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Higher levels of taxonomic and evolutionary diversity are expected to maximize 79 

ecosystem function, yet the relative importance of these different aspects of diversity 80 

for driving variation in ecosystem function at large scales in diverse forests is unknown. 81 

We explored this issue within Amazonian forests, which play a major role in the global 82 

carbon cycle and harbour a remarkable diversity of angiosperm lineages and species. 83 

Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a 84 

new phylogeny including 582 angiosperm genera, we investigated the association 85 

between taxonomic and evolutionary metrics of diversity and two key measures of 86 

ecosystem function - aboveground wood productivity and biomass storage - whilst 87 

accounting for the effects of climatic and edaphic variables. While taxonomic and 88 

phylogenetic diversity were not important predictors of variation in biomass, both 89 

emerge as independent predictors of wood productivity. Amazon forests that contain 90 

greater evolutionary diversity and a higher proportion of rare species have higher 91 

productivity. Whilst climatic and edaphic variables are together the strongest 92 

predictors of productivity, our results demonstrate that the evolutionary diversity of tree 93 

species in diverse forest stands also influences productivity. As our models accounted 94 

for wood density and tree size, they also suggest that additional, unstudied, 95 

evolutionarily correlated traits have significant effects on ecosystem function in tropical 96 

forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic 97 

diversity translates into higher levels of ecosystem function: tropical forest 98 

communities with more distantly related taxa have greater wood productivity.  99 
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Main text 100 

Higher levels of taxonomic and phylogenetic diversity play important and 101 

independent roles in determining ecosystem function1–3. In experimental studies of 102 

temperate grasslands, higher levels of taxonomic and evolutionary diversity are 103 

associated with greater biomass and productivity2–4. In particular, the degree of 104 

evolutionary diversity, measured by the variability in evolutionary history shared within 105 

a group of species, is often a better predictor of productivity than the number of 106 

species2–4, consistent with the hypothesis that evolutionary dissimilarity is related to 107 

niche complementarity1–5. However, although the results of a range of biodiversity 108 

experiments2–7 suggest that communities with distantly related lineages have greater 109 

carbon stocks and productivity, the effect of phylogenetic diversity on measures of 110 

ecosystem function remains controversial. Positive relationships are common, but not 111 

a rule, and negligible effects of evolutionary diversity on productivity and biomass have 112 

been reported in some cases8,9. Therefore, it is still unclear whether these 113 

relationships can be generalised, and the extent to which evolutionarily diverse 114 

communities maximize function is unknown, particularly at large scales relevant to 115 

conservation planning. 116 

The total amount of phylogenetic diversity represented by species within a 117 

community may be valuable for understanding how diversity affects ecosystem 118 

function because these properties tend to reflect variation in the functional diversity of 119 

these communities. This is because evolutionary relationships can capture information 120 

about multiple traits5,10–12, including those that are difficult to measure. For instance, 121 

in an experimental study of grassland communities, evolutionary diversity was a better 122 

predictor of productivity than some easily measured, or ‘soft’, functional traits (e.g. 123 

specific leaf area, seed weight and height), suggesting that unmeasured traits that are 124 
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significantly related to phylogenetic relationships, such as root architecture, root 125 

morphology, resource requirements or other critical functional differences, could 126 

contribute to maximizing productivity3. Evolutionary diversity metrics that encompass 127 

the full breadth of functional diversity may be more informative about how much 128 

species contribute to ecosystem function, particularly in hyperdiverse communities 129 

such as tropical forests where the links between soft traits, such as specific leaf area 130 

and wood density13,14, and ecosystem functions, such as productivity, are typically 131 

weak15. 132 

The evolutionary diversity of a community can be measured in different ways to reflect 133 

distinct aspects of biodiversity11,16,17, and these metrics may all relate in different ways 134 

to variation in functional traits, life-history strategies, and, as a result ecosystem 135 

function2,3,5,18. Phylogenetic diversity (PD) is a measure of the total evolutionary 136 

history, or amount of the tree of life present in a given community and is quantified as 137 

the sum of the branch lengths, which are measured in units of time, from a phylogeny 138 

that represents all species in a given community (total lineage diversity)16. A second 139 

aspect of evolutionary diversity is to what extent communities are dominated by closely 140 

related species (neighbour lineage diversity), which can be quantified by mean nearest 141 

taxon distance (MNTD)11,12. Finally, another dimension of the evolutionary history of a 142 

community is whether it contains a balanced proportion of the major lineages of 143 

organisms (basal lineage diversity)19,20, which can be represented by the mean 144 

phylogenetic distance (MPD) between all pairs of species11. MPD is strongly affected 145 

by branch lengths at the deepest nodes of the phylogeny and the relative abundance 146 

of major clades in the community20. All of these metrics attain higher values in 147 

communities comprised of more distantly related individuals. 148 
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Amazonian forests provide an ideal context for exploring the link between tree diversity 149 

and ecosystem functioning because these forests include some of the most species-150 

rich ecosystems on earth21 and contain a wide variety of angiosperm lineages20. They 151 

also play a key role in regulating planetary biogeochemical cycles, including fixing as 152 

much carbon annually as the human economy emits globally22, and storing an order 153 

of magnitude more23. Here, we construct a pan-Amazon angiosperm phylogeny and 154 

use this in conjunction with data from 90 long-term monitoring plots across 155 

Amazonia to investigate the relationships between tree diversity and ecosystem 156 

function. We investigate the role of taxonomic and evolutionary diversity in promoting 157 

aboveground wood productivity (hereafter productivity) and aboveground biomass 158 

(hereafter biomass). 159 

Evolutionary diversity was estimated as total, neighbour and basal lineage diversity. 160 

As these metrics show strong relationships with the total taxonomic richness of 161 

communities20,24, the effect of which we were also interested in estimating, we 162 

calculated the degree to which communities show greater or less PD, MPD and MNTD 163 

than expected given their richness (i.e. standardized phylogenetic diversity metrics)17. 164 

Taxonomic richness and diversity were estimated as the sum of identified genera per 165 

area, Shannon diversity, Simpson Index and Fisher’s alpha. Because taxonomic and 166 

standardized phylogenetic diversity metrics represent different dimensions of 167 

biodiversity17 with richness being decoupled from evolutionary diversity (i.e. 168 

gains in richness are poor predictors of gains in phylogenetic diversity)24, we 169 

expect that they may have independent effects on ecosystem function. Changes 170 

in taxonomic diversity influence the number of functionally distinct lineages 171 

present in a community, which may influence ecosystem function via either 172 

sampling effects or complementarity. As the degree of evolutionary relatedness 173 



8 
 

among tropical tree species reflects similarity in their ability to process and store 174 

carbon (i.e. closely related taxa have more similar wood density, potential tree size, 175 

growth and mortality rates)10, we expect that communities with greater 176 

evolutionary diversity may maximize productivity and carbon storage due to 177 

complementarity in resource use. As we expect evolutionary diversity to be 178 

more closely related to variation in functional diversity than taxonomic diversity 179 

in these forests, we hypothesize that evolutionary diversity would be a stronger 180 

predictor of ecosystem function than taxonomic measures of diversity2. 181 

As environmental factors25,26, stand structure and mean functional composition 182 

(number of stems, wood density and potential tree size)15 are also associated with 183 

both productivity and biomass, we account for variation in these factors in all our 184 

analyses using available climate data27, locally collected soil data28 and stand 185 

structural and functional characteristics10,29. We explore the effects of taxonomic and 186 

evolutionary diversity metrics on ecosystem function using partial correlations, and in 187 

linear models of productivity and biomass that account for the influence of climate, 188 

soil, forest structure and functional composition, as these variables might obscure any 189 

underlying effect of diversity on ecosystem function (see Methods for details). We 190 

focus our results and discussion on the influence of standardized phylogenetic 191 

diversity metrics17,30 and on two common taxonomic metrics of diversity: taxon 192 

richness and Simpson Index. Taxon richness was chosen because it is widely used in 193 

comparative studies and Simpson Index because it was included in the best model 194 

that explained the greatest variance in the data. Analyses incorporating Shannon 195 

Index, Fisher’s Alpha and raw phylogenetic diversity metrics gave broadly similar 196 

results and are presented in the supplementary information. All the analyses were 197 

conducted at the genus-level due to the resolution of the phylogeny. 198 
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Results 199 

Individually, both taxonomic and evolutionary measures of diversity showed strong 200 

positive, bivariate relationships with productivity (Fig. 1; Table S3). Because climate, 201 

soil, forest structure, functional composition and spatial autocorrelation might obscure 202 

the underlying effect of diversity on wood productivity we also controlled for variation 203 

in these variables by including them as model covariates. Using linear models, we 204 

found that the best statistical model of productivity (based on AIC values) contained 205 

both evolutionary (sesMNTD) and taxonomic (Simpson index) measures of diversity 206 

(R2 = 0.47; ΔAIC = -2.5 in relation to the model excluding both taxonomic and 207 

evolutionary diversity metrics; Fig. 2; Table 1). This shows that these metrics reflect 208 

distinct aspects of diversity that are both important for understanding patterns of 209 

productivity (Fig. S11). Partial correlation analysis produced similar results to the 210 

model selection approach (Table S4): sesMNTD (τ=0.15; p=0.044) and Simpson’s 211 

index (τ=0.15; p=0.046) both showed significant partial correlations with productivity 212 

after accounting for other variables (Table S4). In contrast, diversity represented as 213 

the number of genera in each community had no effect on productivity after accounting 214 

for environmental and structural factors, using either the model selection approach 215 

(p=0.51) or partial correlation analysis (p=0.57) (Table 1, full coefficients from the 216 

models are shown in Appendix 4). 217 

Climatological and soil variables were also associated with variation in productivity 218 

(Fig. 2 and S5; Tables S2 and S4). Mean annual temperature, climatic water deficit, 219 

soil total phosphorus, magnesium, and potassium were all associated with 220 

productivity25 (Fig. 2), with higher rates of wood growth typical of areas in the western 221 

Amazon with low water deficit and greater nutrient availability (i.e. total phosphorus 222 

and magnesium). Although the standardized effect size of some environmental 223 
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variables, such as water deficit, was large, the effect sizes of biodiversity variables in 224 

the best model were similar to some other individual environmental variables 225 

commonly considered to control variation in productivity in tropical forests, such as soil 226 

phosphorus concentrations (Fig. 2; Table S4). 227 

Bivariate correlations indicated significant negative associations between biomass 228 

and all diversity metrics (Fig. S6; Table S3). However, biodiversity and biomass were 229 

almost completely unrelated after accounting for variation in climate, soil, forest 230 

structure and mean functional composition (Fig 2; Table S5), in contrast to the positive, 231 

significant biodiversity-productivity relationships (Table S4). Instead, biomass was 232 

largely determined by variation in wood density (Fig. 2 and. S8; Table S5). The model 233 

selection approach also suggested that variation in temperature, stem abundance and 234 

magnesium concentration had a small, significant effect on biomass (Fig 2; Appendix 235 

4), but these results were not supported by the partial correlation analysis (Table S5). 236 

Discussion 237 

This study demonstrates that there is a positive, small and significant effect of both 238 

taxonomic (Simpson Index) and evolutionary (sesMNTD) measures of diversity on 239 

wood productivity, but not aboveground biomass, in tree communities across lowland, 240 

terra firme, Amazonian forests, after accounting for the influence of environmental 241 

factors, stand structural variables and spatial autocorrelation (Fig. 1 and 2; Table 1; 242 

Table S4). Although the effects of diversity on productivity were small, the strength of 243 

these effects was similar to previous studies at small experimental scales in grassland 244 

ecosystems2–4 and is comparable to the effect of some environmental variables within 245 

this analysis, such as soil phosphorus (Fig 2). 246 
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A range of mechanisms may underlie the significant relationships between neighbour 247 

lineage diversity (sesMNTD), Simpson index and productivity (Fig. 1, Tables 1 and S4) 248 

including both sampling effects (i.e. the presence of species with particularly 249 

important functional traits within a community) and functional complementarity. In 250 

general, the contribution of sesMNTD and Simpson index to explaining variation in 251 

productivity, even after accounting for two major stand structural attributes (wood 252 

density and tree size), suggests that among lineages, there are additional functional 253 

characteristics that are related to phylogenetic relationships among taxa that promote 254 

productivity within plots. Since the evolutionary relationships among species tend to 255 

reflect their similarity in functional traits10,31,32 and because evolutionary diversity 256 

explicitly incorporates species differences, the effect of sesMNTD on productivity is 257 

likely to be a result of increased functional complementarity among lineages1,2. Higher 258 

values of the Simpson index, which indicate a more even distribution of 259 

abundances among genera33, may also increase niche complementarity. 260 

Alternatively, the weak positive effects of sesMNTD and Simpson index on 261 

productivity could be due to sampling effects, but this is unlikely as tropical forests are 262 

sufficiently diverse at the 1 ha plot scale such that sampling effects saturate; these 263 

diverse forests comprise taxa from the entire phylogeny at this scale, and include 264 

genera that have both fast and slow demographic traits26. Moreover, lineages that 265 

contribute disproportionately to the diversity/productivity relationship8 are scattered 266 

across the phylogeny and there is no phylogenetic signal for the contribution of 267 

different lineages to the effect of Simpson Index or sesMNTD on wood productivity 268 

(see SI text and Fig. S12). These results suggest that greater phylogenetic diversity is 269 

not related to a higher probability of sampling functionally dominant lineages that 270 

disproportionally contribute to the relationship between evolutionary and taxonomic 271 
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diversity, and productivity. Because of this, complementarity appears to be the most 272 

likely mechanism to explain the positive biodiversity effects we observe (see SI for 273 

further analyses and discussion).  274 

One potentially key unmeasured trait that may underlie an increase in functional 275 

complementarity and productivity in more diverse communities is variation in canopy 276 

structure. Canopy structure is a key determinant of productivity in temperate forests34 277 

and experiments with young trees35 demonstrate that mixtures of species with 278 

complementary crown morphologies and branching patterns have denser canopies35–279 

37, because species distribute their branches and leaves in complementary height 280 

layers of the canopy. As a result, both light interception and productivity are 281 

enhanced36. In Amazonian forests, there is a wide range of canopy architecture among 282 

species and complementarity in crown shape may enable trees to utilize canopy space 283 

more efficiently. For example, for 2457 trees in Madre de Dios in the Peruvian 284 

Amazon38,39 crown architecture varies widely among families (Fig. S9). Differences in 285 

crown architecture among genera from different families may enhance canopy space 286 

filling and resource uptake. There may also be variation among communities in other 287 

unstudied, evolutionarily correlated traits such as below ground resource allocation, 288 

tree height/diameter allometry, hydraulic traits or functional groups (e.g. nitrogen/non-289 

nitrogen fixers) that may affect productivity. 290 

The effect of sesMNTD and Simpson index on productivity could also reflect pathogen 291 

dilution in more diverse communities. Host ranges of most tree pests and pathogens 292 

show a clear phylogenetic signal, with co-occurring, closely related plant lineages 293 

being more vulnerable to similar natural enemies than distant relatives40,41. A 294 

community with greater sesMNTD (i.e. comprising more distantly related lineages) is 295 

therefore expected to be less susceptible to disease pressure41, and thus needs fewer 296 
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resources invested in defence, which in turn allows faster growth rates42. In tropical 297 

regions, where strong conspecific negative density dependence is observed43, 298 

individual trees tend to have lower performance (e.g. growth and survival) when 299 

growing near conspecific neighbours. At the community level, a species may 300 

therefore have a better performance in forests that contain fewer close relatives. 301 

Similar arguments may also apply to communities with higher values of 302 

Simpson’s index: a greater proportion of rare species may reduce the 303 

probability of an individual tree being attacked by species-specific pathogens 304 

and/or herbivores, and increase community-level productivity. 305 

The similar, but independent, effects of taxonomic and phylogenetic diversity 306 

for explaining variation in productivity is contrary to our initial prediction. 307 

Perhaps both variation in the relative abundance distribution among 308 

communities, best captured by Simpson’s index, and the functional 309 

distinctiveness of taxa, best captured by sesMNTD, are both important for 310 

determining the strength of functional complementarity within communities. In 311 

contrast, a recent subtropical biodiversity experiment found that phylogenetic 312 

diversity did not explain additional variation in rates of carbon accumulation, 313 

compared to measures of taxonomic diversity44. However, both the metrics of 314 

phylogenetic diversity and the overall level of diversity of the communities in 315 

the experimental study differ from our observational study. Understanding the 316 

specific functional differences among genera within a community that 317 

contribute to maximizing productivity in diverse tropical forests is an important 318 

area for further research to strengthen the links between causative mechanisms 319 

and the correlations that we report here. 320 

Both taxonomic and evolutionary diversity had no effect on aboveground biomass in 321 
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intact forests in Amazonia. These results are supported by a previous pan-tropical 322 

study that used an overlapping dataset to investigate the role of taxonomic diversity 323 

on biomass26, and a recent study that investigated the role of evolutionary diversity on 324 

biomass during forest succession and found that despite a positive effect of 325 

phylogenetic diversity on biomass in early successional forests, there is no effect at 326 

later stages of forest succession45. Not surprisingly, but contrary to the positive effect 327 

of taxonomic and evolutionary diversity on productivity, biomass was strongly 328 

determined by functional characteristics (Fig. 2; Table S5), with variation in wood 329 

density being the most important variable in controlling patterns of biomass in these 330 

forests15,26,46. To a much lesser extent and consistent with previous findings47, the 331 

number of stems had a marginal and positive effect on biomass (Fig. 2). These results 332 

corroborate a recent meta-analysis in tropical forests, which found that stand structural 333 

(e.g. number of stems) and community mean functional trait (e.g. wood density) 334 

variables are more important than taxonomic diversity for predicting variation in 335 

biomass48. In general, as variation in stem mortality rates is a better predictor of 336 

variation in stand biomass among plots than productivity49 and tree death is a highly 337 

stochastic process50, any positive effect of tree diversity on biomass through increased 338 

productivity is likely obscured by the impact of variation in stem mortality rates among 339 

plots. 340 

Overall, our results suggest that multiple facets of diversity have a small, positive effect 341 

on present-day functioning of the world’s largest tropical forest. In particular, this study 342 

provides the first evidence that evolutionary diversity is weakly, but significantly, 343 

related to ecosystem functioning at large scales in natural ecosystems. While 344 

evolutionary diversity has previously been suggested as a factor to consider in the 345 

identification of priority areas for conservation because of its role in enhancing 346 
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ecosystem function2–5, this study provides quantitative evidence for this assertion in 347 

tropical forests. Our results therefore indicate that there is a synergy between 348 

preserving diverse forests that encompass greater evolutionary heritage, and 349 

protecting ecosystem function. 350 

Methods 351 

Tree community data 352 

To investigate the relationship between biodiversity and ecosystem functioning, we 353 

estimated diversity, wood productivity and aboveground biomass using data from 90 354 

long-term forest inventory plots in the Amazon and adjacent lowland forests from the 355 

RAINFOR (Amazon Forest Inventory) network (Appendix 1; Fig. S1). Data were 356 

extracted from the ForestPlots.net database, which curates tree-by-tree records from 357 

RAINFOR and other networks51,52. Plots were all 1 ha in size (except for two plots of 358 

0.96 ha) and located in structurally intact and old-growth closed-canopy forest. Our 359 

analyses were restricted to continuous lowland, terra firme, moist Amazonian forests, 360 

- excluding plots in montane, swamp, seasonally dry and white-sand forests, and 361 

savannas. The ecological characteristics that influence resource uptake and thus 362 

underlie any potential relationship between ecosystem function and phylogenetic 363 

diversity may differ widely among biomes with distinct evolutionary histories53. For 364 

example, clades restricted to areas outside moist forests may have evolved very 365 

different unmeasured traits (e.g. higher root:shoot ratios to tolerate drought), which 366 

could lead to different relationships between evolutionary diversity and ecosystem 367 

function in comparisons across biomes. Restricting our analyses to a single biome and 368 

therefore a relatively coherent pool of genera, with similar evolutionary histories and 369 

proven ability to disperse and mix across Amazonia over geological timescales54, 370 
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allowed us to limit the potentially confounding effect of large, cross-biome differences 371 

in phylogenetic composition on the relationship between diversity and ecosystem 372 

function. 373 

Plots were established between 1975 and 2010 and monitored for an average 16.1 374 

years in total (range 2.0 to 28.6 years), with regular recensuses. All trees and palms 375 

with diameter at breast height (dbh) greater than 10 cm were included in the analyses. 376 

In the dataset, all recorded species and genus names were checked and standardized 377 

using the Taxonomic Name Resolution Service55. Across all plots 94.9% of stems were 378 

identified to the genus level, with a minimum of 70% identified to genus per plot. We 379 

excluded all individuals not identified to genus-level (5.1%) from biodiversity metric 380 

calculations. 381 

Phylogenetic tree 382 

To calculate metrics of evolutionary diversity, we constructed the largest pan-Amazon 383 

phylogeny to date, including 582 genera based on two chloroplast DNA gene regions: 384 

rbcL and matK, following protocols from Gonzalez et al.56. Full details of the temporally 385 

calibrated, ultrametric phylogeny construction can be found in the Supplementary 386 

Material. Our analyses included only those genera where we have phylogenetic data: 387 

90.4% of the total number of genera in the plots, which encompass 98.0% of all 388 

identified stems. 389 

Biodiversity metrics 390 

To represent the different aspects of biodiversity, we calculated ten genus-level 391 

diversity metrics, including taxonomic diversity indices and metrics that incorporate the 392 

evolutionary history within communities (Table S1). Because different metrics can 393 

reflect similar dimensions of diversity17 (Fig. S11) we present, in the main text, the 394 
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results from five diversity metrics: (1) taxonomic richness, a common and widely used 395 

diversity metric, here evaluated as the sum of all identified genera in a given 396 

community; (2) Simpson index of diversity, a common diversity metric that 397 

incorporates genus abundance, representing the probability that two stems randomly 398 

selected from a community belong to different genera; (3) total lineage diversity, the 399 

standardized effect size of phylogenetic diversity (sesPD), estimated as the sum of all 400 

branch lengths including genera within a community16, whilst controlling for the effect 401 

of genus richness; (4) neighbour lineage diversity, which is quantified as the 402 

standardized effect size of mean nearest taxon distance (sesMNTD), whilst controlling 403 

for the effect of genus richness, which is more sensitive to relatedness near to the tips 404 

of the phylogeny11,12 and (5) basal lineage diversity, which is quantified by mean 405 

pairwise distance (sesMPD)11,12, whilst also controlling for the effect of genus richness 406 

and reflects phylogenetic structure at the deepest nodes20 (see SI for results that 407 

include all metrics). 408 

Because the null expectation for the evolutionary diversity metrics of communities (i.e. 409 

PD, MNTD and MPD) necessarily shows strong relationships with the total taxonomic 410 

richness of communities, we quantified their standardized values: the degree to which 411 

communities show greater (+) or less (-) PD, MNTD or MPD than expected given their 412 

genus richness. We calculated the standardised effect sizes, sesPD, sesMNTD and 413 

sesMPD by first generating a null expectation via randomly shuffling genera tip labels 414 

in the phylogeny 999 times. The effect size was then calculated as the difference 415 

between the observed and expected values, the latter being the mean across 416 

randomizations, and dividing this difference by the standard deviation of values across 417 

the randomisations. These standardized metrics represent the residuals from the 418 

relationship between each evolutionary diversity metric and genus richness within 419 
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each plot and allow us to identify areas with high or low evolutionary diversity whilst 420 

accounting for the effect of richness.  421 
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Wood productivity and aboveground biomass 422 

Aboveground wood productivity was estimated as the rate of gain in biomass during 423 

each census interval. Because longer census intervals increase the proportion of 424 

productivity that cannot be directly detected due to trees growing and dying during the 425 

census interval57, productivity was corrected for varying census interval lengths. 426 

Following the methodology developed by Talbot et al.58 estimates of annualized 427 

productivity per plot were computed as: i) the sum of tree growth alive in the first and 428 

in the last censuses, ii) growth of trees that recruited during the census interval, iii) 429 

estimates of unobserved growth of trees that died during the census interval and iv) 430 

estimates of unobserved trees that both recruited and died between census periods. 431 

Census-interval length is expected to affect the estimates of productivity, while plots 432 

monitored over short total census lengths are more likely to be affected by stochastic 433 

changes over time and measurement errors59. Productivity estimates were weighted 434 

by the cubic root of census-interval length (details in SI). 435 

Aboveground biomass per stem was estimated using a pan-tropical, three parameter 436 

equation 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.0673 ∗ (𝑤𝑤𝑤𝑤 𝐷𝐷2 𝐻𝐻)0.976, from Chave et al.60, where wd is the stem 437 

wood density (in g.cm3) from the Global Wood Density29,61, D is the tree diameter (in 438 

cm) at 1.3 m or above the buttress and H tree height (in m). Tree height was estimated 439 

based on regional diameter-height Weibull equations62. Similar to productivity, in order 440 

to reduce the influence of potential stochastic changes and due to variation in census 441 

interval within plots, we estimated biomass per plot using a weighted average across 442 

multiple censuses (details in SI). We extracted wood density from the Global Wood 443 

Density database29,61.  444 
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Environmental variables 445 

Because variation in both productivity and biomass in Amazonian forests is expected 446 

to be mediated by soil and climate25, we included environmental variables as 447 

covariates in our models. For climate data, to avoid collinearity among explanatory 448 

variables, we selected mean annual temperature (MAT ºC), extracted from the 449 

WorldClim dataset at 30’ (≈ 1km) resolution27 and maximum climatic water deficit 450 

(CWD), a measure of water stress, extracted from a global gridded layer60. For soil 451 

data, we used average values for each plot, calculated at 0-30 cm depth, for soil 452 

texture, total phosphorus (mg kg-1), potassium, magnesium, calcium, and sodium 453 

concentrations (mmoleq kg-1) collated at ForestPlots.net and based on intensive soil 454 

sampling from each RAINFOR plot that used standardised field and analytical 455 

protocols25,28. Because silt, clay and sand content (%) are strongly correlated, soil 456 

texture was expressed as the first two axes of a principal component analysis (PCA). 457 

The first axis was negatively strongly related with sand content and the second 458 

negatively with clay (Table S2). 459 

Stand structure variables 460 

We also included descriptors of stand structure as covariates in our models, including 461 

mean wood density, mean potential tree size and number of stems, all of which have 462 

been shown to shape productivity and biomass in tropical tree communities15. We 463 

extracted wood density data from the Global Wood Density database29,61 selecting 464 

data for Mexico, Central America and South America. The data were matched to each 465 

stem in the plot data at the species-level, and in cases where this information was 466 

unavailable, matched to the average of species values for that genus. We then 467 

calculated the mean wood density value across all stems in a plot. To estimate 468 

potential tree size, we used data from Coelho de Souza et al.10 spanning 577 single 469 
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census plots from across Amazonia, for the potential size that each genus could 470 

achieve. These values were assigned to each individual tree based on its identity. We 471 

then derived mean potential tree size for each plot, averaged across stems. The 472 

number of stems per plot was calculated as the average number of individuals with 473 

dbh greater than 10 cm across multiple censuses. 474 

Statistical analyses 475 

To investigate the strength of the relationship between each measure of ecosystem 476 

functioning (i.e. productivity and biomass) and the set of diversity metrics in each plot, 477 

we conducted: (1) bivariate Kendall’s τ non-parametric correlation tests; (2) 478 

generalised least squares modelling (GLS) and (3) Kendall’s τ pairwise partial 479 

correlation tests. For bivariate correlations, as testing the relationships for the range 480 

of biodiversity metrics involved ten tests for each dependent variable, P-values were 481 

adjusted for multiple comparisons using the false discovery rate63 (Table S3). 482 

Environmental variables also influence the diversity of an ecosystem20,64 and its ability 483 

to process and store carbon25, and may therefore obscure relationships between 484 

diversity and ecosystem functioning. In order to account for the effect of multiple 485 

environmental variables we constructed generalised least square models where 486 

ecosystem functioning was modelled as a function of metrics related to diversity, 487 

climate, edaphic conditions, functional composition and structural variables. To avoid 488 

multicollinearity amongst variables in the model, we confirmed that variance inflation 489 

factors (VIFs) were less than five65 for each explanatory variable. We account for 490 

spatial autocorrelation in the GLS analyses by specifying a Gaussian spatial 491 

autocorrelation structure, which is consistent with the shape of the semivariograms for 492 

biomass and productivity across this network of plots49. We created separate models 493 

for biomass, productivity and each diversity metric. For each response variable 494 
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(productivity and biomass), we generated a set of models including all possible 495 

combinations of variables related to climate, soil, functional composition and stand 496 

structure, and selected the best model (referred to as the climate-soil-structure model) 497 

based on the Akaike Information Criterion (AIC). To investigate the additional 498 

contribution that diversity made to explain variation in both productivity and biomass, 499 

each single diversity metric was then added individually to the climate-soil-structure 500 

model. We then compared the climate-soil-structure model with models also including 501 

each single diversity metric: models with a difference in AIC greater than 2 when 502 

compared to the climate-soil-structure model, indicate models with improved support. 503 

Finally, we added pairs of diversity metrics, representing both taxonomic and 504 

evolutionary diversity (Fig. S11) into a single model to investigate whether a more 505 

complex model provides better predictive ability over single diversity metric models. 506 

Phosphorous and cation concentrations were log transformed prior to analysis. To 507 

allow comparisons of the strength of significance of the explanatory variables, they 508 

were all standardised to a mean of zero and a standard deviation of one. 509 

We also examined the effect of the diversity metrics on wood productivity and 510 

aboveground biomass using partial correlation analyses including the variables 511 

selected in the best performing climate-soil-structure model. Partial correlation 512 

analyses are used to determine the correlation between two variables while eliminating 513 

the effect of potentially confounding variables66.  514 

Analyses were performed in the R Statistical software v3.1.167 using the vegan68, 515 

picante69, BiomasaFP70, nlme71 and ppcor66 packages. 516 
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 517 

Figure 1. Bivariate relationships between aboveground wood productivity (AGWP) 518 

and the diversity variables included in the best performing model: A) Simpson Index 519 

and B) Neighbour lineage diversity from 90 single hectare plots across Amazonia. 520 

Shaded area represents 95% confidence interval. Relationships for the other 521 

taxonomic and phylogenetic diversity metrics are included in the SI.  522 
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 523 

Figure 2. Standardised effect sizes for the best fit generalised least square model 524 

across plots for both aboveground wood productivity (AGWP) and aboveground 525 

biomass (AGB) as a function of diversity metrics, structural attributes, climate and soil 526 

variables selected based on the lowest AIC values and largest proportion of the 527 

variance explained (R2). The best model for AGWP includes neighbour lineage 528 

diversity and Simpson index as biodiversity metrics mean annual temperature, climatic 529 

water deficit, total phosphorus, magnesium and potassium. Greater productivity is 530 

found in plots with lower mean annual temperature, higher precipitation and on soils 531 

with greater amounts of soil phosphorus, magnesium and lower amounts of 532 

potassium. The best model for AGB included wood density, number of stems, 533 

magnesium, and mean annual temperature. The relationship between AGB and WD 534 

is non-linear and in all AGB analyses, WD was specified with linear and quadratic 535 

terms, but for clarity, in the graph, effect size is shown only for the quadratic term. For 536 
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each variable in the model, dots represent the standardized effect size and lines one 537 

standard error. In some cases, error lines are unobserved due to very small standard 538 

errors. See graphs S5 and S8 for detailed bivariate correlations and Appendix 4 for all 539 

the coefficients of the models. 540 

Table 1. Results for generalised least square (GLS) models across 90, one ha plots 541 

for aboveground wood productivity (ln AGWP) and aboveground biomass (ln AGB) as 542 

a function of diversity metrics, structural and compositional attributes, climate, soil 543 

variables, and accounting for spatial autocorrelation (Gaussian correlation structure). 544 

The best models for both AGWP and AGB are highlighted in bold - full coefficients 545 

from the models shown in Appendix 4. Results are shown for the best-fit model, with 546 

lowest AIC values, incorporating environmental variables (climate and soil), functional 547 

attributes (mean wood density, potential tree size and number of stems), and spatial 548 

autocorrelation. Delta AIC values refer to the comparison between each model that 549 

includes the diversity variables and the climate-soil-structure model, which excludes 550 

diversity. For AGWP, the climate-soil-structure model includes mean annual 551 

temperature, climatic water deficit, total phosphorus, magnesium and potassium. For 552 

AGB, the climate-soil-structure model includes wood density, number of stems, 553 

magnesium, and mean annual temperature.554 
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 555 

Model 
  AGWP   AGB 

 R2 AIC Δ 
AIC  R2 AIC ΔAIC 

Climate-soil-structure model + sesMNTD + Simpson  0.47 199.08 -2.51  - - - 
Climate-soil-structure model + sesMNTD  0.45 205.04 3.45  0.74 973.99 1.99 
Climate-soil-structure model + Simpson  0.44 200.73 -0.86  0.74 973.78 1.78 
Climate-soil-structure model + sesPD  0.46 201.13 -0.46  0.74 973.72 1.72 
Climate-soil-structure model + sesMPD  0.44 203.57 4.48  0.74 973.97 1.97 
Climate-soil-structure model + richness  0.44 203.12 1.53  0.74 971.03 -0.97 
Climate-soil-structure model   0.44 201.59 0.00   0.74 972.00 0 

556 
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