production, immune 

complex deposition and disseminated inflammation. Patients are predominantly female 

and the disease is more prevalent in those with African or Asian heritage(50-52). Incidence 

and prevalence varies across the globe(51), although UK figures estimated a prevalence of 

97.04/100,000 in 2012(50). SLE is a complex disease with individual variations and a 

significant delay in diagnosis. A 2014 LUPUS UK study involving 2527 participants found 

that 72.7% of patients struggled to carry out daily activities and only 15% were in full time 

employment, highlighting the impact of this condition on quality of life(52). 

 

 

1.2.1.1. The Symptoms of SLE are Heterogeneous and Patient-Specific 

The same LUPUS UK study stated that 53.8% of patients frequently suffered between 6-10 

different physical symptoms, highlighting the heterogeneity and systemic nature of the 

disease. The most common symptoms were weakness, fatigue and joint swelling, with 

50%+ also experiencing poor circulation, back pain and flu-like symptoms/night sweats(52). 

Another UK study described musculoskeletal, mucocutaneous and psychological 

symptoms, as well as fatigue, as most commonly recorded prior to diagnosis 

(arthritis/arthralgia, rash and depression respectively). The mean age at diagnosis in this 

study was found to be 49.4 years, with a mean wait time of 26.4 months following first 

musculoskeletal symptoms, although this increased to 6.4 years in some patients(53). The 

range of assorted and nonspecific symptoms most likely contribute to longer waiting times, 
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and establish the necessity of tailored treatment dependent on the particular constellation 

of symptoms within an individual (Figure 1.3). 

 

 

 

Figure 1.3: SLE affects multiple organ systems. Due to the presence of antinuclear 

antibodies and deposition of immune complexes, virtually any organ system can be affected 

by SLE, producing a wide range of symptoms. 
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1.2.1.2. Autoimmunity in SLE 

Autoantibodies are a hallmark of SLE and contribute to immune complex deposition and 

activation of the immune response. Immunoglobulin G (IgG) is the predominant isotype of 

autoantibody, and is commonly reactive against the patients’ own double stranded DNA 

(dsDNA) but may also target complement factors, endothelial cells, histones, nucleosomal 

material and ribosomal P protein. The autoantibody profile of a patient is often used 

diagnostically to confirm disease but also contributes to the disease through formation of 

immune complexes. Tissue damage causes further release of DNA and associated factors, 

thus restarting the cycle(54, 55). 

Autoantibodies can propagate SLE in a number of ways. For example, anti-dsDNA 

antibodies activate the NLRP3 inflammasome in monocytes and macrophages, increasing 

the production of inflammatory cytokines such as interleukin-1 (IL-1)(56). The formation of 

immune complexes containing autoantibodies is a key process in the pathology of SLE; 

these complexes are deposited, and become lodged, within capillaries and other tissues 

where they cause damage and occlusion. Furthermore, the complexed antibodies are able 

to activate complement, and recruit and activate leukocytes, particularly neutrophils, while 

offering additional antigens for recognition by immune cells(57).  

Although IgG isotypes may be elevated in SLE, other antibody classes are reduced, such as 

IgM(55, 58). Depleted levels of IgM are associated with presence of autoimmunity and 

inflammation, although autoreactive IgM are also observed(58). In particular, IgM 

antibodies targeting phosphorylcholine promote polarisation of anti-inflammatory Treg 

cells(59), and confer athero- and renal protection(60, 61).  

 

 

1.2.1.3. The Inflammatory Environment of SLE 

As described in section 1.2.1.2, propagation of tissue damage releases further autoantigens 

such as dsDNA. Interestingly, patients with SLE demonstrate inadequate clearance of 

apoptotic debris, which is related to reduced activity of DNase(62, 63). Complement factors 

also play a role in this process through coating of apoptotic material to facilitate removal; 
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polymorphisms or deficiency in early complement components such as C1q and C4 

predisposes to loss of immune tolerance and development of SLE(62). Additionally, 

patients with SLE may show hypocomplementaemia as complement factors, especially C3 

and C4, continue to be sequestered by immune complexes(64).  

Activation of neutrophils by complexed antibodies and complement stimulates formation 

of neutrophil extracellular traps (NETs), fibrous networks containing nuclear and granular 

factors as well as pro-inflammatory proteins and complement factors(65, 66). 

Inflammasome activation and prolonged display of autoantigens strongly links NETs to 

autoimmunity and vasculitis; autoantigens trapped within the NETs can also undergo post-

translational modifications that render them more immunogenic, such as citrullinated 

histones(65). As well as this, reduced DNase activity in SLE impairs NET removal, supporting 

chronic inflammation, particularly when NET clearance is impaired in germinal centres and 

thus exposing autoantigens to autoreactive B cells(65, 66). Indeed, activation of neutrophils 

in SLE induces a shift from immune complex phagocytosis to inflammatory NET 

formation(67), one of a number of suspected impairments in SLE neutrophils. As well NET 

overproduction and reduced degradation, neutrophils of patients with SLE have been 

found to have impaired phagocytosis combined with increased aggregation and production 

of inflammatory mediators(68). In this way, immunogenic material including oxidised 

mitochondrial DNA may be extruded from the neutrophil and proceed to activate further 

leukocytes such as dendritic cells(69). 

The activated dendritic cells then release large amounts of interferon-α (IFNα), which play 

a major role in SLE pathogenesis and as such, will be revisited in later chapters(69, 70). IFNα 

is greatly immunostimulatory, skewing T cell development in favour of Th1 rather than Treg 

pathways, enhancing inflammasomal activity and mobilising BLyS for B cell differentiation 

(70). Dendritic cells activated by autogenic immune complexes also directly promote 

expansion of autoreactive B cells alongside failed induction of regulatory B cell phenotypes 

(71, 72). A similar pattern is present in T cell subsets, in that T cells of patients with SLE 

show a skew in favour of inflammatory Th17 cells and away from Treg cells, thus losing self-

tolerance(73, 74).  
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The inflammatory environment of SLE is complex, featuring many interwoven pathways 

that culminate in a cycle of autoreactivity. This chronic inflammation then opens the door 

to tissue damage, resulting in symptomatic disease. 

 

 

1.2.2. Cardiovascular Disease in SLE 

Cardiovascular disease is a leading cause of mortality and morbidity in SLE(75, 76); risk of 

experiencing a major cardiovascular event is significantly higher, up to fifty times in some 

SLE populations(77, 78). Patients with SLE develop subclinical atherosclerosis and plaque 

development that takes an accelerated course compared to a healthy population(79, 80). 

However, endothelial dysfunction is also present in SLE without previous cardiovascular 

history and thus presents an interesting area of study(81, 82). 

There are numerous factors that could explain the increased cardiovascular risk in SLE, and 

the inflammatory environment plays a large role. For example, type 1 interferons such as 

IFNα are associated with endothelial dysfunction and plaque development in murine SLE 

models(83). In vitro studies have found that IFNα produces an endothelial ‘interferon 

signature’ of induced genes comparable to those observed in SLE(84), and suppresses 

production of endothelial NO synthase, promoting endothelial dysfunction(85). Moreover, 

within patient populations, type 1 IFNs correlate with endothelial dysfunction and vascular 

calcification(86). Type 1 interferons may also support increased lipid uptake and foam cell 

formation, furthering atherogenesis(87).  

Other SLE-related cytokines, including B lymphocyte stimulator (BLyS) and TNFα, may 

contribute to atherogenesis. Indeed, patients with genetically high levels of BLyS show 

accelerated plaque formation and arterial wall thickening(88), while elevated levels of 

TNFα have been linked to endothelial dysfunction and premature atherosclerosis in SLE(89, 

90). This is unsurprising as TNFα has already been implicated in atherosclerosis in other 

diseases and models(40, 42, 91). BLyS and TNFα will be used to generate in vitro models of 

SLE in this study and will be described further in chapter 3. 
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On the other hand, IgM antibodies may offer a protective role in SLE, as introduced earlier. 

These antibodies may recognise components of atherosclerotic plaques such as oxidised 

lipids, reducing incidence and risk of cardiovascular events(92, 93). Antibody subtyping 

shows potential for future biomarker development in SLE; IgG antibodies targeting 

cardiolipin, HDL and paraoxonase 1 have already been suggested alongside 

atheroprotective IgM(93-95).  

The cellular aspects of inflammation in SLE additionally contribute to atherogenesis. One 

study found a specific neutrophil subset in patients, which carried an atherogenic gene 

signature and was associated with vascular inflammation as well as atherosclerosis(96). 

Further research described endothelial dysfunction induced by MMPs associated with 

NETs, which would establish chronic subclinical atherogenesis in SLE(97). Similarly, 

monocyte subsets have been linked to subclinical atherosclerosis in SLE(98), alongside 

distinct SLE-specific gene profiles in differentiation of monocytes to macrophages(99).  

Finally, non-traditional risk factors and pathological mechanisms remain to be elucidated. 

Other circulating elements that could contribute to atherosclerosis in SLE include 

transformed, pro-inflammatory HDL, elevated homocysteine and presence of 

adipokines(100). Vitamin D status is another area for further study, as deficiency is linked 

to endothelial dysfunction in both mouse and patient studies(101, 102). Furthermore, 

treatment options for SLE should also be taken into account – corticosteroid use is 

associated with atherosclerosis in SLE, whereas hydroxychloroquine shows 

atheroprotective properties(100, 103, 104). 

 

1.2.3. Improvements are Needed in SLE Diagnostics 
 

1.2.3.1. Diagnosis of SLE 

A diagnosis of SLE may be complicated by the remittent nature of the disease and the high 

variability between patients. The diagnostic criteria published by the American College of 

Rheumatology (ACR; Table 1.1) are among the most common methods used for SLE 

diagnosis with specificity and sensitivity of 95% and 85% respectively, provided the patient 

fulfils four of the criteria, indicating SLE(105). The criteria, as published in 1997, detailed 10 
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identified symptoms spanning a variety of organs, as well as the presence of anti-nuclear 

antibodies at a titre of ≥1:160 (106, 107). These criteria were then further developed in 

2012 by the Systemic Lupus International Collaborating Clinics (SLICC) group, producing an 

alternative ‘SLICC’ diagnostic tool, featuring seventeen variables (Table 1.2). This was 

intended to clarify potentially overlapping symptoms such as ‘malar rash’ and 

‘photosensitivity’, further define organ involvement, and increase both specificity and 

sensitivity(106). Both methods may be used in the clinic to ensure definitive diagnosis; the 

current use of two similar techniques highlights the need for a further updated method 

merging and corroborating the complementary criteria, which is a current global research 

objective(108). 

 

Feature Details 

Malar Rash 
Fixed erythema, flat or raised, over the malar eminences, 

tending to spare the nasolabial folds 

Discoid Rash 
Erythematous raised patches with adherent keratotic scaling 
and follicular plugging; atrophic scarring may occur in older 

lesions 

Photosensitivity Skin rash in response to sun exposure 

Oral Ulcers Painless oral or nasopharyngeal ulceration 

Arthritis 
Nonerosive arthritis of 2 or more peripheral joints, associated 

with tenderness, swelling or effusion 

Serositis Pleuritis or pericarditis 

Renal Disorder 
Persistent proteinuria >0.5g/day or 3+ on dipstick, or cellular 

casts present 

Neurologic Disorder Seizures or psychosis 

Haematologic 
Disorder 

Haemolytic anaemia with reticulocytosis, leukopenia 
<4000/mm3 on ≥2 occasions, lymphopenia <1500/mm3 on ≥2 
occasions or thrombocytopenia <100,000/mm3 in the absence 

of offending drugs 

Immunologic 
Disorder 

Anti-DNA, anti-Sm or positive finding of antiphospholipid 
antibodies based on i) abnormal serum level of IgG or IgM 

antibodies ii) positive test result for lupus anticoagulant or iii) 
false positive serologic test for syphilis known to be positive for 

min. 6 months 

Antinuclear 
Antibody 

Abnormal titre by immunofluorescence or equivalent assay at 
any point in time and in the absence of drugs 

 

Table 1.1: Diagnostic criteria for SLE, as specified by the American College of 

Rheumatology 1997 revised ACR criteria(109, 110). SLE confirmed by positive presence of 

≥4 criteria in the absence of other causes. 
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Feature Details 

Clinical: Acute Cutaneous Lupus 
Lupus malar rash, bullous lupus, toxic epidermal 

necrolysis variant, maculopapular lupus rash, 
photosensitivity or subacute cutaneous lupus 

Clinical: Chronic Cutaneous Lupus 

Classic discoid rash, hypertrophic lupus, lupus 
panniculitis, mucosal lupus, lupus 

erythematosus tumidus, chilblains lupus, discoid 
lupus/lichen planus overlap 

Clinical: Oral Ulcers 
Palate, buccal, tongue or nasal in the absence of 

other causes 

Clinical: Nonscarring Alopecia Diffuse thinning or hair fragility 

Clinical: Synovitis 
Involvement of ≥2 joints, characterised by 

swelling or effusion, or tenderness and ≥30 
minutes morning stiffness 

Clinical: Serositis Pleuritis or pericarditis 

Clinical: Renal 
Persistent proteinuria >0.5g/day or red blood 

cell casts 

Clinical: Neurologic 
Seizures, psychosis, mononeuritis multiplex, 

myelitis, peripheral/cranial neuropathy or acute 
confusional state 

Clinical: Haemolytic Anaemia 

Haemolytic anaemia with reticulocytosis, 
leukopenia <4000/mm3 on ≥2 occasions, 

lymphopenia <1000/mm3 on ≥2 occasions or 
thrombocytopenia <100,000/mm3 in the 

absence of offending drugs 

Clinical: Leukopenia or 
Lymphopenia 

<4000/mm3 at least once or <1000/mm3 at least 
once 

Clinical: Thrombocytopenia <100,000/mm3 at least once 

Immunological: ANA Above laboratory reference range 

Immunological: Anti-dsDNA 
Above laboratory reference range, or twice 

above if using ELISA 

Immunological: Anti-Sm  

Immunological: Anti-phospholipid 
Antibody 

Lupus anticoagulant, false positive RPR, 
medium-high titre anticardiolipin or anti-β2 

glycoprotein I 

Immunological: Low Complement Low C3, C4 or CH50 

Immunological: Direct Coombs Test In the absence of haemolytic anaemia 

 

Table 1.2: Diagnostic criteria for SLE, as specified by the Systemic Lupus International 

Collaborating Clinics 2012 report(106). SLE confirmed by positive presence of ≥4 criteria, 

including both clinical and immunological or a combination of ANA/ anti-dsDNA antibodies 

and biopsy-proven lupus nephritis. Criteria must be found in the absence of any other 

causes. 
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Further tools exist to determine patients experiencing a disease flare, thus supporting 

clinical decisions regarding treatment plans. The British Isles Lupus Assessment Group 

(BILAG) is a popular method due to its sensitive and comprehensive review of multiple 

organ systems, and its emphasis on the intention to treat. The system comprises an 

assessment of eight organ systems, with a score assigned to each based on symptomatic 

activity over the previous four weeks. The appearance of a new active or intermediate 

symptom in at least one organ system then indicates flared disease(111-113). Other 

methods include the Systemic Lupus Erythematosus Disease Activity Index, a global 

evaluation of disease activity in nine organ systems over the previous ten days(112). Both 

methods have comparable sensitivity however BILAG is considered most representative of 

disease activity over time(113). 

 

 

1.2.3.2. Diagnosis of Cardiovascular Risk 
 

1.2.3.2.1. Cardiovascular Risk Algorithms are Used Worldwide 

A number of diagnostic tools have been developed for evaluation of cardiovascular risk, 

supporting identification of high risk patients who would benefit from clinical intervention. 

Screening algorithms, such as the Framingham risk calculator, predict cardiovascular risk 

based on factors such as age, blood pressure and cholesterol levels, although age 

consistently produces the dominant effect. Nevertheless, risk estimation appears to vary 

between algorithms(114).  

The Framingham risk score was derived from a large-scale study spanning thousands of 

American citizens and is now a widely used risk tool across the globe. However, it has also 

been considered less representative of varied populations, overestimating risk in multi-

ethnic communities(115, 116). Other algorithms such as Systematic COronary Risk 

Evaluation (SCORE), which stratifies risk groups across Europe, have been considered more 

representative of a wider population(116), although they may feature fewer variables.  
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1.2.3.2.2. The Use of QRISK Algorithms in Cardiovascular Risk Stratification 

In light of the growing cultural diversity in the United Kingdom, a new CVD risk score 

targeted for the modern UK population was developed in 2007. QRISK was shaped using 

health records for approximately 7% of the population, supporting validation of 

cardiovascular risk factors and development of a risk equation using the Cox proportional 

hazards model. This algorithm aimed to provide a more extensive review of risk factors, 

with improved discrimination for a diverse population compared to Framingham(117).  

As knowledge grew, this was further updated in 2008, producing QRISK2, with the inclusion 

of additional risk factors, self-assigned ethnicity and inter-relationships between factors, 

which is updated yearly(118, 119). The QRISK2 algorithm proved superior to the 

Framingham risk score, estimating risk with greater accuracy and avoiding the 

overestimation within the mixed population(120); it is now the CVD risk tool recommended 

by the National Institute for Health and Care Excellence (NICE) for clinical use in the UK, 

with a score of ≥10% indicating high risk(121). 

However, NICE also recognised the increased cardiovascular risk in SLE and associated 

medications, such as corticosteroids, advising that risk may be underestimated in this 

population(122). Risk underestimation in patients was also observed when using 

Framingham, indicating the need for an SLE-inclusive score(123), such as that suggested by 

Fava et al.(124) and will be an area of investigation in this study.  

 

 

1.2.3.2.3. Identification of Cardiovascular Risk in SLE 

In 2017, an updated QRISK3 algorithm was produced to address the issues of inclusivity. It 

did this by incorporating a number of additional risk factors, including both SLE and 

corticosteroid prescription (Table 1.3). As with previous algorithms, a 10% likelihood of 

experiencing a major cardiovascular event over the proceeding 10 year period was deemed 

‘high risk’.  

When Hippisley-Cox et al. validated and compared this to QRISK2, they found an 

improvement in accuracy of risk evaluation(119, 124) although this has not yet been 
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independently evaluated, particularly within a cohort of patients with SLE. Our interest in 

developing the QRISK3 algorithm extends to a current biomarker of interest, namely 

endothelial microvesicles, which show promise as a marker of endothelial damage.  

Accurate identification of patients with high cardiovascular risk would enable early 

provision of treatment and monitoring, potentially preventing premature mortality and 

improving quality of life. 

 

Framingham Risk 
Score 

QRISK2 QRISK3 

Age (30-79 years) Age (25-84 years) Age (25-84 years) 

Sex Sex Sex 

Smoking status Ethnicity Ethnicity 

Total cholesterol UK postcode UK postcode 

HDL cholesterol Smoking status Smoking status 

Systolic blood pressure Diabetes status Diabetes status 

Blood pressure 
medication 

Angina or heart attack in a 
1st degree relative <60 

Angina or heart attack in a 1st 
degree relative <60 

 Chronic kidney disease 
(stage 4-5) 

Chronic kidney disease (stage 
3-5) 

 Atrial fibrillation Atrial fibrillation 

 Blood pressure medication Blood pressure medication 

 Rheumatoid arthritis Migraines 

 Cholesterol/HDL ratio Rheumatoid arthritis 

 Systolic blood pressure Systemic Lupus 
Erythematosus 

 Body mass index (height, 
weight) 

Severe mental illness 

  Atypical antipsychotic 
medication 

  Regular steroid medication 

  Erectile dysfunction 

  Cholesterol/HDL ratio 

  Systolic blood pressure 

  Standard deviation of min. 2 
most recent systolic blood 
pressure readings (mmHg 

  Body mass index (height, 
weight) 
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Table 1.3: A comparison of cardiovascular risk algorithms available in the UK. The 

updated QRISK3 algorithm includes novel risk factors relevant to patients with SLE, such as 

SLE and steroid medication. Additional risk factors highlighted in bold. Severe mental illness 

is inclusive of schizophrenia, bipolar disorder and moderate-severe depression. 

 

 

1.3. Endothelial Microvesicles as Biomarkers and Effectors of Endothelial 

Dysfunction 

 

1.3.1. Endothelial Microvesicles 

Endothelial microvesicles (EMVs) are anucleoid, membrane-bound cell fragments 100-

1000nm in size, characterised by a phospholipid bilayer studded with phosphatidylserine 

(PS). EMVs are released in response to diverse stimuli, including shear and oxidative stress, 

and have been found to transport bioactive proteins, lipids, mRNAs and microRNAs 

(miRNAs) to recipient cells. In this way, they have been considered as future biomarkers, 

as well as effectors of disease and repair processes (125-127).  

 

 

1.3.1.1. Identification of EMVs 

The presence of extracellular vesicles (ECVs) in plasma and blood products was first 

communicated by Peter Wolf in 1967, who referred to them as ‘platelet dust’(128). Since 

then, ECVs have been scrutinised and found to be quite the opposite of the ‘cell debris’ 

they were first thought of; ECVs have been shown to mediate endocrine and paracrine 

effects(125, 127). ECVs were subsequently classified according to size and cellular origin. 

Current understanding is that there are three distinct groups of vesicles present in the 

extracellular space, with specific characteristics and mechanisms of formation. Of these, 

microvesicles are defined by their size, release pathway and unique surface markers 

obtained from the membrane of the donor cell, which can be determined using labelled 

antibodies and flow cytometry (figure 1.4). Surface markers may also be used to distinguish 
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between the varied microvesicle populations present in blood, such as those of endothelial 

origin (EMVs) compared to platelet-derived microvesicles (PMVs)(126, 129).Nomenclature 

may also vary, such that microvesicles may also be referred to as microparticles. 

 

 

 

Figure 1.4: The characteristics and phenotypic distinctions of EMVs. Endothelial 

microvesicles are characterised by a number of phenotypic features including specific 

surface markers representative of the endothelial lineage, which are often upregulated 

following cell activation e.g. ICAM-1, CD144, CD31. These can be detected using labelled 

antibodies; the presence of phosphatidylserine (PS) within the membrane can also be 

detected by labelling annexin V. Adapted from Yin et al. (2015). 

 

 

1.3.1.2. EMV Release and Uptake 

EMVs are released by blebbing from the cell membrane following cellular activation, a 

process that occurs seconds after activation and cytoskeletal disruption(130). This results 

in downstream calcium signalling and ROCK1 activation, which leads to translocation of 

phosphatidylserine, a cytoplasmic aminophospholipid, to the cell membrane(125). 

Recognition of phosphatidylserine by recipient cells appears crucial in phagocytosis of 
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extracellular vesicles, although transfer of contents can also be enabled by receptor-

mediated, clathrin-independent endocytosis and pinocytosis(126, 131-133). Despite this, 

microvesicular uptake appears dependent on a number of variables such as membrane 

composition, and both intracellular and extracellular conditions. Donor and target cells can 

also be of different lineages (Figure 1.5)(133, 134). 

The first evidence of this uptake was presented by Scholz et al. in 2002(135) whereas the 

first evidence of miRNA transfer, albeit in exosomes, was published by Valadi et al. in 2007 

followed by microvesicular miRNA transfer by Yuan et al. in 2009(136, 137). The possibility 

of transfer of material using MVs provides new therapeutic options and potential for 

delivery of drugs(126, 127, 129, 133). Once released, MVs are cleared fairly rapidly, most 

likely by hepatic or phagocytic mechanisms; monocellular culture means they are quite 

stable in vitro, supporting the development of cellular models for further study(129). 

 

 

 

Figure 1.5: Proposed mechanisms of EMV uptake. Uptake appears to be dependent on the 

environment and interacting cells, with potential mechanisms including A: membrane 

fusion, B: ligand-receptor interactions, C: extracellular degradation, D: caveolin-dependent 

endocytosis, E: phagocytosis and F: micropinocytosis. EMVs are referred to here as EMPs 

(endothelial microparticles). Figure courtesy of Dr Daniel Moreno Martinez(138). 
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1.3.2. EMV Content: miRNA 

As described previously, EMVs transport bioactive contents through the circulation, and 

can transfer these to recipient cells(125). EMV contents include miRNAs, which offer 

potential for further cardiovascular biomarker studies and patient stratification(139), as 

well as elucidation of pathways by which EMV content may affect endothelial function in 

SLE. 

 

 

1.3.2.1. MiRNA Structure and Function 

Small RNAs are found across eukaryotic organisms and are defined by a size of 20-30 

nucleotides. Of this family, miRNAs are a dominant class, comprising 18-22 

nucleotides(140, 141).  

Transcription of miRNA genes by RNA polymerase II results in a long transcript with miRNA 

sequences found within a hairpin structure; the initial products are primary miRs (pri-miRs), 

which are then processed into pre-miRs by RNAse III protein Drosha prior to nuclear export. 

Once within the cytoplasm, another RNAse III protein, Dicer, further processes the pre-

miRs into mature and functional miRNA. In most cases, these miRNAs proceed to bind to 

3’UTR sites of target mRNA and regulate their expression (figure 1.6)(140, 141). They do 

this by two modes of action; miRNAs can integrate into a ribonucleoprotein RNA-induced 

silencing complex (RISC) which then either silences gene expression by e.g. endonucleolytic 

cleavage of mRNA or blocks translation through recruitment of repressors(142). 

The miRNA gene family is extremely abundant and as such, has complex nomenclature and 

relationships. It is relatively common to find similar miRNA loci that are products of gene 

duplication, and therefore mature miRNAs with identical sequences within the first 2-7 

nucleotides (the miRNA ‘seed’) are considered part of the same family. miRNAs can also 

share a common origin and so belong to an evolutionary superfamily but demonstrate 

single nucleotide differences within the miRNA seed sequence. Nomenclature may also be 

inconsistent, with miRNAs referred to according to phenotype, e.g. let-7, or numerically by 

order of discovery. Furthermore, miRNA ‘sisters’ may be differentiated by the suffix a and 
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b, while the directionality of the miRNA transcription from the loci is also described e.g. 

miR-30d-5p(140, 143).  

 

 

Figure 1.6: MiRNA formation and action in relation to mRNA. miRNAs are processed in the 

nucleus before final cleavage in the cytoplasm, producing mature miRNA. Once mature, the 

miRNA can interact with target mRNA to prevent protein synthesis. Figure by Barwari et al. 

(2016). 
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1.3.2.2. MiRNAs in CVD 

Disease-specific miRNAs show great promise for both mechanistic and biomarker studies. 

As yet, a clear picture of the role of miRNAs in cardiovascular health has not been 

determined however numerous studies have suggested roles for individual miRNAs 

associated with various cardiovascular morbidities. The sheer quantity of identified human 

miRNAs makes a full description of their potential actions beyond the scope of this work, 

although summaries of possible cardiovascular interactions have been elegantly reviewed 

elsewhere(141, 144).  

As mentioned, miRNAs can post-transcriptionally alter gene expression, most commonly 

preventing translation of target mRNAs. The mRNA targets differ between miRNAs; one of 

the most extensively studied miRNAs in cardiovascular research is miR-145, which appears 

to be pro-atherosclerotic, through phenotypic switching and fate determination of VSMCs 

(145-147). MiR-21 also acts on VSMCs, and by doing so can influence the stability of 

atherosclerotic plaques, but has historically been studied for its role in fibrosis and cardiac 

function(144, 148, 149). In this way, miRNAs can have unique roles that interrelate and 

create a dynamic environment during vascular health and disease. 

The associations between certain miRNAs and disease states supports the development of 

miRNA ‘signatures’ as biomarkers of disease activity. For example, miR-126-3p (and miR-

145-3p) has been recommended as a biomarker of acute myocardial infarction(150), while 

miR-93 has been suggested for use in stroke diagnosis, as well as coronary artery 

disease(151, 152). Thus the quantification of individual miRNAs packaged into EMVs shows 

great potential in the fields of diagnostics and precision medicine(153) and will be 

investigated in this study within the context of SLE.  

 

 

1.3.3. EMVs as Biomarkers of Cardiovascular Risk  

By providing a ‘snapshot’ of valuable information regarding the state of the endothelium, 

EMVs have been suggested for future use as biomarkers in cardiovascular disease. Indeed, 

increased levels are associated with unstable, asymptomatic carotid plaque formation, 
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coronary endothelial dysfunction and increased risk of a major cardiovascular event (125, 

154-156).  

EMVs and their contents may also be utilised in other conditions, such as SLE. Our group 

has previously shown that circulating EMVs are elevated in patients with SLE compared to 

controls, and not only were associated with endothelial dysfunction, but also could be 

reduced by immunosuppressive therapy, implying a connection between EMVs and 

inflammation(157-159). Suggested effects of microvesicles in SLE include stimulation of 

NETosis, immune complex formation and ROS production(160-163); a number of studies 

have also performed high throughput screening of miRNAs isolated from blood, although 

the primary focus is often on lupus nephritis or mononuclear cells(164-167). Characterising 

EMV function in SLE within the context of cardiovascular involvement is a relatively novel 

area; and should provide crucial knowledge to the field of diagnostics and treatment of SLE 

through innovative biomarker development and identification of future targets for therapy. 

 

 

1.4. Hypothesis, Aims and Objectives 
 

1.4.1. Study Summary and Rationale 

Incidence of cardiovascular disease is increased in SLE, meaning young patients are at risk 

of endothelial damage, subclinical atherosclerosis and premature death. It is therefore 

critical that this risk is recognised.  

1.4.2. Hypothesis 

We hypothesise that endothelial damage may be assessed through the identity and 

quantification of EMVs as novel biomarkers, and in vitro models using endothelial cells may 

be used to interrogate the mechanisms by which the endothelium becomes damaged in 

SLE. 

The overarching aim of this study is to establish whether EMVs can be added to the 

armament of risk factors used for identifying patients with SLE at elevated risk of future 

cardiovascular events. 
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1.4.3. Aims and Objectives 

The specific aims and objectives of this project are thus: 

AIM 1: To identify novel biomarkers for cardiovascular risk in SLE.  

 Objective 1. Clinical cardiovascular risk algorithms will be compared in relation to 

markers of inflammation and cardiovascular health in a cohort of patients with SLE 

using SPSS statistical software. 

 Objective 2. EMV levels in the SLE cohort will be quantified using flow cytometry to 

establish whether correlations might exist with clinical data. 

 

AIM 2: To determine a vesicular miRNA signature in patient plasma. 

 Objective 1. Data mining will be used to screen miRNAs of interest, which will be 

quantified in patient plasma by quantitative PCR and correlated with clinical data. 

 Objective 2. Predicted miRNA targets will be identified by gene ontology analysis. 

 

AIM 3: To elucidate functional effects of SLE-related miRNAs in endothelial cells. 

 Objective 1. An in vitro model of miRNA overexpression will be generated using a 

lentiviral vector transfer strategy. 

 Objective 2. The effects of miRNA overexpression on endothelial cell function will 

be probed using migration, angiogenesis and cellular respiration assays. 
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Chapter 2 

Materials and Methods 

 

 

2.1 . Mammalian Cell Culture 

Cell culture plates, flasks and plasticware were obtained from ThermoFisher Scientific. To 

ensure sterility, cells were handled within a class II safety cabinet and relevant equipment 

treated with 70% v/v industrial methylated spirits (Fisher).  

 

 

2.1.1. Culture and Passage of Human Umbilical Vein Endothelial Cells (HUVECs) 

Early passage HUVECs from pooled donors were sourced from Caltag Medsystems and 

revived in complete endothelial cell growth medium MV2, with supplied supplements 

(Promocell) and 1% v/v penicillin/streptomycin mix at 10,000U/ml each (Lonza).  

0.1% w/v bovine skin gelatine (Sigma) diluted in phosphate-buffered saline without Ca2+ or 

Mg2+ (PBS; Lonza) was used to coat culture vessels by incubating for 30 minutes prior to 

removal and washing with PBS. Individual vials of cells were seeded into 25cm2 flasks, 

where they were incubated at 37°C, 5% CO2 until confluence and for routine maintenance, 

passaged 1:3 into 75cm2 flasks, twice weekly using 200mg/L trypsin (Lonza) as a 

dissociation reagent (2ml per 25cm2). Cells were cryopreserved in 10% dimethyl sulphoxide 

(DMSO; Sigma), 40% foetal calf serum (FCS), 50% media and chilled for 24 hours in a 

Nalgene® Mr Frosty freezing container at -80°C prior to storage in liquid nitrogen. To enable 

revival, cryopreserved cells were thawed at 37°C for <5 minutes before seeding into pre-

warmed media (25cm2). Media was discarded and fresh added at 24 hours, to ensure 

removal of remaining DMSO. 
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2.1.2. Culture and Passage of Human Embryonic Kidney 293T Cells  

HEK293T cells (ATCC® CRL-3216™)  at early passage were revived and cultured in Dulbecco’s 

Modified Eagle’s Media (DMEM; Lonza) with supplementation as specified below. Revived 

cells were transferred directly to 75cm2 flasks and incubated as in 2.1.1. Cells were 

passaged once confluent (2-3 times weekly), at a ratio of 1:6 using 200mg/L trypsin as 

before, and cryopreserved as in 2.1.1. 

DMEM Media Composition 

DMEM (Lonza) 

10% FCS (ThermoFisher Scientific) 

1% L-glutamine (Corning) 

1% Penicillin/streptomycin mix (Lonza) 

 

 

2.2. Cellular Function Tests 
 

2.2.1. Cell Treatment: Cytokines 

10ng/ml TNFα and BLyS (Peprotech) were used to treat cells and simulate the inflammatory 

environment present in patients with SLE, as these cytokines are commonly associated with 

the disease, as discussed in chapter 1. 

 

 

2.2.2. Cell Viability: Alamar Blue Assay 

 

Cells were cultured in clear 96 well microplates at 1x104 cells per well in 100μl media. 10ul 

alamarBlue reagent (Invitrogen) was added and plates incubated for 24 hours. Absorbance 

was then read at 570/600 and fluorescence at 530/590 using a Synergy™ HT Microplate 

Reader (BioTek).  
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2.2.3. Scratch Migration Assay 

 

Cells were plated at 1x105 cells per well and cultured to confluence in 12 well culture plates. 

A P200 pipette tip was used to draw a vertical line through each well, creating a cell-free 

scratch area. Media was then removed and cells washed with PBS twice to remove non-

adherent cells. Media was replaced and images were taken at x4 magnification on a Zeiss 

Primovert inverted microscope with Axiocam 105 colour camera at 0, 5 and 24 hours. 

Images were then analysed using ImageJ software. 

 

 

2.2.4. Angiogenic Tube Formation Assay 

 

Prior to performing this assay, Matrigel® Matrix (Corning) was refrigerated on ice overnight 

to thaw slowly, alongside pipette tips and a clear 96 well microplate. On the day of the 

assay, 30μl of Matrigel® was used to coat the microplate wells, which were then incubated 

for 30 minutes at 37°C in order to set. Next, cells were plated on top of the matrix at 9x103 

per well in 50μl media. Images were taken at x10 magnification using the Zeiss microscope 

at 5 and 24 hours. Images were analysed manually, using ImageJ software and the 

flowchart below (figure 2.1). 
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Figure 2.1: Flowchart for tube recognition in manual angiogenesis analysis. 

 

 

2.2.5. Seahorse Mitochondrial Bioanalysis 

 

Seahorse bioanalysis allows interrogation of oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR), providing data on mitochondrial and glycolytic 

respiration. To do this, compounds are sequentially added to cells, which inhibit or boost 

certain respiratory pathways. In this work, oligomycin, carbonyl cyanide-4-

phenylhydrazone (FCCP) and rotenone/antimycin A were injected to target the respiratory 

aspects as depicted in figure 2.2 (168). 
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Figure 2.2. Seahorse cell mito stress test profile. When performing a cell mito stress test, 

oligomycin is injected first to inhibit ATP synthase, reducing mitochondrial respiratory 

ability. FCCP is next added to disrupt the proton gradient and alter mitochondrial membrane 

potential, increasing OCR to maximum. The final addition is a mix of rotenone and antimycin 

A, which inhibit complexes i and iii of the mitochondrial electron transport chain, stopping 

all mitochondrial respiration. Figure courtesy of Agilent Technologies. 

 

Cells were plated at 8x103 cells per well into a Seahorse XF96 Cell Culture Microplate and 

cultured overnight under standard conditions (section 2.1.1). On the day of the assay, a 

Seahorse XFe96 FluxPak was hydrated in Seahorse XF calibrant solution for 1 hour and cell 

media was changed to Seahorse XF base media supplemented with 1mM pyruvate, 2mM 

glutamine and 10mM glucose (all Sigma) at pH 7.4 for 45-60 minutes. Mitochondrial 

function was then assessed using a Seahorse XFp Cell Mito Stress Test kit, in accordance 

with kit protocol. Seahorse reagents were acquired from Agilent Technologies. Consistent 

cell plating was confirmed by Pierce™ BCA assay (ThermoFisher Scientific). 
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2.3 .  EMV Isolation and Quantification 

 

2.3.1. EMV Isolation 

 

Whole blood samples were centrifuged at 1,500g for 10 minutes at 4°C and the plasma 

removed. Plasma was then centrifuged at 20,000g for 10 minutes at 4°C and the 

supernatant harvested, and stored at -80°C prior to analysis by flow cytometry or use in 

experiments. When isolating EMVs released from cells in culture, the media was removed 

and centrifuged at 1,500g for 10 minutes at 4°C. The supernatant was harvested and stored 

as above. 

Exosome-free media was prepared using media with 2% exosome-depleted FCS. The FCS 

was prepared by ultracentrifugation at 100,000g for 18 hours using an OptimaTM XE 

ultracentrifuge (Beckman Coulter). The exosome-rich pellet was discarded and supernatant 

used in the media. 

 

 

2.3.2. EMV quantification 

Optimisation of settings on FACSVerse (BD) was undertaken prior to flow cytometric 

analysis. Polystyrene beads of known size (Spherotech) were used to identify and gate 

areas expected to yield microvesicles (figures 2.3 and 2.4). 
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Figure 2.3:  Vesicle positioning using beads of known size. A and B: The use of 

phycoerythrin (PE)-labelled beads allows identification of the areas in which MVs would 

expect to be visualised, supporting the determination of gates prior to flow cytometric 

analysis. 
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Figure 2.4: Establishment of gates to characterise MV populations. MVs isolated from 

exosome-free media following cell treatment with TNFα exhibited a characteristic tail 

appearance under flow cytometry (A), compared to fresh exosome-free media (C). There 

was also high particulate density in regions corresponding to larger vesicle size (D), which 

was not present in media only (B). Gating was conducted to maximise capture of tail areas 

with highest particulate density.   
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Flow cytometry was then performed to quantify MV numbers present in human plasma 

and to characterise their cellular origin, such that EMVs may be identified. Patient plasma 

was isolated as described in 2.3.1 and 20µl added to a flow tube. Tube contents were made 

up to 200µl with 1µl each of CD31 antibody labelled with BD Horizon Brilliant™ Blue 515, 

CD144 and CD42b antibodies, 5µl count beads (Beckman Coulter; Table 2.1) and 172µl 

0.22µm-filtered PBS. Following this, tubes were kept on ice in the dark for 30 minutes 

before flow cytometric analysis. 

 

Antibody Company 

BB515 Mouse Anti-Human 
CD31 

BD Biosciences 

PE Mouse anti-Human 
CD144 

BD Biosciences 

APC Mouse Anti-Human 
CD42b 

BD Biosciences 

 
 
Table 2.1: Antibodies used for flow cytometry. 

 

 

 

2.4 . MiRNA Analysis 
 

2.4.1. MiRNA Selection 

A literature search of PubMed and Google Scholar was performed on publications up to 

October 2017 using keywords ‘miR’ and ‘SLE’, ‘systemic lupus erythematosus’, 

‘cardiovascular’, ‘endothelial’, ‘microvesicles’, ‘microparticles’ or ‘extracellular vesicles’. 

Results of miRNA sequencing, microarray and qPCR analysis of adult cell-free plasma and 

EMVs were noted, whilst experiments using other cell types, such as lymphocytes and renal 

cells, were excluded. Only primary research papers were used; review articles were utilised 

solely as reference guides.  

A shortlist of potential miRNAs of interest was produced based on extent of current 

knowledge, notes found in relevant papers, unpublished preliminary data previously 

generated by our group pertaining to miRNA expression in a cellular model of SLE, and data 
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from DAVID(169, 170) and TargetScan(171) regarding potential implicated molecular 

pathways. 7 miRNAs of interest were chosen based on this method and located across 14 

research papers; let-7a was also included for analysis as a ‘housekeeper’, as it has often 

been suggested by other researchers, albeit in oncogenic settings, and is frequently 

reported in numerous tissue types, including endothelial cells, in publication and on 

ExoCarta/Vesiclepedia miRNA databases(172-176). 

 

 

2.4.2. MiRNA Isolation and Amplification 

 

Prior to miRNA isolation, plasma and media samples, which had previously been processed 

as in 2.3.1., were centrifuged at 100,000xg for 1 hour at 4°C to extract the vesicular fraction.  

MiRNA was isolated using a miRNeasy micro kit (Qiagen), from 1ml plasma or following kit 

instructions regarding starting amount of cellular material. To amplify transcripts for 

quantification, reverse transcription was performed using miRCURY LNA reverse 

transcription kit (Qiagen) following the manufacturer’s instructions. Incubation cycles were 

performed on an Agilent Sure Cycler 8800 Thermocycler, as below, and cDNA stored at -

20°C. 

Incubation Protocol 

42°C – 60 mins 

95°C – 5 mins 

Chill on ice 

 

 

 

2.4.3. MiRNA Quantification 

 

MiRNA abundance was analysed by qPCR using the cDNA generated as in 2.4.2. This was 

achieved using miRCURY LNA miRNA PCR assays (Qiagen) with primer sequences below 

(table 2.2).  
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Primer Sequence 
hsa-let7a-5p 5'UGAGGUAGUAGGUUGUAUAGUU 

hsa-miR-126-3p 5'UCGUACCGUGAGUAAUAAUGCG 

hsa-miR-93-5p 5'CAAAGUGCUGUUCGUGCAGGUAG 

hsa-miR-3148 5'UGGAAAAAACUGGUGUGUGCUU 

hsa-miR-320a 5'AAAAGCUGGGUUGAGAGGGCGA 

hsa-miR-30d-5p 5'UGUAAACAUCCCCGACUGGAAG 

hsa-miR-15b-5p 5'UAGCAGCACAUCAUGGUUUACA 

hsa-miR-20a-5p 5'UAAAGUGCUUAUAGUGCAGGUAG 

 
Table 2.2: LNA miRNA PCR assay primers used in quantification of miRNAs. 

 

 

Kit instructions were followed, using the 60x dilution for plasma and cellular analysis, and 

10x dilution for vesicles generated in vitro. 7μl mastermix (composition below) was added 

to wells of a 0.2ml semi-skirted 96-well plate (Starlab) before inclusion of 3μl cDNA in each 

well. A qPCR reaction was then performed in a 2-step program on an Applied Biosystems 

Step One Plus Real Time Thermocycler using the protocol below.  

 

Mastermix composition (per well)                                 

5µl 2x miRCURY SYBR green master mix (Qiagen)             

1µl PCR primer mix 

1µl RNase-free water 

 

Cycling protocol 

95°C – 2 mins 

95°C – 10 secs 

56°C – 1 min 

*40 cycles 
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2.4.4. MiRNA Predicted Target Identification 

Predicted targets of the miRNAs of interest were recorded from DIANA microT v5(177) and 

matched with results obtained from the Gene Ontology (GO) Consortium(178, 179) 

regarding genes implicated in ‘endothelial cell activation’, ‘blood microparticles’, ‘IFNα 

signalling’, ‘SLE’, ‘cellular respiration’,  ‘ossification’ and ‘bone mineralisation’. 

Cytoscape(180) was then used to identify crucial proteins and pathways targeted, 

highlighting key nodes associated with each miRNA. Finally, the data were ranked according 

to DIANA miTG prediction score and Cytoscape degree ranking.  

 

 

2.5. DNA and Analysis using Electrophoresis  

 

Agarose gels were made to appropriate concentration e.g. 1.5% by diluting ultra-pure 

agarose (Invitrogen) in 1xTBE buffer (ThermoFisher Scientific), boiling to dissolve crystals, 

then addition of Midori green at 0.01% (5μl in 50ml [Nippon Genetics Europe]). The solution 

was poured into a gel cast system with the addition of a comb to form the wells and was 

left to set for 30 minutes at room temperature. 5μl NEB loading dye was added to samples 

prior to loading into the gel, alongside 10μl of 1kb ladder (New England Biolabs) and 

electrophoresis was conducted at 120V for 30 minutes.  

 

 

2.6. Generation of In Vitro MiRNA Overexpression Models 

 

2.6.1. General Bacterial Methods 

 

2.6.1.1. Preparation of Bacterial Broth and Agar 

Lennox Lysogeny Broth (LB) broth and agar mixes (both Sigma) were prepared in deionised 

water, in accordance with the manufacturer’s protocol. Both were autoclaved for 15 

minutes at 121°C; once cooled, the appropriate antibiotic was added to the agar, which 
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was poured over a flame into petri dishes. Antibiotic was mixed into aliquots of bacterial 

broth immediately before use. 

 

 

2.6.1.2.   Preparation of Antibiotics 

100mg/ml stock solutions of kanamycin and ampicillin (both Sigma) were aseptically 

prepared in deionised water, within a laminar flow cabinet. Final working concentrations 

of 50μg/ml and 100 μg/ml were used for kanamycin and ampicillin respectively. Antibiotics 

were stored at -20°C. 

 

 

2.6.1.3.  Preparation of Glycerol Stocks 

Following overnight culture of bacterial colonies in 5ml LB broth, 1ml of culture was 

removed and mixed with 1ml glycerol (Fisher Scientific). Glycerol stocks were then stored 

in cryovials at -80°C.  

 

 

2.6.1.4.  Bacterial Strains and Transformation 

DH5α competent E.Coli cells were used to generate entry clones whereas One Shot™ 

Stbl3™ competent E.coli cells (both Invitrogen) were used in the generation of expression 

clones prior to lentivirus production. To transform cells, 1µl DNA was added to individual 

vials of bacterial cells, which were then chilled for 30 minutes on ice. Next, they received a 

heat shock for 45 seconds at 42°C, followed by a further incubation on ice for 2 minutes. 

Finally, 450µl of room temperature (RT) super optimal broth (SOC media) was added and 

vials shaken horizontally at 37°C for 1 hour at 200rpm, prior to plating. 
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2.6.2. Generation of MiRNA Overexpression Plasmid Constructs by Gateway® Cloning 

Gateway® Cloning technology was first developed by Invitrogen to simplify cloning 

workflows by minimising the use of restriction enzymes and subcloning, while maintaining 

high recombination efficiency(181). Precise recombination is mediated by the inclusion of 

att sites, which only recognise specific enzymes and recombine with their paired att site; 

in this way, nucleotides are neither gained nor lost and DNA can only be inserted 

monodirectionally (figure 2.5). The inclusion of Gateway cassettes containing antibiotic 

resistance and the toxic ccdB gene allow further confirmation of correct 

recombination(182, 183). This technique was utilised to generate plasmids throughout this 

study.  
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Figure 2.5: Gateway® Cloning workflow. During step 1, the attB-flanked gene or PCR 

product is combined with a donor vector containing the toxic ccdB gene and expressing 

kanamycin resistance, using BP clonase enzyme. This yields a recombined entry clone with 

the DNA flanked by attL sites and a by-product that is toxic to cells. The entry clone is then 

recombined with a destination vector expressing ampicillin resistance using LR clonase. The 

final result is an expression clone containing both the attB-flanked DNA and ampicillin 

resistance. 

 



 

65 
 

2.6.2.1.  Design of MiRNA Constructs 

MiRNA sequences were identified using the online National Centre for Biotechnology 

(NCBI) database. Constructs were supplied by Life Technologies, and were designed to 

include flanking sequences for attB1 and attB2, as well as for restriction enzymes Hpa1 and 

Xho1 to support recombination and ligation (figure 2.6 and table 2.3). 

 

 

 

 

Figure 2.6: Representative DNA gel of miRNA constructs. Prior to cloning, purchased 

miRNA constructs were analysed by gel electrophoresis on a 1.5% agarose gel, conducted 

at 120V for 30 minutes. Constructs were digested with restriction enzyme Hpa and Xho1, 

yielding bands at 400-500bp, corresponding with the designed construct, and remaining 

bands corresponding with the carrier plasmid. 1kb ladder ranging from 0.5-10kb.  
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DNA Sequence 
hsa-miR-126-3p T C G C A G G T T G C C C G G A G C C T C A T A T C A G C C A A G A A G 

G C A G A A G T G C C C C G T C C C G G G G T C C T G T C T G C A T C C 
A G C G C A G C A T T C T G G A A G A C G C C A C G C C T C C G C T G G 
C G A C G G G A C A T T A T T A C T T T T G G T A C G C G C T G T G A C 
A C T T C A A A C T C G T A C C G T G A G T A A T A A T G C G C C G T C 
C A C G G C A C C G C A T C G A A A A C G C C G C T G A G A C C T C A G 
C C T T G A C C T C C C T C A G C G T G G C C G G G A C C C T G A G C C 
T C T G C G C A G A G C C A C C C G C C C C G A C G T A C T T A G G C G 

hsa-miR-93-5p T C A A C C T T C A C T G A G A G G G T G G T T G G G G T C T G T T T C 
A C T C C A T G T G T C C T A G A T C C T G T GC T A C A G A C C T T C C 
T T T C T G T C C T C C C G T C T T G G A C C T C A G T C C T G G G G G C 
T C C A A A G T G C T G T T C G T G C A G G T A G T G T G A T T A C C C 
A A C C T A C T G C T G A G C T A G C A C T T C C C G A G C C C C C G G 
G A C A C G T T C T C T C T G C C A A T T G T C T T C T T G G C T G A G C 
T C C C C A A G C T C C A T C T G T C A T G C T G G G G A G C C C A G T 
G G C G T T C A A A A G G G T C T G G T C T C C C T C C T C G A G G 

hsa-miR-3148 T C T C T T C C C A C A G G A A G G C A A T G T G T G G A A T G G A G A 
A G G C T G C T T C A G C A A C A T C C T C T C C C A T G C A C C T T A A 
A C G T C T C T T T C T T T C T C A G C T C C T T T C T G G A G T T A A G 
A T G G A A A A A A C T G G T G T G T G C T T A T T G A T G T A G C C A 
A C A A G C A T A C A T C A G T T T T T T C C A A C T T A A C T C C A G T 
A T T T T C C C C A A T T C A T C C T G A A A T T G C T G C C C T A T C C 
A T T C T C C C T C C T A C A C A G C C A A G A T T C T T A A A A A A C C 
A A T C C A A A T T T G C A G A A T C T C C G  

hsa-miR-320a T C G G C G G A A G T C T G C G T G G C A G G G C C T G G G C G C C G 
C C A T C T T G G C G C G G G G C G G A A G T G A C G T T A G G G G G 
G C G G G A C T G G G C C A C A G T A T T T A T C A G G C G G C G C T T 
C G C T C C C C T C C G C C T T C T C T T C C C G G T T C T T C C C G G A 
G T C G G G A A A A G C T G G G T T G A G A G G G C G A A A A A G G A 
T G A G G T G A C T G G T C T G G G C T A C G C T A T G C T G C G G C G 
C T C G G G G G T C T T G G C C T C C G G G C G G T G G C G T G G A G 
G C G C C A A G A T C A G G G T C C C G G G T T T T G T C G G C C A C C 
T C G A G G  

hsa-miR-30d T C T A T T G T T C A G C A C T A G A A A T T A T A T A A A T T A T T A G 
C T G A A G A T G A T G A C T G G C A A C A T T T A T G T C T G T T C C 
T C C T C T T A A A T T T C T T G T T C A G A A A G T C T G T T G T T G T 
A A A C A T C C C C G A C T G G A A G C T G T A A G A C A C A G C T A A 
G C T T T C A G T C A G A T G T T T G C T G C T A C C G G C T A T T C A C 
A G A C A T C C T C T T G A T A T A A T T C T G T C C C G G A G T G G A 
G T T G A G G A G G C T A T A A A A T G T G T G G G A A A A C C T C A G 
A A A T C T T T A G C T G C A T T C T C G A G G  

attB1 C A A G T T T G T A C A A A A A A G C A G G C T 

attB2 A C C C A G C T T T C T T G T A C A A A G T G G T 

Hpa1 G T T A A C 

Xho1 C T C G A G 

Table 2.3: Sequences used to generate miRNA constructs. 
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2.6.2.2.  Generation of Entry Clones 

The amounts of DNA construct and plasmid pDONR221 (Invitrogen; figure 2.7) to be used 

were calculated using the equation (50 x no. base pairs) x 600 x (1/10^6) = ng. 10ng/μl 

miRNA construct was added to 150ng/μl pDONR221 vector and TE buffer (ThermoFisher 

Scientific), pH 8.0 used to yield an 8μl mixture. BP Clonase II enzyme (Invitrogen) was briefly 

thawed and vortexed, before 2μl was incorporated into the mixture. The reactions were 

then incubated at 25°C for 18 hours. Following this, 1μl proteinase K (Sigma) was added to 

terminate the reactions, which were incubated for 10 minutes at 37°C. 1μl of the BP 

recombination reactions were then used to transform DH5α competent E.Coli cells as 

described in 2.6.1.4. 20μl and 100μl aliquots were plated onto pre-warmed selective plates 

(kanamycin inoculated), which were incubated overnight at 37°C.  

 

 

 
Figure 2.7: Sequence map of pDONR221 vector. Note the presence of attP sites and 
associated restriction enzyme sites. Other restriction enzyme sites have been hidden in 
order to simplify the image. 



 

68 
 

Individual colonies were subsequently selected and cultured in LB broth with kanamycin, 

overnight at 37°C on a shaker at 200rpm. Following this, entry clone DNA was extracted 

from 4ml of liquid culture using a QiaPrep Spin Miniprep kit (Qiagen) and quantified by 

NanoDrop. Glycerol stocks were generated from the remaining 1ml. To confirm DNA 

integrity of entry clones, 800ng DNA was diluted to 25μl in dH2O. 3μl Cutsmart buffer and 

1μl each Hpa1 and ECORV restriction enzymes (all New England Biolabs) were added, and 

the solution was incubated for 2 hours at 37°C. Gel electrophoresis was then performed 

using a 1% agarose gel, as described 2.5. To improve band visualisation, gels were 

incubated in 1xTAE buffer containing SYBR™ Gold (Invitrogen) at 0.1μl/ml for 15-30 

minutes before viewing under an LED transilluminator (Biorad).  

 

 

2.6.2.3.  Generation of Expression Clones 

Upon confirmation of correct bands, 50-150ng entry clones were added to 150ng/μl 

destination vector, a pLL3.7 lentiviral backbone (Addgene), and TE buffer pH 8.0 used to 

achieve an 8μl solution. LR clonase II enzyme (Invitrogen) was thawed as recommended by 

the manufacturer and 2μl added to each sample before incubation for 18 hours at 25°C. As 

before, the reaction was terminated with 1μl proteinase K and an incubation for 10 minutes 

at 37°C. The same transformation protocol was used to transform One Shot™ Stbl3™ 

competent E.coli cells, which were plated on pre-warmed selective agar plates with 

incorporated ampicillin. Colonies were selected and cultured, DNA extracted as before and 

further glycerol stocks were made. Expression clones (Figure 2.8) were digested using 1μl 

each HPa1 and Xho1 (NEB), and correct banding was checked by gel electrophoresis before 

confirmation by sequencing, described in 2.6.2.4. PLL3.7 plasmids without miRNA 

constructs added (empty pLL3.7 as in figure 2.8 section a.) were used to generate controls. 
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Figure 2.8: Plasmid maps for pLL3.7 vector and miR-3148 expression clone. Image A 

depicts the pLL3.7 vector utilised in the LR reaction of Gateway® cloning and in control 

lentiviral vectors whereas image B shows the expression clone generated by the 

recombination of pLL3.7 and the miR-3148 construct. Note the inclusion of GFP in the vector 

to mediate fluorescence, and the attB sites flanking the construct. 

 

 

2.6.2.4.  Sequencing of Expression Clones 

Expression clones were prepared for sequencing by adding 1μl of 4pm/μl mU6 primer 

(Addgene) to 300ng DNA in a 10μl H20 solution. The primer sequence was as follows: 

5’AGGAAACTCACCCTAACTGTAAAG. 

Sequencing was performed at the Manchester Regenerative Medicine Network, University 

of Manchester. Thanks to Dr Fraser Combe for coordinating this collaboration. 

 

 

2.6.3.  Generation and Use of Lentiviral Vectors to Transduce Endothelial Cells 

Three plasmids were used to generate virions prior to HUVEC transduction: the pMD.G2 

plasmid (Addgene) encoded the vesicular stomatitis virus glycoprotein (VSV-G) envelope, 

the pCMV--dR8.91 plasmid encoded the human immunodeficiency virus gag/pol/rev genes 

and the previously generated expression clone contained the miRNA overexpression 

construct. The two former plasmids enabled the packaging of the expression clone into 

lentiviral particles (figure 2.9). The pCMV--dR8.91 plasmid was kindly donated by Prof. 

Tristan McKay at Manchester Metropolitan University. 
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Figure 2.9: Generation and packaging of lentiviral particles. HEK293T cells are transfected 

with plasmids encoding viral envelope and assembly proteins alongside expression clones. 

Assembly of viral proteins is completed in the cytosol, before virions are released, containing 

the DNA provided by the expression clone. 
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2.6.3.1.  Generation of Lentiviral Vectors 

7500ng expression clone DNA was added to 5000ng pMD2.G and 10,000ng PCMV plasmids, 

before 150mM NaCl (Fisher) was incorporated to yield a 1ml solution. 7mM 

Polyethylenimine (PEI) reagent (Polysciences) was prepared by diluting PEI stock in 150mM 

NaCl and incubated for 10 minutes at RT. DNA-PEI complexes were then generated by 

adding the PEI reagent to DNA in a dropwise manner, followed by gentle mixing and 

another incubation for 10 minutes at RT. Finally, the resulting mixture was added dropwise 

to HEK293T cells, which had been seeded previously into 6 well plates and cultured to 60-

70% confluency. Media was discarded and replaced after 4 hours and again at 24 hours. 

Virions in cell-free supernatant were harvested at 48 and 72 hours by centrifugation at 

1000g for 10 minutes at 4°C, and aliquots were stored at -80°C.  

 

 

2.6.3.2.   Transduction using Lentivirus 

Lentiviral aliquots were thawed on ice prior to filtration through a 0.22μm filter. In order 

to ascertain viral volume required for efficient transduction, a series of volumes were 

added dropwise to HUVECs at 60-70% confluency. Media was replaced at 4 hours and green 

fluorescent protein (GFP) expression analysed at 48 hours using a Leica CTR 6000 live cell 

imaging microscope at x10 magnification. Comparison of the number of GFP-expressing 

cells compared to non-expressors was performed using ImageJ, and the production of a 

GFP expression gradient indicated that 500μl should be used for each well of a 6 well plate 

in order to obtain 80% transduction efficiency (figure 2.10). For further experiments, 

HUVECs were transduced at passage 3 and GFP expression was tested and confirmed up to 

passage 7. Lentivirus generated with empty pLL3.7 plasmid was used as a control in 

functional experiments. 
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Figure 2.10: Transduction efficiency of miR-3148 construct. HUVECs at p4 were transduced 

with differing concentrations of lentiviral vectors containing miR-3148 overexpression 

constructs. Images were taken after 48 hours and the ratio of cells expressing GFP was 

calculated manually, producing a titration curve that indicated 500μl lentivirus yielded 

80.6% efficiency. This was repeated with 5 other miRNA constructs. Experiments were 

performed in triplicate, with error bars denoting SEM. Scale bar=200μm. 

 

 

2.6.3.3. Confirmation of MiRNA Overexpression by QPCR 

Following transduction of HUVECs with lentiviral vectors, intracellular abundance of miRNA 

was quantified to confirm successful upregulation of each miRNA (figure 2.11). 

Transduction with miR-126-3p, miR-320a and miR-30d-5p constructs increased abundance 

2 – 4.5-fold compared to HUVECs transduced with the empty pLL3.7 plasmid. Transduction 

with the miR-93-5p construct resulted in greatly increased abundance, albeit with very 
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large error bars ranging from 4-23-fold; the n=2 prevents determination of whether this is 

a true finding or if the larger value was the result of an error. Only miR-3148 abundance 

did not change following transduction, which may be due to the low abundance and 

difficulty in detecting this miRNA from in vitro samples. 

 

 

 

Figure 2.11: MiRNA abundance following transduction with lentiviral vectors. HUVECs 

were transduced with 500μl of miRNA-containing lentiviral vectors at passage 3, and 

cultured to passage 4 before miRNA was extracted. Abundance of key miRNAs were 

quantified by qPCR to confirm successful overexpression. Data shown represent abundance 

following transduction relative to control cells transduced with empty pLL3.7 plasmid. Error 

bars represent SEM. N=2  in independent experiments with technical duplicates. 
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2.7.   Patient Studies 

Controls and patients with SLE were identified and recruited by clinical collaborators at the 

Kellgren Centre for Rheumatology, Manchester Royal Infirmary. Patients were identified 

according to the 1997 ACR criteria(109), with exclusion criteria consisting of current 

infection, pregnancy and prior history of a cardiovascular event. Full ethical approval was 

granted (Studies; 11/NW/0090 and 13/NW/0564) and informed written consent was 

obtained from all participants. Fasting blood samples were collected in sodium citrate 

tubes following peripheral venepuncture by the clinical research team.  

The clinical research team also conducted physiological and clinical laboratory tests. A full 

assessment of disease activity, incorporating BILAG and ACR scores, was performed and 

blood samples were analysed for glucose levels, lipid profiling, erythrocyte sedimentation 

rate (ESR), complement levels and autoantibody titres. Circulating markers of inflammation 

and vascular health were assessed by ELISA kits (R&D Systems), according to 

manufacturer’s instructions(158). These were conducted in a Manchester University NHS 

Foundation Trust clinical laboratory.  

Further information regarding n numbers and tests used are located in individual chapters. 

 

2.7.1. Risk Score Calculation 

Cardiovascular risk scores were computed using online calculators indicated below. 

Following QRISK guidelines(119), in the instance of missing data, variables were left blank 

during calculation, although Framingham calculation was not possible for patients with 

missing measurements. A score of ≥10% indicated high cardiovascular risk, in accordance 

with the National Institute for Health and Care Excellence (NICE) guidelines(121). 

Online calculation tools available at:  

Framingham: https://www.framinghamheartstudy.org/fhs-risk-functions/cardiovascular-

disease-10-year-risk/   

QRISK2:  https://qrisk.org/2017/ 

QRISK3:  https://qrisk.org/three/ 
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2.7.2. Fatigue and Quality of Life Calculations 

The Fatigue Scale for Motor and Cognitive Functions (FSMC)(184) was utilised to assess 

fatigue levels, taking into account measures of both motor fatigue and cognition (table 2.4). 

Data pertaining to fatigue and cognitive measures were collected by Dr Michelle 

Barraclough and team. 

 

Cognitive Functions Motor Functions 
1. When I concentrate for a long time, I get 
exhausted sooner than other people of my 
age. 

1. When I am experiencing episodes of 
exhaustion, my movements become 
noticeably clumsier and less coordinated. 

2. When I am experiencing episodes of 
exhaustion, I am incapable of making 
decisions. 

2. Because of my episodes of exhaustion, I 
now need more frequent and/or longer 
rests during physical activity than I used to. 

3. Because of my episodes of exhaustion, I 
now find it more difficult to learn new 
things than I used to. 

3. When faced with stressful situations, I 
now find that I get physically exhausted 
quicker than I used to. 

4. The demands of my work exhaust me 
mentally more quickly than they used to. 

4. Because of my episodes of  exhaustion, I 
now have considerably less social contact 
than I used to. 

5. My powers of concentration decrease 
considerably when I’m under stress. 

5. I feel the episodes of exhaustion 
particularly strongly in my muscles. 

6. My thinking gets increasingly slow when 
it is hot. 

6. I no longer have the stamina for long 
periods of physical activity that I used to 
have. 

7. Because of my episodes of exhaustion, I 
now feel less like doing things which 
require concentration. 

7. When I am experiencing episodes of 
exhaustion, I am less motivated than 
others to start activities that involve 
physical effort. 

8. When I am experiencing episodes of 
exhaustion, certain words simply escape 
me. 

8. When I am experiencing an episode of 
exhaustion, my movements become 
noticeably slower. 

9. When I am experiencing episodes of 
exhaustion, I lose concentration 
considerably quicker than I used to. 

9. When an episode of exhaustion comes 
on, I am simply no longer able to react 
quickly. 

10. During episodes of exhaustion, I am 
noticeably more forgetful. 

10. When it is hot, my main feeling is one 
of extreme physical weakness and lack of 
energy. 
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Table 2.4: Fatigue Scale for Motor and Cognitive Functions. The scale comprises two 

subsets of statements relating to cognitive and motor functions. Participants are required 

to rate their agreement with each statement on a 5 point Likert scale from ‘does not apply 

at all’ (1 point) to ‘applies completely’ (5 points). Scores can then be counted, with a score 

of ≥43 indicating mild, ≥53 moderate and ≥63 severe fatigue(184). 

 

 

Patients with SLE underwent further investigation, completing a Quality of Life assessment 

(LupusQoL). This test was developed from patient interviews and psychometric tests, 

resulting in a comprehensive questionnaire featuring 34 items upon a Likert scale and lower 

total scores reflecting reduced quality of life(185). 

 

 

2.8. Statistical analysis 

Statistical analysis was performed using IBM® SPSS® Statistics 25 and normality assessed 

by Kolmogorov Smirnov test; data were then analysed by parametric or non-parametric 

tests with comparison correction, as appropriate. Mean, standard deviation and standard 

error were calculated from a minimum of three data points in individual experiments, and 

a p value of ≤0.05 was considered significant. Asterisks used denote: * p≤0.05, ** p≤0.01 

and *** p≤0.001. 
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Chapter 3 

The Use of Diagnostic Algorithms and Novel Biomarkers in 

Identification of Patients with SLE at High Cardiovascular Risk 

 

 

3.1. Study Introduction 

As discussed in the introductory chapter, improved detection of patients at high 

cardiovascular risk may prevent premature mortality by providing early indication for 

increased patient monitoring, evaluation of lifestyle and prescription of relevant 

treatment. Online risk calculators are available free of charge to assist with risk 

identification, while potential clinical biomarkers such as EMVs may shed light on the 

extent of vascular involvement. 

This study recruited a cohort of 138 participants, consisting of 109 patients with SLE and 29 

controls, before online Framingham, QRISK2 and QRISK3 calculators were used to predict 

cardiovascular risk, which was analysed in relation to numerous clinical measurements. The 

overall aim was to assess the use of novel and longstanding diagnostic tools, as well as 

potential biomarkers, for cardiovascular risk identification in patients with SLE. The 

objectives of this study were as follows: 

 Determine the number of patients with SLE and controls identified as having high 

cardiovascular risk using QRISK and Framingham algorithms. 

 Identify differences in traditional cardiovascular risk factors between low and high 

risk groups. 

 Analyse differences in clinical and circulating markers of inflammation, 

dyslipidaemia and vascular health between patients and controls, and low and high 

risk groups. 

 Consider the use of EMVs as biomarkers of cardiovascular risk through associations 

with disease, vascular health and QRISK algorithms.  
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3.2. Chapter Methodology 

Cardiovascular risk scores were calculated as described in 2.7.1. Participants aged below 

minimum values for QRISK (25yrs; patients n=13, controls n=2) and Framingham (30yrs; 

patients n=23, controls n= 11) were entered as 25 or 30 years old respectively.  

QRISK3 risk factors, as well as clinical disease measurements and current prescription data, 

were recorded for all patients at the time of entry into the study. Additional measurements 

were taken from a subset of patients (n=58), such as EMVs, cardiovascular evaluations e.g. 

aortic pulse wave velocity (PWV), and circulating factors e.g. cytokines. EMVs were 

quantified as described in 2.3; other measurements were collected by clinical research 

collaborators, as discussed in 2.7.  

 

 

3.3. Results 

 

3.3.1. Demographics 

No significant differences were detected between controls and patients with SLE when 

comparing basic demographic measures (table 3.1). These included traditional 

cardiovascular risk factors such as blood pressure, cholesterol, smoking status and 

diagnosis of diabetes.   

 

Variable Controls (n=29) SLE (n=109) p Values 

Age (years), mean ± SD 36.66 ± 12.95 40.75 ± 12.69 0.063 

Female 29 (100%) 105 (96.33%) 1.000 

Caucasian 23 (79.31%) 80 (73.39%) 0.634 

BP Systolic (mm Hg) 
119.0 (111.75, 

130.5) n=28 
124.0 (114.75, 
133.25) n=97 

0.251 

HDL-Cholesterol (mmol/l) 1.7 (1.5, 2.0) n=25 1.6 (1.2, 1.9) n=97 0.097 

Non-HDL Cholesterol 
(mmol/l) 

2.6 (2.3, 3.2) n=25 2.8 (2.4, 3.3)n=97 0.374 

Current Smoker 4 (13.79%) 24 (22.02%) 0.439 

Type 2 Diabetes 0 (0%) 6 (5.50%) 1.000 
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Table 3.1: Demographic measures of controls and patients with SLE. Data represented as 

number (%) or median (lower and upper quartiles) unless otherwise indicated. Comparisons 

analysed by Mann-Whitney U and Fisher’s exact tests. 

 

 

3.3.2. QRISK3 Identifies More Patients at High Cardiovascular Risk Compared to 

Previous Algorithms 

QRISK2 score was significantly greater in the SLE population (p=0.001), with an average 

score of 1.8% for patients compared to 0.3% for controls (table 3.2). While the average 

control score remained unchanged when using the QRISK3 algorithm, patients exhibited a 

significant increase (p<0.001) up to 5.0%, which was, again, elevated compared to controls 

(p<0.001). A similar trend was observed using the Framingham algorithm, where patients 

possessed greater average risk scores than controls (2.2% vs 1.2%, p=0.013), which were 

still significantly lower than those calculated by QRISK3 (p<0.001). 

8 (7%) patients with SLE were determined to possess high cardiovascular risk (>10%) when 

using the QRISK2 algorithm and 5 (4.6%) when using Framingham. In contrast, QRISK3 

identified 29 (27%) patients at high risk, almost quadruple the number (p<0.001) compared 

to both QRISK2 and Framingham.  

Therefore, 21 patients were newly identified as high risk by the QRISK3 algorithm – these 

will now be referred to as the ‘missed’ patients due to their lack of recognition by the 

current QRISK2 calculator. Additionally, the missed group rose to 24 patients when 

comparing QRISK3 to Framingham; this may be of relevance to healthcare organisations 

outside the UK that are still using Framingham, however ensuing sections of this chapter 

will compare QRISK2 and 3 only. 

QRISK3 scores were also calculated without inclusion of SLE as a factor, to determine the 

impact of this additional variable in assessment of risk. This reduced the average patient 

score to 1.9% and identified 3 missed patients (not identified by QRISK2). No differences 

between QRISK2/3 or Framingham were observed in the control groups, and no missed 

controls were identified by QRISK3. 
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Controls (n=29) SLE  (n=109) 

Control v 
SLE (p 

Values) 

QRISK2 Score (%) 0.3 (0.2, 1.9) 1.8 (0.6, 3.9) p=0.001 

QRISK3 Score (%) 0.3 (0.1, 1.7) 5.0 (3.0, 10.7) p<0.001 

QRISK2 v 3 Score  (p Values) p=0.676 p<0.001 - 

Number of High QRISK2 (n) 1 (3.45%) 8 (7.34%) p=0.458 

Number of High QRISK3 (n) 1 (3.45%) 29 (26.61%) p=0.009 

Number of High QRISK2 v 3 (p 
Value) 

p=1.000 p<0.001 - 

Missed Patients (n) 0 (0%) 21 (19.27%) p=0.007 

 
Table 3.2: Calculation of cardiovascular risk using QRISK algorithms. High risk is indicated 

by a score of ≥10%. Missed patients denoted as those identified as high risk by QRISK3 but 

low risk by QRISK2. Data represented as number (%) or median (lower and upper quartiles). 

Data analysed by Mann-Whitney U and Fisher’s exact tests. 

 

 

3.3.2.1.  Missed Patients: Differences in QRISK Factors and Medications 

High risk patients missed by QRISK2 were found to have significantly higher BMI compared 

to both controls (p=0.003) and to patients identified as low risk by both algorithms 

(p=0.026; table 3.3). The missed group also presented with elevated systolic blood pressure 

(both p<0.10) and were more likely to be experiencing chronic kidney disease (both 

p<0.05). The missed patients additionally demonstrated significantly reduced levels of HDL 

cholesterol compared to controls (p=0.037) and diagnosis of type 2 diabetes was more 

prevalent than in the low risk group (p=0.008).  

Furthermore, a greater proportion of missed patients were prescribed anti-hypertensive 

and/or oral corticosteroid treatments compared to controls and low risk patients (all 

p<0.001); indeed 100% of missed patients were receiving steroid therapy.  
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Variable 
Controls 
(n=29) 

Missed 
Patients 
(n=21) 

p Value 
Low Risk 
Patients 
(n=80) 

Missed 
Patients 
(n=21) 

p Value 

Age (years), 
mean ± SD 

36.66 ± 
12.95 

42.16 ± 
12.36 

0.130 
38.02 ± 
10.68 

42.16 ± 
12.36 

0.155 

Female 29 (100%) 
19 

(90.48%) 
0.420 

78 
(97.50%) 

19 
(90.48%) 

0.507 

Ethnicity: 
Caucasian 

23 
(79.31%) 

13 
(61.90%) 

0.213 
58 

(72.50%) 
13 

(61.90%) 
0.292 

BMI (kg/m2) 
22.6 (21.3, 

25.3) 
31.8 (24.3, 

37.0) 
0.003 

25.3 (22.2, 
28.4) 

31.8 (24.3, 
37.0) 

0.026 

BP Systolic 
(mm Hg) 

119.0 
(111.75, 
130.5) 
n=28 

141.0 
(131.0, 
160.5) 
n=14 

0.006 

122.0 
(110.5, 
128.0) 
n=75 

141.0 
(131.0, 
160.5) 
n=14 

<0.001 

HDL 
Cholesterol 

(mmol/l) 

1.7 (1.5, 
2.0) n=25 

1.5 (1.3, 
1.8) 

0.037 
1.7 (1.2, 

2.0) n=71 
1.5 (1.3, 

1.8) 
0.222 

Non-HDL 
Cholesterol 

(mmol/l) 

2.6 (2.3, 
3.2) n=25 

3.2 (2.5, 
3.6) 

0.115 
2.7 (2.2, 

3.2) n=71 
3.2 (2.5, 

3.6) 
0.053 

Type 2 
Diabetes 

0 (0%) 3 (14.29%) 1.000 0 (0%) 3 (14.29%) 0.008 

Rheumatoid 
Arthritis 

0 (0%) 0 (0%) 1.000 5 (6.25%) 0 (0%) 0.312 

Chronic 
Kidney 
Disease 

(Stage 3-5) 

0 (0%) 5 (23.81%) 0.010 3 (3.75%) 5 (23.81%) 0.021 

Migraines 3 (10.34%) 1 (4.76%) 0.630 8 (10%) 1 (4.76%) 0.681 

Severe 
Mental Illness 

2 (6.90%) 2 (9.52%) 1.000 3 (3.75%) 2 (9.52%) 0.277 

Current 
Smoker 

4 (13.79%) 6 (28.57%) 0.286 
15 

(18.75%) 
6 (28.57%) 0.368 

Anti-
Hypertensive 

3 (10.34%) 
15 

(71.43%) 
<0.001 

13 
(16.25%) 

15 
(71.43%) 

<0.001 

Current Oral 
Corticostero-

ids 
0 (0%) 21 (100%) <0.001 

46 
(57.50%) 

21 (100%) <0.001 
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Table 3.3: Baseline cardiovascular measures of controls, low risk and missed patients, as 

required by the QRISK3 algorithm. Variables shown as requested by the QRISK3 algorithm; 

severe mental illness inclusive of depression, schizophrenia and bipolar disorder. Data 

represented as number (%) or median (lower and upper quartiles). Comparisons analysed 

by Mann-Whitney U and Fisher’s exact test as appropriate. 

 

 

3.3.2.2.  Missed patients: Differences in SLE Factors 

Additional, SLE-specific measures were available in a reduced cohort of patients (n=71). 

When comparing these measures, fewer missed patients presented with arthritis than low 

risk patients (p=0.047) yet more were experiencing renal disease at the time of 

measurement (p=0.038; table 3.4). This figure differs from that of the chronic kidney 

disease used in QRISK calculation due to the use of the ACR criteria for SLE disease activity.  

Missed patients were additionally found to have significantly higher levels of anti-

cardiolipin antibodies compared to low risk patients (p=0.027), despite no significant 

alterations in other autoantibody titres. Current steroid prescription was also elevated in 

the missed group (p<0.001), although average dose was unaltered.  
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Variable 
Low Risk SLE 

n=50 
Missed SLE 

n=21 
p Value 

Disease Duration (years) 13.0 (8.0, 19.0) 12.0 (6.7, 15.0) 0.326 

ACR Criteria: Malar Rash 35 (70%) 14 (66.67%) 0.785 

ACR Criteria: Discoid Rash 25 (50%) 6 (28.57%) 0.120 

ACR Criteria: 
Photosensitivity 

34 (68%) 14 (66.67%) 1.000 

ACR Criteria: Oral Ulcers 36 (72%) 14 (66.67%) 0.777 

ACR Criteria: Serositis 15 (30%) 6 (28.57%) 1.000 

ACR Criteria: Arthritis 44 (88%) 14 (66.67%) 0.047 

ACR Criteria: Renal 
Disorder 

19 (38%) 14 (66.67%) 0.038 

ACR Criteria: Neurologic 
Disorder 

4 (8%) 2 (9.52%) 1.000 

ACR Criteria: 
Haematologic Disorder 

30 (60%) 11 (52.38%) 0.605 

ACR Criteria: Immunologic 
Disorder 

39 (78%) 14 (66.67%) 0.375 

ACR Criteria: ANA-
Positive* 

46 (94%) 18 (85.71%) 0.352 

Anti-dsDNA Antibodies* 15 (30%) 9 (42.86%) 0.429 

Anti-Cardiolipin 
Antibodies* 

4 (8%) 7 (33.33%) 0.027 

Low C3 + Low C4 Levels* 5 (10%) 2 (9.52%) 1.000 

Current Oral 
Corticosteroids 

19 (38%) 21 (100%) <0.001 

Prednisolone Dose 
(mg/day) 

7.5 (5.0, 11.3) 10 (5.5, 15.0) 0.304 

Current 
Immunosuppressive Use 

29 (58%) 13 (61.90%) 0.582 

Current Antimalarial Use 36 (72%) 17 (80.95%) 0.556 

BILAG-2004 
1.5 (0.25, 6.75) 

n=50 
5.5 (0.0, 9.3) 

n=8 
0.542 

SLEDAI-2K 
2.5 (0.25, 4.0) 

n=50 
3.0 (2.0, 4.5) 

n=50 
0.444 

 

Table 3.4: Clinical and immunological measures of low risk and missed patients at point 

of entry into the study. * Indicated by laboratory reference range. Data represented as 

number (%) or median (lower and upper quartiles). Comparisons were analysed by Mann-

Whitney U and Fisher’s exact tests.  
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3.3.3. Inflammation and Vascular Dysfunction are Increased in Patients with SLE 

Results from extensive clinical and laboratory tests in a cohort of 60 patients confirmed 

increased levels of inflammation and dyslipidaemia compared to controls (n=29, table 3.5). 

Clinical indicators of inflammation, ESR and CRP were elevated in patients with SLE (both 

p<0.02), as were vascular cell adhesion molecule 1 (VCAM1), monocyte chemoattractant 

protein-1 (MCP1), IL6 and BLyS (all p<0.03). Conversely, lymphocytes were found in 

reduced numbers in patients (p=0.001), while haemoglobin and glucose levels were also 

diminished (both p<0.01). However, levels of triglycerides in the blood were increased in 

patients compared to controls (p=0.019). 

 

Variable Controls SLE p Value 

ESR (mm/hr) 6 (2, 8) 
n=25 

12 (6, 25) 
n=59 

0.013 

hsCRP (ng/ml) 0.86 (0.41, 1.20)  
n=27 

1.22 (0.62, 4.76) 
n=57 

0.006 

VCAM-1 (ng/ml) 333.93 (312.37, 
385.17) n=29 

436.41 (355.02, 
530.28) n=58 

<0.001 

MCP-1 (pg/ml) 138.87 (106.41, 
187.53) n=27 

188.36 (112.65, 
305.38) n=57 

0.029 

IL-6 (pg/ml) 0.50 0.50, 1.29)  
n=27 

1.75 (0.51, 5.39) 
n=57 

0.001 

BLyS (ng/ml) 0.34 (0.28, 0.39)  
n=27 

0.50 (0.35, 0.66) 
n=57 

<0.001 

Triglycerides (mg/dl) 0.70 (0.60, 0.80) 
n=25 

0.90 (0.60, 1.45) 
n=55 

0.019 

Lymphocytes (x10^3/µl) 1.73 (1.41, 1.87)  
n=25 

1.25 (0.97, 1.61) 
n=59 

0.001 

Haemoglobin (g/l) 132 (125, 140)  
n=25 

124 (113, 133) n=59 0.006 

Glucose (mmol/l) 4.90 (4.50, 5.10)  
n=26 

4.50 (4.30, 4.70) 
n=57 

0.004 

 

Table 3.5: Differences in clinical markers of inflammation and vascular health between 

patients and controls. N numbers provided for each variable due to cases of unobtainable 

data within groups. Variables shown chosen due to p values <0.05. Data represented as 

median (lower and upper quartiles). Comparisons were analysed by Mann-Whitney U test. 
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This patient cohort could be further subdivided into patients experiencing stable or 

exacerbated (flare) disease at time of measurement, as identified by BILAG score(112). 

Flare patients were prescribed higher doses of prednisolone and were more likely to be on 

a regimen of immunosuppressives and/or antimalarials (all p<0.05; table 3.6). No 

differences were observed in any other demographic or QRISK measurements e.g. ACR 

criteria, blood pressure, such that QRISK3 scores were not significantly different (p=0.222) 

 

Variable 
Flare 
n=25 

Stable 
n=35 

p Value 

BILAG-2004 7 (6, 12) 1 (0, 1) <0.001 

SLEDAI-2K 6 (4, 8) 2 (0, 2) <0.001 

Prednisolone Dose (mg/day) 10.00 (6.25, 20.00) 5.00 (5.00, 7.50) 0.005 

Current Immunosuppressive 
Use 

20 (80%) 14 (40%) 0.003 

Current Antimalarial Use 21 (84%) 20 (57.14%) 0.047 

 

Table 3.6: Immunological demographics of flare and stable patients. All other 

demographic measurements p>0.05. Data represented as number (%) or median (lower and 

upper quartiles). Comparisons were analysed by Mann-Whitney U and Fisher’s exact tests. 

 

 

Within this cohort, flare patients were found to have significantly higher triglyceride levels 

than stable patients (p=0.045, table 3.7). Furthermore, platelet count was increased 

(p=0.014) alongside reduced haemoglobin levels (p=0.030), although there were no 

significant differences in incidence of haematological disorders as characterised by ACR 

criteria (p>0.05).  

 

Variable Flare Stable p Value 

Triglycerides (mg/dl) 
1.30 (0.70, 1.98) 

n=24 
0.80 (0.60, 1.15) 

n=31 
0.045 

Platelets (x10^3/µl) 
259 (223, 355) 

n=25 
217.00 (181.50, 285.75) 

n=34 
0.014 

Haemoglobin (g/l) 
118 (109, 126) 

n=34 
127.50 (118.50, 135.75) 

n=34 
0.030 
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Table 3.7: Differences in blood components between flare and stable  patients. N numbers 

provided for each variable due to cases of unobtainable data within groups. All other 

variables p>0.05. Data represented as median (lower and upper quartiles). Comparisons 

were analysed by Mann-Whitney U test. 

 

 

3.3.3.1. Inflammation and Vascular Health in Missed Patients 

Detailed laboratory results were available for a subset of low risk and missed patients, and 

demonstrated striking differences in markers of inflammation and vascular function. Once 

more, triglyceride levels showed significant variation, with higher levels in missed patients 

(p=0.017, table 3.8); mean arterial pressure (MAP) was also substantially increased 

(p<0.001). Moreover, CRP was elevated (p<0.001), whereas circulating IgM levels were 

reduced in the missed group (p=0.004). 

 

Variable Low Risk Missed p Value 

hsCRP (ng/ml) 
0.89 (0.54, 3.01) 

n=47 
6.30 (4.47, 8.18) 

n=8 
<0.001 

IgM (g/l) 
1.10 (0.79, 1.48) 

n=49 
0.49 (0.48, 0.62) 

n=8 
0.004 

Triglycerides (mg/dl) 
0.80 (0.60, 1.25) 

n=45 
1.45 (1.05, 2.53) 

n=8 
0.017 

MAP (mmHg) 
92 (83, 96) 

n=49 
112 (100, 121) 

n=7 
<0.001 

 

Table 3.8: Differences in clinical inflammatory and cardiovascular markers between low 

risk and missed patients. N numbers provided for each variable due to cases of 

unobtainable data within groups. All other variables p>0.05. Data represented as median 

(lower and upper quartiles). Comparisons were analysed by Mann-Whitney U test. 
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3.3.4. Endothelial Microvesicles are Increased in SLE and are Associated with 

Inflammation, Dyslipidaemia and Vascular Dysfunction 

Numbers of circulating EMVs were enumerated within the reduced cohort described in 

3.3.3 and demonstrated significant differences according to disease, with numbers 

increased in patients compared to controls (p=0.001; figure 3.1). Furthermore, EMV 

number demonstrated a disease-dependent increase, with presence of a disease flare 

associated with increased EMV abundance compared to controls (p=0.004); abundance 

was also increased in stable disease (p=0.047) 

 

 

 

Figure 3.1: EMV abundance in SLE. Number of CD144+ microvesicles per ml of plasma were 

measured by flow cytometry in controls vs patients with SLE (A) and in controls vs stable vs 

flare patients (B). Data analysed by Mann-Whitney U (control vs SLE) and Kruskal-Wallis 

tests (controls vs stable vs flare). Asterisks used denote: * p≤0.05, ** p≤0.01 and *** 

p≤0.001. N=89; controls n=29, SLE n=60, stable n=35, flare n=25.  

 

 

Within the cohort of patients with SLE, EMV number correlated positively with ESR 

(p<0.001; table 3.9) and elevated EMVs were associated with a number of markers of 

vascular health and dyslipidaemia, including blood pressure, triglycerides and MAP (all 

p<0.02). Furthermore, greater EMV numbers were associated with patient use of a number 
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of medications, namely immunosuppressives, antimalarials, steroids and the contraceptive 

pill (all p≤0.03). None of these associations were apparent in the control group. 

 

Variable Spearman rho p Value 

Haemoglobin -0.457 <0.001 

Triglycerides 0.573 <0.001 

Glucose -0.264 0.047 

ESR 0.513 <0.001 

VCAM1 0.271 0.039 

MCP1 0.426 0.001 

hsCRP 0.356 0.006 

IL6 0.418 0.001 

IgG 0.380 0.003 

Systolic BP 0.324 0.013 

MAP 0.371 0.004 

Anti-nuclear Antibodies - 0.018 

Current Contraceptive Pill Use - 0.018 

Current Immunosuppressive 
Use 

- 0.013 

Current Antimalarial Use - 0.007 

Current Steroid Use  0.026 

 

Table 3.9: Correlations between EMV number and demographics, measures of 

inflammation and cardiovascular health in patients with SLE. N=60, all patients (no 

controls). Associations made using Spearman’s Rank Correlation Coefficient and Mann-

Whitney U test. 

 

 

3.3.5. Endothelial Microvesicles Correlate with QRISK3 Score 

EMVs were additionally connected to the cardiovascular risk algorithms, correlating 

positively with QRISK3 score across the whole cohort (controls and patients; rho:0.322, 

p=0.002) but demonstrating no such association with QRISK2 (rho:0.096, p=0.376). This 

correlation was also apparent in the missed group of patients, which demonstrated 

significantly higher EMV numbers than the low risk group (p=0.019; figure 3.2).  
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Figure 3.2: Correlations between EMVs and risk scores, and EMV abundance in missed 

patients. EMV number was correlated with QRISK2 (A) and QRISK3 scores (B) using 

Spearman’s Rank Correlation Coefficient; n=89 (patients and controls). Number of CD144+ 

EMVs per ml of plasma was quantified in patients with low risk and with missed high risk  

when using QRISK3 (C), with statistical analysis using Mann-Whitney U test; low risk n=50, 

missed n=8. * denotes p≤0.05. 
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3.4. Chapter Discussion 

 

3.4.1. The Use of QRISK3 Identifies an Unmet Clinical Need 

This research highlights the need for accurate diagnosis of cardiovascular risk in patients 

with SLE, who experience underlying inflammation, dyslipidaemia and vascular 

involvement, and development of novel biomarkers to improve diagnosis and monitor 

treatment strategies. QRISK2 has been established as the algorithm of choice for UK 

doctors evaluating cardiovascular risk(118), while the Framingham risk score is extensively 

used outside the UK(116). The results in section 3.3.2 demonstrate the relative inaccuracy 

of both these measures when compared to the newly developed QRISK3 algorithm, which 

identified almost four times as many high risk patients as QRISK2 and almost 6 times as 

many as Framingham. The accuracy of Framingham scores have been questioned 

previously, particularly in females and multi-ethnic communities(115, 186), as the original 

model was based on a homogenous subset of middle-aged white participants(187). 

However, the discrepancies between QRISK3 and its predecessor are interesting, arising 

from a combination of additional factors; the removal of SLE as a risk factor still resulted in 

identification of three missed patients.  

The identification of a cohort of missed patients is likely to have a resounding effect on 

patient care; indeed, the GPs of all missed patients identified in this study have been 

contacted to review treatment and monitoring of these individuals. In terms of traditional 

cardiovascular risk factors, the missed patients showed higher BMI and systolic blood 

pressure than both controls and low risk patients. Despite this, more of the missed group 

were regularly taking anti-hypertensive drugs, implying that the high cardiovascular risk 

was perhaps maintained during standard treatment. Additionally, all missed patients were 

prescribed oral corticosteroids, most likely due to dysregulated SLE symptoms. Long-term 

and, more strongly, current administration of corticosteroids have been associated with 

atherosclerosis development, particularly in SLE, in a dose-dependent manner(188-190). 

Previous data from our group demonstrated that use of the corticosteroid dexamethasone 

enhanced the osteogenic differentiation of vascular pericytes and downregulated genes 

associated with inhibition of mineralisation, highlighting the need for caution in considering 

the long-term consequences of prolonged glucocorticoid therapy on vascular 
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calcification(191). Furthermore, prednisolone use by patients with SLE has been linked to 

hypercholesterolemia(192), foreshadowing the patterns of dyslipidaemia presented by this 

study.  

 

 

3.4.2. Inflammatory Markers Produce a Complex Picture of Endothelial Dysfunction in 

SLE 

Lipid levels have been a predominant risk factor throughout this chapter, with missed 

patients demonstrating reduced HDL and increased triglyceride levels. Triglycerides were 

elevated in patients compared to controls, in concordance with disease activity, potentially 

indicating increased abundance of atherogenic lipoproteins such as VLDL(193, 194). 

Moreover, increased platelet counts were prominent in flare patients. This is important as 

increased platelet activation can support IFN production and endothelial dysfunction(195), 

as well as atherogenesis and plaque progression(196, 197). Anti-cardiolipin antibodies also 

interact with platelets, amplifying activation and complement deposition, activating the 

classical complement pathway and increasing the risk of thrombosis(198, 199). Although 

anti-dsDNA antibodies were consistent across low and missed groups, anti-cardiolipin 

antibodies were more prevalent in missed patients, which are further associated with 

endothelial dysfunction and thrombosis(94, 200). Thus, it becomes clear that patients with 

SLE at high risk or with high disease activity are subject to a pro-atherogenic internal 

environment, with dyslipidaemia, elevated blood pressure and pro-thrombotic circulating 

factors. 

However, this is further augmented by the dysregulated inflammatory response 

experienced by the patients in this study. CRP and ESR were both raised in patients, and 

CRP in missed patients, consistent with increased disease activity and inflammation(201, 

202); both have previously been implicated in atherosclerosis and vascular damage, for 

example through reductions in NO bioavailability(49, 203, 204). As well as acute phase 

proteins, a number of cytokines such as BLyS, IL6 and MCP-1 were found at increased levels 

in SLE, all of which have previously been suggested as biomarkers for disease activity(205-

207) and may contribute to CVD, as depicted in figure 3.3.  
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Of note are the increased levels of VCAM-1, which have been linked to cardiovascular 

mortality and atherosclerosis in SLE(208), as well as the wider population(209). VCAM-1 is 

an adhesion molecule expressed on endothelial cells following activation by, for example, 

inflammatory cytokines, dysregulated lipid levels and oxidative stress, particularly during 

pro-thrombotic conditions, and supports leukocyte trafficking along the vascular wall(209, 

210). Nonetheless, lymphocyte count was reduced in SLE, which is common in this 

condition, and has been associated with disease activity, likely due to deficient regulatory 

T cells(211). It has also been linked to carotid intima-medial thickening in patients with 

juvenile onset SLE(212)  but a role in adults has yet to be disclosed. The reasoning behind 

lymphopenia in SLE is remains to be determined, although immunosuppressive drugs 

prescribed to patients(211) and autoantibodies targeting lymphocytes have been 

implicated(213). Haemoglobin was also reduced in SLE, consistent with disease activity, yet 

anaemia was not indicated nor were ACR-defined haematological conditions. Anaemia is 

often observed in patients with SLE, and is not uncommon in females, where it may be due 

to menorrhagia, sustained inflammation, anaemia of chronic disease, or erythropoietin 

deficiency as a result of renal involvement or autoantibodies(214, 215).   
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Figure 3.3: Interplay between cytokines and acute phase proteins in SLE-related 

endothelial dysfunction. This schematic diagram introduces some of the numerous 

interactions between inflammatory mediators during atherogenesis in SLE. CRP facilitates 

opsonisation of LDL and smooth muscle cell activation, as well as endothelial dysfunction 

via upregulation of adhesion molecules, production of ROS, activation of complement 

cascade and downregulation of NO. IL-6 reinforces this by increasing CRP levels. It also 

activates B cells, endothelial cells and platelets, and promotes monocytic chemotaxis and 

smooth muscle cell proliferation. VCAM-1 and MCP1 further promote monocyte infiltration 

prior to macrophage and foam cell differentiation while BLyS stimulates B cells and supports 

production of autoantibodies. 

 

 

While the involvement of autoantibodies in SLE pathogenesis and inflammation has been 

discussed, potential protective roles for self-directed antibodies may also be considered. 

This study found significantly reduced levels of IgM in missed patients; research by Jost et 

al. highlights the involvement of antinuclear IgM antibodies in SLE disease activity but 

suggests augmented IgM-IgG class-switching and concedes a potential protective role of 

IgM(216). This is particularly prominent in vascular health, as diminished levels of IgM 

antibodies targeting phosphorylcholine, malondialdehyde and apolipoprotein antigens 

have been linked to increased risk of atherosclerotic plaque formation in SLE(217-219).  

 

 

3.4.3. The Impact of Medication: A Causal or Coincidental Link with Endothelial 

Microvesicle Release? 

Many correlations and associations between prescribed medications and markers of 

inflammation and vascular health became apparent during this study, making it difficult to 

judge whether the links were causal or coincidental. One interesting observation was 

between high EMV number and use of the contraceptive pill. Numerous clinicians hesitate 

to prescribe combined oral contraceptives to patients with SLE due to ongoing beliefs that 

they may exacerbate disease symptoms; this is largely being disproven, yet results of 
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animal studies and investigations into oestrogenic interactions with the immune system 

suggests a more complex picture(220). It has been suggested that prolonged use of oral 

contraceptives may support development of SLE(221), while oestrogen has been found to 

upregulate BLyS expression in a murine SLE model(222). Furthermore, oestrogen 

application appears to regulate the expression of a number of miRNAs, including miR-

126(223), which will be discussed in chapter 4, and prolonged use may promote endothelial 

dysfunction and early atherogenic changes(224). Therefore, more research into the effects 

of oral contraceptives on endothelial activation and cardiovascular risk may be prudent. 

The final medications to be discussed in this chapter are the immunosuppressives and anti-

malarials. Both were more prevalent in flare patients and linked to elevated EMVs, which 

is perhaps unsurprising as these patients experienced higher levels of inflammation and 

vascular risk. Mycophenolate mofetil and hydroxychloroquine, by far the most commonly 

prescribed immunosuppressive and anti-malarial drugs in this patient population 

respectively, have previously been independently shown to protect against endothelial 

dysfunction(103, 225) and atherosclerosis(226, 227) in murine SLE models. Thus, additional 

avenues of future research are identified, exploring the relationships between commonly 

prescribed medication and endothelial health in SLE.  

 

 

3.4.4. Endothelial Microvesicles as Potential Biomarkers of Cardiovascular Risk 

Thus far, many of the variables described could be considered future biomarkers for 

cardiovascular risk in patients with SLE due to their prominence in active disease and in 

missed high risk patients. However, it may be argued that EMVs may be more 

representative of underlying endothelial dysfunction due to their direct release from the 

endothelium itself in response to activation. Indeed, previous work by our group has 

demonstrated that increased EMVs are associated with unstable asymptomatic plaque 

formation in carotid artery disease(154) and reduced endothelial function in SLE(157), 

linking this to dysregulated inflammation(158). The current study supports the use of EMVs 

as novel biomarkers by confirming a significant increase in SLE, with correlations to more 

typical cardiovascular signals including blood pressure, triglycerides and pulse wave 
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velocity. Furthermore, elevated EMVs were concurrent with QRISK3 score, reinforcing the 

use of both measures as indicators of cardiovascular risk.  

 

 

3.5. Chapter Summary 
 

The use of the QRISK3 algorithm identified significantly more patients with high 

cardiovascular risk than either the current QRISK2 model or another popular algorithm, the 

Framingham score. These previously missed patients differed from low risk patients and 

controls in a number of cardiovascular risk factors e.g. blood pressure, BMI.  Laboratory 

tests confirmed increased levels of inflammation and dyslipidaemia in patients with SLE 

compared to controls, which were further elevated in patients experiencing a disease flare 

or in missed high risk patients. Finally, EMV levels were significantly increased in patients 

with SLE, correlating with markers of inflammation, dyslipidaemia and vascular 

dysfunction. They also correlated with QRISK3 score, and were significantly elevated in 

missed patients.  

The significance of the raised EMV levels in SLE will be addressed in the next chapter.  
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  Chapter 4 

Dissecting Endothelial Microvesicle Content for the Analysis 

of Vesicular MiRNA Abundance in Patients with SLE 

 

 

4.1. Study Introduction 

As indicated in chapter 3, EMVs of patients with SLE are associated with cardiovascular risk 

alongside other elements of inflammation and disease activity. Identification of vesicular 

components demonstrating biological activity will enhance current understanding of the 

mechanisms underpinning endothelial dysfunction in SLE, as well as potentially provide 

novel targets for biomarker studies and therapeutic interventions. Due to their critical role 

in post-transcriptional gene regulation and their uptake within EMVs, this study focused on 

miRNAs in SLE, with the following aim: to establish the expression profile of circulating and 

vesicular miRNAs in patients with SLE and identify predicted targets of interest.  

This aim was addressed using the following objectives: 

 Establish a shortlist of miRNAs to screen by data mining. 

 Assess miRNA abundance in an in vitro model of the SLE endothelium. 

 Determine levels of miRNA abundance in the vesicular fraction of plasma from 

patients and controls. 

 Correlate miRNA abundance with clinical markers of inflammation and 

cardiovascular risk. 

 Identify and rank key predicted binding targets using gene ontology.  

 

 

 

 

 

 



 

98 
 

4.2. Chapter Methodology 

 

Firstly, key miRNAs were identified by extensive data mining and shortlisting, dependent 

on a number of factors such as available data and novelty. To model the inflammatory 

environment surrounding the vascular endothelium in SLE, HUVECs at passage 4-6 were 

then treated for 24 hours with either 10ng/ml TNFα, BLyS or both. EMVs were obtained 

from the media, as described in 2.3.1, and miRNA extracted as in 2.4.2; intracellular miRNA 

was also extracted. Next, key miRNAs were quantified in order to provide insight into 

miRNA trafficking during inflammation. 

In order to ascertain whether the results noted during the in vitro testing correlated with 

in vivo observations, the vesicular fraction of 1ml plasma was isolated and miRNA 

quantified. 14 control and 26 patients with SLE (15 with stable and 11 with flared disease) 

were included in this study, with recruitment as defined in 2.7. Inclusion was dependent on 

plasma stores remaining from the analysis described in chapter 3. Following qPCR, 

associations between miRNA expression levels and clinical data were probed, as in chapter 

3. Full miRNA protocols are located in section 2.4. Finally, predicted targets were 

determined using the gene ontology techniques described in 2.4.4, excluding ‘cellular 

respiration’, which was performed in later chapters. The workflow for this body of research 

is depicted in figure 4.1.  
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Figure 4.1: Workflow for elucidation of miRNA contents and predicted targets in 

microvesicles of patients with SLE.  

 

 

4.3. Results 

 

4.3.1. MiRNA Abundance within HUVECs and EMVs Released after Treatment with TNFα 

and BLyS 

Cytokine treatment was used to determine miRNA abundance in a model of the inflamed 

endothelium. HUVECs were treated with either TNFα, BLyS or an equal mix of both, and 

the amounts of target miRNAs within the cells and in vesicles extracted from the media 

were quantified. The data shown in figure 4.2 represent miR-320a abundance as other 

vesicular miRNAs were unable to be quantified and thus, could not be compared to cellular 

abundance. 
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Interestingly, when HUVECs were treated with inflammatory cytokines, miR-320a 

abundance decreased, most significantly following TNFα treatment (p=0.010). A similar 

trend was apparent with BLyS (p=0.020) and mixed treatments (p=0.015), although an n=2 

for these samples prevented statistical analysis. The opposite effect was observed in the 

microvesicles produced, which yielded increased miR-320a abundance in response to TNFα 

(p=0.026) but no change in response to BLyS (p=0.150) or mixed treatment (p=1.000). 

 

 

Figure 4.2: Endothelial miR-320a abundance following cytokine treatment. Confluent 

HUVECs were treated for 24 hours at p4-6 with 10ng/ml TNF-α, BLyS or a mix of both, before 

vesicular and intracellular miR-320a was quantified. N=3 in control and TNF-a treated cells, 

and n=2 in BLyS and mixed treatment cells. Statistical analyses performed using one-way 

ANOVA with Tukey post-hoc test. Asterisks used denote: * p≤0.05 and ** p≤0.01. 
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4.3.2. Demographic Details of Patients used in this Study 

Plasma samples from this subset (n=40) of the original cohort of participants (n=138) 

introduced in chapter 3 were utilised in this study. Demographic measures were generally 

similar between controls and patients with SLE, although the control group were younger 

in age; 36.50 (± 13.61) for controls vs 42.58 (± 10.11) of patients with SLE (p=0.023; table 

4.1). However, there was substantial variation in age across both groups, therefore it was 

deemed acceptable to continue the study. The SLE group also demonstrated higher QRISK3 

scores (p<0.001), which is consistent with the results of chapter 3. There were no significant 

differences in demographic measures when the patient group was further subdivided into 

those experiencing flared and stable disease. 

 

Variable Controls (n=14) SLE (n=26) p Values 

Age (years), mean ± SD 36.50 ± 13.61 42.58 ± 10.11 0.023 

Female 14 (100%) 25 (96.15%) 1.000 

Caucasian 11 (78.57%) 17 (65.38%) 0.484 

BP Systolic (mm Hg) 
120.0 (115.0, 130.0) 

n=13 
126.0 (122.0, 137.0) 

n=25 
0.199 

HDL-Cholesterol (mmol/l) 1.6 (1.5, 2.0) 1.7 (1.2, 2.0) n=25 0.613 

Non-HDL Cholesterol 
(mmol/l) 

2.7 (2.5, 3.4) 2.8 (2.5, 3.2) n=25 0.897 

Current Smoker 1 (7.14%) 2 (7.69%) 1.000 

Type 2 Diabetes 0 (0%) 0 (0%) 1.000 

QRISK3 Score (%) 0.3 (0.1, 0.4) 5.4 (3.4, 8.9) <0.001 

High QRISK3 0 (0%) 6 (23.08%) 0.074 

 Flare (n=11) Stable (n=15) p Values 

Age (years), mean ± SD 43.09 ± 7.90 42.20 ± 11.45  0.721 

Female 11 (100%) 14 (93.33%) 1.000 

Caucasian 7 (63.64%) 10 (66.67%) 1.000 

BP Systolic (mm Hg) 
128.0 (121.5, 137.0) 124.5 (122.3, 132.5) 

n=14 
0.536 

HDL-Cholesterol (mmol/l) 1.5 (1.0, 1.9) 1.8 (1.4, 2.1) n=14 0.120 

Non-HDL Cholesterol 
(mmol/l) 

3.1 (2.6, 4.0) 2.6 (2.3, 3.1) n=14 0.403 

Current Smoker 0 (0%) 2 (13.33%) 0.492 

Type 2 Diabetes 0 (0%) 0 (0%) 1.000 

QRISK3 Score (%) 6.3 (4.7, 9.8) 5.0 (2.3, 8.4) 0.281 

High QRISK3 3 (27.27%) 3 (20.00%) 1.000 
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Table 4.1: Demographic measures of controls and patients with SLE included in miRNA 

cohort. Data represented as number (%) or median (lower and upper quartiles).  P values 

calculated by Mann-Whitney U test or Fisher’s exact test, as appropriate. 

 

 

4.3.3. Vesicular MiRNA Abundance is Altered in SLE 

Seven miRNAs of interest were investigated, firstly by general abundance within the 

vesicular fraction of plasma (table 4.2). These miRNAs had been selected through data 

mining, which is further examined in discussion section of this chapter. Levels of both miR-

126-3p and miR-3148 appeared to be increased in the plasma of patients with SLE 

compared to controls (2.29-fold and 6.31-fold respectively).  

 

MiRNA Control  SLE  SLE Fold Control 

MiR-126-3p 2.5E-09 5.8E-09 2.29 

MiR-3148 1.1E-12 6.6E-12 6.31 

MiR-93-5p 3.6E-09 2.9E-09 0.81 

MiR-320a 2.6E-09 3.4E-09 1.34 

MiR-30d-5p 1.7E-09 1.8E-09 1.04 

MiR-15b-5p 2.3E-09 3.8E-09 1.66 

MiR-20a-5p 9.4E-09 1.3E-08 1.37 

 

Table 4.2: Plasma abundance of vesicular miRNAs. Abundance presented as calculated by 

2-ΔΔCt method following QPCR. Control n=14, SLE n=26.  

 

 

Chapter 3 described elevated numbers of EMVs in the circulation of the patient group, 

therefore let-7a was chosen to act as a ‘housekeeper’ to normalise levels of miRNA 

abundance. Levels of let-7a showed a trend towards an increase in patients compared to 

controls, although this was not significant (p=0.154; figure 4.3). Likewise, let-7a abundance 

was not significantly increased in patients experiencing flared (p=0.064) or stable (p=1.000) 

disease compared to controls, nor compared to each other (p=0.145). 
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There were no differences in let-7a abundance per microvesicle in patients vs controls 

(p=0.900) nor when comparing any other group (controls vs stable p=1.000, control vs flare 

p=0.935, stable vs flare p=0.346).  Thus, it was decided to present the miRNA abundance 

data in 3 formats, including relative to let-7a, to provide the most in depth analysis. 

 

 

 

 

Figure 4.3: Abundance of let-7a in plasma samples. Abundance of let-7a was quantified in 

1ml of plasma and analysed per ml (A) and per microvesicle (B). Comparisons between 

controls and all patients assessed by Mann-Whitney U test, and between controls and 

disease activity (stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control 

n=14, SLE n=26, stable n=15, flare n=11. 
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4.3.4. Identifying an SLE MiRNA Signature: Increased MiRNA Abundance 

4.3.4.1. MiR-126-3p is Associated with SLE Disease Flares 

A trend towards increased abundance of miR-126-3p was observed in patients compared 

to controls, significantly so with patients experiencing flared disease (figure 4.4). This was 

the case when analysing abundance per ml of plasma (p=0.001), relative to let-7a (p=0.024) 

and per microvesicle (p=0.009). Abundance was also consistently higher in patients with 

flared compared to stable disease (p=0.002, p=0.0.19 and p=0.001 respectively). There 

were no differences in stable patients compared to controls (p=1.000 for all measures), nor 

in SLE vs controls, despite the apparent trend (p=0.059, p=0.190 and p=0.254).  
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Figure 4.4: MiR-126-3p abundance in plasma vesicular fractions. Abundance of miR-126-

3p was measured in participants by qPCR and compared against volume of plasma (A), 

relative let-7a abundance (B) and per microvesicle (C). Comparisons between controls and 

all patients assessed by Mann-Whitney U test, and between controls and disease activity 

(stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, 

stable n=15, flare n=11. Asterisks used denote: * p≤0.05, ** p≤0.01 and *** p≤0.001. 
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When miR-126-3p abundance was correlated with clinical data (table 4.3), increased levels 

correlated positively with QRISK2 and 3 scores (p<0.05), as well as EMV number (p<0.01). 

Increased abundance also correlated with increased age (p<0.04), cholesterol/HDL ratio 

(p<0.05), adiponectin (p=0.025) and BLyS levels (p=0.024), although a negative correlation 

was observed with haemoglobin (p=0.020). Furthermore, increased miR-126-3p 

abundance was associated with anti-hypertensive (p<0.05) and statin use (p=0.047). In the 

patient cohort only, miR-126-3p correlated negatively with both IgM (p=0.001) and 

anticardiolipin IgM antibodies (p=0.039), and was associated with renal disorder (p<0.040) 

and immunosuppressive use (p<0.05). 
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Variable 
Abundance/ml 

plasma 

Abundance 
relative to 

Let-7a 
Abundance/MV 

QRISK2 Score 
0.403 

p=0.010 
0.327 

p=0.040 
0.342 

p=0.031 

QRISK3 Score 
0.518 

p=0.001 
0.474 

p=0.002 
0.415 

p=0.008 

CD144+ EMVs 
0.521 

p=0.001 
0.445 

p=0.004 
0.315 

p=0.048 

Age 
0.343 

p=0.030 
0.271 

p=0.090 
0.331 

p=0.037 

Haemoglobin 
-0.367 

p=0.020 
-0.206 

p=0.201 
-0.299 

p=0.061 

Total Cholesterol/HDL 
Ratio 

0.527 
p=0.007 

0.406 
p=0.044 

0.092 
p=0.576 

Adiponectin 
0.201 

p=0.215 
0.355 

p=0.025 
0.288 

p=0.071 

IgM (SLE) 
-0.603 

p=0.001 
-0.622 

p=0.001 
-0.627 

p=0.001 

Anticardiolipin IgM (SLE) 
-0.269 

p=0.194 
-0.171 

p=0.413 
-0.415 

p=0.039 

BLyS 
0.356 

p=0.024 
0.299 

p=0.061 
0.298 

p=0.062 

    

Renal 
Disorder 

(SLE) 

Present (n=9) 
Absent 

8.8x10-9 ± 1.0x10-8 

4.2x10-9 ± 7.0x10-9 

p=0.034 

9.6 ± 11.8 
2.3 ± 3.6 
p=0.009 

5.7x10-16 ± 6.3x10-16 

4.6x10-16 ± 8.9x10-16 

p=0.087 
Anti 

hyper-
tensive 

Use 

Present (n=10) 
Absent 

1.0x10-8 ± 9.2x10-9 

2.7x10-9 ± 5.7x10-9 

p=0.001 

10.0 ± 10.9 
2.8 ± 6.3 
p=0.001 

9.9x10-16 ± 1.1x10-15 

3.5x10-16 ± 8.3x10-16 

p=0.002 

Statin 
Use  

Present (n=5) 
Absent 

6.1x10-9 ± 4.3x10-9 

4.4x10-9 ± 7.9x10-9 

p=0.279 

7.5 ± 4.1 
4.2 ± 8.9 
p=0.047 

1.1x10-15 ± 1.4x10-15 

4.3x10-16 ± 8.5x10-16 

p=0.261 
Immuno 

suppressa
-nt Use 

(SLE) 

Present (n=18) 
Absent 

8.3x10-9 ± 9.4x10-9 

1.0x10-9 ± 2.9x10-9 

p=0.047 

6.8 ± 9.4 
1.0 ± 2.7 
p=0.035 

7.0x10-16 ± 9.0x10-16 

6.4x10-17 ± 1.6x10-16 

p=0.082 

 

Table 4.3: Associations between miR-126-3p abundance and clinical data. Renal disorder 

characterised by ACR criteria. Upper section presents Spearman’s rho correlation 

coefficients; lower section presents mean expression (± standard deviation) with statistical 

analysis using Mann-Whitney U test. Comparisons made across whole cohort unless 

otherwise stated. Control n=14, SLE n=26. 
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An investigation into the targets of miR-126-3p yielded a predicted binding score of 0.999 

(maximum 1) for epidermal growth factor receptor (EGFR), the highest score with this 

miRNA (table 4.4). This was listed under ‘ossification’ by the GO consortium and yielded 

the largest node degree on Cytoscape, indicating its importance in a variety of processes 

other than osteogenesis. Other highly likely targets included vascular endothelial growth 

factor receptor 3 kinase (FLT4), cyclooxygenase 2 (PTGS2) and platelet derived growth 

factor receptor-α (PDGFRA), which are implicated in vascular function and SLE-related 

inflammation.  

 

Gene ID GO Consortium 
Area 

Cytoscape 
Rank/Node Degree 

DIANA miTG 
Score 

EGFR Ossification 1/974 0.999 

CD44 SLE N/A 0.960 

FLT4 Angiogenesis 931/12 0.959 

DICER1 Angiogenesis 180/97 0.941 

CREB1 SLE N/A 0.935 

CSF1 Ossification 96/51 0.922 

SMAD4 EC activation 2/230 0.900 

MS4A1 SLE N/A 0.898 

PTGS2 SLE N/A 0.894 

PDGFRA Angiogenesis 302/56 0.892 

 

Table 4.4: Highest ranking predicted targets of miR-126-3p. Data ranked by DIANA miTG 

score of predicted binding, supported by cytoscape ranking and node degree (corresponding 

with number of networks and connections to other cellular pathways). 
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4.3.4.2. MiR-3148 is Increased in SLE and has Predicted Ossification Targets 

Although miR-3148 was detected at lower levels than the other miRNAs, expression per ml 

of plasma was significantly elevated in patients with SLE (p=0.009; figure 4.5). This was also 

significant in stable disease compared to controls (p=0.012) and demonstrated a trend in 

flared disease (p=0.094); there was no difference between flared and stable disease 

(p=1.000). Similarly, trends towards increased abundance in SLE were apparent but not 

significant when analysing levels relative to let-7a (p=0.162) and per microvesicle 

(p=0.279). Nor were there any differences according to disease activity when relative to 

let-7a (control vs stable p=0.214, control vs flare p=1.000, flare vs stable p=0.698) or per 

microvesicle (control vs stable p=0.725, control vs flare and flare vs stable both p=1.000).  
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Figure 4.5: MiR-3148 abundance in plasma vesicular fractions. Abundance of miR-3148 

was measured in participants by qPCR and compared against volume of plasma (A), relative 

let-7a abundance (B) and per microvesicle (C). Comparisons between controls and all 

patients assessed by Mann-Whitney U test, and between controls and disease activity 

(stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, 

stable n=15, flare n=11. * denotes p≤0.05. 
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Elevated miR-3148 abundance per ml of plasma was associated with increased QRISK3 

score and EMV number (p<0.03; table 4.5), whereas abundance per microvesicle correlated 

negatively with PMVs (p=0.024). Abundance also correlated negatively with glucose 

(p<0.04) and positively with MCP-1 (p=0.035). Furthermore, it was associated with ACR 

count (p=0.047), anticardiolipin antibodies (p=0.018) and serositis (p<0.01) in patients with 

SLE. 

 

Variable 
Abundance/ml 

plasma 

Abundance 
relative to 

Let-7a 
Abundance/MV 

QRISK3 
0.448 

p=0.004 
0.293 

p=0.067 
0.220 

p=0.172 

CD144+ EMVs 
0.356 

p=0.024 
0.106 

p=0.515 
-0.125 

p=0.442 

CD42b+ PMVs 
0.204 

p=0.207 
-0.017 

p=0.916 
-0.356 

p=0.024 

Glucose 
-0.348 

p=0.030 
-0.342 

p=0.033 
-0.346 

p=0.031 

ACR Count (SLE) 
0.393 

p=0.047 
0.167 

p=0.414 
0.278 

p=0.169 

Anticardiolipin antibodies 
(SLE) 

-0.282 
p=0.172 

-0.020 
p=0.923 

-0.470 
p=0.018 

MCP1 
0.333 

p=0.035 
0.283 

p=0.076 
0.208 

p=0.198 

     

Serositis 
Present (n=7) 

Absent 

3.1x10-9 ± 4.7x10-9 

2.8x10-9 ± 2.8x10-9 

p=0.003 

3.2 ± 3.3 
2.2 ± 1.5 
p=0.001 

1.7x10-18 ± 1.1x10-18 
3.8x10-19 ± 5.1x10-19 

p=0.009 

 

Table 4.5: Associations between miR-3148 abundance and clinical data. Serositis 

characterised by ACR criteria. Upper section presents Spearman’s rho correlation 

coefficients; lower section presents mean expression (± standard deviation) with statistical 

analysis using Mann-Whitney U test. Comparisons made across whole cohort unless 

otherwise stated. Control n=14, SLE n=26. 
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One possible target of miR-3148, insulin-like growth factor 1 (IGF1) yielded the maximum 

possible binding score of 1.000, indicating certain binding (table 4.6); this was associated 

with ossification, as was RUNX2 (0.999).  

 

Gene ID GO Consortium 
Area 

Cytoscape 
Rank/Node Degree 

DIANA miTG 
Score 

IGF1 Ossification 158/26 1.000 

RHOA Angiogenesis 199/88 0.999 

SATB2 Ossification 118/40 0.999 

RUNX2 Ossification 150/27 0.999 

BCHE Blood 
Microparticles 

866/14 0.998 

PTPRB Angiogenesis 457/34 0.996 

PDPK1 Angiogenesis 267/63 0.992 

INTU Ossification 178/21 0.991 

MBL2 SLE Na 0.991 

MEIS1 Angiogenesis 737/18 0.990 

 

Table 4.6: Highest ranking predicted targets of miR-3148. Data ranked by DIANA miTG 

score of predicted binding, supported by cytoscape ranking and node degree (corresponding 

with number of networks and connections to other cellular pathways). 
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4.3.5. Identifying an SLE MiRNA Signature: Decreased MiRNA Abundance 

4.3.5.1. Mir-93-5p Abundance is Significantly Reduced in SLE 

While abundance of miR-93-5p per ml of plasma appeared to be reduced in patients 

compared to controls (p=0.130), it was significantly so when relative to let-7a (p=0.018) 

and per microvesicle (p=0.015; figure 4.6). Indeed, while no differences were observed in 

miRNA abundance per ml of plasma (controls vs stable p=0.275, controls vs flare and flare 

vs stable both p=1.000), abundance relative to let-7a was significantly decreased in patients 

experiencing a disease flare compared to controls (p=0.043). There were no differences in 

flare vs stable patients (p=1.000) nor in stable patients vs controls, despite an apparent 

trend towards a reduction (p=0.270). Conversely, miR-93-5p abundance per microvesicle 

was significantly reduced in stable patients compared to controls (p=0.049) but not in flare 

patients vs controls (p=0.288) nor in flare vs stable patients (p=1.000).  
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Figure 4.6: MiR-93-5p abundance in plasma vesicular fractions. Abundance of miR-93-5p 

was measured in participants by qPCR and compared against volume of plasma (A), relative 

let-7a abundance (B) and per microvesicle (C). Comparisons between controls and all 

patients assessed by Mann-Whitney U test, and between controls and disease activity 

(stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, 

stable n=15, flare n=11. * denotes p≤0.05. 
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Across the whole cohort, abundance of miR-93-5p correlated negatively with both EMVs 

and PMVs (p<0.04), as well as MCP-1 (p<0.05) and positively with glucose (p<0.02; table 

4.7). Moreover, within the patient population, it was associated with neutrophil number, 

IgM and the presence of haematological disorders (p<0.05). 

 

Variable 
Abundance/ml 

plasma 

Abundance 
relative to 

Let-7a 
Abundance/MV 

CD144+ EMVs 
-0.215 

p=0.183 
-0.422 

p=0.007 
-0.604 

p<0.001 

CD42b+ PMVs 
-0.086 

p=0.596 
-0.344 

p=0.030 
-0.611 

p<0.001 

Neutrophils  (SLE) 
-0.377 

p=0.058 
0.075 

p=0.715 
-0.391 

p=0.048 

MCP1 
-0.314 

p=0.049 
-0.181 

p=0.265 
-0.346 

p=0.029 

IgM (SLE) 
0.036 

p=0.863 
0.430 

p=0.028 
0.074 

p=0.721 

Glucose 
0.410 

p=0.010 
0.379 

p=0.017 
0.302 

p=0.062 

    

Haematol
-ogic 

Disorder 
(SLE) 

Present (n=12) 
Absent 

3.4x10-9 ± 4.1x10-9 
2.4x10-9 ± 2.6x10-9 

p=1.000 

1.3 ± 0.9 
3.5 ± 2.4 
p=0.003 

2.4x10-16 ± 2.6x1016 

3.1x10-16 ± 3.3x10-16 

p=0.681 

 

Table 4.7: Associations between miR-93-5p abundance and clinical data. Haematologic 

disorder characterised by ACR criteria. Upper section presents Spearman’s rho correlation 

coefficients; lower section presents mean expression (± standard deviation) with statistical 

analysis using Mann-Whitney U test. Comparisons made across whole cohort unless 

otherwise stated. Control n=14, SLE n=26. 
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Sortilin 1 (SORT1) was the highest ranking potential target of miR-93-5p, with a predicted 

binding score of 0.962 (table 4.8). While the GO consortium identified SORT1 as implicated 

in ossification, many high-ranking targets were involved in angiogenesis, such as hypoxia 

inducible factor 1-α (HIF1A; 0.940), STAT3 (0.914) and matrix metalloproteinase 2 (MMP2; 

0.901).  

 

Gene ID GO Consortium 
Area 

Cytoscape 
Rank/Node Degree 

DIANA miTG 
Score 

SORT1 Ossification 28/147 0.962 

RASSF2 Ossification 76/65 0.962 

HIF1A Angiogenesis 52/256 0.940 

PIAS2 Ossification 35/125 0.927 

STAT3 Angiogenesis 36/326 0.914 

EPHB4 Angiogenesis 856/14 0.910 

GAB1 Angiogenesis 34/331 0.904 

MMP2 Angiogenesis 552/27 0.901 

HSPA8 Blood 
Microparticles 

78/167 0.882 

CNOT7 IFNA Signalling 32/45 0.860 

 

Table 4.8: Highest ranking predicted targets of miR-93-5p. Data ranked by DIANA miTG 

score of predicted binding, supported by cytoscape ranking and node degree (corresponding 

with number of networks and connections to other cellular pathways). 
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4.3.5.2. MiR-320a is Reduced in SLE and May Target Pathways Involved in 

Angiogenesis and Ossification 

Abundance of miR-320a per ml of plasma (p=0.856) and relative to let-7a (p=0.154) 

revealed contrasting trends, with no clear pattern detected until analysis of abundance per 

microvesicle, which was significantly reduced in patients compared to controls (p=0.045; 

figure 4.7). No other differences were detected, in either abundance per ml (all p=1.000), 

relative to let-7a (controls vs flare p=0.110, controls vs stable p=1.000, flare vs stable 

p=0.328) or per microvesicle (controls vs flare p=0.364, controls vs stable p=0.180, flare vs 

stable p=1.000). 
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Figure 4.7: MiR-320a abundance in plasma vesicular fractions. Abundance of miR-320a 

was measured in participants by qPCR and compared against volume of plasma (A), relative 

let-7a abundance (B) and per microvesicle (C). Comparisons between controls and all 

patients assessed by Mann-Whitney U test, and between controls and disease activity 

(stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, 

stable n=15, flare n=11. * denotes p≤0.05. 
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While miR-320a abundance correlated with fewer clinical measures than the other miRNAs 

(table 4.9), it did demonstrate negative correlations with both EMVs and PMVs across the 

whole cohort of participants (p<0.05), whereas in patients, it was associated with 

anticardiolipin antibodies and a diagnosis of fibromyalgia alongside SLE (p<0.05). 

 

Variable 
Abundance/ml 

plasma 

Abundance 
relative to 

Let-7a 
Abundance/MV 

CD144+ EMVs 
-0.034 

p=0.837 
-0.322 

p=0.043 
-0.593 

p<0.001 

CD42b+ PMVs 
0.052 

p=0.749 
-0.245 

p=0.127 
-0.680 

p<0.001 

Anticardiolipin antibodies 
(SLE) 

-0.143 
p=0.495 

0.286 
p=0.165 

-0.409 
p=0.042 

    

Fibromyalgia 
(SLE) 

Present (n=5) 
Absent 

5.1x10-9 ± 4.2x10-9 

2.4x10-9 ± 1.6x10-9 

p=0.235 

1.5 ± 2.0 
6.9 ± 1.5 
p=0.297 

7.1x10-16 ± 5.4x10-16 

3.7x10-16 ± 2.4x10-16 

p=0.036 

 

Table 4.9: Associations between miR-320a abundance and clinical data. Upper section 

presents Spearman’s rho correlation coefficients; lower section presents mean expression 

(± standard deviation) with statistical analysis using Mann-Whitney U test. Comparisons 

made across whole cohort unless otherwise stated. Control n=14, SLE n=26. 

 

 

The highest ranking predicted targets often fell within the fields of ‘angiogenesis’ and 

‘ossification’ and many were associated with smaller nodes, as ranked by Cytoscape (table 

4.10). The highest predicted targets were matrix metalloproteinase 16 (MMP16; 0.991), 

cyclin-dependent kinase 6 (CDK6; 0.990) and bone morphogenic protein receptor type 1α 

(BMPR1A); these are all implicated in ossification, as is RUNX2, which had an miTG score of 

0.940.  
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Gene ID GO Consortium 
Area 

Cytoscape 
Rank/Node Degree 

DIANA miTG 
Score 

MMP16 Ossification 420/0 0.991 

CDK6 Ossification 22/170 0.990 

BMPR1A Ossification 102/48 0.987 

IRF6 IFNA signalling 83/5 0.975 

HOXA5 Angiogenesis 1080/9 0.974 

MAP3K7 Angiogenesis 337/50 0.973 

NFATC3 Angiogenesis 1240/6 0.970 

NR3C1 SLE na 0.967 

PRCP Angiogenesis 1327/5 0.964 

SASH1 Angiogenesis 1493/4 0.959 

 

Table 4.10: Highest ranking predicted targets of miR-320a. Data ranked by DIANA miTG 

score of predicted binding, supported by cytoscape ranking and node degree (corresponding 

with number of networks and connections to other cellular pathways). 

 

 

 

4.3.5.3. MiR-30d-5p is Reduced in SLE and Associated with Markers of 

Inflammation and Dyslipidaemia 

The final miRNA to be analysed was miR-30d-5p (figure 4.8). Abundance of this miRNA 

demonstrated no differences when analysed per ml of plasma (controls vs SLE p=0.769, 

controls vs stable p=0.275, controls vs flare and flare vs stable both p=1.000). However, 

when abundance was analysed relative to let-7a and per microvesicle, it was significantly 

reduced in patients with SLE compared to controls (p=0.025 and p=0.029 respectively). 

When analysed relative to let-7a, abundance was further reduced in flare patients 

compared to controls (p=0.043) but not in stable patients (p=0.270) nor in flare vs stable 

patients (p=1.000). This was reversed when analysed per microvesicle, such that 

abundance was lowest in stable patients compared to controls (p=0.049) but no differences 

were apparent in controls vs flare (p=0.288) or flare vs stable (p=1.000). 
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Figure 4.8: MiR-30d-5p abundance in plasma vesicular fractions. Abundance of miR-30d-

5p was measured in participants by qPCR and compared against volume of plasma (A), 

relative let-7a abundance (B) and per microvesicle (C). Comparisons between controls and 

all patients assessed by Mann-Whitney U test, and between controls and disease activity 

(stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, 

stable n=15, flare n=11. * denotes p≤0.05. 

 

MiR-30d-5p abundance correlated with a number of clinical markers such as cholesterols 

and both EMVs and PMVs (p<0.05; table 4.11). Within the patient cohort, abundance 

correlated negatively with white blood cell and neutrophil numbers (p<0.03), as well as 
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anticardiolipin IgM molecules (p=0.008). Furthermore, abundance was associated with 

photosensitivity and haematological disorders (p<0.030).  

 

Variable 
Abundance/ml 

plasma 

Abundance 
relative to 

Let-7a 
Abundance/MV 

CD144+ EMVs 
-0.034 

p=0.837 
-0.407 

p=0.009 
-0.646 

p<0.001 

CD42b+ PMVs 
0.062 

p=0.702 
-0.325 

p=0.041 
-0.752 

p<0.001 

Symptom Years (SLE) 
0.169 

p=0.420 
0.443 

p=0.027 
0.482 

p=0.015 

Total Cholesterol/HDL Ratio 
-0.036 

p=0.828 
-0.247 

p=0.129 
-0.319 

p=0.048 

Non-HDL Cholesterol 
-0.176 

p=0.284 
-0.141 

p=0.391 
-0.325 

p=0.044 

Haemoglobin 
-0.021 

p=0.897 
0.431 

p=0.006 
0.206 

p=0.202 

White Blood Cells (SLE) 
-0.291 

p=0.149 
0.115 

p=0.577 
-0.430 

p=0.028 

Neutrophils (SLE) 
-0.497 

p=0.010 
0.190 

p=0.351 
-0.460 

p=0.018 

Anticardiolipin IgM (SLE) 
-0.356 

p=0.081 
0.280 

p=0.176 
-0.521 

p=0.008 

    

Photo-
sensitivity 

(SLE) 

Present (n=21) 
Absent 

2.0x10-9 ± 1.3x10-9 

8.5x10-10 ± 7.1x10-10 

p=0.057 

1.8 ± 1.0 
2.5 ± 2.2 
p=0.659 

2.1x10-16 ± 1.5x10-16 

8.6x10-17 ± 8.6x10-17 

p=0.029 

Haemato-
logic 

Disorder 
(SLE) 

Present (n=12) 
Absent 

2.1x10-9 ± 1.6x10-9 
1.4x10-9 ± 9.5x10-19 

p=0.274 

1.3 ± 1.0 
2.4 ± 1.4 
p=0.006 

2.0x10-16 ± 1.6x10-16 

1.8x10-16 ± 1.4x10-16 

p=0.797 

 

Table 4.11: Associations between miR-30d-5p abundance and clinical data. 

Photosensitivity and haematology disorder characterised by ACR criteria. Upper section 

presents Spearman’s rho correlation coefficients; lower section presents mean expression 

(± standard deviation) with statistical analysis using Mann-Whitney U test. Comparisons 

made across whole cohort unless otherwise stated. Control n=14, SLE n=26. 
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The highest ranked predicted targets were associated with a range of GO consortium areas, 

but three demonstrated the highest predicted binding score of 1 (table 4.12). These were 

beclin 1 (BECN1), SNAI1/snail and suppressor of cytokine signalling 1 (SOCS1). Cytoscape 

data were unavailable for SOCS1, however, both BECN1 and SNAI1 showed large nodes of 

350 and 177 degrees respectively. Other predicted targets included RUNX2 (0.998) and 

angiomotin-like protein 2 (AMOTL2; 0.997).  

 

Gene ID GO Consortium 
Area 

Cytoscape 
Rank/Node Degree 

DIANA miTG 
Score 

BECN1 Angiogenesis 29/350 1.000 

SNAI1 Ossification 20/177 1.000 

SOCS1 SLE na 1.000 

RUNX2 Ossification 150/27 0.998 

AMOTL2 Angiogenesis 99/160 0.997 

ACTC1 Blood 
Microparticles 

473/31 0.996 

EFNA Angiogenesis 847/14 0.994 

KLF10 Ossification 196/17 0.991 

SH2B3 Angiogenesis 973/11 0.990 

HDAC5 Angiogenesis 365/45 0.988 

 

Table 4.12: Highest ranking predicted targets of miR-30d-5p. Data ranked by DIANA miTG 

score of predicted binding, supported by cytoscape ranking and node degree (corresponding 

with number of networks and connections to other cellular pathways). 

 

 

4.3.6. Additional MiRNA Analysis 

A further two miRNAs were tested, namely miR-15b-5p and miR-20a-5p. They both 

demonstrated similar patterns of increase in SLE, particularly in disease flares, but no 

statistical significance between when analysing abundance levels per ml of plasma 

(p=0.644 and p=0.747 respectively; figure 4.9). This was mirrored in abundance relative to 

let-7a and per microvesicle, which demonstrated the same weak trends without 

significance for both miR-15b-5p (p=0.266 and p=0.604) and miR-20a-5p (p=0.424 and 

p=0.361). Similarly, no significant differences were apparent when comparing patients with 



 

124 
 

stable and flared disease across any measure (p>0.05; data not shown). Thus it was decided 

to discontinue further work with these miRNAs, instead focussing on those with stronger 

relationships to SLE. As such, gene ontology analysis was not carried out.  

 

 

 

Figure 4.9: MiR-15b-5p and miR-20a-5p abundance in plasma vesicular fractions. 

Abundance of miR-15b-5p (A) and miR-20a-5p (B)was measured in participants by qPCR 

and compared against volume of plasma. Comparisons between controls and all patients 

assessed by Mann-Whitney U test, and between controls and disease activity (stable and 

flare) by Kruskal-Wallis test. Error bars represent SEM. Control n=14, SLE n=26, stable n=15, 

flare n=11. 
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4.4. Chapter Discussion 

 

4.4.1. Rationale for MiRNA Selection 

The presence of miRNA within extracellular vesicles has been previously documented, 

suggesting a mode of action by which vesicles may interact with and affect the function of 

the endothelium(125, 136, 137). This study interrogated the expression of seven miRNAs 

associated with microvesicles in the circulation of patients with SLE, all of which were 

carefully selected in order to build a panel of both disease-relevant and interesting targets. 

MiR-126-3p was the first to be chosen as it is implicated in both SLE and CVD; a number of 

papers have documented increased levels in SLE and other autoimmune diseases(228, 

229), while Jansen et al. found it predicted a reduced risk of a major adverse cardiovascular 

event in patients with coronary artery disease(230), and described its role in endothelial 

repair(231). These studies affirm that it has been isolated from EMVs both in vivo and in 

vitro, and furthermore, previous unpublished work by our group found increased levels 

following BLyS stimulation in an in vitro endothelial model. MiR-126-3p was therefore 

included to validate and build on previous research using this patient cohort. 

In contrast, miR-93-5p was chosen as a novel, less well understood miRNA. It had previously 

been isolated from plasma and it was suggested to be an independent predictor of stroke 

and coronary artery disease(151, 152), yet little was known about its activity in SLE. Thus, 

it presented an opportunity for novel data combining cardiovascular effects in SLE. 

Even less was known about miR-3148 at the time of experimentation, although earlier 

unpublished data by our group observed its presence within EMVs and positive effects on 

vascular calcification. It was included in this study to advance the knowledge base and 

investigate its effects upon the endothelium. MiR-3148 has also been associated with toll 

like receptor expression in SLE, albeit in peripheral blood mononuclear cells(232).  

MiR-30d-5p was likewise associated with calcification(233), as well as heart failure(234), 

but its endothelial effects have not, to our knowledge, been described. More had been 

documented regarding miR-320a in CVD, including endothelial interactions and presence 

in EMVs (235, 236), although the data centred around chest pain and acute cardiovascular 
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events(237, 238). Consequently, miR-30d-5p and miR-320a were both chosen in order to 

characterise this expression profile and fill the knowledge gaps.   

MiR-15b-5p showed promise in the selection stage, as an upregulation in plasma from 

patients with SLE had previously been detected(239), and a potential pathway of 

angiogenic repression suggested(240, 241), thus inviting the elucidation of the molecular 

mechanisms underpinning its endothelial effects in SLE. MiR-20a-5p was also selected, as 

an unpublished preliminary screen had associated it with vascular calcification, a pathology 

of interest in our group and also prevalent in SLE(242).However, neither of these miRNAs 

yielded significant data in this study but could be addressed using different models in the 

future.  

 

 

4.4.2. The Use of an In Vitro Model for Studying MiRNA Abundance 

Prior to quantification in patient plasma, miRNA abundance was measured following 

cytokine treatment of endothelial cells in vitro. This was intended to model the 

inflammatory environment of SLE, and to confirm miRNA presence in EMVs and compare 

this to intracellular abundance. The low levels of the miRNAs selected prevented full 

quantification of all except one – miR-320a. Following treatment with TNFα, abundance of 

miR-320a in endothelial cells decreased significantly, mirroring the situation in patients 

with SLE described in this chapter. In this way, the inflammatory model appeared to reflect 

the situation in vivo. However, an interesting point was the increase in vesicular miR-320a 

abundance following the same treatment, potentially indicating a deliberate shuttling of 

this miRNA into the vesicles for their release. It is unclear whether this is a protective 

mechanism to rid the cell of a potentially harmful overload or if the miRNA-loaded vesicles 

serve another purpose, perhaps affecting another cell type; while functional analysis, as in 

the following chapters, may provide an indication of function, further investigation is 

needed to define the role of miR-320a in disease, and whether cellular models can 

accurately reflect patient studies. Nevertheless, this preliminary test confirmed the release 

of miR-320a in EMVs following inflammatory treatment, supporting progression to in vivo 

studies. 
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When conducting the in vitro experiments, miRNA abundance was analysed relative to 

control cells, and it was clear that the vesicles isolated would be of endothelial origin as 

only endothelial cells had been included. This was not the case with the patient studies, as 

while abundance per ml was the simplest form of analysis, it did not reflect the increase in 

EMVs detected in the patient group. Accordingly, a housekeeping miRNA was considered, 

as is often the case in standard qPCR(243). Let-7a was selected for this study as its suitability 

as a reference gene has been previously considered by other groups (172, 173, 175, 176), 

however the trend in let-7a abundance in this study did not appear to be constant across 

participants. Nevertheless, the pattern was not significantly different; it may have been 

reflective of disease activity or another mechanism not studied here, so analysis relative to 

let-7a was continued, also to control for small differences in miRNA extracted. There 

remains a lack of consensus regarding housekeeping genes in miRNA analysis and the 

validity of using any one gene is questioned by the constantly evolving field(174); let-7a has 

since been implicated in angiogenesis(244, 245) and therefore, it was decided to further 

analyse the miRNA abundance per microvesicle. By doing this, another method of control 

was incorporated, yet it also reflected the fact that microvesicles from other cellular 

sources would have been present in the plasma, such as PMVs. 

 

 

4.4.3. Increased Abundance of Key MiRNAs in SLE May Support Biomarker Development 

The mode of analysis did not appear to make a difference in analysis of miR-126-3p 

abundance, as the same pattern was apparent across all methods; significantly increased 

levels in patients experiencing a disease flare. Consequently, it may be inferred that miR-

126-3p abundance is linked to increased disease activity, which is supported by the 

understanding that this miRNA leads to increased autoreactivity through T cell 

activation(246). It cannot be known whether the increased inflammation upregulates miR-

126-3p abundance or vice versa, but this is an area for further study; it is possible that they 

perpetuate each other. Indeed, miR-126-3p was associated with increased QRISK score and 

EMV release, as well as BLyS and IgM levels, and dyslipidaemia as measured by cholesterol 

ratios. Within patients, it was highest in those with renal disease and those undergoing 
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medical treatment, further indication of its relationship with active disease. A range of 

potential targets of miR-126-3p were identified; EGFR had the highest miTG score and is 

involved in vascular calcification through activation and migration of smooth muscle 

cells(247). Inhibition of EGFR in a murine model led to attenuated vascular inflammatory 

responses, smooth muscle cell proliferation and progression of atherosclerosis(248), which 

suggests the overabundance of this miRNA may be a protective mechanism in the context 

of SLE. 

While miR-3148 abundance in patient plasma was elevated compared to controls, a similar 

trend was observed in abundance relative to let-7a and per microvesicle. The actual levels 

of this miRNA were extremely low, yet the difference in detectability between patients and 

controls demonstrates promise in its use as a biomarker i.e. if it is only detectable in people 

with SLE. Consequently, abundance correlated with relevant markers of inflammation and 

cardiovascular risk – QRISK3, EMVs, MCP-1 and ACR count. It also correlated negatively 

with glucose, implying another role in glucose homeostasis that is beyond the scope of this 

research. The increase in patients with serositis is interesting and may be significant; 

alternatively it may simply reflect the exacerbated disease and inflammation. It is also 

worth stressing that while serositis in SLE often refers to pleurisy, it conjointly encompasses 

pericarditis at a similar population rate(249); this may be part of the link between miR-3148 

and cardiovascular dysfunction. As with miR-126-3p, the upregulation of miR-3148 may be 

a protective mechanism to counter the damaging inflammation, as inhibition of some of its 

key predicted targets may preserve vascular integrity and function; the pleotrophic effects 

of IGF1 are controversial but certain polymorphisms have been implicated in 

atherosclerosis(250, 251) whereas other studies suggest a beneficial role in 

angiogenesis(252, 253). Furthermore, inhibition of RUNX2 and MBL2 supports reduced 

vascular calcification and depressed thrombogenicity(254, 255).  

Both of these miRNAs were associated with anticardiolipin antibodies, which have been 

previously linked to thrombosis and plaque progression, although the immunoglobulin 

isotype appears important in the potential function of these antibodies. It is interesting to 

consider why the two miRNAs with increased abundance in SLE demonstrate negative 

correlations with anticardiolipin antibodies(79, 94), while those that are decreased are also 

negatively associated. Thus the notion of a miRNA signature encompassing the complexity 
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of the disease and the contrasting effects of disease and homeostatic processes is 

supported. 

 

 

4.4.4. The SLE Signature Contains Key MiRNAs at Reduced Levels 

MiR-93-5p abundance was reduced in patients, albeit only when analysing relative to let-

7a and per microvesicle. This highlights the difficulty in establishing a mode of analysis that 

takes into account the increased endothelial activation (and EMV release) in SLE and the 

necessity for consideration in future biomarker development. These data seem to suggest 

that while each vesicle (both endothelial and platelet-derived) may contain less miR-93-5p, 

the general plasma abundance is similar to that of controls due to the cumulative effect of 

increased microvesicle numbers. The associations with MCP-1, IgM and neutrophils 

insinuates a link to inflammation but whether this is coincidental or causative is difficult to 

tell – and if it is causative, is it protective or damaging? Predicted targets such as HIF-1α 

and MMP2 support the theory of miR-93-5p as atheroprotective(97, 256, 257); in this case, 

the downregulation of this miRNA in SLE may consequently result in increased 

inflammation and endothelial dysfunction. The highest ranking predicted target sortilin-1 

is a known cardiovascular risk gene, promoting dyslipidaemia through lipoprotein uptake 

and transport(258). Thus, if miR-93-5p cannot bind and inhibit these targets, due to its own 

downregulation, patients may be at increased risk of atherogenesis. 

Plasma abundance levels of both miR-30d-5p and miR-320a were variable and inconclusive, 

however miR-30d-5p demonstrated reduced levels in patients, relative to let-7a and per 

microvesicle, and miR-320a yielded the same per microvesicle only. It is therefore perhaps 

unsurprising that both were associated with microvesicle number (both EMV and PMV), 

although miR-30d-5p was also associated with a number of other factors. Negative 

correlations with cholesterol markers supported its implications in cardiovascular disease, 

while positive relationships with number of symptomatic years and haemoglobin, as well 

as negative correlations with white blood cells, affiliated it with disease activity; it is 

possibly lowest in those with acute or newly identified disease. Yet it appeared to be higher 

in patients experiencing photosensitivity, which is often one of the first symptoms reported 
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prior to diagnosis, especially in younger patients(259, 260). Therefore, further investigation 

is required, including other possible components that may be involved such as vitamin D 

status (due to sun avoidance/supplementation)(261).  

MiR-320a was also implicated in inflammation, yielding a negative correlation with MCP-1. 

Furthermore, it was the only miRNA to be associated with fibromyalgia, a debilitating 

condition that will be discussed in chapter 6. Both miRNAs were predicted to target RUNX2 

and as such, their downregulation may support the progression of vascular calcification. 

Consequently, it was hypothesised that their downregulation results in a lack of 

cardioprotection, which was strengthened by identification of further targets such as 

beclin-1(262) and BMP receptor 1α(263). The opposite may also be true – that 

downregulation is cardioprotective – based on the predicted binding of beneficial targets 

such as SOCS1(264, 265), angiomotin-like protein 2(266), and PRCP(267, 268). Hence, it is 

clear that improved understanding of these two miRNAs is needed to formulate a theory 

of action.  

Indeed, for all of these miRNAs, the necessary next step is to probe functional effects in an 

in vitro cell model and confirm binding targets, in order to uncover their roles in SLE. It has 

become apparent that patients with SLE produce a distinct miRNA signature carried around 

their vasculature by EMVs. Within this signature, levels of individual miRNAs may be 

greater or smaller than in a healthy population and this holds huge promise for 

personalised medicine. For example, not only could an ‘SLE signature’ be used as a 

biomarker for improved diagnosis and monitoring, but novel therapeutics could also be 

designed to target the individual miRNAs.  

 

 

4.5. Chapter Summary 

Patients with SLE demonstrate differential expression of a number of vesicular miRNAs 

compared to healthy controls. This study considered a number of potential methods to 

measure miRNA abundance, and recognises that the identification of a housekeeping 

miRNA presents challenges for the future. MiR-126-3p and miR-3148 abundance is 
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increased in association with increased inflammation and cardiovascular risk, and may be 

a protective mechanism through binding of harmful targets. Inversely, miR-93-5p is 

reduced in SLE, concordant with reduced cardioprotection. Both miR-30d-5p and miR-320a 

appeared to be downregulated, which is possibly a protective mechanism but further 

investigation is needed. The effects of this miRNA signature on endothelial function will be 

tested in the following chapters.  
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Chapter 5 

SLE-Specific MiRNA Interrogation of Endothelial Cell Viability 

and Angiogenic Capacity 

 

 

5.1. Study Introduction 

This chapter describes the evidence in support of the SLE-linked miRNAs, identified in the 

screen described in chapter 4, as being related to endothelial cell viability and angiogenic 

capacity. To do so, HUVECs were used as an in vitro endothelial cell model, and were 

transduced with a lentiviral-GFP vector containing the miRNA of interest, as described in 

methods section 2.6. In this way, the effects of precise overexpression of individual miRNAs 

on HUVEC function could be elucidated. Cell viability/cytotoxicity was tested and a tube 

formation assay was used to model the effects of these miRNAs on angiogenesis. By 

performing such functional testing, it is possible to identify key pathways targeted by 

individual miRNAs, thus allowing further elucidation of their molecular targets and the 

mechanisms by which they link to symptomatic disease. Accordingly, this part of the study 

aimed to characterise the effects of miRNA overexpression on basic endothelial cell 

function and the objectives were as follows: 

 Generate individual lentiviral vectors that overexpress the five key miRNAs and use 

them to transduce HUVECs in order to test their function in cellular assays. 

 Determine the effect of miRNA overexpression on cell viability and migration 

capability. 

 Establish the effect of miRNA overexpression on endothelial tube formation ability. 
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5.2. Chapter Methodology 

MiRNA overexpression constructs were generated as detailed in methods section 2.6; 

HUVECs were transduced with lentiviral vectors such that they overexpressed individual 

miRNAs, with successful integration confirmed by fluorescent microscopy and RT-qPCR 

(80% transduction efficiency). The effect of miRNA overexpression on HUVEC viability was 

then assessed using alamarBlue, on migration by scratch wound assay and on tube 

formation by Matrigel® assay, all of which are described in methods section 2.2. Effects of 

the miRNAs were further compared to control cells, which had been transduced with 

lentivirus generated with an empty pLL3.7 plasmid containing no miRNA construct.  

 

 

5.3. Results 

 

5.3.1. Overexpression of MiR-3148 and MiR-320a Increase Cell Viability 

Overexpression of both miR-3148 (p=0.020) and miR-320a (p=0.034) appeared to increase 

cell viability, as assessed by alamarBlue assays, when compared to control cells transduced 

with the empty pLL3.7 lentivirus (figure 5.1). None of the other miRNAs demonstrated a 

significant effect (p>0.05; appendix).  
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Figure 5.1: Cell viability of transduced HUVECs overexpressing miR-3148 or miR-320a. 

HUVECs were transduced with lentiviral vectors containing either miRNA constructs or the 

empty pLL3.7 plasmid at passage 3 (80% transduction efficiency) and cell viability was 

tested at passages 4-6.  Data shown represent absorbance at 570nm after 24 hours 

incubation with alamarBlue reagent. Analysis by independent samples t-test condensed 

into one graph. N=3 in triplicate. * denotes p≤0.05. 

 

 

5.3.2. MiRNA Overexpression Does Not Affect Scratch Migration 

Cell migration was assessed by HUVECs ability to close a scratch ‘wound’ bisecting a 

confluent monolayer, at time points of 0, 5 and 24 hours (figure 5.2). All scratches were 

fully closed at 24 hours, therefore rate of closure was assessed from 0-5 hours. However, 

overexpression of all miRNAs tested exerted no significant effects on migratory ability in 

the scratch model compared to control cells transduced with the empty pLL3.7 lentiviral 

vector (p>0.05; figure 5.3).  
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Figure 5.2: Cell migration using a scratch assay. A scratch wound was created by drawing 

a p200 pipette tip vertically down a confluent well of HUVECs (p4-5) and representative 

micrographs are shown at 0, 5 and 24 hours. Cells had previously been transduced with 

either lentiviral vectors overexpressing the miRNs or the empty pLL3.7 control at passage 3, 

with 80% transduction efficency. Scale bars represent 100μm. N=3 in triplicate.  

 

 

 

 

Figure 5.3: Rate of scratch closure over 5hrs. Scratch closure was analysed in HUVECs (p4-

5), which had been transduced with lentiviral vectors containing the five different miRNAs 

vs empty pLL3.7 vector at passage 3 (80% transduction efficiency). Analysis by one-way 

ANOVA and verified by independent samples t-test. N=3 in triplicate. 
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5.3.3. Overexpression of MiR-93-5p, MiR-320a and MiR-30d-5p Affects Tube Formation 

in Endothelial Cells 

A Matrigel®-based assay was utilised to model angiogenesis following miRNA 

overexpression by allowing measurement of angiogenic tube formation in vitro. A number 

of parameters were available to analyse, providing miRNA-specific data on angiogenic 

properties. Overexpression of both miR-93-5p and miR-320a significantly increased 

average tube length at 5 hours (p=0.038 and p=0.014 respectively), which was maintained 

at 24 hours (p=0.036 and p=0.035) compared to control cells transduced with empty pLL3.7 

vector (figures 5.4 and 5.5). 

 

 

 

Figure 5.4: Overexpression of miR-93-5p increases angiogenic tube length. Angiogenesis 

was tested using a Matrigel®-based tube formation assay, in HUVECs at p4-5, which had 

been transduced with either the control lentivirus (pLL3.7) or miR-93-5p lentivirus (80% 

transduction efficiency). Images were taken at 5 (A) and 24 hours (B) following plating. Tube 

length was measured using ImageJ software and statistical analysis using independent 

sample t-test. Scale bars represent 100μm. N=3 in triplicate. * denotes p≤0.05. 
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Figure 5.5: Overexpression of miR-320a increases angiogenic tube length. Angiogenesis 

was tested using a Matrigel®-based tube formation assay, in HUVECs at p4-5, which had 

been transduced with either the control lentivirus (pLL3.7) or miR-320a lentivirus (80% 

transduction efficiency). Images were taken at 5 (A) and 24 hours (B) following plating. 

Tube length was measured using ImageJ software and statistical analysis using 

independent sample t-test. Scale bars represent 100μm. N=3 in triplicate. * denotes 

p≤0.05. 
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Alternatively, while tube length was not affected, overexpression of miR-30d-5p yielded a 

significant decrease in numbers of angiogenic tubes at 5 hours (p=0.025; figure 5.6). 

However, this was not maintained at 24 hours (p=0.950, data not shown). Overexpression 

of neither miR-126-3p nor miR-3148 had any notable effect on tube formation (p>0.05; 

appendix). 

 

 

 

Figure 5.6: Overexpression of miR-30d-5p decreases angiogenic tube number. 

Angiogenesis was tested using a Matrigel®-based tube formation assay, in HUVECs at p4-

5, which had been transduced with either the control lentivirus (pLL3.7) or miR-30d-5p 

lentivirus (80% transduction efficiency). Tubes counted via ImageJ software and statistical 

analysis made by independent sample t-test. Scale bars represent 100μm. N=3 in triplicate. 

* denotes p≤0.05. 

 

 

 

 

 

 

 

 

 

 

 



 

140 
 

5.4.  Chapter Discussion 

 

5.4.1. The Effects of MiRNA Overexpression on Endothelial Cell Viability and Mobility 

The use of in vitro functional testing provides key evidence to the pathways underlying 

miRNA function, indicating areas of focus for individual miRNAs. To enable this, miRNA 

overexpression constructs were generated and packaged into lentiviral vectors, which were 

used to transduce cells such that they overexpressed individual miRNAs. Transduction was 

successful, with 80% efficiency and GFP expression that was stable for three passages. In 

this way, an in vitro endothelial model of miRNA overexpression was established, 

supporting the interrogation of miRNA effects on cell function. 

The first aspect of cell function to be tested was viability, primarily to ensure the miRNA 

overexpression constructs were not overtly damaging to the cells. This did not appear to 

be the case as none of the constructs resulted in a decrease in cell viability. Indeed, 

overexpression of both miR-3148 and miR-320a improved viability compared to controls, 

suggesting that overexpression of miR-3148 and miR-320a may increase cell proliferation 

or longevity, which may be validated in future studies.  

Assessing cell migration using a scratch technique did not yield any differences across the 

miRNAs tested, however, the lack of migratory effects allows refinement of target 

pathways of interest. This highlights the importance of testing different functional 

parameters when faced with an extensive list of potential targets.  

 

 

5.4.2. Assessing Angiogenesis in an Endothelial Model 

Angiogenesis is notoriously difficult to model accurately in vitro, with critics preferring in 

vivo studies for more representative results. Nevertheless, Matrigel®- based assays are a 

popular method for in vitro assays as the tube formation witnessed in these experiments 

provides an accurate simulation for the processes observed in vivo. The most common 

method is that used here, in which endothelial cells are plated on a layer of Matrigel®, yet 

Matrigel® can also be used in 3D culture or to coat microbeads; it has been argued that 
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these techniques may be more representative of a body system but they face more 

challenges than the standard method in terms of experimental set up and image 

analysis(269).  

Tube formation assays provide many parameters for analysis; in this study, it was decided 

to focus on tube number and length as images were analysed manually. Further parameters 

such as branch points can be analysed using image analysis software; this was attempted 

but was unsuccessful. It is interesting to note that in the two parameters assessed, miRNAs 

appear to stimulate different functional effects. Overexpression of miR-93-5p and miR-

320a increased tube length at 5 hours and was maintained at 24 hours;  this is not 

associated with increased tube number, which could reflect reduced network complexity 

and is typically detected in endothelial cells with advanced cellular age(270). However, 

intra-experimental cell passages were the same nor was cell viability reduced, indeed 

overexpression of miR-320a increased cell viability. One explanation of this is that miR-93-

5p and miR-320a target pathways associated with angiogenic sprouting, meaning tubes 

may continue to form but are unable to maintain branches. 

Network formation also appeared to be deleteriously affected with overexpression of miR-

30d-5p, resulting in reduced numbers of tubes. Unlike tube length, tube number has often 

been used as a marker of angiogenic capacity, with reductions representing impaired 

angiogenesis(271). Equal numbers of cells were plated and, as before, viability was 

unaffected, implicating angiogenesis as an area of interest for miR-30d-5p target analysis.   

This study has  identified key distinct differences in endothelial cells overexpressing 

different miRNAs, which will be critical in highlighting key pathways affected and thereafter 

progressing to target identification.  

 

 

5.5. Chapter Summary 

Lentiviral vectors were successfully generated, supporting overexpression of target miRNAs 

in an endothelial cell model. Overexpression of miR-3148 and miR-320a increased cell 

viability of HUVECs, although none of the miRNA overexpression constructs affected cell 
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migration. Overexpression of miR-93-5p and miR-320a increased angiogenic tube length 

but not tube number, reducing network complexity, while overexpression of miR-30d-5p 

reduced tube number and thus implied reduced tube formation ability. Key targets affected 

by SLE-associated miRNAs may be implicated in angiogenesis although further investigation 

is needed to form a clear picture. The effects of miRNA overexpression on mitochondrial 

function and fatigue will next be discussed prior to later evaluation of the role of each 

miRNA in the pathology of SLE. 
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Chapter 6 

Evaluation of SLE-Specific MiRNA Roles in Fatigue and 

Mitochondrial Dysfunction 

 

 

6.1. Study Introduction 

As discussed in chapter 1, fatigue is one of the most commonly reported symptoms of SLE, 

negatively affecting quality of life and presenting an unmet clinical need(52, 53). Improved 

understanding of the mechanisms underpinning fatigue in SLE would greatly contribute to 

better diagnosis and design of new therapies to improve this aspect of disease, which may 

also be applicable to other connective tissue disorders, such as fibromyalgia, promoting 

wellbeing in these patients. Following on from the cellular function tests described in 

chapter 5, SLE-specific miRNAs were analysed in relation to cellular respiration and 

associations with clinical fatigue data in an SLE population. It was hypothesised that SLE-

specific miRNAs alter mitochondrial function and are associated with symptoms of fatigue, 

and the objectives were as follows: 

 Establish the level of fatigue experienced by controls and patients with SLE. 

 Correlate miRNA levels and patient data with clinical fatigue and quality of life 

scores. 

 Determine miRNA associations with self-reported incidence of musculoskeletal 

symptoms. 

 Ascertain the effects of overexpression of miRNAs of interest on HUVEC respiratory 

function. 
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6.2. Chapter Methodology 

This study utilised the same patient cohort as that described in chapter 4 (14 controls and 

25 patients with SLE). Motor and cognitive fatigue levels of the whole cohort were assessed 

using the FSMC questionnaire, and quality of life scores were recorded, all as detailed in 

2.7.2. BILAG scores were also obtained during patient recruitment, although ACR criteria 

were favoured for analysis in previous chapters; musculoskeletal involvement was 

recorded during the BILAG assessment, the data of which were used in this study. As per 

BILAG guidelines, ‘musculoskeletal involvement’ includes myositis, arthritis, tendonitis, 

tenosynovitis, arthralgia and myalgia (272). Finally, HUVECs were transduced with lentiviral 

vectors to overexpress the specific miRNAs, as in chapter 5, to interrogate their effects on 

cellular respiration using Seahorse Cell Mito Stress assays and gene ontology; more details 

are found in sections 2.2.5, 2.4.4 and 2.6.2.  

 

 

6.3. Results 

 

6.3.1. Fatigue Scores are Elevated in SLE, and are Associated with Inflammation and 

MiRNA Abundance 

When analysing fatigue across the cohort, the FSMC questionnaire was separated into 

motor and cognitive fatigue arms to provide the most specific data; higher scores indicated 

greater levels of fatigue. Nevertheless, patients with SLE demonstrated significantly greater 

fatigue scores across all arms compared to controls (p<0.001; figure 6.1), regardless of 

disease activity (stable and flare all p<0.001). There were no differences in patients with 

flared vs active disease (all p=1.000).  
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Figure 6.1: Fatigue scores in patients and controls. Motor (A), cognitive (B) and total 

fatigue (C) scores were calculated using the FSMC questionnaire. Comparisons between 

controls and all patients were assessed by Mann-Whitney U test, and between controls and 

disease activity (stable and flare) by Kruskal-Wallis test. Error bars represent SEM. Control 

n=14, SLE n=25, stable n=15, flare n=11. *** denotes p≤0.001. 
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Motor and cognitive fatigue scores correlated positively with EMV number (p=0.001) and 

QRISK scores (p<0.02), as well as IL-6 (p<0.05) and BLyS (p<0.02) across the whole cohort 

of participants (table 6.1). Singularly, motor fatigue scores correlated with MCP-1 (p=0.041) 

and PWV (p=0.009), whereas cognitive fatigue scores correlated with VEGF (p=0.044). 

Furthermore, motor fatigue scores were elevated in participants with fibromyalgia 

(p=0.034), while cognitive fatigue were highest in participants with a positive family history 

of hypertension (p=0.024). Finally, miR-3148 abundance was positively associated with 

fatigue scores (p<0.05) whereas miR-30d-5p and miR-320a abundance relative to let-7a 

was negatively associated with motor fatigue (p<0.05). 
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Variable Motor Cognition 
Total FSMC 

Score 

Age 
0.424 

p=0.007 
0.301 

p=0.062 
0.361 

p=0.024 

QRISK2 Score 
0.469 

p=0.003 
0.398 

p=0.012 
0.437 

p=0.005 

QRISK3 Score 
0.536 

p<0.001 
0.460 

p=0.003 
0.503 

p=0.001 

CD144+ MVs 
0.530 

p=0.001 
0.491 

p=0.001 
0.505 

p=0.001 

VEGF 
0.310 

p=0.054 
0.324 

p=0.044 
0.302 

p=0.062 

MCP-1 
0.329 

p=0.041 
0.245 

p=0.133 
0.283 

p=0.081 

IL-6 
0.379 

p=0.017 
0.330 

p=0.040 
0.365 

p=0.022 

BLyS 
0.395 

p=0.013 
0.401 

p=0.011 
0.403 

p=0.011 

PWV 
0.424 

p=0.009 
0.304 

p=0.067 
0.370 

p=0.024 

Diastolic BP 
0.347 

p=0.035 
0.364 

p=0.027 
0.389 

p=0.017 

MiR-3148 Abundance 
0.514 

p=0.001 
0.436 

p=0.006 
0.468 

p=0.003 

MiR-3148 Abundance per MV 
0.328 

p=0.041 
0.244 

p=0.134 
0.272 

p=0.095 

MiR-30d-5p Abundance Relative 
to Let-7a 

-0.319 
p=0.048 

-0.245 
p=0.133 

-0.286 
p=0.078 

MiR-320a Abundance Relative to 
Let-7a 

-0.362 
p=0.024 

-0.279 
p=0.085 

-0.320 
p=0.047 

    

Fibromyalgia 
Present (n=4) 

Absent 
 

39.3 ± 10.8 

25.9 ± 11.2 

p=0.034 

38.0 ± 11.5 
25.3 ± 10.8 

p=0.065 

77.3 ± 22.3 
51.2 ± 21.7 

p=0.039 

Family History 
of 

Hypertension 

Present (n=16) 
Absent 

 

32.5 ± 9.1 
25.2 ± 13.1 

p=0.069 

31.9 ± 8.5 
24.2 ± 12.5 

p=0.024 

64.4 ± 17.2 
49.4 ± 25.5 

p=0.022 

 

Table 6.1: Correlations between FSMC scores, clinical data and miRNA abundance in total 

cohort. Data shows the whole cohort (control n=14, SLE n=25), with separate comparisons 

according to FSMC motor, cognition and total scores. Upper section presents Spearman’s 

rho correlation coefficients; lower section presents mean score (± standard deviation) with 

statistical analysis using Mann-Whitney U test. 
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Within the patient cohort, both motor and cognitive fatigue correlated positively with VEGF 

levels (p<0.015; table 6.2). Motor fatigue alone correlated with total ACR score, lymphocyte 

number and C3 levels (p<0.05), however both fatigue arms correlated with miR-93-5p 

abundance per MV (p<0.05) and cognitive fatigue was further associated with miR-30d-5p 

abundance per MV (p=0.048). Additionally, fatigue scores were elevated in patients 

experiencing oral ulcers and those with a family history of high cholesterol levels (p<0.03) 

but were lowest in patients with reduced C4 and those with persistent migraines (p<0.05).  

 

Variable Motor Cognition 
Total FSMC 

Score 

ACR Total 
0.408 

p=0.043 
0.318 

p=0.121 
0.376 

p=0.064 

Lymphocytes 
0.406 

p=0.044 
0.339 

p=0.097 
0.362 

p=0.075 

VEGF 
0.540 

p=0.005 
0.483 

p=0.014 
0.479 

p=0.015 

C3 
0.442 

p=0.027 
0.340 

p=0.097 
0.372 

p=0.067 

MiR-93-5p Abundance per MV 
0.407 

p=0.043 
0.467 

p=0.018 
0.429 

p=0.032 

MiR-30d-5p Abundance per MV 
0.357 

p=0.079 
0.399 

p=0.048 
0.374 

p=0.066 

    

ACR Criteria: Oral 
Ulcers 

Present 
(n=16) 
Absent 

 

39.2 ± 8.0 
28.3 ± 6.8 
p=0.003 

37.1 ± 8.9 
28.2 ± 6.6 
p=0.029 

76.3 ± 16.7 
55.7 ± 12.9 

p=0.007 

Low C4 
Present (n=4) 

Absent 
 

23.8 ± 2.5 
37.1 ± 8.7 
p=0.028 

22.0 ± 3.3 
36.1 ± 8.2 
p=0.003 

45.8 ± 4.3 
73.2 ± 16.6 

p=0.006 

Family History of 
Hypercholesterolaemia 

Present 
(n=13) 
Absent 

 

39.8 ± 5.8 
29.8 ± 9.8 
p=0.019 

37.8 ± 6.8 
29.6 ± 9.5 
p=0.019 

77.6 ± 12.4 
60.5 ± 18.9 

p=0.011 

Migraines 
Present (n=4) 

Absent 
 

27.0 ± 8.7 
36.5 ± 8.8 
p=0.113 

23.5 ± 6.2 
35.9 ± 8.3 
p=0.019 

50.5 ± 14.8 
72.3 ± 16.8 

p=0.047 
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Table 6.2: Correlations between FSMC scores, clinical data and miRNA abundance in 

patient cohort. Data are shown with separate comparisons according to FSMC motor, 

cognition and total scores. Upper section presents Spearman’s rho correlation coefficients; 

lower section presents mean score (± standard deviation) with statistical analysis using 

Mann-Whitney U test. N=25. 

 

 

6.3.2. LQOL Scores are Associated with Markers of Disease as well as Prescribed 

Medications in SLE 

Quality of life in patients with SLE was assessed using the LQOL score, which correlated 

negatively with both VEGF and C3 levels (p<0.04; table 6.3). Quality of life was also lowest 

in patients with oral ulcers, photosensitivity and those prescribed atypical 

immunosuppressives (in this case tacrolimus and/or rituximab; p<0.04). On the other hand, 

quality of life scores were highest in patients with low C4 and those prescribed 

acetylcholinesterase (ACE) inhibitors (p<0.04). 

 

Variable LQOL Score 

VEGF -0.428 
p=0.033 

C3 -0.496 
p=0.012 

    

ACR Criteria: Oral Ulcers Present (n=16) 
Absent 

34.77 ± 26.32 
75.69 ± 14.57 

p=0.002 

ACR Criteria: 
Photosensitivity 

Present (n=20) 
Absent 

42.19 ± 28.56 
78.75 ± 14.03 

p=0.019 

Low C4 Present (n=12) 
Absent 

59.38 ± 28.81 
40.38 ± 28.34 

p=0.037 

ACE Inhibitors Present (n=3) 
Absent 

87.50 ± 8.84 
44.32 ± 28.20 

p=0.010 

Atypical 
Immunosuppressives 

Present (n=3) 
Absent 

12.50 ± 13.50 
54.55 ± 28.15 

p=0.033 
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Table 6.3: Associations between LQOL and clinical data in patients with SLE. Upper section 

represents data analysed by Spearman’s Rank Correlation Coefficient and lower section 

uses Mann-Whitney U test to show data as mean score (± standard deviation). SLE 

population n=25. 

 

 

6.3.3. MiR-126-3p and MiR-93-5p are Increased in Patients with Musculoskeletal 

Symptoms 

Two of the miRNAs analysed demonstrated associations with self-reported musculoskeletal 

symptoms in patients with SLE, namely miR-126-3p and miR-93-5p (figure 6.2). Both 

miRNAs were elevated in patients reporting musculoskeletal symptoms compared to those 

without (p=0.035 and p=0.008 respectively). Furthermore, abundance of miR-93-5p per 

microvesicle was also significantly higher in patients with musculoskeletal symptoms 

(p=0.009); abundance of miR-126-3p per microvesicle demonstrated a trend towards an 

elevation but was not significant (p=0.056). No other miRNAs tested demonstrated any 

significant differences between the groups (appendix). 
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Figure 6.2: The presence of miRNAs alongside musculoskeletal involvement in SLE. 

Abundance of miR-126-3p per ml of plasma (A) and per microvesicle (B) was quantified in 

patients with/without musculoskeletal symptoms, as was abundance of miR-93-5p per ml 

of plasma (C) and per microvesicle (D). Musculoskeletal symptoms were classed as a BILAG 

score of C or above (mild to severe symptoms at present time). Analysis was performed 

using Mann-Whitney U test and SEM. Musculoskeletal symptoms present in 9 patients, 

absent in 17. Asterisks used denote: * p≤0.05, and ** p≤0.01. 
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6.3.4. Overexpression of MiR-126-3p and MiR-93-5p May Impact Cellular Respiration 

Seahorse bioanalysis was performed to assess the effects of miRNA overexpression on 

cellular respiration. MiR-126-3p demonstrated a striking effect (figure 6.3), with increased 

basal ECAR (p=0.028) and trends towards increased maximal ECAR (p=0.061) and OCR 

(p=0.372) compared to cells transduced with the control lentivirus (pLL3.7). No difference 

in basal OCR was evident (p=0.969). Similar trends were observed with miR-93-5p, although 

an n=2 prevented complete statistical analysis. Thus, overexpression of both miRNAs 

yielded respiratory profiles that were more glycolytic than controls. No significant 

differences in respiratory effects were detected with the overexpression of the three other 

miRNAs (miR-3148, miR-320a or 30d-5p) compared to the pLL3.7 control (appendix). 
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Figure 6.3: Seahorse bioanalysis of respiration in cells overexpressing miRNAs. HUVECs at 

p3 were transduced with either lentiviral vectors containing either a miRNA overexpression 

construct or with a control empty pLL3.7 lentivirus at 80% transduction efficiency. Seahorse 

bioanalysis was performed using Seahorse Xfp Cell Mito Stress Test, with HUVECs plated at 

p5-7. Basal OCR (A), maximal OCR (B), basal ECAR (C) and maximal ECAR (D) were recorded, 

providing a profile of cellular respiration (E). Statistical analysis was performed using 

independent samples t-test. N=3 in duplicate, n=2 for miR-93-5p constructs. * denotes 

p≤0.05. 
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To identify potential targets for future work, gene ontology was again performed for miR-

126-3p, in this case using ‘cellular respiration’ as a search term. Targets that were also 

predicted for miRNAs producing no effect during Seahorse bioanalysis were removed, 

producing the shortlist below (table 6.4). Cytoscape rankings were unavailable for these 

data, nor is miR-93-5p data described due to the lack of understanding and predicted 

targets available for that miRNA. 

 

Targets DIANA miTG Score 

NDUFS1 0.992 

FXN 0.988 

NDUFA9 0.885 

NDUFV2 0.821 

DLAT 0.764 

COX5B 0.704 

 

Table 6.4: Predicted miR-126 targets involved in cellular respiration. 

 

 

 

6.4. Chapter Discussion 

 

6.4.1. Fatigue and Quality of Life in SLE 

Within the 2014 LUPUS UK study introduced in chapter 1, of 2299 patients with SLE, 91% 

reported fatigue/weakness(52). Another LUPUS UK study revealed that fatigue was a major 

contributing factor preventing patients with SLE from maintaining stable employment; of 

the 399 patients interviewed, 40.45% had left employment due to their disease(273). 

Cognitive function is also somewhat impaired in SLE, with patients unable to maintain 

sustained attention for as long a period of time as controls(274, 275). The pathological 

mechanisms underlying fatigue and cognition in SLE are not yet fully understood, although 

some structural differences have been noted in brain scans of patients with SLE such as 

larger perivascular spaces and alterations in the caudate(275).  

Assessment of fatigue in SLE presents challenges due to the subjective nature of the data; 

questionnaires are arguably the most used method, and there are possibly more than 30 
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in use, with one of the most common being the Fatigue Severity Scale(274). The scales 

utilised in this study were the FSMC and the LQOL, assessing cognitive and motor fatigue, 

and patient quality of life. The FSMC tool is most often used in cases of multiple sclerosis, 

although it is also relevant to SLE(184, 275). In this case, the FSMC was applied rather than 

the more general Fatigue Severity Scale as it was found to be more comprehensive, 

providing feedback on both cognitive and motor aspects of fatigue. The lack of a consensus 

on measurements of fatigue, which are subjective in themselves, highlights a knowledge 

gap and the potential for consideration of biomarkers as an objective measure of fatigue 

levels across patients. Quality of life was also assessed to provide additional data on the 

extent to which SLE affects not only fatigue, but also critical inter- and intrapersonal 

measures.  

When studying fatigue, patients with SLE were found to have higher FSMC scores than 

controls, supporting previously published data. Scores were also increased in patients with 

fibromyalgia compared to the rest of the population (controls and patients without 

fibromyalgia). Again, this is unsurprising as fibromyalgia is another condition characterised 

by excessive fatigue(276), although these data serve to demonstrate the unmet clinical 

need for improved recognition of fatigue in these poorly understood diseases.  

FSMC scores were able to differentiate between patients and controls using a number of 

markers. Previous reports have concluded that fatigue does not correlate with disease 

activity in SLE(274), therefore it is interesting to note the associations with markers of 

inflammation in this study. The roles of MCP-1, IL-6 and BLyS in SLE have been discussed in 

previous chapters, and while it is true that they are not representative of disease activity 

per se, fatigue is a common symptom across inflammatory disease(277). Indeed, elevated 

IL-6 has already been linked to impaired cognitive function in SLE(278) and to fatigue 

measures in rheumatoid arthritis(277, 279). Cardiovascular factors also correlated with 

FSMC score; as discussed in chapters 1 and 3, inflammation and cardiovascular disease are 

interlinked in SLE and the connection between fatigue and cardiovascular measures could 

be reflective of this. Interestingly, CD144+ EMVs showed a strong positive correlation with 

FSMC within the whole cohort; again, this could reflect the increased inflammation and 

endothelial dysfunction, but it also reintroduces the potential for EMVs to act as 

biomarkers of disease state, in this case fatigue.  
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Another potential biomarker identified in this study is miR-3148, which correlated 

positively with fatigue score across the cohort. Chapter 4 described an increase of miR-

3148 in SLE yet so little is known about this miRNA that it is difficult to hypothesise whether 

miR-3148 directly affects fatigue symptoms or is solely a biomarker of underlying disease, 

a question that necessitates further study. Additionally, the associations between miR-

320a and miR-30d-5p and motor fatigue were only present when analysing the miRNAs 

relative to let-7a, again supporting the use of more detailed miRNA housekeeper-based 

analysis.  

The distinction between motor and cognitive branches of the FSMC allowed identification 

of separate pathways for future analysis, such as the link between a family history of 

hypertension and cognitive fatigue. It is interesting to note that the presence of 

hypertension was not significantly associated but the risk of its development was; a similar 

finding has been detected in young adults with sleep deprivation, and microvascular 

changes associated with endothelial dysfunction and hypertension have been known to 

result in cognitive impairment(280-282). The role of SLE vascular function in cognition will 

be further considered in the final chapter. 

Within the patient only cohort, FSMC score correlated with ACR score, bringing into 

question the ability of fatigue scores to reflect disease activity, an area which evidently 

requires further refinement. It also correlated with lymphocyte number, VEGF and C3, 

reinforcing the association between markers of inflammation and fatigue symptoms. 

Furthermore, increased levels of VEGF could begin to explain the higher incidence of oral 

ulcers in patients with fatigue, as the VEGF pathway has been previously linked to mucosal 

ulceration in SLE(283). Oral ulceration is a factor in the ACR diagnostic criteria for SLE, thus 

its association with fatigue could be as a result of a disease flare; alternatively the presence 

of fatigue could have triggered or exacerbated ulceration(284). On the other hand, low 

levels of C4 was associated with reduced fatigue, which has already been noted in cases of 

chronic fatigue syndrome(285).  Intriguingly, fatigue was increased in patients with a 

positive family history of hypercholesterolaemia but yielded no connection to patient lipid 

levels or statin use – the role of genetics in diseases characterised by high fatigue levels 

would be an interesting area for further study. As with hypertension, familial 

hypercholesterolaemia has been associated with cognitive impairment, most likely through 

microvascular dysfunction(286, 287). The incidence of migraine is relatively common in SLE 
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and may indicate structural differences in the brain that could contribute to fatigue(275, 

288). 

Regarding miRNAs as biomarkers, miR-93-5p correlated with measures of fatigue in 

patients with SLE, which may be related to its associations with musculoskeletal symptoms, 

as discussed below. MiR-30d-5p abundance was also associated with cognitive fatigue in 

SLE; the role of miRNAs in cognitive function is a fascinating area that will be considered in 

the proceeding future work section. 

As with fatigue, reduced quality of life was associated with inflammation and disease 

activity (VEGF, C3, C4, oral ulcers and photosensitivity). Although the n numbers were 

small, quality of life appeared to be highest in patients taking ACE inhibitors and lowest in 

those taking non-standard immunosuppressives. This may reflect better disease 

management and symptomatic relief in patients taking typical medication as opposed to 

those needing stronger treatments. 

 

 

6.4.2. The Role of MiRNAs in Musculoskeletal Symptoms in SLE 

The next stage of this project utilised the BILAG data recorded at the time of patient 

recruitment, particularly the reporting of musculoskeletal symptoms. It became apparent 

that both miR-126-3p and miR-93-5p were increased in the circulation of patients reporting 

musculoskeletal involvement, which is striking as these miRNAs were also shown to perturb 

mitochondrial function in vitro. It appears obvious that if energy production is impaired, 

patients may experience fatigue, particularly motor fatigue or muscular weakness, as 

muscle tissue is mitochondria-dense(289). Impairments in mitophagy or mitochondrial 

function are present in myopathic diseases, including the autoimmune disease 

dermatomyositis, which shares with SLE a high involvement of type 1 IFNs and ROS(289, 

290). However, it is clear that the two miRNAs must play different roles in fatigue in SLE as 

they follow opposite expression patterns and have different predicted targets. miR-126-3p 

is increased in SLE and thus any induced mitochondrial dysfunction may then contribute to 

the musculoskeletal symptoms. Alternatively, the overexpression of miR-126-3p could be 

an attempted salvage mechanism, although at this point it appears more likely that the 
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downregulation of miR-93-5p in SLE is protective. This is supported by the trend towards in 

vitro mitochondrial dysfunction combined with the increased musculoskeletal symptoms 

in patients with higher levels. Identification of the mitochondrial targets of miR-126-3p and 

miR-93-5p, as described earlier, would assist in identification of the pathological pathways 

underlying mitochondrial dysfunction and fatigue in SLE. Additional studies could focus on 

physiological testing of muscle function in patients to further differentiate symptoms, 

characterise cellular changes and relate this to miRNA function. 

 

 

6.4.3. Do MiRNAs Protect or Damage Mitochondria in SLE? 

Seahorse bioanalysis provides data on oxygen consumption and extracellular acidification 

rates, which respectively represent mitochondrial respiration and glycolysis, allowing 

detailed analysis of cellular energy metabolism. Unfortunately, OCR measurements were 

highly variable, particularly in control wells, and only an n=2 was available for miR-93-5p 

thus preventing statistical analysis. Nevertheless, this technique identified differences in 

energy profiles between HUVECs overexpressing miR-126-3p and controls, specifically an 

increase in ECAR when overexpressing the miRNA. Thus, when comparing respiratory 

profiles, cells overexpressing miR-126-3p appeared to favour more glycolytic pathways, 

potentially indicating a mitochondrial defect. In recent years, numerous groups have begun 

to consider cellular respiration in SLE, often focusing on leukocytes. The high incidence of 

inflammation and ROS accumulation, combined with disease-specific impairments in 

mitophagy and clearance of debris appears to reduce mitochondrial efficiency, which may 

warrant a switch towards glycolytic ATP production(291-293). 

Gene ontology identified a number of potential miR-126-3p targets involved in cellular 

respiration, with unique targets being frataxin, dihydrolipoamide s-acetyltransferase and 

subunits of NADH:ubiquinone oxidoreductase and cytochrome c oxidase. Of these, all are 

found within the mitochondria (data from OMIM online catalogue of human genes) and 

have critical roles in respiration, which may lead to poor mitochondrial function when 

perturbed, for example reductions in frataxin or cytochrome c oxidase result in increased 

mitochondrial damage and a glycolytic shift respectively(294, 295). The mitochondrial 
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impairments could then result in fatigue symptoms; these links between miRNAs and 

fatigue symptoms have not yet been characterised, presenting fascinating new avenues for 

further study.  

 

6.5. Chapter Summary 

MiR-126-3p and miR-93-5p appear to increase glycolytic respiration in vitro, implying 

functional responses to mitochondrial dysfunction; they are also associated with 

musculoskeletal symptoms in patients with SLE, potentially presenting a link between 

cellular respiration and motor fatigue in this disease. Fatigue is indeed increased in patients 

with SLE, and is associated with markers of inflammation and cardiovascular disease. 

MiRNAs are also positively associated with fatigue levels, demonstrating potential as novel 

biomarkers of fatigue, a large unmet clinical need in autoimmune rheumatic diseases. 
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Chapter 7 

Discussion and Conclusions 

 

 

7.1. Discussion 

 

7.1.1. AIM 1: Identification of Novel Biomarkers for Cardiovascular Risk in SLE 

It is now clear that patients with SLE demonstrate increased levels of inflammatory and 

cardiovascular risk markers, which moves towards explaining the accelerated 

atherosclerosis, endothelial dysfunction and cardiovascular risk introduced in chapter 1. It 

is vital that this increased risk is recognised in order to prevent premature mortality and 

support patient wellbeing, however CVD risk algorithms differ in accuracy when compared 

to each other and also when used in different populations(114, 115). The discordance in 

risk score in SLE can be abrogated by inclusion of SLE factors(123, 296); indeed, this body 

of work identified a significant cohort of patients that had been missed by the current 

system. Missed patients were found to have higher levels of inflammation and 

cardiovascular factors, thus it can be construed that the QRISK3 algorithm is more 

representative of cardiovascular risk in SLE than its predecessors. It may be argued that this 

is obvious, as other algorithms do not include SLE as a factor, yet this only strengthens the 

argument of using QRISK3 to predict SLE cardiovascular risk. Nevertheless, the design of 

cardiovascular algorithms for risk prediction must also be questioned – can one algorithm 

reflect all intrapersonal differences and should one global algorithm be used? With the 

growing understanding of unique traits and epigenetics, it is difficult to conceive of a 
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universal calculation that applies to all, however the combination of prediction algorithms 

and biomarker panels shows great potential for personalised medicine.  

In a recent publication, Felten et al. list the identification of relevant biomarkers for 

individualised treatment as one of the top 10 biggest challenges faced when managing 

SLE(297). Although biomarker panels consisting of circulating factors such as cytokines are 

under investigation by other groups(298), this research focused on EMVs as novel 

biomarkers for cardiovascular risk. Their use as such was supported by their associations 

with QRISK3 and other markers of cardiovascular and inflammatory disease. Furthermore, 

by being released directly from the endothelium, they more accurately reflect endothelial 

involvement than a panel of systemic cytokines would. Isolation and quantification of 

microvesicles is also relatively simple following protocol optimisation, and can be 

performed from a small volume of peripheral blood using only a centrifuge and a flow 

cytometer. Thus, EMVs provide promising alternatives to lengthy and complex biomarker 

panels for future characterisation of cardiovascular risk. 

 

 

7.1.2. AIM 2: Determination of a Vesicular MiRNA Signature in Patient Plasma 

Personalised medicine may be the key to management of heterogeneous diseases such as 

SLE and this was one reason why the contents of EMVs were probed in patients vs controls; 

another reason was that interrogation of functional effects may reveal mechanisms and 

novel targets for future therapies. MiRNAs were chosen over other contents due to their 

bioactivity and relative novelty, with their effects in SLE still uncharacterised.  

Many studies have aimed to quantify miRNA abundance in CVDs and in SLE but a consensus 

panel is still lacking, with studies presenting conflicting results obtained from various 

different bodily fluids and cellular origins. This research study took a more measured 

approach, identifying key miRNAs through a bioinformatics workflow and analysing this 

core panel in the microvesicular fraction of plasma. The miRNAs were correlated with 

clinical measurements, in line with their potential use as biomarkers, before gene ontology 

and functional analysis, which will be discussed next. By doing this, a detailed picture began 
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to emerge, a snapshot of the complex interactions between vesicular miRNAs and the 

endothelium in SLE. Ideally, one miRNA would have been identified as a definitive 

biomarker and leading area of future research; however, the data proved to be more 

complex, indicating a number of potential molecular mechanisms and avenues for future 

study. This complexity reflects the numerous clinical symptoms observed in SLE  and 

highlights the need for a more detailed understanding of their interaction, supporting a 

personalised medicine strategy to diagnose and treat SLE.   

 

 

7.1.3. AIM 3: Elucidation of Functional Effects of SLE-Related MiRNAs in Endothelial Cells 

Potential roles for each miRNA in the SLE panel were interrogated by combining the data 

produced in chapters 4-6. To do so, overexpression of each miRNA was modelled in vitro 

using lentiviral vectors in endothelial cells. These vectors are one of the most commonly 

used methods for investigating miRNA overexpression since they integrate into the 

genome of cells, thus maintaining higher and more prolonged levels of expression than 

more traditional methods such as miRNA mimics(299, 300). A number of in vitro tests 

followed, designed to assess endothelial cell function across a range of parameters to 

further characterise miRNA function, as discussed below. 

 

 

7.1.3.1  The Role of MiR-126-3p in SLE 

MiR-126-3p was elevated in patients experiencing a disease flare but this was not the case 

in stable patients, suggesting a possible link with disease activity, which was supported by 

correlations with the QRISK scores, EMV number, renal disorder and the use of 

immunosuppressives. A range of potential targets were identified, yet overexpression in 

endothelial cells produced an effect only when analysing cellular respiration where it 

induced a glycolytic shift. Thus, potential targets involved in mitochondrial function are of 

the most interest, such as frataxin and cytochrome c oxidase. Similar results have been 

noted in cancer cells(301), although the effect of miR-126-3p on mitochondria in CVD or 
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SLE is highly novel. If the overabundance of miR-126-3p in SLE flares did contribute to 

mitochondrial dysfunction, this may begin to explain the overabundance in patients with 

musculoskeletal symptoms such as myalgia, otherwise this finding may simply be utilised 

to further support the concept of miR-126-3p as an indicator of increased disease activity. 

Either way, its associations with SLE disease activity are striking and analysis of its 

mitochondrial targets and effects on other cell types will help to elucidate whether its 

effects are an attempt at protection or if they are damaging, with potential  as a therapeutic 

target. 

 

 

7.1.3.2  The Role of MiR-3148 in SLE 

Very little was known regarding miR-3148 prior to this research, which found it to be 

increased in SLE and associated with cardiovascular risk. In lentiviral vector miR-3148 

overexpression studies, although the levels of transduction efficiency were the same as for 

other miRNA containing lentiviral vectors, miR-3148 was not produced at the same high 

levels, suggesting that it is not expressed readily in endothelial cells or that levels were 

simply too low for accurate quantification. MiR-3148 correlated positively with FSMC 

levels, which may support its use as a biomarker for fatigue/disease activity, yet had no 

effect on HUVECs in terms of tube formation or mitochondrial function, but had a positive 

effect on viability, which necessitates further study. Many of its predicted targets were 

associated with vascular calcification, such as RUNX2. Indeed, unpublished work by our 

group has recently demonstrated that overexpression of miR-3148 resulted in decreased 

calcification of vascular smooth muscle cells in vitro, alongside reduced RUNX2 abundance, 

and is under further investigation. Thus, it may be that this miRNA plays a greater role in 

vascular smooth muscle cells, where it may offer vasculoprotection in SLE.  

 

 

7.1.3.3  The Role of MiR-93-5p in SLE 
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Unlike miR-3148, miR-93-5p appeared to be more active in the studies presented, with 

overexpression in HUVECs resulting in impaired tube formation and a trend towards a 

glycolytic shift. The concurrent reduction in miR-93-5p abundance in patients with SLE thus 

suggests a protective mechanism, designed to prevent the destructive properties of this 

miRNA when it is overly abundant. It is interesting to consider the negative correlations 

with microvesicles, neutrophils and MCP-1, reinforcing the theory that this miRNA is 

purposefully downregulated in periods of inflammation. The increased abundance of miR-

93-5p in patients with musculoskeletal symptoms and positive correlation with FSMC score 

supports the notion of this miRNA as damaging yet further study is needed to elucidate its 

potential role in fatigue.  

 

 

7.1.3.4  The Role of MiR-320a in SLE 

The abundance of miR-320a appeared to demonstrate a contrasting pattern in 

microvesicles generated in vitro compared to those isolated from patient plasma, 

emphasising the difference between cellular and human models. However, abundance in 

patients was only significantly lower than controls when expressed per microvesicle, 

therefore it is possible that more miR-320a is shuttled into microvesicles (as in vitro) but 

the increased number of vesicles masks this. Overexpression appeared to increase cell 

viability but also impaired tube formation. Furthermore, abundance was associated with 

incidence of fibromyalgia and FSMC score. Thus, the role of miR-320a appears complex and 

unclear; abundance per microvesicle may be reduced but if more microvesicles contain 

miR-320a and consequently interact with cells, this may lead to deleterious effects e.g. 

impaired angiogenesis and fatigue. Pathway and mechanistic analysis will enable further 

characterisation of the role of this miRNA, as discussed in 7.3. 

 

 

7.1.3.5  The Role of MiR-30d-5p in SLE 
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The final miRNA to be studied was miR-30d-5p, which was reduced in SLE concurrent with 

disease activity, as indicated by negative correlations with EMV number, white blood cells 

and disease duration. A range of potential targets were identified and it is possible that this 

miRNA demonstrates pleiotrophic effects as overexpression reduced angiogenic tube 

number while plasma abundance was associated with fatigue. As with miR-93-5p, the 

reduction in SLE may be a protective mechanism, preventing angiogenic impairments. It is 

therefore interesting to note the positive correlation between reduced abundance per 

microvesicle and low cognitive fatigue score, and to determine in future work whether 

overabundance of miR-30d-5p is detrimental to pathways involved in cognition. Summary 

table 7.1. highlights the key findings generated by our laboratory regarding miRNA activity 

in SLE, which will be used to design future experiments. 

 

MiRNA Abundance in SLE Key Effects of Overexpression In Vitro 

MiR-126-3p Increased in flares Glycolytic shift in HUVECs 

MiR-3148 Increased in SLE Decreased calcification of VSMCs and 
reduced RUNX2 abundance 

MiR-93-5p Reduced in SLE Reduced angiogenic tube length and 
trend towards glycolytic shift in 

HUVECs 

MiR-320a Reduced in SLE Reduced angiogenic tube length and 
increased viability in HUVECs 

MiR-30d-5p Reduced in SLE Reduced angiogenic tube number 

 

Table 7.1. MiRNA summary table. This table highlights key findings from our group 

regarding miRNA abundance in SLE and the effects of miRNA overexpression on in vitro cells 

models, which will be used to direct further study. 

 

 

 

7.2. Limitations and Considerations 

While this research has been successful in achieving its aims, a review of its limitations and 

aspects for consideration provides useful insights for future work.  
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When studying the SLE and control cohorts, a larger population size would ensure greater 

representation and more accurate statistical analysis. In this instance, patient population 

size was limited due to availability – many patients treated at the Kellgren Centre for 

Rheumatology were already enrolled in other research studies such as drug trials, and were 

therefore unavailable. However, this was not deemed to limit interpretation of results as 

similar studies with smaller population sizes have previously been published(157, 158). 

Longitudinal studies would also be very interesting when considering the changes in EMV 

number, miRNA abundance and cardiovascular risk over time, but this was not feasible 

during the current project.  

The research in question focused on EMVs yet microvesicles can be isolated from a number 

of cell types, therefore it would be interesting to consider circulating microvesicles of other 

origins, such as PMVs. These were discussed in chapter 4 but could also be probed for 

miRNAs in further work. Another factor to consider is the number and miRNA content of 

circulating exosomes, which were removed in this project, yet could enhance 

understanding of the SLE miRNA profile. Furthermore, although the methods for EMV 

isolation and quantification used in this work have been validated elsewhere, a consensus 

on EMV characterisation, as well as the preceeding considerations, must be determined 

before biomarker technology featuring EMVs can be developed. Such technology would 

ideally be quick, cheap and preferably automated to enable rapid patient stratification in a 

busy clinical environment; establishment of a further research project to address these 

issues is thus recommended prior to clinical use. 

Difficulties arose when comparing miRNA abundance, firstly when optimising 

quantification from plasma samples and in vitro, which could be improved through 

development of a method to detect miRNAs at low abundance. A measured approach for 

selecting and quantifying miRNAs by qPCR was taken for this project, although it would also 

be possible to perform a larger scale screen followed by production of a shortlist based on 

the levels of miRNAs identified in the samples. It is worth noting that next generation 

sequencing was attempted early in the project but was unsuccessful due to the low 

abundance of RNA isolated from microvesicle samples as only 1ml of total plasma was 

available in this cohort for analysis. Furthermore, a defined method of analysing miRNA 

abundance would support improved comparisons across studies; while spiked controls 
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ensure accurate quantification, the identification of a ‘housekeeper’ miRNA would greatly 

enhance analysis based on human samples or between different conditions in vitro.  

The final limitations pertain to functional analysis of miRNA activity in vitro. This research 

characterised the effects of miRNA overexpression on endothelial cells, however 

supplementing this with an underexpression model would further refine and support the 

conclusions drawn. Indeed, miRNA sponges were generated(302) but were discontinued 

due to a lack of efficacy. Other alternatives include antagomiRs(303) or gene knockouts, 

which will be considered in 7.3. Lastly, the functional tests employed in this project were 

selected to represent a range of cellular processes integral to endothelial function during 

basal conditions. Nevertheless, additional tests such as NO measurements or endothelial 

function in response to inflammatory treatment would provide further detail and act as an 

in vitro model of the endothelium in an inflammatory disease such as SLE. N numbers in 

future tests such as these could be increased to support statistical analysis and reduce 

variability.  

 

 

 

 

 

 

7.3. Future Directions 

This work offers many avenues for further study, starting with the development of miRNA 

silencing models to characterise the functional effects of miRNA underexpression in vitro. 

Following this, pathway and target analysis will be necessary for elucidation of the 

mechanisms identified during the functional testing. To do so, transcriptome analysis will 

be combined with pathway recognition software to identify key processes affected by the 

miRNAs. Individual targets can also be confirmed using, for example, luciferase reporter 

constructs, which allow identification of miRNA-target binding through luciferase 
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production(304); a luciferase reporter construct was attempted during the course of this 

project, but was unsuccessful.  

An emerging area of particular interest is the role of EMVs and miRNAs in fatigue in SLE, as 

introduced in this project through correlations with fatigue scores and functional effects 

on cellular respiration. This could separate into two branches, studying motor fatigue 

through e.g. muscle testing, or cognitive function, which has been highlighted numerous 

times in this thesis as a major unmet need in SLE. When studying fatigue and cognitive 

function in SLE, the blood brain barrier (BBB) is a fascinating interface between the vascular 

endothelium and the nervous system, having already been associated with fatigue and 

impaired cognition in inflammatory diseases such as SLE(305-307). Therefore, full 

characterisation of the effects of the SLE environment on the BBB, including EMV trafficking 

and miRNA functions would shed light on an ongoing and underresearched area, providing 

novel avenues for therapeutic research. 

The overarching aim of this project was to establish whether EMVs can be added to the 

armament of risk factors used for identifying patients with SLE at elevated risk of future 

cardiovascular events. By combining EMV levels with risk algorithms and miRNA 

abundance, the development of more a comprehensive stratification tool will support 

identification of future patients with high cardiovascular risk. One way to do this in future 

studies would be to utilise an artificial intelligence approach to provide personalised 

reports relevant to each patient and acknowledge the heterogeneous nature of SLE. In 

doing so, patients with SLE will be able to receive tailored treatment and monitoring plans, 

preventing premature mortality and improving quality of life. 

7.4. Concluding Statements 

Patients with SLE demonstrate increased levels of inflammation and cardiovascular risk, 

which is represented by the QRISK3 algorithm and by circulating numbers of EMVs. A 

distinct miRNA signature is present in the vesicular fraction of patient plasma, with 

individual miRNAs associated with measures of inflammation and cardiovascular risk. In 

vitro functional testing has characterised the effects of individual miRNA overexpression 

on endothelial cells, identifying key areas for future study such as fatigue and angiogenesis. 
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To conclude, EMVs demonstrate great potential for use as biomarkers of cardiovascular 

risk in SLE and provide novel avenues for further research through their miRNA content.  
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Chapter 9 

Appendix 

 

 

 

i. Effects of MiRNA Overexpression on Cell Viability 

As described in chapter 5, only HUVECs transduced with miR-3148 and miR-320a lentiviral 

vectors demonstrated increased cell viability (app. figure i.; indicated by dashed line, 

significance only when analysed by t test as in chapter 5). No other miRNAs yielded 

significant differences when analysed by ANOVA or t-test (126-3p p=0.898; 93-5p p=0.735; 

30d-5p p=0.424).  
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App. Figure i. Effects of miRNA overexpression on cell viability. HUVECs were transduced 

with either miRNA lentiviral vectors or the control pLL3.7 lentivirus at passage 3 (80% 

transduction efficiency) and cell viability was tested at passages 4-6.  Data shown represent 

absorbance at 570nm after 24 hours incubation with alamarBlue reagent. Analysis by one-

way ANOVA and independent samples t-test. N=3 in triplicate. * denotes p≤0.05.  

 

ii. Effects of MiR-126-3p and MiR-3148 on Tube Formation 

Chapter 5 highlighted the differences in tube length and number when HUVECs 

overexpressed miR-93-5p, miR-320a or miR-30d-5p, which have been highlighted with a 

dashed line in app. figure ii. Neither miR-93-5p nor miR-320a affected tube number at 5 

hours (p=0.073 and p=0.104) or at 24 hours (p=0.607 and p=0.664). On the other hand, 

overexpression of miR-30d-5p had no effect on tube length at either 5 hours (p=0.085) or 

at 24 hours (p=0.268). Transduction with miR-126-3p lentivirus produced no significant 

effect on tube length (5hrs p=0.160, 24hrs p=0.120) or number (5hrs p=0.175; 24hrs 

p=0.707) compared to control and neither did miR-3148 (tube length 5hrs p=0.091; 24 hrs 

p=0.475; tube number 5hrs p= 0.549; 24hrs p=0.381). These statistics reflect independent 

t-test; no significance was apparent with one-way ANOVA. 
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App. Figure ii. Tube formation in HUVECs overexpressing miRNAs. Angiogenesis was 

tested using a Matrigel®-based tube formation assay, in HUVECs at p4-5, which had been 

transduced with either the control pLL3.7 lentivirus or miRNA lentivirus (80% transduction 

efficiency). Images were taken at 5 (A) and 24 hours (B) following plating. Tube formation 

was measured using ImageJ software and statistical analysis using one way ANOVA and 

independent samples t-test. N=3 in triplicate. * denotes p≤0.05. 

iii. MiRNA Abundance in Patients with Musculoskeletal Symptoms 

As described in chapter 6, patients experiencing musculoskeletal symptoms were also 

found to have increased abundance of miR-126-3p and miR-93-5p. This was not the case 

with any of the other miRNAs tested (app. table i.). 

 

     

MiR-126-3p 

Abundance/ml 
plasma 

Present 
Absent 

1.2x108 ± 1.1x108 

2.3x109 ± 3.7x109 p=0.035 

Abundance per 
MV 

Present 
Absent 

1.2x1015± 1.1x1015 

2.3x1016 ± 4.3x1016 p=0.056 

MiR-93-5p 
Abundance/ml 

plasma 
Present 
Absent 

5.2x109 ± 4.3x109 

1.6x109 ± 1.8x109 
p=0.008 
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Abundance per 
MV 

Present 
Absent 

4.9x1016 ± 3.7x1016 
1.6x1016 ± 1.6x1016 

p=0.009 

MiR-3148 

Abundance/ml 
plasma 

Present 
Absent 

9.1x1012 ± 9.7x1012 
5.3x1012 ± 5.8x1012 

p=0.798 

Abundance per 
MV 

Present 
Absent 

8.3x1019 ± 9.9x1019 
6.3x1019 ± 7.8x1019 

p=0.850 

MiR-320a 

Abundance/ml 
plasma 

Present 
Absent 

4.7x109 ± 4.1x100 
2.8x109 ± 2.1x109 p=0.247 

Abundance per 
MV 

Present 
Absent 

4.5x1016 ± 4.3x1016 
3.1x1016 ± 3.3x1016 p=0.138 

MiR-30d-5p 

Abundance/ml 
plasma 

Present 
Absent 

2.6x109 ± 1.7x109 
1.3x109 ± 7.8x1010 p=0.106 

Abundance per 
MV 

Present 
Absent 

2.5x1016 ± 1.7x1016 
1.5x1016 ± 1.2x1016 p=0.080 

 

App. Table i. MiRNA abundance in patients with musculoskeletal symptoms.  

Musculoskeletal symptoms were classed as a BILAG score of C or above (mild to severe 

symptoms at present time). Data analysed by Mann-Whitney U test and displayed as mean 

abundance (± standard deviation).  Symptoms present in 9 patients, absent in 17.  

 

 

 

 

 

 

iv. Effects of MiRNA Overexpression on Cellular Respiration 

Chapter 6 also detailed a glycolytic shift in HUVECs overexpressing miR-126-3p and a similar 

trend in those overexpressing miR-93-5p, relating this to the musculoskeletal symptoms 

associated with these miRNAs. While other trends were apparent, overexpression of none 

of the other miRNAs yielded significant differences compared to controls (app. figure iii). 

Although miR-320a and miR-30d-5p appeared to increase basal OCR, this was not 

significant (p=0.315 and p=0.161) nor was it so at maximal OCR (p=0.316 and p=0.066). 

Overexpression of miR-3148 produced no discernible effect on OCR (basal p=0.662, 

maximal p=0.919). Moreover, none of these miRNAs affected basal (3148 p=0.147; 320a 

p=0.788; 30d-5p p=0.560) or maximal ECAR (3148 p=0.241; 320a p=0.480; 30d-5p p=0.793). 
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The statistics provided here were produced by independent samples t-test; no significance 

was apparent with one-way ANOVA.  

 

 

 

 

 

App. Figure iii. Seahorse bioanalysis of all miRNA overexpression constructs. HUVECs at 

p3 were transduced with either miRNA lentivirus or control pLL3.7 lentivirus at 80% 

transduction efficiency. Seahorse bioanalysis was performed using Seahorse Xfp Cell Mito 

Stress Test, with HUVECs plated at p5-7. Basal OCR (A), maximal OCR (B), basal ECAR (C) 

and maximal ECAR (D) were recorded, providing a profile of cellular respiration (E). 

Statistical analysis was performed using one-way ANOVA and independent samples t-test. 

N=3 in duplicate, n=2 for miR-93-5p constructs. * denotes p≤0.05. 

 

 

v. Publications Arising From This Thesis 
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The attached publications were produced using data or techniques generated during the 

course of this project. Briefly, the first research article by Edwards et al. communicates 

much of the data from chapter 3 pertaining to QRISK3 scores and EMV abundance in SLE, 

while the second research article by Langford-Smith et al. utilises techniques such as 

Seahorse bioanalysis to interrogate the function of endothelial progenitor cells in vitro. The 

final article, a review article, provides more information on endothelial damage and repair 

in conditions associated with high cardiovascular risk. 

 

 

 


