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Abstract

We report the synthesis of ultrathin, silver sulfide (Ag2S) nanoplatelets (NPLs)

synthesized via a one-pot method in ethylene glycol with 3-mercaptopropionic acid

serving as both the sulfur precursor and platelet ligand. The colloidally synthesized

nanoplatelets are exceptionally thin, with a thickness of only 3.5±0.2 Å, and a 1S

exciton Bohr diameter to confinement ratio of ∼12.6. The NPL growth is shown to

be quantized by layer thickness using absorption and photoluminescence (PL) spec-

troscopy. Transmission electron microscopy (TEM), atomic force microscopy (AFM),

and x-ray diffraction analyses of the NPLs show that they correspond to the (202) plane

of the β-Ag2S structure. The PL quantum yield of these NPLs is ∼30% suggesting

their potential use in biomedical imaging. Optoelectronic properties were evaluated

via sensitized photocurrent spectroscopy with the resulting spectra closely matching

the distinctive absorption spectral shape of the Ag2S NPLs.
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Semiconducting nanomaterials have attracted significant attention for their applications

in both fundamental studies and opto-electronic applications including display technologies,

light-emitting devices (LEDs) and photovoltaics.1–3 Two-dimensional (2D) semiconduct-

ing materials have garnered increased consideration in recent years due to their ultra-wide

spectral absorption,4 spin-dependent transitions,5 high absorption coefficients,4,6,7 efficient

charge transfer,8 and high detector photosensitivity.9 Moreover, given the small bandgaps

of several NPL semiconductors (bulk β-Ag2S has a band gap of 0.9 eV10) and their high

quantum confinement, multiple exciton generation (MEG, the formation of more than one

exciton per incident absorbed photon) in the visible optical regime is likely, which would sub-

stantially increase photoconversion efficiencies.11 However, there has been limited work on

the synthesis of semiconducting nanoplatelets (NPLs) especially in materials where the bulk

structure is not layered.12–28 The lack of adaptability (e.g., inability to incorporate dopants),

as well as the inherent difficulty in chemically producing high-quality 2D carbons and transi-

tion metal dichalcogenides, presents significant barriers to the technological implementation

and widespread use of NPLs. However, NPLs produced via wet-chemical syntheses can be

easily produced, manipulated, and scaled-up for applications.

In this Article, we report the preparation and characterization of colloidally synthesized,

water-soluble, ultrathin Ag2S NPLs. These NPLs are stable for several months in solution

making them well suited for detailed optical and electrical studies. Atomic force microscopy

(AFM), transmission electron microscopy (TEM), and x-ray diffraction (XRD) measure-

ments indicate that our Ag2S NPLs have uniform thicknesses as small as 3.5±0.2 Å and

form along the (202) plane of the β-Ag2S crystal structure. The sub-unit cell size of these

NPLs creates a large quantum confinement ratio of over twelve times the 4.4 nm Bohr di-

ameter of the 1S exciton.29 As a consequence of this confinement, optical measurements
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Figure 1: (a) Absorption spectra of Ag2S NPLs during synthesis in ethylene glycol. Time
proceeds from red to purple. At first there is an onset of absorbance at ∼2 eV with shoulders
at ∼2.7 and ∼3.1 eV (red). Over time, the 1.55 eV exciton band grows in (orange to green)
and then begins to disappear as another peak at 1.23 eV begins to grow in (blue). Further
growth increases the OD of the peak at 1.23 eV (purple) until overgrowth causes flocculation
of particles. Inset shows the exciton-region of the spectra enlarged. Solutions were diluted
by a factor of ten, due to high absorptivity. The data was then multiplied by ten to present
the true absorption. (b) Photograph of aliquots from the reaction over time. The precursor
solution is cloudy white, but turns yellow upon slight heating. The solutions turn from
yellow to brown as the reaction proceeds until all particles flocculate. Colored dots on the
vial caps indicate the corresponding absorbance curve. UV-vis of aliquots before and after
the aliquots marked in the photograph are dominated by scattering (not shown).
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of the as-synthesized NPLs reveal bright excitonic emission with a NIR-photoluminescence

quantum yield (ΦPL) of ∼30%, the highest ever measured from any form of Ag2S. Finally,

we present sensitized photocurrent measurements, performed on the Ag2S NPLs, showing

the feasibility of this material for optical energy harvesting.

Results and Discussion

We monitored Ag2S NPL syntheses as a function of time using optical absorption (Fig-

ure 1a). Four distinct stages, two of which show well-defined first excitonic band energies,

are observed. The first stage of growth shows absorption shoulders at ∼2.7 and ∼3.1 eV.

Shortly thereafter, a well-defined absorption peak is measured at 1.55 eV with an increase

in the absorption baseline. The reaction mixture is visibly yellow during this growth stage.

In the second growth stage, the mixture turns brownish in color (Figure 1b). During this

reaction step, the intensity of the 1.55 eV absorption band first increases and then begins to

decrease. Concomitant with this drop in absorption at 1.55 eV, a new absorption band at

1.23 eV appears. The third stage of growth is marked by a further increase of the 1.23 eV

absorption band followed by the loss of all features in the absorption spectrum as heating

continues. In the fourth stage, the synthesis terminates when the particles flocculate. Sig-

nificantly, the Ag2S NPLs exhibit static excitonic energies, which is in contrast to colloidal

quantum dot (QD) syntheses where the energy of the exciton gradually shifts to lower en-

ergies with increasing growth time. We attribute these discrete absorption peaks to NPLs

with different numbers of two-dimensional layers since 2D confinement is not influenced by

the lateral growth of the NPLs.

Imaging of the as-synthesized NPLs reveals that they are coated with a polymer or gel-

like material (TEM Figure S1 and AFM Figure S2). Although we have not been able to

identify the material, 13C and 1H NMR of the unwashed reaction mixture suggests that it

contains acetal-functionality (Figure S3). The height of the polymeric chains was deter-
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mined to be 0.2-1.0 nm via AFM measurements (Figure S2). The reaction to form this

material is presumed to be catalyzed by the presence of silver, whether free or on the sur-

face of the nanomaterials, or initiated by free-radicals generated when the sulfur precursor,

3-mercaptopropionic acid (3-MPA), reacts to produce sulfide.

Platelet heights were determined by AFM measurements of the washed NPLs deposited

on mica(Figure 2c-f). Although the NPLs have significant variation in their lateral dimen-

sions, the washed NPL heights are highly consistent. The AFM image of a washed NPL

(exciton energy = 1.55 eV) and corresponding height trace (Figures 2) show that the washed

NPL has a height of ∼3.5 Å, which correlates well to the smallest height possible with the

Ag2S platelets sandwiched by sulfur atoms (Figure 2b). Importantly, the proposed struc-

ture, seen in Figure 2b, maintains the bulk 2:1 Ag:S stoichiometry. This observation is

not singular: AFM measurements of nearly a thousand washed NPLs, exhibiting the 1.55

eV absorption peak, show a mean height of 3.5 Å (Figure 2f). Consequently, we attribute

the 1.55 eV absorption feature to the formation of sub-nm, single-layer Ag2S NPLs. The

thicker platelets, associated with the exciton peak centered at 1.23 eV, appear to have a

much broader height distribution, as seen in the red histogram in Figure 2f. As seen later,

this broad distribution of NPL heights is due to the presence of different numbers of layers

stacking along the [202] direction.

To confirm our proposed NPL layer structure, TEM micrographs were obtained from the

washed Ag2S NPLs (Figure 3). A TEM micrograph of the single-layer platelets (i.e., with

an exciton peak at 1.55 eV) is shown in Figure 3a. The weak contrast with the background

and the lack of visible NPL layering is consistent with imaging of a single-layer NPL. In

contrast, Figure 2b shows a TEM image of a multi-layer NPL sample. Here, the different

shaded regions in the image correspond to a stepwise increase in the number of Ag2S layers.

The NPL aggregation on the carbon TEM grids is not surprising, because of the bound polar

3-MPA ligands on the NPLs. It should be noted that the presence of bound 3-MPA has been

confirmed via FTIR (Figure S5) and is supported by the 1.7±0.2 Ag:S ratio seen in EDS
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Figure 2: (a) β-Ag2S bulk crystal structure. The (202) plane is shown in red. Sulfur atoms
are shown in yellow and silver atoms are shown in gray. (b) Proposed platelet structure for
nanoplatelets with an exciton band at 1.55 eV. The height of the plate is 3.5Å. The extended
unit cell is shown with a blue dotted line. Importantly, this structure maintains a 2:1 Ag:S
stoichiometry. (c) AFM image of multi-layer Ag2S. (d) AFM image of single-layer Ag2S. (e)
AFM image of a washed single-layer NPL. Red line shows the position of the height trace
seen in the inset. (f) Histogram plot of the heights of the two NPL samples. The black bars
represent the histogram for the sample with an exciton peak at 1.55 eV (N = 921), while
the red bars represent the sample with the exciton peak at 1.23 eV (N = 1488). The bin
size is 50 pm.
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(Figure S6). Because the ligand does not contribute to the height of the NPLs, but bound

3-MPA is present in thoroughly washed NPL samples, we surmise that the 3-MPA is bound

to the exposed silver atoms around the edges of the NPLs.

In addition to providing support for the single- and multi-layer assignments, the TEM

measurements also provide a direct estimate of the NPL lateral dimensions. As seen in

Figures 3a and b, the lateral NPL diameters fall between 5 and 20 nm. Unlike the 3.5 Å

nanoplatelet heights, the estimated diameters are larger than the 1S exciton Bohr diameter

of 4.4 nm. Additionally, 126◦ angles can be seen throughout Figures 3a-b, matching the

angle between sulfur and silver atoms when the nanoplatelets are viewed from above (Fig-

ure S4). Given the measured NPL thickness, lateral dimensions, and Ag2S exciton size, we

are confident that these NPLs are sub-nanometer-thick 2D semiconductors.

Figure 3c shows direct TEM imaging of the NPL crystal lattice allowing for a very

accurate measurement of the lattice spacing; this spacing is 2.7±0.2 Å, and matches the

(022) Miller index. Notably, (022) runs nearly perpendicular to [202], and thus, is easily

visible when the platelet is imaged from the top down. The TEM micrograph in Figure 3d

shows what appear to be many edge-on stacked platelets with a spacing of 3.4±0.2 Å. The

measured 3.4 Å distance matches the spacing of the (202) Miller index of β-Ag2S (Figure

4), and the height of the proposed nanoplatelet structure (Figure 2b).30

Powder x-ray diffraction (XRD) measurements (Figure 4) were obtained from washed

Ag2S NPLs, and are consistent with Ag2S NPL formation. As seen in Figure 4, all of

the peaks resolved in the XRD spectrum correlate well to peaks in the complex bulk Ag2S

pattern. Importantly, because of the sub-unit cell architecture of these NPLs across the [202]

direction, only planes that run nearly perpendicular to [202] can be well resolved. Unlike

bulk Ag2S, the NPL (101) peak is significantly broadened because the NPLs are only ∼3.5 Å

tall in the [202] direction.32 The XRD peaks corresponding to planes nearly perpendicular to

[202] are also broadened, but not nearly as much as the (202) peak itself, further supporting

the 2D structure of these NPLs. Additionally, the diffractogram clearly shows that the (022)
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Figure 3: TEM micrographs of Ag2S nanoplatelets. (a) Single-layer Ag2S nanoplatelet.
The lateral dimensions are ∼15nm. Yellow oval is loosely encircling the NPL to guide the
eye because of the low contrast of a single-layer NPL. (b) Aggregated single- and multi-layer
Ag2S nanoplatelets. A stepwise increase in contrast between the carbon grid and nanoplatelet
indicates an increase in the number of layers. (c) Single Ag2S platelet showing d-spacing of
∼2.7 Å , which we assign to the (022) plane. This plane is also the most prominent peak seen
in XRD (Figure 4), and runs perpendicular to [202]—the direction of the NPL. Inset shows
the selected-area electron diffraction (SAED) from these platelets. (d) Many nanoplatelets
stacked on top of one another with a spacing of ∼3.4 Å (inset).
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Figure 4: Top: XRD of Ag2S NPLs with exciton peak located at 1.23 eV. The (101) peak,
which is the plane the 2D nanoplatelet lies on, appears very broad, as would be expected
for these structures. The vertical black line shows the position of the (101) peak in the bulk
pattern. Only peaks corresponding to planes running nearly perpendicular to [202] can be
seen, and proposed planes are labeled. Bottom: Known bulk Ag2S XRD pattern.31

9



plane is the most prominent NPL XRD peak consistent with our lattice spacing estimates

obtained by TEM.

The excitonic nature of the NPL absorption was confirmed using photoluminescence (PL)

measurements of NPLs showing absorption peaks at 1.55 eV and 1.23 eV (Figure 5a). PL

spectra with peaks at 1.45±0.05 eV and 1.12±0.05 eV, respectively, were obtained using a

1.96 eV (633 nm) continuous-wave excitation source. Figure 5a shows that the excitonic

emission from both NPL samples corresponds to a (global) Stokes shift of ∼100 meV. Both

NPL spectra exhibit multi-featured emission lineshapes with a broad low-energy shoulder,

which we attribute to surface-, edge-, and/or trap-state emission.

The importance of this 2D material is clearly demonstrated by the measured quantum

yield, ΦPL, of the near-infrared excitonic emission. Relative ΦPL measurements used the IR-

125 dye as a comparative emission standard. As seen in Figure 5b, the quantum yield for the

3.5 Å NPLs is ∼30%, which is much higher than previously synthesized Ag2S nanomaterials

(i.e., Ag2S QDs), whose measured ΦPL reached ∼20%.33 Although other inorganic materials,

such as GaAs quantum wells, have much higher quantum yields (80% at ∼1.5 eV at low

temperatures), these systems are not bio-compatible. Previous work has shown that both

bulk Ag2S, and Ag2S QDs are nontoxic, thus it is likely Ag2S NPLs will also be nontoxic.34–36

30% quantum yields in the near-infrared, coupled with improvements in their synthesis and

photo-stabilization, may well make likely-nontoxic Ag2S NPLs important players in near-

infrared optical and bio-related applications.

In order to improve ΦPL, we examined how edge-passivation affects radiative emission

efficiency. To examine this, Ag2S NPLs were synthesized with 8-mercaptooctanoic acid (8-

MOA) in place of the 3-MPA used in our previous measurements. Because 8-MOA has a

longer hydrocarbon-chain than 3-MPA, it should better isolate the edge states from solvent

effects. Interestingly, despite these structural differences, ΦPL for both the 3-MPA-ligated

and 8-MOA-ligated Ag2S NPLs are not significantly different. This behavior suggests non-

radiative recombination occurs on the faces of the NPLs, where no ligand is present. Because
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non-radiative recombination may be exacerbated at these surfaces when exposed to a solvent,

further shielding of these NPLs may increase ΦPL. At low intensities (<0.05 W/cm2), ΦPL

does not significantly change, however as flux increases exciton-exciton annihilation processes

dominate causing ΦPL to decrease (Figure 5b).

In addition to the optical and physical properties of these Ag2S NPLs, we examined their

optoelectronic properties. In this series of experiments, unwashed NPLs were adsorbed to the

surface of natural tin dioxide (SnO2) single crystals. Incident photon conversion efficiencies

(IPCE) for photoexcited-electron injection were then measured as a function of wavelength

and time (Figure 6). Prominent first excitonic peaks can be seen in Figure 6 confirming the

appropriate band alignment between the Ag2S and SnO2 band levels for electron injection

into the SnO2 conduction band. Distinct exciton peaks were not present when the washed

NPLs were used to sensitize SnO2, likely due to platelet aggregation on the surface (Fig-

ure S10). We observed a 30 nm (56 meV) red shift in the IPCE spectra relative to the

Ag2S NPL solution absorbance spectrum. Such shifts are often attributed to agglomeration

of surface bound nanoparticles.37 It should be noted that the 56 meV redshift is similar

to those measured for QD sensitization of single-crystal SnO2; indeed, the shift observed

for CdSe QD sensitized SnO2 is between 43 and 63 meV.38 Intriguingly, although there is

a rapid decrease in photocurrent at the first excitonic band position, the photocurrent at

higher energies (>1.65 eV) is relatively stable. We speculate that the decay of photocur-

rent as a function of time may be due to rapid irreversible photooxidation of NPLs at their

surfaces (analogous to the irreversible silver halide photooxidation seen in conventional pho-

tography) or the formation of thicker platelets. Similar results were obtained for systems

sensitized with Ag2S NPLs synthesized using thioglycolic acid (TGA) (Figure S11). Work

on optimization of similar systems is ongoing.
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Figure 5: (a) Photoluminescence spectra of the two species of Ag2S NPLs in water. Both
samples were excited at 1.96 eV and have trap and surface-state emission red-shifted from the
PL maxima. The smaller (3.5 Å) platelets (with a 1.55 eV exciton absorption; red dotted)
have a emission maxima at 1.45±0.05 eV (solid red). The multi-layer platelets (with a 1.23
eV exciton absorption; blue dotted) have a PL maxima of 1.12±0.05 eV (blue solid). (b)
Photoluminescence quantum yield of 3-MPA-ligated (red) and 8-MOA-ligated (green) 3.5 Å
Ag2S NPLs as-prepared. Samples were excited with 1.70 eV (730 nm) light, and PL quantum
yield values were measured across a range of intensities at the 1.45 eV PL maximum.
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Figure 6: Photocurrent spectra for Ag2S NPLs on SnO2 acquired with 0.5 mM ferrocene in
acetonitrile and a platinum wire counter electrode. Photocurrent spectra as a function of
time for (a) 1.55 eV MPA-Ag2S NPLs adsorbed to SnO2 and (b) 1.23 eV MPA-Ag2S NPLs
adsorbed to SnO2. Inset: Enlargement of the exciton peak region. Corresponding absorption
spectra for Ag2S NPLs overlaid as black dotted lines. Spectra were taken in direct succession
with approximately 20 minutes in between, and time proceeds from red to blue.

13



Conclusions

In summary, ultrathin semiconducting Ag2S NPLs were produced using a one-pot synthesis.

The nanoplatelets were characterized by both optical and physical means, and are shown

via ICPE measurements to be a potential material for photoconversion applications. We

have demonstrated that the synthesized NPLs presented here are 3.5±0.2 Å tall, making

them excellent candidates for fundamental studies of high-binding energy, two-dimensional

excitons.12,14,17,18,20,21,24,25 Additionally, unlike other 2D materials (e.g. MoS2 and graphene),

their colloidal synthesis should make both compositional- and ligand-manipulation relatively

easy. The preference for platelet growth may be related to edge-sites being active for dis-

sociation of the C-S bond of the MPA and/or poisoning of the (202) face by the polymeric

reaction products. Previous reports utilizing similar synthetic methods have reported the

synthesis of Ag2S quantum dots of various sizes.33,35,39 We have observed that the Ag2S

NPLs will readily grow at room temperature if care is not taken to throughly wash to re-

move all precursors, and the eventual products do appear to be QDs in TEM micrographs

(not shown). It is unclear if these studies mistakenly reported Ag2S NPLs as Ag2S QDs.

These platelets are stable in solution for several months and therefore have a large poten-

tial for solution-based processing. Furthermore, the Ag2S NPLs are exceptionally bright

for a NIR-emitter (ΦPL ≈ 30%). Additionally, the non-toxicity, and ease and relative low

cost of synthesis make these materials attractive for additional photophysical studies and

applications.

Methods

Ag2S Nanoplatelet Materials and Preparation.

Materials. Silver nitrate (99.9999% trace metal basis), 3-mercaptopropionic acid (99+%),

thioglycolic acid (≥98%), and 8-mercaptooctinoic acid (95%) were obtained from Aldrich.
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Tetrabutylammonium bromide (98+%) was obtained from Alfa Aesar. Anhydrous ethylene

glycol was obtained from Aldrich. Acetonitrile and acetone were obtained from various

sources. DMSO was obtained from Fisher. DMSO-d6 was obtained from Cambridge Isotope

Laboratories. IR-125 was obtained from Kodak. The SnO2 natural crystal was mined in

Bolivia.

Ag2S NPL Synthesis. Ag2S NPL syntheses were developed with modifications to

the procedure reported by Jiang et al.35 The synthesis employed 3-mercaptopropionic acid

(MPA) as both the ligand and sulfur source. In brief, AgNO3 0.043g (0.25 mmol) was mixed

with 45 µL 3-mercaptopropionic acid (0.50 mmol) in 50 mL anhydrous ethylene glycol while

purging with argon. The solution was brought to and held at 110 ◦C for 45 minutes using a

heating mantle. The temperature was then increased to 130◦C to promote particle growth.

The procedure was also repeated with some modification using thioglycolic acid (TGA) and

8-mercaptooctanoic (MOA) acid as a sulfur precursor in place of MPA in the same molar

ratio to silver. The synthetic procedure remained the same as that of MPA with the exception

of a growth temperature of 180◦C and 160◦C respectively. All reactions were monitored via

UV-Vis. Notably, the early aliquots of the reaction are more viscous, which we attribute to

a more highly networked gel/polymer.

Ag2S UV-Vis. As seen in Figure 1, Ag2S NPL absorbance spectra were collected

throughout the NPL synthesis to monitor the reaction progress. UV-vis spectroscopy was

performed on a PerkinElmer Lambda 950 UV-Vis spectrometer. Solutions were diluted

by ten-times for the measurement (because of the high optical density, OD). As such, the

optical density spectra shown in Figure 1 were plotted at ten-times the measured absorbance

to report the true OD of the raw solution.

Ag2S washing. 7 mL of acetone was added to 3 mL of the resultant Ag2S solution in a

15 mL disposable centrifuge tube. Unlike common QD purification procedures, the ethylene

glycol-suspended NPLs required several hours to crash out. The solution was kept in the dark

for several hours before precipitation occurred (generally ∼5 hours). The cloudy solution
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was shaken briefly and then centrifuged for 15 minutes in an Adams physician’s compact

centrifuge (RCFmax = 924 g). After pellet formation, the supernatant was discarded and

pellet was washed at least once more in acetone and then re-suspended in deionized water.

Note, if the pellet would not resuspend readily, to enhance solubility several drops of∼0.001M

NaOH were added to the water to slightly increase the pH to above 8. If NaOH is added

before the NPLs are throughly washed, the NPLs tend to grow.

Characterization Results

Transmission electron microscopy. TEM was performed using a FEI Tecnai G2 F20

200 kV TEM. TEM grids of the as-prepared samples were prepared by drop-casting the

unwashed Ag2S onto holey carbon film TEM grids, and then wicking away excess solution

after several seconds. Dark field images of the unwashed samples were collected. Washed

samples were prepared by drop-casting washed Ag2S NPLs onto pure-carbon grids, and

wicking away excess solution after twenty seconds.

X-ray diffraction. XRD experiments were performed on washed, dry NPL-powder. All

measurements were performed on a Rigaku SmartLab Diffraction System operated with Cu

Kα radiation source (λ=1.54 Å).

Nuclear Magnetic Resonance. Both 1H and 13C NMR spectra were obtained on the raw

reaction mixture post-synthesis with ∼10% v/v DMSO-d6. For the 1H NMR spectrum, 128

scans were collected with a one-second relaxtion delay and a sweep width of 40 ppm (Figure

S3a). For the 13C NMR spectrum 256 scans were taken with a sweep width of 301 ppm, and

a two-second relation delay was used (Figure S3b). Both spectra were taken of the same

sample with a Bruker Ascend 600 MHz NMR.

FIIR. To remove any signal from solvents, washed, dried NPL-powder was used to perform

Fourier transform infrared (FTIR) experiments. FTIR data was collected with a Perkin

Elmer Spectrum Two FTIR with a PIKE Technologies GaldiATR. 100 spectra were averaged.

Energy dispersive x-ray spectroscopy. EDS measurements were performed on a FEI
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Quanta 450 FEG with an Oxford Instruments EDS detector. The analyzed sample was a

film of washed and dried Ag2S NPLs on copper tape.

Atomic force microscopy. AFM was performed on an Asylum Cypher ES AFM. Freshly

cleaved mica disks were used as a substrate for the washed Ag2S NPLs. To prepare the

substrate, several drops of the cleaned Ag2S solutions were placed on the fresh mica surface.

After twenty seconds, the excess solution was wicked away with a Kimwipe R© and the disk

was dried under nitrogen. Approximately 1000 platelets of each size (1.55 eV and 1.23

eV exciton peaks) were used to gather height statistics. The particle analysis automated

functions were used with a 150 pm cutoff and 200 nm2 cutoff to eliminate noise.

Photoluminescence and Quantum Yield Measurements

Photoluminescence (PL) measurements shown in Figure 5a of washed Ag2S NPLs in water

were performed on a custom-built PL system. A 633 nm HeNe gas laser (0.261 mW incident

power) was used as the excitation source. PL was collected with a 25.4 mm lens, passed

through a 780 nm long-pass filter, and sent to a 300 mm-long spectrometer with a liquid

nitrogen-cooled 1D InGaAs photodiode array (Princeton Instruments NIR PyLoN). The

slit width on the spectrometer was set at 500 µm. PL spectra were composed of twenty

averaged frames, each obtained with a 30 sec integration time. All spectra were corrected

for the spectral response of the detector.

The relative PL quantum yield (ΦPL) data shown in Figure 5b in the paper were obtained

using the dye Indocyanine Green (IR-125) in fresh dimethylsulfoxide (DMSO), with a cor-

rection factor associated with the difference in solvent index of refraction, as the reference.

The Ag2S and IR-125 solutions were measured in 10 mm × 10 mm quartz cuvettes using

a PerkinElmer Lambda 950 UV-Vis spectrometer for absorption measurements. For the

corresponding PL measurements, the excitation source was a continuous-wave, wavelength-

tunable Ti:Sapphire laser. Emitted light was collected and dispersed using a 300 mm spec-

trometer (Acton SpectraPro 300i) coupled with a liquid nitrogen-cooled InGaAs 1D de-
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tector array (Princeton Instruments PyLoN-IR 1024-1.7). Solutions of both the dye and

nanoplatelets were diluted to obtain a maximum absorption of <0.1 at energies below that

of the excitation wavelength (to limit reabsorption of the PL by the solutions). A spectral

position that was reasonably flat was used as the excitation wavelength; for this measure-

ment, a wavelength of 730 nm was selected. Photoluminescence measurements for both the

sample and the reference were conducted under identical conditions as described by Würth

et al. 40

Incident Photon Conversion Efficiency Measurements

The same SnO2 crystal was used for all sensitization studies. The crystals were cleaned prior

to use by sonication in water and ethanol.

To obtain photocurrent spectra, the clean natural SnO2 crystals were immersed in solu-

tions of Ag2S NPLs for two hours to functionalize the surface. To evaluate the Ag2S NPLs

for optoelectronic applications, we performed incident photon conversion efficiency (IPCE)

measurements using a potentiostat (Princeton Applied Research EG&G, 174A), lock-in am-

plifier (Stanford Research, SR830), and optical chopper (Stanford Research Systems SR540).

A halogen lamp (Newport) in conjunction with a motorized monochromator (Jarrell-Ash Fis-

cher Scientific) was used to produce the incident monochromatic light beam. This light was

passed through a 450 nm long pass filter for the 500 to 900 nm measurement and a 600 nm

long pass filter for the 800 to 1200 nm measurement. The light was subsequently focused

with a focusing lens onto the NPL-sensitized crystal surface (front-side illumination).
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