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Diagnosis of the Hypopnea syndrome in the early stage

Xiaodong Yang1 • Dou Fan1 • Aifeng Ren1 • Nan Zhao1 • Syed Aziz Shah1 • Akram Alomainy2 •

Masood Ur-Rehman3 • Qammer H. Abbasi4

Abstract
Hypopnea syndrome is a chronic respiratory disease that is characterized by repetitive episodes of breathing disruptions

during sleep. Hypopnea syndrome is a systemic disease that manifests respiratory problems; however, more than 80% of

Hypopnea syndrome patients remain undiagnosed due to complicated polysomnography. Objective assessment of

breathing patterns of an individual can provide useful insight into the respiratory function unearthing severity of Hypopnea

syndrome. This paper explores a novel approach to detect incognito Hypopnea syndrome as well as provide a contactless

alternative to traditional medical tests. The proposed method is based on S-Band sensing technique (including a spectrum

analyzer, vector network analyzer, antennas, software-defined radio, RF generator, etc.), peak detection algorithm and Sine

function fitting for the observation of breathing patterns and characterization of normal or disruptive breathing patterns for

Hypopnea syndrome detection. The proposed system observes the human subject and changes in the channel frequency

response caused by Hypopnea syndrome utilizing a wireless link between two monopole antennas, placed 3 m apart.

Commercial respiratory sensors were used to verify the experimental results. By comparing the results, it is found that for

both cases, the pause time is more than 10 s with 14 peaks. The experimental results show that this technique has the

potential to open up new clinical opportunities for contactless and accurate Hypopnea syndrome monitoring in a patient-

friendly and flexible environment.

Keywords Hypopnea syndrome � Respiration sensor � Early warning � Biomedical engineering � Machine learning

1 Introduction

Sleep is an essential survival skill and has great signifi-

cance to human health. Sleep not only affects the produc-

tivity and physical vitality of a person but is also related to

many diseases including diabetes, depression, and even

stroke and heart failure [1]. Therefore, sleep function

monitoring has a high medical value.

Hypopnea syndrome is a common illness that occurs

when throat muscles intermittently relax and block the

airway during sleep [2]. It is characterized by repetitive

episodes of shallow or paused breathing during sleep and is

usually associated with a reduction in blood oxygen satu-

ration. These episodes of paused breathing typically last

20–40 s. Signs and symptoms of sleep apnea include

excessive daytime sleepiness, loud snoring, and breathing

cessation during sleep, abrupt awakening due to respiratory

disorders, such as hypopneas, apneas, and choking. Back in

the days, Hypopnea syndrome was considered as a sleep

habit accompanied by snoring, but it is now regarded as a

serious clinical disorder. Several studies indicate that a

high percentage of patients suffering from Hypopnea syn-

drome remain unidentified, which can greatly affect their

routine life and might create severe health complications,

such as reduced work performance. Furthermore, evidence

suggests that Hypopnea syndrome is related to systemic

diseases, such as cardiovascular diseases (e.g., (1) coronary

disease is due to the angiosclerosis and the blood cannot
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With the recent developments, wireless sensing has

opened the doors for sleep monitoring systems leveraging

various sensors, such as audio, image, force, and temper-

ature [13–22]. Most of these wireless systems are contact-

oriented and require wearable sensors worn by the patient

to acquire adequate precision levels in a clinical setting.

Use of smartphones accelerometer and audio recordings to

monitor sleep disorders is proposed in [13–15]. Behar et al.

[14] studied a wearable system composed of an armband

sensor, a face-worn microphone, and a wrist-worn oximeter

connected to the smartphone for the sleep apnea detection.

Force sensors deployed under the mattress top have also

been used to detect the heart rate, sleep pattern, snoring, or

respiration rate [16–20]. Martinez et al. [21] investigated a

wireless sensor system to detect respiratory rate using

received signal strength indicator. This system requires

15–20 sensor nodes to achieve high classification accuracy.

Video recordings of sleep patterns through camera-based

optical approach are adopted, to detect the breathing pat-

tern via video recordings is discussed in [22, 21]. Cost-

effectiveness of polysomnography technique using split-

night sleep monitoring is considered in [23]. Though

wearable technologies have emerged as a potential solution

to monitor the patients unobtrusively, outside clinical set-

tings, they limit patients comfort due to requirement of a

number of body-worn sensors; on the other hand, the

potential patients have the consciousness that they are

being monitored and may control their physiological

activities through consciousness.

In this paper, we investigate a noninvasive system based

on S-band sensing to monitor the sleep apnea. The novelty

of this work lies in the development of an accurate and

efficient monitoring technique that provides continuous,

contactless, and patient-friendly solution. The privacy of

the patients can be protected as well. Usability and accu-

racy of the proposed system are established through a

comparative study with standard commercial respiratory

sensors.

2 System design

The proposed method primarily uses sensing technique that

works at S-band. Details of the system architecture are

discussed in this section.

2.1 Basic system architecture

The proposed sensing system makes use of a wireless link

between two antennas positioned at two sides of the human

subject, as illustrated in Fig. 1. The two antennas are

placed around the chest and are visually in a straight line,

enabling them to establish a line-of-sight (LOS) link. The

flow properly; therefore, the red blood cells cannot trans-
port oxygen and there is not enough oxygen for the cardiac 
muscle; (2) angina; (3) cor pulmonale, it leads to the 
hypertrophy of right ventricular; (4) hypertension; (5) 
hyperlipidemia; (6) hyperglycemia, etc.) and glu-

cometabolic impairments (it is necessary to keep the blood 
glucose at certain level, and this task is mainly fulfilled by 
the liver) as well, as various pediatric complications, such 
as psychological and behavioral disorders, nocturnal 
enuresis, and growth-related disorders [3]. Greater associ-
ation with Hypopnea syndrome not only brings cardio-
vascular problems and neurological disorders; it can also 
cause sudden death in case of severe breathing obstruction 
[4]. Timely detection of Hypopnea syndrome through 
observation of respiratory disorder episodes therefore has 
vital importance in personal healthcare.

Polysomnography (PSG) is a standard method for the 
diagnosis of Hypopnea syndrome. It is based on a com-

prehensive recording of biophysiological changes that 
occur during sleep. The test is typically a full-night study 
performed on a patient in a laboratory environment by 
medical experts. The PSG monitors heart, lungs and brain 
activities, breathing patterns, arm and leg movements, and 
blood oxygen levels in the form of electroencephalogram 
(EEG), electrocardiogram (ECG), electrooculogram 
(EOG), electromyography (EMG), and oxygen saturation 
(SpO2). Though Hypopnea syndrome can be objectively 
assessed and monitored by these signals, the subjects are 
often uncomfortable by deploying electrodes and wearing 
bands on their bodies during this long procedure. More-

over, the data can only be obtained in institutions or hos-
pitals equipped with dedicated devices [4].

Various approaches have been applied to achieve sleep 
apnea [5–9] detection: in [5], the apnea–hypopnea events 
are detected via an alternative sensor, and the new algo-
rithm has been developed to find the sleep-disordered 
breathing from the RIP-sum signal; in [6], SpO2 signals 
were considered in the SAHS classification, and advanced 
algorithms are used to extract key information; Villar et al.
[7] found that AdaBoost is helpful in enhancing the diag-
nostic ability of oximetry signal; in [8], heart rate signals 
are used to detect sleep, and accurate results are obtained 
by using classifier; in [9], hypoglossal nerve stimulation is 
used in the treatment of obstructive sleep apnea, and the 
OSA is defined by citing its facts, effects, and treatments. 
Going through all these recent works, although various 
approaches and indicators have been considered, it is 
noticeable that limited research has been done on the non-
contact detection using wireless signals. It is also worth 
mentioning that alternative physiological signals were used 
to overcome the drawbacks of polysomnography [10–12]. 
One of the examples includes spectral analysis of snoring 
sounds to detect Hypopnea syndrome [12].



distance between the two antennas is kept at 3 m to

replicate a typical patient monitoring system in a wireless

environment with sample rate of five packets per second.

This sensing platform is an in-house system and consists

of a spectrum analyzer (E8600), vector network analyzer

(Agilent E8363B), antennas, software-defined radio, RF

generator, and desktop workstation equipped with network

adaptor. The measurement setup of this sensing platform is

shown in Fig. 2. This system can work at a number of

frequencies depending on the operating band of the

antennas. For our work, we have selected the S-band fre-

quencies of 2 GHz–4 GHz due to their wide usage in

healthcare applications and added benefits discussed in the

proceeding section.

The system employs monopole antennas, which are off-

the-shelf, at the transmitting and receiving ends. This

selection of the antennas is based on a twofold approach,

making the system universal by using widely available

standard type of antennas and decreasing the antenna’s

effect on the sensitivity of the system. Along with the

antenna, the emitter includes RF generator, coaxial cable,

and connector. It is also worth mentioning that the current

system and algorithm framework are feasible for single-

subject detection, and for multiple patients’ scenarios,

more complicated algorithm frameworks have to be pro-

posed; also, background noise and environmental inter-

ference have also to be decreased through the application

of advanced algorithms.

The propagation mechanism of RF signals between the

transmitter and receiver is complex and can take both line-

of-sight (LOS) and non-line-of-sight (NLOS) paths, as

shown in Fig. 3. The LOS path refers to the signals prop-

agating in a direct path without any blockage by the human

subject. The walls of the room are covered with RF

absorbing material to get rid of these scattered components.

It not only simplifies the overall system model but also

improves the accuracy through better detection of minute

chest movements due to breathing and accompanying

spatial changes in the channel response.

Fig. 1 Experiment setup for detecting sleep apnea

Software-
defined radio

Receiving antenna

Vector network analyzer

(get the raw data, 
including amplitude 

and phase information)

Desktop workstation equipped with 
network adaptor

Spectrum analyzer
(Test the signal frequency of 

the signal source)

Transmitting antenna

RF generator

Fig. 3 Radio propagation modes for sleep apnea detection



2.2 Wireless channel information at S-band

The proposed system observes the wireless channel

between the transmitter and receiver and notes down the

sudden variations as a result of change in breathing pattern

to detect the sleep apnea episodes. The transmitter and

receiver transmit wireless signals through a spatial data

stream. By using orthogonal frequency division multi-

plexing (OFDM) technology, this data stream is divided

into 56 orthogonal channels (called subcarriers) and a

group of 30 subcarriers, provided to upper layer users.

Therefore, a group of 30 OFDM subcarriers carrying the

channel information is used and exported to the user. Each

of the exported data packets contains both the amplitude

and phase information for a particular subcarrier:

HðfnÞ ¼ jHðfnÞjej\Hn : ð1Þ

where HðfnÞ represents the wireless channel information,

namely the channel frequency response (CFR) for nth

subcarrier at the central frequency, fn, jHðfnÞj is the

amplitude information, and \Hn describes the phase

response.

The rationale behind using the S-band sensing is based

on the argument that the wireless channel information

retrieved using S-Band sensing technique is a superior

metric as compared to other techniques, such as received

signal strength indicator as it presents a fine-grained

information of the wireless channel and is more efficient

for small-scale multipath fading [24]. The core idea of

using wireless channel information is to monitor the

breathing pattern of the human subject and identify sleep

apnea episodes by keeping track of any minute changes in

the channel response. S-band sensing is sensitive enough to

record these small changes but the received signal strength

indicator only provides the received power levels and fails

to note down the effects induced by small chest movements

caused by breathing irregularities. Moreover, reflections

and scattering of the radio frequency (RF) signal caused by

the chest movements affect different subcarriers differ-

ently. S-band sensing technique enables examination of

each of the subcarriers, while the conventional received

signal strength indicator only presents average power that

can potentially overlook these small changes.

From each wireless channel information (WCI) packet,

a 30 9 1 matrix in the form of CFR can be extracted. Each

row of the WCI matrix describes one subcarrier. If CFRm

represents the channel frequency response of mth packet

received, then:

CFRm ¼ h1 mð Þ; h2 mð Þ; h3 mð Þ; . . .; h30 mð Þ;
� �� �

ð2Þ

where hi(m) denotes the CFR of the subcarrier i, at time m.

To examine the time history of CFRm, total number of

CFRm recorded at various time intervals are combined and

expressed as:

CFR ¼ CFR1;CFR2;CFR3; . . .;CFRk;½ �½ � ð3Þ

Here, CFR is a 30 9 k matrix, where k describes the

total number of packets received using network adapter and

represents the change in the wireless channel over the

observed time duration.

2.3 Experimental workflow

The usability of the proposed system is established through

performance comparison with a standard respiratory sen-

sor. Thus, the experimental workflow has two main

components:

1. Normal breath detection using both the S-band sensing

technique and an invasive breathing sensor.

2. Hypopnea syndrome detection through wireless chan-

nel information and an invasive breathing sensor.

The respiratory sensor also helps to identify the specific

frequency that should be chosen, which is a key step in

sleep apnea detection.

Raw wireless channel information recorded by S-band

sensing technique is first calibrated and filtered, as shown

in Fig. 4. The selective weight median filter is used for data

calibration and filtering. The wireless channel information

measurements are then examined for changes that occurred

due to small chest movements associated with varying

breathing pattern. If any changes are recorded, all of the 30

subcarriers are analyzed to look for any abnormalities in

the breathing pattern. In case of no sudden disturbances in

the breathing pattern due to chest movements, the wireless

channel information data would remain constant for the

period of observation, inferring an absence of sleep apnea.

A comparison between the two datasets would result in the

detection of the Hypopnea syndrome.

3 Results and discussion

3.1 Benchmark study

A benchmark study is carried out first to establish the

usability of S-band technique for breathing pattern moni-

toring. In this experiment, six subjects (details as shown in

Table 1) volunteered to assess the proposed method. For

each experiment, three datasets were collected from each

subject (only one set of observations for each experiment

from subject 1 is shown in detail in this paper). Figure 5

shows the raw amplitude data obtained using S-band

sensing technique for 30 subcarriers over a period of 60 s

when the subject was breathing normally. The



measurements were taken when the patient was lying

straight, facing upwards. Clear variances and some wave-

like pattern can be observed in the observed data.

To examine the breathing pattern, further processing of

the CFR amplitude data is needed. The first step is to

perform filtering. Figure 6a shows the raw amplitude of all

the 30 subcarriers in 2-D. It can be seen that there are some

(a) Overall Framework

Non-contact 
Diagnosis of the 

Hypopnea Syndrome 
in the Early Stage

Comfortableness
Without Subjective 

Control 

Wearable Sensors

Comfortableness Issue
Consciousness 
Control Issue

Heart Rate Signals Detection

Consciousness Control Issue

SpO2 Signals Detection

Consciousness Control Issue 

Hypopnea Syndrome Detection and Diagnosis

Sensor Collection

Sensor

Information 
Collection

Frequency
Selection

Sleep Apnea Detected

Sleep Apnea 
Detection

Data Calibration 
&Filtering

Comparing Two 
Groups of Data

Sleep Apnea

Frequency
Selection

Normal Breathing 
Cycle Identification 

Data Calibration 
&Filtering

Sleep Normal 
Breathing Detection

Normal 
Breathing

Monopole 
antenna

Monopole 
antenna

RF link MSP

Stethoscope

(b) Work flow for non-contact detection

Fig. 4 Overall framework and

specific workflow for non-

contact detection



breathing are clearly evident due to fluctuations in ampli-

tude information. Figure 7b shows the CFR values after

applying the median filter.

Table 1 Details for six subjects

ID Gender Weight (kg) Height (cm) Hypopnea syndrome ID Gender Weight (kg) Height (cm) Hypopnea syndrome

1 Male 75 173.0 No 4 Male 78 176.2 Yes

2 Male 82 180.6 No 5 Male 82 175.9 Yes

3 Female 60 163.4 No 6 Female 62 160.1 Yes
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Fig. 6 Variances of 30 sequences of normal breathing. a Raw CFR

from all the 30 subcarriers. b CFR data after applying selective

weight median filtering

0 10 20 30 40 50 60
22

23

24

25
the Original CFR

 Time(s)

[d
B

]

Subcarrier # 26

0 10 20 30 40 50 60
22

23

24

25
After Median Filtering

Time(s)

[d
B

]

(a)

(b)

Fig. 7 Time history of the 26th subcarrier and corresponding filtered

data for 60 s duration

Fig. 5 3-D illustration of the raw data obtained for normal breathing

abrupt changes in all the subcarriers. To track clear 
breathing behavior, these abrupt change points must be 
eliminated.

The selective weight median filter is used to remove the 
abrupt change points. The choice of this filter is based on the 
fact that it is a highly effective elimination method for the 
impulse noise [25], appearing in Fig. 6a. The conventional 
filters like Chebyshev or Butterworth are not appropriate to 
remove such high-frequency noise as they blur the rising 
and falling edges of the signal which are critical for iden-
tifying the sleep apnea episodes in this study. Figure 6b 
shows a much cleaner CFR data for the 30 subcarriers after 
using the selective weight median filtering.

We will now discuss the process of characterizing nor-
mal and abnormal breathing. From Fig. 6b, we can see that 
most of the 30 subcarriers have conspicuous periodic 
oscillatory patterns correlated with breathing, whereas the 
rest are messy. The channel giving most clear information 
of breathing pattern with most obvious wave-like pattern 
after the filtering process is considered as the most ‘suit-
able’ for the detection of the Hypopnea syndrome. Maxi-

mum variance approach is applied to select the most 
suitable subcarrier due to the fact that greater variance 
corresponds to higher sensitivity. Based on this, we 
selected the time history of the 26th subcarrier as shown in 
Fig. 7.

The data for the chosen individual subcarrier are ana-
lyzed for a sample of 60 s. Figure 7a shows the normal 
breathing of a person lying in a straight position. Signs of



Figure 8 presents the original breathing data and the

filtered breathing data obtained using a breathing sensor.

The filtered breathing patterns shown in Figs. 7(b) and

8(b) indicate that over the period of 60 s, a total number of

10 breathing cycles were obtained. This comparison also

helps to select the specific frequency for detection. It

establishes the ability of S-band sensing to successfully

record a clear breathing pattern.

To analyze the accuracy of S-band sensing technique,

the Sine function fitting algorithm is used to compare the

results of the two detecting methods. The procedure of the

Sine function fitting algorithm is shown in Fig. 9.

Compared with the breathing sensor, the error of the

proposed method can be represented as:

E ¼ x1 � x2j j
x2

� 100% ð4Þ

where E is the error of the proposed method. The S-band

sensing technique has observed 10 complete breathing

cycles. Value of x1 is 4.989e-05 for S-band technique,

which is equal to b1.

Sine function fitting results for the respiratory sensor in

Fig. 10b also have 10 complete breathing cycles with

x2 = 5.032e-05, which is equal to b1. The error E calcu-

lated by Eq. (4) is 0.8%. Comparing the two observations,

regardless of intuitive or calculated results, the observa-

tions of detecting normal breathing present close agree-

ment. This shows that S-band sensing technique and the

designed measurement system have a good ability to detect

breathing patterns.

3.2 Sleep apnea detection

Acquisition of the data is in-line with the benchmark study

for this part of the experiment. Raw wireless channel

information is obtained with the human subject lying

straight. The subject first breathes normally, then stops

breathing for a while to mimic sleep apnea episode, and

then starts breathing normally again. Figure 11 illustrates

the raw data for this experiment in 3-D.

Figure 12 shows the breathing pattern observations

taken through the respiratory sensor for 120 s duration. The

results indicate that the subject is breathing normally from

0 to 52 s. A constant level in amplitude for the next 26 s

(from 52nd second to 78th second) reflects that the subject

is experiencing a sleep apnea episode. A normal breathing

pattern can be observed from the 78th second onward as

the apnea episode is over.

S-band sensing results are then analyzed for the sleep

apnea measurements. Response for all of the 30 subcarriers

is analyzed as shown in Fig. 11. Figure 13a shows the raw

variances of amplitude information for subcarrier # 30 over

a period of 120 s. The fluctuation of wireless channel

information data from 0 to 8 dB indicates the breathing

pattern but a sleep apnea episode is not present as clearly as

shown in Fig. 13. To reduce the impulse noise, the median

filter is applied, obtaining a clear sleep apnea episode from
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Fig. 8 Normal breathing obtained using breathing sensor
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Fig. 9 The flowchart of the Sine function fitting algorithm



As shown in Fig. 13, the breathing waveform can be

approximated as a periodic sinusoidal wave. Hence, the

number of the peaks of these sinusoidal waves determines

their periodicity and their peak locations ascertain sleep

0 20 40 60 80 100 120 140 160 180 200
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0.5

General model Sin1:
f(x) = a1*sin(b1*x+c1)

Coefficients (with 95% confidence bounds:)
a1 =  24.07   (-268.9, 317.1)
b1 = 4.989e-05  (-0.01589, 0.01599)
c1 =   1.762   (-61.01, 64.54)

Goodness of fit:
SSE: 31.72
R-square: 0.001354
Adjusted R-square: -0.008784
RMSE: 0.4013
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 Normal breathing obtained using S-band sensing technique. 

Normal breathing obtained using breathing sensor.

Fig. 10 Sine function fitting for

normal breathing

52nd second to 78th second. This close agreement between 
the output of the respiratory sensor and S-band sensing 
further establishes the working of the proposed method as 
an efficient alternative.



apnea. Thus, we choose peak detection to monitor occur-

rence of the sleep apnea.

Standard peak detection algorithm is that the maximum

is labeled as a peak for every set of three points. For sleep

apnea detection, we introduced two changes. First is to set

a threshold on the minimum distance between two con-

secutive peaks. Since the maximal breathing frequency in

an adult human is 18 breaths/min, we set a conservative

threshold of 3.3 s. Second is to set a threshold on the

minimum amplitude at which a peak is detected. We apply

the find peaks function in MATLAB to carry out standard

peak detection algorithm. The find peaks function is given

as follow:

pks; locs½ � ¼ findpeaks data;
0
MINPEAKDISTANCE

0
;

�

value1;
0
MINPEAKHEIGHT

0
; value2

�

ð4Þ

where ‘MINPEAKDISTANCE’ denotes the threshold of

the minimum distance between two consecutive peaks, and

the value 1 is set to 16.5 for the CFR data and 165 for the

sensor data. ‘MINPEAKHEIGHT’ represents the threshold

of the minimum amplitude detected at the peak, and the

value 2 is set to 5 for the CFR data and 130 for the sensor

data. Figure 14 shows the flowchart of standard peak

detection algorithm.

Figure 15 shows that peak detection algorithm identifies

correct peaks and the pause times for the CFR data col-

lected by S-band sensing technique and the respiratory

sensor data. The final results can be summarized as

follows:
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• There are 14 peaks and one apnea in breathing pattern.

• The pause is more than 10 s.

• The results agree with those collected by the respiratory

sensor.

We use the Sine function fitting algorithm and peak

4 Conclusion

A novel contactless monitoring system for breathing pat-

tern observation and sleep apnea detection is presented in

this paper. The proposed technique is based on S-band

sensing system in an indoor environment and makes use of

wireless channel information to observe breathing patterns

and identify small changes in the channel response due to

the chest movements caused by breathing abnormalities.

The proposed system utilizes the median filtering to elim-

inate impulse noise in the observed data. A detailed mea-

surement campaign is carried out to obtain the breathing

pattern of a normal breathing human subject using S-band

sensing technique and a standard respiratory sensor

simultaneously to compare and establish the working of the

proposed technique in benchmark study. Sine function

(a) Breathing pattern obtained using S-band sensing technique.

Breathing pattern obtained using breathing sensor.
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Fig. 15 Sleep apnea detection

using peak detection algorithm

detection algorithm to process the data collected from all 
subjects. Except for the results given above from subject 1, 
the results from subject 3 are shown in Fig. 16. Figure 16a 
shows the result using the Sine function fitting algorithm, 
and value of x1 is 5.158e-05 for the CFR data and value 
of x2 is 5.674e-05 for the sensor data. The calculated 
error E is 1.1%. Figure 16b shows that peak detection 
algorithm identifies correct peaks and the pause times. 
There are 10 peaks and one apnea for more than ten sec-
onds in one minute, as can be seen in the figure below.
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General model Sin1:
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fitting algorithm is used to analyze the detected results. A

close agreement between the two results established the

maximum accuracy of the proposed method. The proposed

technique is then used to detect Hypopnea syndrome suc-

cessfully. Similar peaks and pause times using peak

detection algorithm observed for the S-band sensing and

respiratory sensor for sleep apnea have further established

the ability and accuracy of the proposed technique for

Hypopnea syndrome detection. The experiment has shown

that the proposed S-band sensing is an efficient alternative

to traditional Hypopnea syndrome detection methods with

added features of contactless, and patient-friendly system

exhibiting sufficiently high precision with good potential of

early warning Hypopnea syndrome detection for both

clinical and home settings. Future work may include

multipatients detection, anti-interference diagnosis, etc.
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