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1. Abstract 

We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 

(MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards 

the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 

nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards 

H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites 

exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher 

percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The 

resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) 

and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec-

1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential 

(vs. RHE) and 21.0 mV dec-1, respectively) and enhanced over bare/unmodified SPE (– 0.43 V 

(vs. RHE) and 149.1 mV dec-1, respectively). Given the efficient, HER activity displayed by the 

novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost 

of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within 

electrolyser technologies.  

Keywords: Molybdenum disulfide (MoS2), graphene, Hydrogen Evolution Reaction, Energy 

storage  
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2. Introduction 

A plethora of emergent low polluting energy generation technologies rely upon hydrogen gas as a 

fuel source[37], which has created an impetus for clean hydrogen generation techniques to be 

developed. A prominent method for clean hydrogen generation is the Hydrogen Evolution 

Reaction (HER); (2H+ + 2e– 
 H2), which is the cathodic reaction within an electrolyser.[1] The 

power necessary to operate an electrolyser could feasibly be drawn from renewable sources, 

making it a “cleaner” fuel source compared to its fossil fuel (FF) counterparts.[32] A limiting 

factor to the ubiquitous use of electrolysers to generate hydrogen is the requirement for expensive 

platinum (Pt) as a catalyst for the HER.[13, 18, 31] Much of the research dedicated to finding an 

alternative to Pt has focused upon the di-chalcogenides, particularly MoS2 based materials (see 

Table 1),[31] as 2D-MoS2 nanosheets have been shown to be effective at lowering the HER onset 

potential and increasing the achievable current density, whilst typically being composed of 

significantly cheaper and more earth abundant elements.[7, 17, 19] For example a study by Ruiz 

et al.[35] utilized a chemical vapor deposition (CVD) technique to grow vertically aligned MoS2 

on a gold foil and demonstrated how the optimized (prepared at 600ºC) MoS2 film, when used as 

an electrode, achieved a current density of 10 mA cm–2 by –0.355 V (vs. saturated calomel 

electrode (SCE)). Whilst being ca. –0.250 V (vs. SCE) more electronegative than the optimal value 

of Pt, it was significantly less electronegative than the values reported by Rowley-Neale et al.[31] 

for unmodified traditional carbon based electrodes (boron doped diamond, edge-plane pyrolytic 

graphite, glassy carbon and screen-printed electrodes (SPE)).  

There are a wide variety of studies within the literature, which demonstrate the capability of a 

MoS2 based material to act as an efficient electrocatalyst towards the HER, however few reports 

show any form of catalyst that can display equivalent HER activity to Pt based electrocatalysts. In 

order to narrow the potential gap between the HER onset potentials of MoS2 and Pt based catalysts, 

numerous studies have utilized MoS2 nanosheets as a dopant framework in order to fabricate 

electrocatalysts that show more comparable HER activity to Pt. One such study by Shi et al.[38] 

found that Zinc (Zn) doped MoS2 (Zn-MoS2) when drop-cast onto a GC electrode exhibited greater 

HER catalysis than undoped MoS2, with a HER onset potential of –0.13 V (vs. reversible hydrogen 

electrode (RHE)) and a Tafel slope of 51 mV dec–1 compared to –1.4 V (vs. RHE) and 101 mV 

dec–1 for undoped MoS2 nanosheets. Shi and coworkers.[38] attributed the increased HER activity 



4 
 

to a synergistic electron (energy level matching) and morphological effect (increase in the number 

of exposed active edge sites) between the Zn and the MoS2 nanosheets. 

HER catalysis is thought to predominately occur at the MoS2 nanosheets edge sites, in particular 

the exposed Sulfur atoms, which have an affinity towards H+ adsorption due to a density functional 

theory predicting a binding energy of +0.08 eV.[19] In contrast to this, the basal sites are relatively 

inert and show little catalytic activity,[47] consequently the bulk of the material can be considered 

electrocatalytically inert.[6] Efforts to maximize the ratio of edge sites to basal sites of a given 

MoS2 based material would therefore yield a more effective HER catalyst. Previous studies have 

shown that hybridizing an electrocatalyst with a graphitic material (e.g. reduced graphene oxide) 

offers a beneficial morphology (an increased number of exposed active sites) leading to increased 

catalysis.[21] Hybridization in this manner has the additional benefit of improving charge transfer 

and conductivity for the entire system and notably, the electrocatalytic sites.[10] 

Given the above, there are two major factors that should be considered in research focused on 

optimizing HER catalysis of MoS2 containing materials. The first being: increasing the affinity of 

active sites towards H+ adsorption and thus their ability to catalyze the HER. Secondly: 

maximizing the ratio of exposed active edge sites to inert basal sites, which will increase the 

density of sites enabling catalysis. In order to tackle both of these challenges we present a novel 

methodology for doping MoS2 with transition metals (Cu and Ni) in order to increase the electron 

density at the electrocatalytically active edge sites and therefore improve their HER activity, whilst 

increasing the exposure of these sites by anchoring them to a graphene framework. The novel 

MoS2-graphene-CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite is electrically wired via 

immobilization upon SPEs and experimentally explored towards the HER where it exhibits highly 

efficient HER catalysis. 
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3. Experimental 

3.1. Chemicals 

The MoS2-g-CuNi2S4 nanocomposite precursors utilized in this study were, 

Cu(NO3)2.6H2O, Ni(NO3)2.6H2O, thiourea, MoS2, graphite powder (30 µm) and 

polyvinylpyrolidine. All of precurcors were purchased from Sigma Aldrich, Merck and Sd-fine 

chemical PVT Ltd, respectively and used without further purification. All solutions were prepared 

with doubly distilled water (18.2 MΩ cm) and were vigorously degassed prior to electrochemical 

measurements with high purity, oxygen free, nitrogen. All experiments were performed in 0.5 M 

H2SO4 in order to replicate the conditions found within an acidic proton exchange membrane fuel 

cell (PEMFC).[34] 

 

3.2. Electrochemical Measurements 

Electrochemical measurements were studied using CH-Electrochemical analyzer model 

CHI 6039E (USA). Measurements were carried out using a typical three electrode system with a 

nickel wire counter and a reversible hydrogen electrode (RHE) reference electrode. The working 

electrodes are screen-printed graphite macro electrodes (SPEs) comprising a 3.1 mm diameter 

working area. The SPEs were fabricated in-house with the appropriate stencils using a DEK 248 

screen-printing machine (DEK, Weymouth, U.K.).[9] The fabrication of the SPEs has been 

extensively described in previous publications,[34] however it is repeated within the supporting 

information for clarity. 

 

3.3. Synthesis of MoS2-g-CuNi2S4 nanocomposite  

The MoS2-g-CuNi2S4 nanocomposites were synthesized by the following protocol. In brief, 120 

mg of graphite (<20 μm) and MoS2 powder were mixed into a solution containing a 1:1 mixture 

of water/isopropanol. This solution was then ultra-sonicated for 3 hrs. Following this, 1 mM of 

Cu(NO3)2.6H2O, 2 mM Ni(NO3)2.6H2O, PVP and thiourea were added to 12.5 mL of the 

graphene/MoS2 solution at a concentration of 1, 2, 1 and 9 mM, respectively. Next, 1 mL of 

ammonia was added drop wise to the solution under continuous stirring. The solution mixture was 

then transferred into a Teflon lined autoclave, sealed and heated, at 180 °C, for 24 h. The obtained 

black solid product was filtered, washed with water and ethanol several times then left to in a hot 
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air oven, at 80 °C, for 12 h. For comparative purposes CuNi2S4, g-CuNi2S4 and MoS2-CuNi2S4 

were fabricated in the same manner and electrochemically explored towards the HER. 

 

3.4. Instrumentation 

The phase transition, purity and crystal structure of the synthesized compounds were analyzed by 

a PAnalytical X’pert PRO powder X-ray powder diffractometer (XRD) equipped with Ni-filtrated 

Cu Kα radiation (40 kV, 200 mA). The composition and functional groups present in the as 

prepared catalyst was monitored by Agilent carry-630 Fourier transform infrared (FT-IR) 

spectroscopy over the range of 400-4000 cm-1. Raman Spectroscopy was performed using a 

‘Renishaw InVia’ spectrometer equipped with a confocal microscope (×50 objective) and an argon 

laser (514.3 nm excitation). Measurements were performed at a very low laser power level (0.8 

mW) to avoid any heating effects. The optical absorbance spectra of as prepared HER catalyst was 

monitored by UV-visible absorption spectroscopy (UV-1800, Shimadzu, Japan). The morphology, 

composition, size and crystallinity of the as prepared HER catalyst was analyzed by scanning 

electron microscope (SEM) using a JEOL JSM-5600LV model SEM. Transmission electron 

microscopy (TEM) images were obtained using a 200 kV primary beam under conventional bright-

field conditions with an energy dispersive X-ray microanalysis (EDX) package. The MoS2-g-

CuNi2S4 sample was dispersed onto a holey-carbon film supported on a 300 mesh Cu TEM grid. 

X-ray photoelectron (XPS) analysis of the samples was performed using a bespoke ultra-high 

vacuum system fitted with a Specs GmbH Focus 500 monochromated Al Ka X-ray source, Specs 

GmbH Phoibos 150 mm mean radius hemispherical analyser with 9-channeltron detection, and a 

Specs GmbH FG20 charge neutralising electron gun. The Al monochromator source was used to 

generate a survey scan and higher resolution scans over C 1s, O 1s, Cu 2p, Ni, 2p, N 1s, S 2p and, 

where detected, Mo 3d photoelectron lines. A representative area approximately 1.4 mm in 

diameter over the center of each sample was analysed. 

 

 

3.5. Electrode preparation 

Following the synthesis of the nanocomposites, their HER activity was electrochemically 

explored. This was done by dispersing 5 mg of the catalyst and 5 wt% nafion into a solution of 

water and ethanol, the solution was ultra-sonicated for 30 min to ensure it was homogenous. 5 μL 
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of this suspension was then drop-caste (where an aliquot of the given solution is deposited onto 

the working area of an SPE, using a manual micro-pipette). This resulted in a surface coverage of 

ca. 0.3 mg cm-2 MoS2-g-CuNi2S4. The electrode was then air dried for 30 mins to ensure 

evaporation of the water and ethanol. The prepared electrode was then ready for use.  
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4. Results and Discussion 

4.1. Physicochemical characterization of the nanocomposites 

A thorough physicochemical analysis of the novel synthesized MoS2-g-CuNi2S4 nanocomposite, 

was performed using FT-IR, Raman spectroscopy, SEM, TEM, TGA, EDX, XRD and XPS. 

TEM imaging of the MoS2-g-CuNi2S4 nanocomposite is shown in Figure 1 showing that the MoS2-

g-CuNi2S4 nanocomposite had an average diameter of ca. 50 nm, however there are signs of 

agglomeration of the new particles. Note that Figure 1(B) has five separate sites identified which 

are the locations of elemental composition analysis via EDX, the results of which are prescribed 

within in Table S1. Note that the presence of all the expected elementals, and there is a higher than 

expected percentage of Cu observed, which is likely a result of the use of a Cu supporting grid. 

EDX mapping of a MoS2-g-CuNi2S4 flake (see ESI Figure S1) showed uniform distribution S, Cu, 

Ni, Mo and O upon the flakes surface. The FTIR spectrum of the MoS2-g-CuNi2S4 nanocomposite 

is given in Figure 2(A). The majority of peaks between 1000-4000 cm−1 can be ascribed to graphitic 

components, for example the peaks at 1609 and 2911 cm−1 are characteristic of sp2 hybridized carbon 

and  hydroxyl groups, respectively.[40] Note the peak at 3434 cm−1 is the characteristic band of O-

H.[50] The weak observable peak at 479 is likely due to Mo-S vibration.[26] Raman spectroscopy was 

also performed on the MoS2-g-CuNi2S4 with the obtained spectrum being shown in Figure 2(B). 

Vibrational bands (VB) at ca. 378 and 403 cm−1, which correspond to the E1
2g and  A1g, of MoS2, can 

be observed.[20] Additionally VBs at ca. 1360 and 1578 cm–1 are observed, these correspond to the 

D and G bands of a graphitic material.[4, 29] Finally, the presence of a peak at ca. 2713 cm–1 (2D 

band) is also characteristic of graphitic materials,[4, 8] thus confirming the presence of high quality 

few layer graphene and MoS2.[16, 28] The XRD profile of the MoS2-g-CuNi2S4 nanocomposite is 

shown in Figure 2(D). Except for the indexed MoS2 peaks (corresponding to JCPDS No. 37-1492), 

all of the other diffraction peaks can be ascribed to the cubic phase of CuNi2S4 (JCPDS No. 24-

334). For instance, the typical diffraction peaks of (311), (400), (511), and (440) diffraction planes 

can be clearly indexed at 31.4°, 38.2°, 50.1°, and 55.1°, respectively. No obvious peaks from other 

phases such as CuS, NiS, or organic compounds related to the precursors were detected. 

Furthermore, graphene/graphite peak (002) at 26.5°,[28] in the XRD patterns as well as the 

characteristic (002) peak for MoS2 at 14.2°.[15] It was important to determine the elemental 

composition of each of the nanocomposites, therefore XPS analysis was performed on the samples. 
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A typical survey spectra of the MoS2-g-CuNi2S4 is shown in Figure 2(C), where all the expected 

elements can be observed as well as low levels of N and Si (the presence of N is likely due to 

atmospheric contamination, whilst the Si can be attributed to the Si containing adhesive tape used 

to fix the samples during analysis). The full elemental composition of each composite material is 

shown within Table 2. Table 3 gives the results of the quantification analysis of all the synthesized 

nanocomposites and ESI Figure S2 displays high resolution XPS spectra of the Mo, S, C, O, Cu 

and Ni components for the MoS2-g-CuNi2S4 nanocomposite. Note that further XPS analysis is 

described later within the manuscript in order to provide insights into the substantial HER activity 

observed by the MoS2-g-CuNi2S4. Lastly, thermogravimetric analysis assessed the thermal 

stability of the MoS2-g-CuNi2S4. It is clear from inspection of ESI Figure 3 that the nanocomposite 

was stable until ca. 200ºC after which the MoS2-CuNi2S4 exhibited a rapid and uniform 

decomposition to ca. 75% by 900ºC. The average working temperature of a proton exchange 

membrane electrolyser is between 50-80 ºC,[11] so MoS2-g-CuNi2S4 could maintain its 

composition within an operating electrolyser. Given the thorough physicochemical analysis given 

above the MoS2-g-CuNi2S4 nanocomposite is shown to be of high purity and crystallinity.   

 

4.2. Application of the MoS2-g-CuNi2S4/SPEs towards the HER 

Initially it was important to benchmark the electrochemical behavior of a bare/unmodified SPE 

and a polystalline platinum (Pt) electrode towards the HER in 0.5 M H2SO4. Figure 3(A) shows 

the linear sweep voltammetry (LSV) obtained for a bare/unmodified SPE and Pt electrode as well 

as for the CuNi2S4/SPE, g-CuNi2S4/SPE, MoS2-CuNi2S4/SPE and MoS2-g-CuNi2S4/SPEs. The 

bare/unmodified SPE had an onset potential of – 0.43 V (vs. RHE), as expected this is far more 

electronegative than the optimal HER onset potential for Pt. Note that within this study the HER 

onset potential is determined as the potential when the current deviates from the background 

current by 25 µA cm–2. From inspection of Figure 3(A) it is clear that upon immobilization of all 

of the nanocomposites onto an SPE there is a decrease in the electronegativity of the HER onset 

potential, with the CuNi2S4/SPE, g-CuNi2S4/SPE, MoS2-CuNi2S4/SPE and MoS2-g-CuNi2S4/SPE 

exhibiting HER onset potentials of – 0.41, – 0.15, – 0.13 and – 0.05 V (vs. RHE), respectively. It 

is also worth noting there is a corresponding increase in the achievable current densities with the 

MoS2-g-CuNi2S4/SPEs reaching 10 mA cm–2 by – 0.12 V (vs. RHE). In comparison of the 

nanocomposites synthesized, the MoS2-g-CuNi2S4/SPE displays the most optimal HER activity 
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with a HER onset potential close to that of Pt. This is likely a result of MoS2-g-CuNi2S4 having the 

largest number of exposed active edge sites for H+ adsorption as a result of the graphene acting as 

a framework for optimal exhibition of the sulfur edge sites of MoS2 and CuNi2S4 in addition to the 

electrocatalytically active functional moieties in graphene. Additionally, the graphene acted to 

increase the electroconductivity, whilst the interface in MoS2-g- CuNi2S4 facilitates the electron 

transfer during electrocatalysis.  

 

4.3. Tafel Analysis 

In order to determine whether the increased HER activity observed from an SPE post 

nanocomposite immobilization was as a result of the catalyst enabling a change in the reaction 

mechanism, Tafel analysis was performed. The activity of a HER catalyst is related to the kinetic 

barrier of the rate-determining hydrogen evolution pathway. According to the literature, HER 

mechanism involves three possible rate limiting steps, those being: (i) initial H+ adsorption step, 

known as the Volmer step, 

    𝐕𝐨𝐥𝐦𝐞𝐫: H3O+  + Catalayst +  e− → Hads +   H2O (l); 
2.303RT

αF
 ≈ 120mV  

 (ii) Volmer- Heyrosky discharge step: 

𝐇𝐞𝐲𝐫𝐨𝐯𝐬𝐤𝐲: H3O+  + Hads + e− → H2 (g) +   H2O (l); 
2.303RT

(1 + 2)F
 ≈ 40mV  

(iii) Volmer-Tafel discharge step : 

𝐓𝐚𝐟𝐞𝐥: H𝑎𝑑𝑠  + H𝑎𝑑𝑠 → H2 (g); 
2.303RT

2F
 ≈ 30mV 

where the transfer coefficient (α) is 0.5, F is the Faraday constant, R is the universal gas constant 

and T is the temperature at which the electrochemical experiment was performed (298 K). Tafel 

analysis was performed on the Faradaic section of the LSVs shown in Figure 3(A) with the 

resultant Tafel slopes being given in Figure 3(B). The determined Tafel slopes for the 

bare/unmodified SPE and Pt electrodes were 149.1 and 21.0 mV dec-1, respectively, these values 

correspond to those reported in previous literature. The determined Tafel values suggest that the 

rate limiting step of the HER mechanism on a bare/unmodified SPE is the Volmer step whilst a Pt 

electrode allows the HER to occur via the desirable Volmer-Tafel mechanism. The Tafel slope 
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values obtained for the CuNi2S4/SPE, g-CuNi2S4/SPE, MoS2-CuNi2S4/SPE and MoS2-g-

CuNi2S4/SPEs were 147.3, 111.8, 44.7 and 29.3 mV dec-1 respectively. Interpretation of these Tafel 

values, reveals that for the CuNi2S4/SPE and g-CuNi2S4/SPE there is not an alteration in the 

reaction mechanism with the Volmer adsorption step still being the rate limiting step. However, 

for the MoS2-CuNi2S4/SPE and MoS2-g-CuNi2S4/SPEs there is a significant increase in the current 

density resulting in the Tafel discharge step becoming the rate limiting step. The smallest Tafel 

value was recorded for the MoS2-g-CuNi2S4/SPE, this suggests that MoS2-g-CuNi2S4 substantially 

enhances the HER capability of the SPE platform to close to that of a Pt electrode. The data 

presented above clearly shows that hybridization of MoS2 with graphene and CuNi2S4 significantly 

improves HER catalysis. The literature suggests that it is the exposed sulfur atoms located at the 

MoS2 nanosheets edge sites that produce HER activity, it was therefore vital that we investigate 

the chemical changes responsible for the reported increase in catalysis. A detailed quantitative 

XPS analysis of the S components for each of the nanocomposites was performed. The obtained 

high resolution S 2p spectra (See ESI Figure S2) were complex in shape, exhibiting good evidence 

for 4 separate chemical environments. S 2p peaks were fitted with multiple sets of 2p3/2-2p1/2 

doublets. In each case, the two components of the doublet had to be constrained to the same width 

and line shape, the area ratio is constrained so that the 2p1/2 component is 50% of the intensity of 

the 2p3/2 component (as expected from orbital occupancies), and the two components are 

constrained to be separated by 1.13 eV. The 4 separate chemical environments for S were: Metal-

bonded S e.g. metal sulfide bonds such as Cu-S, Ni-S, Mo-S, typically 161 – 162 eV, Metal bonded 

to organic S, typically 162.5 – 163 eV, organic (carbon bonded) sulfur, typically 164.4 – 164.6 eV, 

and oxidized S e.g. as sulfate, typically 168.4 – 168.5 eV. The relative percentage quantity of each 

of these components with the four nanocomposites is summarized in Table 3. It is evident that 

there is a strong positive correlation between atomic percentage of S (especially metal bonded S) 

and electrocatalytic activity towards the HER for the MoS2-g-CuNi2S4, MoS2- CuNi2S4 and g-

CuNi2S4. As shown by analysis of the MoS2-g-CuNi2S4, which displayed the greatest HER 

catalysis and had the highest atomic percentage of S at 17.04%, of which 48.83% was metal 

bonded S (the highest percentage recorded for any of the nanocomposites). Note that CuNi2S4 has 

the highest atomic percentage of S of all four nanocomposites and a higher % of metal bonded S 

than MoS2- CuNi2S4 or g-CuNi2S4, however it displays the least amount of HER catalytic activity. 

We summarize this to the lack of Mo, and therefore the lack of Mo-S sulfides, within the CuNi2S4. 
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So whilst there is a relatively high % of metal-S bonds these are likely Cu-S and Ni-S, therefore 

suggesting that the S present is not in a chemical environment complimentary to HER catalysis. 

 

The as prepared materials CuNi2S4, g-CuNi2S4, MoS2-CuNi2S4 and MoS2-g-CuNi2S4 were further 

examined using electrochemical impedance spectroscopy (EIS) in order to determine the 

impedance of the interface system. EIS is a useful technique to characterize interface reactions and 

electrode kinetics in HER. ESI Figure S4 shows the Nyquist plots recorded for all of the 

nanocomposite modified SPEs using an overpotential of 150 mV (vs. RHE). The MoS2-g-CuNi2S4 

exhibited the smallest Rct at 10.08 kΩ compared to 44.35, 39.27 kΩ and 112.0 kΩ for the CuNi2S4, 

g-CuNi2S4 and MoS2- CuNi2S4, respectively. The EIS data presented above supports the prior 

inference that MoS2-g-CuNi2S4 is the most effective electrocatalyst for the HER as it displayed the 

fastest rate of reaction. Lastly it was essential to assess the stability, of the MoS2-g-CuNi2S4, at 

catalyzing the HER, as longevity and durability are important considerations if catalyst is to be 

implemented in an industrial application.[23, 39, 44] The stability of the MoS2-g-CuNi2S4/SPEs 

towards HER has been tested by performing 1000 repeat cycling voltammograms (See Figure 

3(C)). A slight decrease in catalytic activity of MoS2-g-CuNi2S4/SPE is observed over the course 

of the 1000 scans, with the current density at –0.10 V decreasing from –134 µA for the first scan 

to 98 µA for the 1000th scan. The observed decrease in HER catalysis over for the course of 1000 

CVs is likely a result of the MoS2-g-CuNi2S4 delaminating from the supporting SPEs surface due 

to hydrogen bubbling from the surface as the HER occurs.[3]  
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5. Conclusions 

The synthesis of a novel MoS2-g-CuNi2S4 nanocomposite that displays remarkable HER catalysis 

upon immobilization to a SPE, has been reported. The intrinsic HER activity of MoS2 was 

improved by increasing the affinity of the active edge sites, of the MoS2 nanosheets, for H+ 

adsorption using transition metal (Cu and Ni) dopants, whilst also increasing the edge sites 

exposure by anchoring them to a graphene framework. Through a detailed XPS analysis, we 

demonstrated that the synthesis process, in particular hybridizing the MoS2 with graphene, 

increases the percentage of electrocatalytic surface exposed S as well as the proportion of metal 

bonded S from 15.95% and 40.02%, respectively for the MoS2-CuNi2S4 nanocomposite to 17.04% 

and 48.83%, respectively for the MoS2-g-CuNi2S4 nanocomposite. The optimized MoS2-g-

CuNi2S4 electrocatalyst when immobilized upon SPEs display near Pt HER activity with a HER 

onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec–1, respectively. These 

values are far greater than those of a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec-

1), and the equivalent masses of the other synthesized nanocomposites upon an SPE ((CuNi2S (– 

0.41 V (vs. RHE) and 147.3 mV dec–1), g-CuNi2S4  (– 0.15 V (vs. RHE) and 111.8 mV dec–1) and 

MoS2-CuNi2S4 (– 0.13 V (vs. RHE) and 44.7 mV dec–1)). We have provided insights into the 

synthesis of a novel HER catalyst (MoS2-g-CuNi2S4), which exhibits a near Pt electrocatalytic 

activity towards the HER. Clearly MoS2-g-CuNi2S4 has the potential to act as a cost effective 

alternative to Pt, when utilized as the cathodic electrocatalyst implemented within the triple phase 

boundary of commercial PEM electrolysers. 
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Table 1. Comparison Table showing the HER activity of MoS2 and MoS2 containing compounds. 

 

Key: CD/MoS2; carbon nanodot MoS2 ensembles, GC; glassy carbon, –; no value given, RHE;  reversible hydrogen electrode, P; 

phosphorus, NF; nickel foam, H; heteronanorods *: produced by magnetron sputtering MoS2 onto a nanocarbon substrate, SPE; screen-

printed electrode, SCE; saturated calomel electrode, NC; nanocubes, MoS2-PB/NG; Fe4[Fe(CN)6]3 NC with MoS2 N-doped on graphene;  

CC;   Carbon cloth, NFL; Nickel foil, DAC; Defective activated carbon  A-MoS2; Acid engineered, RGO; Reduced graphene oxide, CF: 

Carbon fibre

Catalyst Supporting Electrode Loading Deposition 

Technique 

Electrolyte HER onset (V) Tafel Slope (mV dec-1) Reference 

CD/MoS2 GC – Drop- cast 0.5 M H2SO4 ca. – 0.5  (vs. RHE) 22 [5] 

P-doped MoS2 GC 0.32 mg cm–2 Drop- cast 0.5 M H2SO4 – 0.015  (vs. RHE) 34 [25] 

MoS2-Ni3S2 H NF – Chemical synthesis 1.0 M KOH – 0.037 (vs. RHE) 61 [46] 

MoS2/C* SPE 252.80 µg cm–2 Drop- cast 0.5 M H2SO4 – 0.44  (vs. SCE) 43 [33] 

MoS2-PB/NG GC – Drop-cast 0.5 M H2SO4 – 0.08  (vs. RHE) 62 [49] 

MoS2 GC 0.24 mg cm–2  Drop-cast 0.1 M H2SO4 -0.117 (vs. RHE) 78 [24] 

Ni-MoS2  CC – Chemical synthesis  1.0 M KOH -0.098 (vs. RHE)  75 [43]  

Ni-MoS2    CC – Chemical synthesis  0.5 M H2SO4 -0.110 (vs. RHE)  74 [43]  

CuNi-P-MoS2   NFL – Chemical synthesis 0.5 M H2SO4   -0.225 (vs. RHE)  61 [2] 

NiCo2S4/MoS2  NF 3.00 mg cm–2  Chemical synthesis 0.1 M KCl  -0.40 (vs. RHE)  – [14] 

MoS2-ZnO-Ni  NF – Chemical synthesis   1.0 M KOH -0.129 (vs. RHE)   78 [45] 

MoS2-NiS GC 0.20 mg cm–2  Drop-cast 1.0 M KOH -0.083 (vs. RHE) 66 [41] 

DAC/MoS2 GC 2-5  mg cm–2 Drop-cast 0.5 M H2SO4   -0.090 (vs. RHE) 84 [36] 

A-MoS2 GC – Drop-cast 2 M HNO3 -0.080 (vs. RHE) 97 [48] 

RGO-MoS2 GC – Drop-cast 0.5 M H2SO4 -0.147 (vs. RHE) 36 [12] 

RGO-MoS2 GC 20 µg Drop-cast 0.5 M H2SO4 -0.130 (vs. RHE) 75 [27] 

MoS2/MoSe2 CF – Chemical synthesis  0.5 M H2SO4 -0.162 (vs. RHE) 61 [22] 

MoS2 GC – Drop-cast 0.5 M H2SO4 -0.185 (vs. RHE) 45 [42] 

MoS2 GC – Drop-cast 0.5 M H2SO4 -0.230 (vs. RHE) – [30] 

MoS2-g- CuNi2S4 SPE 0.30 mg cm–2   Drop-cast   0.5 M H2SO4  – 0.05  (vs. RHE)  29 This work 
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Table 2. XPS elemental quantification of the CuNi2S4, g-CuNi2S4, MoS2-CuNi2S4 and MoS2-g-

CuNi2S4 nanocomposites. 

Element Composition (%) CuNi2S4 g-CuNi2S4 MoS2-CuNi2S4 MoS2-g-CuNi2S4 

Cu 2p3/2  3.14 2.33 2.06 2.72 

Ni 2p3/2 5.72 5.37 4.11 4.41 

O 1s 29.95 18.11 15.54 13.30 

N 1s 7.88 3.97 2.73 4.28 

C 1s 33.97 58.74 57.33 57.06 

S 2p 19.33 11.48 15.95 17.04 

Mo 3d - - 2.28 1.19 
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Table 3. XPS quantification of sulfur containing components of the CuNi2S4, g-CuNi2S4, MoS2-CuNi2S4 and MoS2-g-CuNi2S4 

nanocomposites. 

Sample 
Atom 

% S 
binding energy of 2p3 (eV) % of total S atom %  Chemical state 

CuNi2S4 19.33 

161.1 36.69 7.09 metal-S 

162.5 22.12 4.28 metal bonded organic S e.g. metal-S-C 

164.6 5.89 1.14 organic S e.g. C-S 

168.5 35.3 6.82 sulfate, SO4
2- 

      

graphene-CuNi2S4 11.48 

161.9 31.81 3.65 metal-S 

163.1 43.86 5.04 metal bonded organic S e.g. metal-S-C 

164.4 13.86 1.59 organic S e.g. C-S 

168.4 10.48 1.2 sulfate, SO4
2- 

      

MoS2-CuNi2S4 15.95 

161.4 40.02 6.38 metal-S 

162.6 45.56 7.27 metal bonded organic S e.g. metal-S-C 

164.4 6.77 1.08 organic S e.g. C-S 

167.7 6.66 1.06 sulfate, SO4
2- 

      

MoS2-g-CuNi2S4 17.04 

161.5 48.83 8.32 metal-S 

162.7 36.55 6.23 metal bonded organic S e.g. metal-S-C 

164.6 6.57 1.12 organic S e.g. C-S 

168.4 8.04 1.37 sulfate, SO4
2- 
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Figure 1. Transmission electron microscopy (TEM) MoS2-g-CuNi2S4 nanocomposite. Five sites 

of energy-dispersive X-ray (EDX) analysis are shown in (B) with the corresponding elemental 

compositions given in Table S1. 
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Figure 2. Physicochemical characterisation of the synthesized MoS2-g-CuNi2S4 nanocomposites 

with FTIR (A), Raman (B), XPS (C) and XRD (D). 
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Figure 3. (A) Linear sweep voltammetry of unmodified and various modified electrodes showing 

HER activity of a bare/unmodified SPE, polycrystalline platinum electrode, CuNi2S4/SPE, g-

CuNi2S4/SPE, MoS2-CuNi2S4/SPE and MoS2-g-CuNi2S4/SPE, Solution composition: 0.5 M 

H2SO4; Scan rate: 20 mVs–1 (vs. RHE). (B) Tafel slopes corresponding to the Faradaic regions of 

the LSVs shown in (A). (C) Cyclic stability examination of a 10% MoS2-g-CuNi2S4/SPE via LSV 

(scan rate: 100 mV s−1 (vs. RHE)) was performed between the potential range of 0 to −0.35 V, 

repeated for 1000 cycles, this figure shows the first scan (black line), 1000th (red line). 
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