
Downloaded from: http://e-space.mmu.ac.uk/624318/
Publisher: Institution of Engineering and Technology
DOI: https://doi.org/10.1049/iet-com.2019.0665

Please cite the published version
1 Introduction

Connectivity in indoor environment has become one of the most important aspects of our modern society. Radio frequency (RF) based communication system is one of the most commonly used technology for indoor connectivity. Due to availability and cost issues with RF spectrum, recently, several other technologies have come into consideration to achieve reliable and high data rate indoor connectivity. Light emitting diodes (LEDs), for instance, are widely used because of their enhanced color rendering capability, long life time, and huge energy savings [1]. These LEDs can be used for indoor wireless communications, known as visible light communication (VLC), for various smart applications as discussed in [2]. Power line communications (PLC) is another such technology that has gained considerable research attention in recent years due to the existing ubiquitous infrastructure. These PLC terminals can communicate through power lines, whereas, mobile devices have to connect via either RF or VLC interfaces [3].

The Internet of Things (IoT) has led to the deployment of millions of smart devices (SDs) due to their vast applications [4]. Moreover, providing high data rates for these large numbers of SDs, using the conventional RF based communication systems has become a challenging task, owing to the limited spectrum. Further, it has been shown that PLC, VLC, or RF alone cannot be an effective solution to provide high data rates [1]. To address this problem, the hybrid systems have been proposed in the literature with the coexistence of different communication systems.

The integration of PLC and RF for wireless relaying systems has been proposed for many applications including indoor, outdoor, and smart grids [5–9]. In [5], for instance, wireless relaying systems are integrated with PLC for long distance transmissions. This integration technique shows better robustness than using conventional PLC or RF for both long and short range communication. In addition, a hybrid wireless-broadband PLC (BPLC) system has been presented in [6] that utilizes the medium voltage power line cables for offering broadband services to remote areas. In [7], a hybrid PLC/RF system has been considered to improve the range of the RF signals in a multi-storey building. Here, PLC links work as a backbone to pass the RF signals between multiple rooms and floors. In [8], the authors have proposed a multi-channel receiver based hybrid PLC/RF communication system which has been analysed in terms of selection combining and maximal ratio combining methods for fading compensation. The capacity analysis of an amplify-and-forward (AF) relay based cascaded PLC/RF system has been carried out in [9], where, PLC and wireless users communicate with each other through these relays.

Integration of PLC and VLC technologies for various applications have been discussed in [10–14]. The first integration proposal has been discussed in [10] which utilizes ON/OFF keying for data modulation. Then, orthogonal frequency division multiplexing (OFDM) technique has been developed for hybrid PLC/VLC system to mitigate the interference and inter-symbol interference (ISI) [11]. In [12], OFDM modulation based integrated BPLC and VLC communication systems has been proposed to provide e-health services inside hospitals. The performance of the OFDM with binary phase shift keying for sub-carrier modulation has been investigated in [13] for the cascaded BPLC and VLC communication systems that reduce the effect of impulsive noise and inter-symbol interference. In [14], a survey on opportunity of integrating PLC and VLC channels has been presented. The capacity analysis of an amplify-and-forward and decode-and-forward based hybrid PLC/VLC systems have been carried out in [15] and [16], respectively. Here, the source node first transmits the information to the relay through a PLC link and then the relay node amplifies [15] or decodes [16] and forwards it to the destination node through a VLC link. A hybrid VLC and RF system has been considered in [17] for indoor environments which improves the per user average and outage throughput. A cascaded PLC/VLC system has been considered in [18] that is compatible to provide multiple services with different quality of service requirements. In [19], an energy efficient wireless communication network has been developed using both RF and VLC technologies to solve the power and BW allocation...
A hybrid PLC/VLC/RF fronthaul with a fiber based backhaul system, as the fiber based link can provide very high data rate as shown in Fig. 1. Here, we consider two types of smart devices (SDs) namely PLC-enabled and PLC-disabled. The PLC-enabled SDs have signal reception interfaces for PLC, VLC, and RF, whereas, the PLC-disabled SDs have reception interfaces for VLC and RF only. Moreover, the optimization of the sum rate capacity (SRC) with AP association and BW allocation is an open problem [19] and to the best of our knowledge, it has not been carried out for the hybrid PLC/VLC/RF system. Thus, in this work, a joint distribution algorithm based on (1) worst device reshuffling and (2) load balancing techniques are proposed, in order to maximize the achievable SRC for the fronthaul hybrid PLC/VLC/RF communication system with a fixed transmit power from all APs. The key contributions of this work are as follows:

- The AP association and BW allocation for the hybrid PLC/VLC/RF system has been formulated as an optimization problem.
- The presence of impulsive noise in the PLC system adds non-linearity to the optimization problem compared to conventional cellular systems. Thus, a hierarchical decomposition method is considered to convert the resultant non-linear optimization problem into a set of convex optimization problems.
- A joint distribution algorithm based on (1) worst device reshuffling and (2) load balancing techniques are proposed, in order to maximize the achievable SRC.
- An analytical approximation for the BW allocated to each SD for a given AP association is derived.
- A numerical analysis is presented on the achievable SRC to study the effect of increased number of PLC-disabled SDs.
- Finally, the effect of increased number of SDs on the optimal SRC is analysed numerically.

The rest of the paper is outlined as follows. The channel models corresponding to PLC, VLC, and RF are presented in Section 2. The proposed joint association and BW allocation is discussed in Section 3 and the performance of the proposed joint distribution algorithm is evaluated through extensive simulations in Section 4. Finally, Section 5 provides concluding remarks along with possible future scope.

2 System model

We consider an indoor downlink scenario with 1 RF AP, \(k \) VLC APs, \(l \) PLC APs, and \(N \) SDs. Let \(a \in \mathbb{A} = \{0, 1, \cdots, k, k+1, \cdots, k+l\} \) denotes the set containing the indices of RF, VLC, and PLC APs, where, \(a = 0 \) denotes the index of RF, \(a \in \{1, 2, \cdots, k\} \) denote the indices of VLC AP, and \(a \in \{k+1, k+2, \cdots, k+l\} \) denote the indices of PLC AP. For convenience, let \(n \in \mathbb{N} = \{1, 2, \cdots, N\} \) denote the set of SDs. In this work, we assume two kinds of SDs such as PLC-enabled and PLC-disabled as shown in Fig. 1. The PLC-enabled SDs have signal reception interfaces for PLC, VLC, and RF, whereas, the PLC-disabled SDs have reception interfaces for VLC and RF only [1], [4]. Further, we assume that a SD can connect to only one AP using only one communication link at a given time. The channel models corresponding to PLC, VLC, and RF are presented in the following subsection. Moreover, we consider the effect of both attenuation and fading in the channel for the SRC analysis.

2.1 PLC channel model

In the PLC system, in addition to the distance dependent signal attenuation, fading and impulsive noise also affect the transmitted data. Thus, in this work, we consider the effect of both channel impairments. The fading gain of the PLC channel can be modeled by a log-normal distribution [26–28]. Let \(P_2 \) (in dB), \(P_3 \) (in dB), and \(\alpha \) (in dB/distance) denote the transmit power and channel gain due to the PLC link respectively. The achievable data rate for a given AP association is derived.

Let \(C_1 \), \(C_2 \), and \(C_3 \) denote the achievable data rate due to the PLC, VLC, and RF links respectively, then the total achievable data rate is given by:

\[
C = C_1 + C_2 + C_3
\]

where,

\[
C_1 = \max(C_{PLC1}, C_{PLC2}, \cdots, C_{PLCk})
\]

\[
C_2 = \max(C_{VLC1}, C_{VLC2}, \cdots, C_{VLCk})
\]

\[
C_3 = \max(C_{RF1}, C_{RF2}, \cdots, C_{RFk})
\]

The achievable data rate for a given AP association is derived.

The rest of the paper is outlined as follows. The channel models corresponding to PLC, VLC, and RF are presented in Section 2. The proposed joint association and BW allocation is discussed in Section 3 and the performance of the proposed joint distribution algorithm is evaluated through extensive simulations in Section 4. Finally, Section 5 provides concluding remarks along with possible future scope.
Table 1: Summary of important parameters and their typical values used in this work.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Set of all APs</td>
<td></td>
</tr>
<tr>
<td>A_d</td>
<td>Area of the photodetector in VLC</td>
<td>$10^{-4} , m^2$</td>
</tr>
<tr>
<td>α</td>
<td>Index of an AP</td>
<td></td>
</tr>
<tr>
<td>$B_{a,n}$</td>
<td>BW allocated for the link between AP a and SD n</td>
<td></td>
</tr>
<tr>
<td>$B_{a,max}$</td>
<td>Maximum available BW at AP a</td>
<td></td>
</tr>
<tr>
<td>B_n</td>
<td>Noise bandwidth</td>
<td>100MHz</td>
</tr>
<tr>
<td>B_p</td>
<td>Allocated BW in PLC</td>
<td>10MHz</td>
</tr>
<tr>
<td>B_{RF}</td>
<td>Allocated BW in RF</td>
<td>1MHz</td>
</tr>
<tr>
<td>B_{VL}</td>
<td>Allocated BW in VLC</td>
<td>100MHz</td>
</tr>
<tr>
<td>C</td>
<td>Sum rate capacity (SRC)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Set of PLC-disabled SDs</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>distance between AP and SD</td>
<td></td>
</tr>
<tr>
<td>f_c</td>
<td>Carrier frequency in RF</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>$G_{h,n}$</td>
<td>Channel gain in RF</td>
<td>1</td>
</tr>
<tr>
<td>G_p</td>
<td>Channel gain in PLC</td>
<td>1</td>
</tr>
<tr>
<td>$G_{n,n'}$</td>
<td>Path gain in RF</td>
<td></td>
</tr>
<tr>
<td>$g(\beta)$</td>
<td>Gain of the concentrator in VLC</td>
<td>1</td>
</tr>
<tr>
<td>$H(0)$</td>
<td>DC channel gain in VLC</td>
<td></td>
</tr>
<tr>
<td>I_2</td>
<td>Noise BW factor</td>
<td>0.562</td>
</tr>
<tr>
<td>i</td>
<td>Backgroung current</td>
<td>5100µA</td>
</tr>
<tr>
<td>k</td>
<td>Number of VLC APs</td>
<td>4</td>
</tr>
<tr>
<td>l</td>
<td>Number of PLC APs</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>Number of SDs</td>
<td>40, 0-80</td>
</tr>
<tr>
<td>N_p</td>
<td>Noise power spectral density in PLC</td>
<td>10^{-14} watts/Hz</td>
</tr>
<tr>
<td>N_r</td>
<td>Noise power spectral density in RF</td>
<td>3.89×10^{-21} watts/Hz</td>
</tr>
<tr>
<td>N_v</td>
<td>Noise power spectral density in VLC</td>
<td>10^{-21} watts/Hz</td>
</tr>
<tr>
<td>n</td>
<td>Index of an SD</td>
<td></td>
</tr>
<tr>
<td>P_a</td>
<td>noise power due to ISI</td>
<td>0</td>
</tr>
<tr>
<td>P_R</td>
<td>Received power at an SD</td>
<td></td>
</tr>
<tr>
<td>P_T</td>
<td>Transmit power at an AP</td>
<td>10 mWatt</td>
</tr>
<tr>
<td>q</td>
<td>Electronic charge</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Responvity of the photodiode in VLC</td>
<td>1</td>
</tr>
<tr>
<td>$T_a(\beta)$</td>
<td>Gain of optical filter in VLC</td>
<td>1</td>
</tr>
<tr>
<td>U_a</td>
<td>Set of all SDs</td>
<td></td>
</tr>
<tr>
<td>$U_{a,n}$</td>
<td>The number of SDs that are associated to AP a</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Attenuation factor with distance in PLC</td>
<td>40 dB/KM</td>
</tr>
<tr>
<td>ξ</td>
<td>parameter of Bernoulli random variable</td>
<td>0.1</td>
</tr>
<tr>
<td>γ</td>
<td>Power ratio of impulsive noise to the background noise</td>
<td>10</td>
</tr>
<tr>
<td>Γ_p</td>
<td>SNR of PLC</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Order of Lambert index in VLC</td>
<td>1</td>
</tr>
<tr>
<td>δ</td>
<td>The angle between the light emitting direction and light source normal direction in VLC</td>
<td>0°</td>
</tr>
<tr>
<td>β</td>
<td>Incident angle of radiation in VLC</td>
<td>0°</td>
</tr>
<tr>
<td>β_c</td>
<td>Field of view of the receiver in VLC</td>
<td></td>
</tr>
<tr>
<td>ψ</td>
<td>LED’s semi-angle at half power</td>
<td>60°</td>
</tr>
<tr>
<td>Γ_v</td>
<td>SNR in VLC</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Path loss in RF</td>
<td></td>
</tr>
<tr>
<td>$\Lambda_{a,n}$</td>
<td>Binary indicator that defines the association of SD a to AP n</td>
<td></td>
</tr>
<tr>
<td>$\Gamma_{a,n}$</td>
<td>SNR at SD a from AP a</td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>Lagrange multiplier</td>
<td></td>
</tr>
</tbody>
</table>

power, received power, and the attenuation factor with distance, respectively. Then, P_R can be expressed as [29]

$$P_R = P_T - \alpha d,$$

(1)

where, d is the distance in the power line between the PLC AP and SD.

The fading amplitude h_p of the PLC channel is modeled as an independent and identically distributed (i.i.d.) log-normal random variable with probability density function (PDF) given as [30]

$$f_{h_p}(\nu) = \frac{1}{\nu \sqrt{2\pi \sigma_{h_p}^2}} \exp \left(-\frac{(\ln \nu - \mu_{h_p})^2}{2\sigma_{h_p}^2} \right), \nu \geq 0,$$

(2)

where, μ_{h_p} and $\sigma_{h_p}^2$ are the mean and variance of the normal random variable $\ln(h_p)$, respectively. Thus, the nth moment of h_p can be obtained as [31]

$$E[h_p^n] = \exp \left(n\mu_{h_p} + \frac{n^2\sigma_{h_p}^2}{2} \right).$$

(3)

Unlike the other communication systems, power lines are subject to impulsive noise along with background noise. The prior noise occurs due to the switching transients at irregular intervals whereas the later occurs from the household appliances such as televisions, computers, etc. [33], [34]. This mixture of noise can be well modeled by a Bernoulli-Gaussian process and its samples can be obtained as

$$n_p = n_g + n_b n_1,$$

(5)

where, n_g and n_1 represent the zero mean additive white Gaussian noise (AWGN) random variables with variances σ_g^2 and σ_1^2, respectively, and n_b represents the Bernoulli random variable with parameter ξ. Furthermore, as all samples have different origins, they are assumed to be independent. Therefore, the noise power spectral density, N_p (watts/Hz), can be obtained as

$$N_p = E[n_p^2] = \sigma_g^2 (1 + \xi),$$

(6)

where, $\gamma = \sigma_b^2 / \sigma_g^2$ represents the power ratio of impulsive noise to the background noise. With this in mind, the corresponding SNR is given as [35]

$$\Gamma_p = (1 - \xi) \Gamma_1 + \xi \Gamma_2,$$

(7)

where, Γ_1 and Γ_2 are given as

$$\Gamma_1 = \frac{P_T G_P}{\sigma_b^2 B_p},$$

(8)

$$\Gamma_2 = \frac{P_T G_P}{\sigma_g^2 (1 + \gamma) B_p},$$

(9)

respectively, where, B_p is the allocated BW.
2.2 VLC channel model

In the VLC system, there exist point-to-point and diffusing links between the LED and photodetector. In the primary links, the AP directly communicates with the devices and requires no obstacles present between them. Thus, in point-to-point links, the beams are directly pointed in the right directions. This in turn reduces the interference, attenuation, and results in higher data rate transmissions. Further, these links are very sensitive to blocking and shadowing effects as they require line-of-sight (LoS) transmission. In the secondary links, the signal radiates in accordance with a wide angle that is similar to RF links. Thus, these links suffer a loss in data rate and introduce multipath induced signal distortion, which significantly degrades the overall channel capacity. The multipath fading, which is common in traditional RF channels, does not significantly impact the VLC channel. This is due to the fact that the signal wavelength in VLC is only hundreds of nanometres, and the size of commonly used photodetectors is in the order of few centimetres, which is sufficiently large to achieve effective space diversity for VLC signals, thereby mitigating the multipath fading [36]. In this work, we assume that all the VLC links are point-to-point and the corresponding channel gain is obtained as [37], [38]

\[
H(\theta) = \begin{cases} \frac{\rho + 1}{2\pi d^2} \cos^\theta(\beta)T_\alpha(\beta), & 0 \leq \beta \leq \beta_\epsilon, \\ 0, & \beta \geq \beta_\epsilon, \end{cases}
\]

where, \(A_d\) denotes the area of the photodetector (SD), \(d\) is the distance between the VLC AP and the SD, \(\beta\) is the angle between the light emitting direction and the light source normal direction, \(\beta_\epsilon\) represents the incident angle of radiation, \(T_\alpha(\beta)\) and \(g(\beta)\) are the gains of optical filter and concentrator, respectively, \(\beta_\epsilon\) is the field of view of the receiver, and \(\rho\) represents the order of Lambert index which is obtained as [39], [40]

\[
\rho = \frac{\log(1/2)}{\log(\cos(\psi))},
\]

where, \(\psi\) is the LED’s semi-angle at half power. Let \(P_{TR}\) be the transmit power and \(P_{PR}\) the received power. Then, the received power can be expressed as [36]

\[
P_{PR} = H(\theta)P_T.
\]

Hence, the corresponding SNR is given as [41]

\[
\Gamma_c = \frac{(RP_{PR})^2}{N_cB_c},
\]

where, \(B_c\) is the allocated BW, \(R\) the photodiode responsivity, and \(N_c\), the noise power spectral density in watts/Hz with variance \(\sigma_n^2\). In VLC, the total noise is a combination of the shot noise (\(\sigma_s^2\)) and the thermal noise (\(\sigma_t^2\)). However, the shot noise is that generated from ambient light is dominant compared to the thermal noise [41] and is obtained as [36], [39]

\[
\sigma_s^2 = 2qR(P_{PR} + P_0)B_0 + 2qI_0B_n, \tag{14}
\]

where, \(B_0\) and \(P_0\) are the noise-BW and noise power due to inter-symbol-interference (ISI), respectively, \(q\) is the electronic charge, \(i\) is the background current, and \(I_0\) is the noise BW factor. Further, we assume that \(P_{TR} = 0\) as the VLC system is less sensitive to ISI [39].

2.3 RF channel model

In the RF system, the attenuation is modeled using the log-distance path loss model and fading is modeled using Rayleigh distribution. LoS path loss follows a relation defined as [41]

\[
\eta[dB] = E\log_{10}(d) + F + G\log_{10}\left(\frac{d}{d_0}\right),
\]

where, \(d\) is the distance between the AP and SD, \(f_c\) is the carrier frequency in GHz, and \(E = 18.7, F = 46.8\) and \(G = 20\) are constants dependant on the propagation model. Then, the path gain is given as

\[
G_{\eta,\nu} = 10^{-\eta[dB]/10}.
\]

The fading amplitude \(h_n\) of the RF channel is modeled as i.i.d Rayleigh random variable with mean \(\sqrt{\frac{\pi}{2}}\sigma_n\) and variance \(\frac{4\pi}{\sqrt{2}}\sigma_n^2\). Thus, the corresponding PDF is given by [42]

\[
h_n(\nu) = \frac{\nu}{\sigma_n^2} \exp\left(-\frac{\nu^2}{2\sigma_n^2}\right), \quad \nu \geq 0,
\]

and the corresponding average channel gain \(G_{h,\nu} = E[h_n^2] = 2\sigma_n^2\). Further, this noise in the channel model is assumed to be AWGN with mean zero and variance \(\sigma_n^2\) and the noise power spectral density \(N_c = E[\nu^2] = \sigma_n^2\). Hence, the corresponding SNR is expressed as

\[
\Gamma_c = \frac{P_TG_{\eta,\nu}G_{h,\nu}}{N_cB_c}.
\]

where, \(P_T\) and \(B_c\) are the transmit power and allocated BW, respectively. Next, we frame the joint association and BW allocation for the PLC/VLC/RF system as an optimization problem.

3 Joint association and BW allocation

In this section, we present the SRC, \(C\), as a function of association and BW allocation. Wherein, we formulate a constrained optimization problem of \(C\) with AP association and BW allocation as the optimization parameters. After that, hierarchical decomposition method is used to solve the optimization problem. Finally, we present the proposed joint distribution algorithm that improves the overall SRC of the proposed system.

3.1 Problem Formulation

Let \(\Lambda_{a,n}\) be the binary indicator that denotes the association of the SD to the RF channel for \(a = 0\), VLC channel for \(a \in \{1,2,\ldots,k\}\), and PLC channel for \(a \in \{k+1,k+2,\ldots,k+l\}\). Thus, the relation is obtained as

\[
\sum_{a=0}^{k+l} \Lambda_{a,n} = 1, \quad \forall n \in U, \tag{19}
\]

which represents the consideration that each SD should associate with only one AP that belongs to only one communication technology. Thus, the SRC can be obtained as [43]

\[
C = \sum_{a=0}^{k} \sum_{n=1}^{N} \Lambda_{a,n}B_{a,n}\log_2\left(1 + \frac{\Gamma_{a,n}}{B_{a,n}}\right) + \sum_{a=k+1}^{k+l} \sum_{n=1}^{N} \Lambda_{a,n}B_{a,n}\left[(1 - \xi)\log_2\left(1 + \frac{\Gamma_{a,n}}{B_{a,n}}\right) + \xi\log_2\left(1 + \frac{\Gamma_{a,n}}{B_{a,n}}\right)\right], \tag{20}
\]

where, \(B_{a,n}\) represents the BW allocated by RF AP \((a = 0)\), or VLC AP \((a = 1,2,\ldots,k)\), or PLC AP.
Algorithm 1: Lagrange multiplier method to obtain the optimal BW allocation

Require: The minimization function \(f(B_a) \), equality constraint \(g(B_a) \)
Ensure: Optimal value of BW allocation

\[L(B_a, \Omega) = f(B) + \Omega y(B) \] with \(\Omega \) as the Lagrange multiplier

Compute \(\nabla B L(B_a, \Omega) \) and \(\nabla \Omega L(B_a, \Omega) \)
Assume \(\nabla = \nabla B \nabla_a \)
Solve \(\nabla L(B_a, \Omega) = 0 \) to obtain the optimal values of \(B_{a,n} \) for each \(n \in U_a \) and \(\Omega \)

3.2 Hierarchical decomposition method

We can relax \(\lambda_{a,n} \) in P, which gives

\[0 \leq \lambda_{a,n} \leq 1 \forall (a, n) \in (A, U) , \]

where, the fractional value of \(\lambda_{a,n} \) denotes the partial AP association with different APs during AP association period. Initial step of this method is an upper level primal decomposition that decomposes P into P1 and P2. Here, P1 is the optimization problem of SRC with association as the optimization variable for a given BW. Further, P2 is the optimization problem of SRC with BW as the optimization variable for a given association. For a given \(B_{a,n} \), the optimization problem P1 can be obtained as

\[P1 : \max_{\lambda_{a,n}} C(\lambda_{a,n}, B_{a,n}) \forall (a, n) \in (A, U) \] subject to \(\sum_{a=0}^{k+1} \lambda_{a,n} = 1, \forall n \in U \) . \hspace{1cm} (26)

Similarly, for a given \(\lambda_{a,n} \) \(\forall (a, n) \in (A, U) \), the optimization problem P2 can be derived as

\[P2 : \max_{B_{a,n}} C(\lambda_{a,n}, B_{a,n}) \forall (a, n) \in (A, U) \] subject to \(\sum_{n=1}^{N} B_{a,n} \leq B_{a,max} \), for each \(a \in A \) \& \(n \in U_a \) . \hspace{1cm} (27)

where, \(B_{a,max} \) denote the maximum available BW with each AP \(a \in A \). Furthermore, for a given association, each AP present in the scenario gets the information about the number of SDs that are associated to it and has to optimally divide the BW, \(B_{a,max} \) available with it. Hence, the problem P2 can be further simplified into \(P21_a \) for each \(a \in \{0, 1, \ldots, k\} \) and \(P22_a \) for each \(a \in \{k+1, k+2, \ldots, k+l\} \) which are defined, respectively, as

\[P21_a : \max_{B_{a,n}} \sum_{n \in U_a} B_{a,n} \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,n}} \right) \] subject to \(\sum_{n \in U_a} B_{a,n} = B_{a,max} , \hspace{1cm} (32) \]

\[B_{a,n} \geq 0 , \hspace{1cm} (33) \]

\[P22_a : \max_{B_{a,n}} \sum_{n \in U_a} B_{a,n} \left[(1 - \xi) \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,n}} \right) + \xi \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,max}} \right) \right] \]
subject to \(\sum_{n \in U_a} B_{a,n} = B_{a,max} , \hspace{1cm} (34) \]

\[B_{a,n} \geq 0 . \hspace{1cm} (35) \]

Here, \(P21_a \) corresponds to RF or VLC and \(P22_a \) corresponds to PLC as they share different SRC expression. The optimization problems defined in \(P21_a \) for each \(a \in \{0, 1, \ldots, k\} \) are concave optimization problems the dual of which is a convex optimization problem. Thus, the duality of the optimization problem \(P21_a \) can be obtained as

\[f(B_a) = \min_{B_{a,n}} \sum_{n \in U_a} -B_{a,n} \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,n}} \right) \] subject to \(g(B_a) = \sum_{n \in U_a} B_{a,n} - B_{a,max} = 0 \) , \hspace{1cm} (37)

where, \(B_a \) is a vector of BWs allocated to each SD \(n \in U_a \), i.e., each SD that is associated to AP \(a \). In this work, the Lagrange multiplier method is used to solve the minimization of convex optimization problem defined in (37) with equality constraint on the BW defined in (38) [46]. Algorithm 1 shows the steps involved in the Lagrange multiplier method. Let \(L_1(B_a, \Omega_1) \) denotes the Lagrangian of the convex optimization problem which is obtained as

\[L_1(B_a, \Omega_1) = \sum_{n \in U_a} B_{a,n} \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,n}} \right) + \Omega_1 \left(\sum_{n \in U_a} B_{a,n} - B_{a,max} \right) . \hspace{1cm} (39) \]

where, \(\Omega_1 \) denotes the Lagrangian multiplier. Then, obtaining the partial derivatives of \(L_1(B_a, \Omega_1) \) with respect to each variable in \(B_a \) as well as \(\Omega_1 \) and equating the result to zero which
are obtained as
\[
\nabla_{B_{a,n}} L_1(B_a) = \log_2 \left(1 + \frac{\Gamma_{a,n}}{B_{a,n}} \right) - \frac{\Gamma_{a,n}}{\Gamma_{a,n} + B_{a,n}} + \Omega_1 = 0 , \quad (40)
\]
\[
\nabla_{\Omega_2} L_2(B_a) = \sum_{n \in \mathcal{U}_a} B_{a,n} - B_{a,max} = 0 , \quad (41)
\]

Finally, by solving the linear equations defined in (40) and (41), with an assumption that \(\Gamma_{a,n} / B_{a,n} \gg 1 \), the optimal values of \(B_{a,n} \) and \(\Omega_1 \) are obtained as
\[
B_{a,n} \approx \frac{\Gamma_{a,n} B_{a,max}}{\sum_{i \in \mathcal{U}_a} \Gamma_{1,a,i} + B_{a,n}} , \quad n \in \mathcal{U}_a , \quad (42)
\]
\[
\Omega_1 \approx \log_2 \left(\frac{\exp(1) B_{a,max}}{\sum_{i \in \mathcal{U}_a} \Gamma_{1,a,i}} \right) , \quad (43)
\]
respectively, as shown in Algorithm 1. Similarly, from \(\mathbf{P}_{22} \), derived in (34), it is observed that the first and second terms in the summation are also concave functions. The dual of each of these terms is a convex function. Thus, according to the additive property of convex functions \((46), \mathbf{P}_{22}\) is also a convex minimization problem. Therefore, similar to \(\mathbf{P}_{21}, \mathbf{P}_{22} \) can also be solved using the Lagrange multiplier method and the corresponding Lagrangian is defined as
\[
L_2(B_a) = \sum_{n \in \mathcal{U}_a} B_{a,n} \left(1 - \xi \right) \log_2 \left(1 + \frac{\Gamma_{1,a,n}}{B_{a,n}} \right) - \xi \log_2 \left(1 + \frac{\Gamma_{2,a,n}}{B_{a,n}} \right) + \Omega_2 \left(\sum_{n \in \mathcal{U}_a} B_{a,n} - B_{a,max} \right) , \quad (44)
\]
where, \(\Omega_2 \) is the Lagrangian multiplier. Then, the partial derivatives are obtained as
\[
\nabla_{B_{a,n}} L_2(B_a) = \log_2 \left(1 + \frac{\Gamma_{1,a,n} B_{a,n}}{\Gamma_{1,a,n} + B_{a,n}} \right) - \frac{\Gamma_{1,a,n}}{\Gamma_{1,a,n} + B_{a,n}} + \Omega_2 = 0 , \quad (45)
\]
\[
\nabla_{\Omega_2} L_2(B_a) = \sum_{n \in \mathcal{U}_a} B_{a,n} - B_{a,max} = 0 . \quad (46)
\]

Finally, the analytical approximations to optimal values of \(B_{a,n} \) and \(\Omega_2 \) are obtained by solving the linear equations defined in (45) and (46) with an assumption that \(\Gamma_{1,a,n} / B_{a,n} \gg 1 \) and \(\Gamma_{2,a,n} / B_{a,n} \gg 1 \) and are given as
\[
B_{a,n} \approx \frac{\Gamma_{1,a,n} \Gamma_{2,a,n} B_{a,max}}{\sum_{i \in \mathcal{U}_a} \Gamma_{1,a,i} \Gamma_{2,a,i}} , \quad n \in \mathcal{U}_a , \quad (47)
\]
\[
\Omega_2 \approx \log_2 \left(\frac{\exp(1) B_{a,max}}{\sum_{i \in \mathcal{U}_a} \Gamma_{1,a,i} \Gamma_{2,a,i}} \right) , \quad (48)
\]
respectively, as shown in Algorithm 1.

3.3 Joint distribution algorithm

Fig. 2 shows the flowchart of the joint distributed algorithm that solves \(\mathbf{P} \) in an iterative manner. Let \(\mathcal{D} \) represents the set of PLC-disabled SDs in the system and \(\mathcal{D} = \{ \} \) represents the case where all SDs are PLC-enabled. An SNR based initial association is considered for \(\mathcal{A} \) where the SD associated to an AP from which it receives maximum SNR, this solves the problem \(\mathbf{P}_1 \). Thereafter, for a known \(\mathcal{A} \), the problem is simplified to solving \(\mathbf{P}_2 \) which is equal to obtaining the optimal values of BW allocated to each SD for a given association. These optimal values are obtained by solving the Lagrange equations in (39) and (44) and the approximate solutions are derived in (42) and (47), respectively. Finally, the SRC can be obtained from (20) using the association and the corresponding BW. The maximum SRC is obtained by using iterative based reshuffling method. This iterative approach is based on two variants: \((\mathbf{V}_1)\) reshuffling of the SD with the lowest SRC among all the SDs present in the hybrid system (worst device reshuffling technique) and \((\mathbf{V}_2)\) reshuffling of the SD with the lowest SRC among all the SDs that belong to the AP with highest load (load balancing technique).

In the iterative based reshuffling method, the initial step is to find the SD \(n \) that needs to be reshuffled based on \((\mathbf{V}_1)\) or \((\mathbf{V}_2)\):

1. **Identify the SD, \(n \), that needs to be reshuffled based on \((\mathbf{V}_1)\) or \((\mathbf{V}_2)\) and compute the optimal BW allocation and SRC \(S_i \) with new association.**

2. **Reshuffle \(n \) to each \(b \) \(\in \{ 1, 2, \ldots, k \} \) \(\backslash \{ n \} \) and compute the optimal BW allocation and SRC \(S_j \) with new association.**

3. **Find the AP, \(b \), such that \(b = \arg \max S_j \),**

4. **If \(C_{t+1} > C_t \), Yes Update the SRC and associate SD, \(n \), to AP, \(b \).**

5. **If \(C_{t+1} = C_t \), Yes Compute the optimal BW allocation and C**

6. **If \(C_{t+1} < C_t \), Yes Compute the optimal BW allocation and SRC \(S_j \) with new association.**

7. **Compute the optimal BW allocation and SRC \(S_i \) with new association.**

8. **Identify the SD, \(n \), that needs to be reshuffled based on \((\mathbf{V}_1)\) or \((\mathbf{V}_2)\) and compute the optimal BW allocation and SRC \(S_i \) with new association.**

9. **Reshuffle \(n \) to each \(b \) \(\in \{ 1, 2, \ldots, k \} \) \(\backslash \{ n \} \) and compute the optimal BW allocation and SRC \(S_j \) with new association.**

10. **Find the AP, \(b \), such that \(b = \arg \max S_j \),**

11. **If \(C_{t+1} > C_t \), Yes Update the SRC and associate SD, \(n \), to AP, \(b \).**

12. **If \(C_{t+1} = C_t \), Yes Compute the optimal BW allocation and C**

13. **If \(C_{t+1} < C_t \), Yes Compute the optimal BW allocation and SRC \(S_j \) with new association.**

14. **Identify the SD, \(n \), that needs to be reshuffled based on \((\mathbf{V}_1)\) or \((\mathbf{V}_2)\) and compute the optimal BW allocation and SRC \(S_i \) with new association.**

15. **Reshuffle \(n \) to each \(b \) \(\in \{ 1, 2, \ldots, k \} \) \(\backslash \{ n \} \) and compute the optimal BW allocation and SRC \(S_j \) with new association.**

16. **Find the AP, \(b \), such that \(b = \arg \max S_j \),**

17. **If \(C_{t+1} > C_t \), Yes Update the SRC and associate SD, \(n \), to AP, \(b \).**

18. **If \(C_{t+1} = C_t \), Yes Compute the optimal BW allocation and C**

19. **If \(C_{t+1} < C_t \), Yes Compute the optimal BW allocation and SRC \(S_j \) with new association.**
and the AP \(a \) to which it is associated. In case \(n \in \mathcal{D} \), partially associate \(n \) to all the APs in the set \(\{0, 1, \ldots, l\} \setminus \{a\} \). Otherwise, partially associate \(u \) to all the APs in the set \(\mathcal{A} \setminus \{a\} \). In each case find the optimal values of BW and corresponding SRC. Let \(C_{l+1, t} \) be the maximum of all the sum rate capacities obtained in each partial association. In case \(C_{l+1, t} > R_t \), then associate the SD to the AP that results in maximum SRC. Repeat the above procedure until the SRC convergences to a stable value.

4 Numerical Results

Numerical results are presented in this section to compare the performance of the proposed hybrid communication system with hybrid PLC/VLC, PLC/RF, and VLC/RF systems consider in this work with both worst device reshuffling and load balancing techniques. We also comment on the change in the association from initial to final (the association at which the SRC converges at a maximum value) in both the reshuffling techniques. Furthermore, the transmit power, \(P_T \), is considered as 10 mW for each AP belonging to any of the communication technology. Finally, in the case of RF, the carrier frequency \(f_c \) is considered to be 2.4 GHz, \(G_{d,B} = 1, N_v = 10^{-21} \text{ watts/Hz} \text{ and } B_T = 100 \text{ MHz} \). Moreover, the transmit power, \(P_T \), is considered as 10 mW for each AP belonging to any of the communication technology. Further, the list of all parameters and corresponding values are tabulated in Table 1.

Figs. 3a and 3b show the SRC of all the considered hybrid communication systems with worst device reshuffling and load balancing techniques, respectively. From both, Figs. 3a and 3b, we observe that the proposed mechanism doubles the achievable SRC compared to the SNR based AP association and BW allocation for most of the hybrid systems consider in this work. Further, the maximum SRC is achieved by the hybrid PLC/VLC/RF system among all communication systems under consideration. This observation is valid as, the aggregate BW of the hybrid PLC/VLC/RF system is higher than that of others. Moreover, we observe that the SRC of the hybrid VLC/RF system is higher than that of hybrid PLC/VLC and PLC/RF systems. This happens due to the combined effect of high SNR of the RF link and high BW of the VLC link for a fixed transmit power.
both RF and PLC during the initial association as both RF and PLC provide relatively high SNR. However, in the case of hybrid VLC/RF and PLC/VLC systems, the SDs should associate to only RF and PLC, respectively, as both provide high SNR compared to the VLC system. This in turn reduces the achievable SRC in the initial association as all SDs associate to only RF and PLC in VLC/RF and PLC/VLC, respectively.

Fig. 4a shows the initial association of all SDs to the respective APs from which they receive higher SNR. Figs. 4b and 4c show the final association, at the saturated SRC, of the SDs with both worst device reshuffling and load balancing techniques, respectively. From Fig. 4a, it is observed that the number of SDs associated to PLC, VLC and RF are 3, 0, and 37, respectively. It is seen from the figure that all the SDs are connected to only PLC and RF during the initial association due to the provision of higher SNR by both PLC and RF compare to VLC. It has changed to 4, 7 and 29 with worst device reshuffling technique and 7, 1 and 32 with load balancing technique as shown in Figs. 4b and 4c, respectively. This is due to the availability of excess BW and more APs has led to the increase in the number of SDs associated to the VLC APs at the saturated SRC.

Fig. 5 shows the numerical results that correspond to the variation of saturated SRC for the proposed hybrid system with respect to the increase of SDs. From figure, it is observed that the achievable saturated SRC increases linearly with the number of SDs and is maximum at $N = 60$. Further increase in the number of SDs decreases this value as can be observed from Fig. 5. It is also seen that the saturated SRC is slightly higher with load balancing technique compared to the worst device reshuffling technique. In the later technique, the focus is on the reshuffling of the worst SD (worst individual sum rate) of all the SDs present in the system. In this case, the system can be left with a heavily loaded AP whose associated SDs can be further reshuffled in order to improve the achievable SRC. This is observed from Fig. 4b in which 7 SDs are associated to RF at the saturation which can be further reshuffled to improve the achievable SRC. In the former technique, the focus is on balancing the load of each AP present in the system to achieve the saturated SRC as observed from Fig. 4c in which the number of SDs associated to RF has changed to 1.

Figs. 6a and 6b show numerical and simulation results that correspond to the SRC variation with worst device reshuffling and load balancing techniques, respectively, with increased number of PLC-disabled SDs (\mathcal{D}) from a total number of 30 SDs. From both Figs. 6a and 6b, we observe that the achievable SRC is maximum in the absence of PLC-disabled SDs ($\mathcal{D} = 0$) as all the SDs can connect to any communication system which improves the achievable SRC, whereas, the increase in the number of PLC-disabled SDs, \mathcal{D}, reduces the SRC due to the inefficient utilization of the PLC system. Finally, the SRC is at its minimum value when all SDs are PLC-disabled as the hybrid system does not utilize PLC. Thus, it can be concluded that the addition of PLC in the system results in improved performance of the hybrid PLC/VLC/RF system in indoor scenarios.

5 Conclusion

In this paper, a hybrid PLC/VLC/RF fronthaul with a fiber based wired backhaul system has been proposed to improve the achievable SRC. Wherein, an optimization problem for the SRC has been formulated for the hybrid system in terms of AP association and BW allocation as the optimization parameters and a hierarchical decomposition method has been considered to convert the non-linear optimization problem into a set of convex optimization problems. Then, efficient AP association and BW allocation strategies have been proposed to solve the optimization problem in an iterative manner till the SRC converges to an optimal value. This iterative algorithm uses two reshuffling techniques such as the worst device reshuffling and the load balancing to obtain the saturated capacity. Further, an analytical approximation for the BW allocated to each SD for a given AP association has been derived using the Lagrangian multiplier method. Through extensive numerical results, it has been shown that the proposed algorithm doubles the achievable SRC compared to the SNR based AP association and BW allocation.

Fig. 5: Maximum sum rate vs number of SDs with both worst device reshuffling and load balancing techniques with $k = 4$, $\ell = 3$, and $\mathcal{D} = 0$.

Fig. 6: Sum rate vs iteration with respect to variable number of PLC-disabled SDs (\mathcal{D}) for (a) worst device reshuffling and (b) load balancing techniques with $N = 40$, $k = 4$, and $\ell = 3$.

IET Research Journals, pp. 1–10
© The Institution of Engineering and Technology 2015
has also been concluded that the proposed hybrid PLC/VLC/RF system can considerably enhance the SRC in comparison to other hybrid combinations reported in the literature. Further, a practical scenario has also been considered, where, there exists PLC-disabled SDs that are only capable of connecting to either RF or VLC. Then, a numerical analysis has been presented on the achievable SRC to study the effect of increased number of PLC-disabled SDs. Finally, the effect of the increase in number of SDs on the optimal SRC is analysed numerically. It has been observed that the SRC is a concave function of the number of SDs. In future, we will analyse the system performance of the hybrid PLC/VLC/RF system with fiber optics as backhaul.

6 Acknowledgments

This work was supported in part by the Science and Engineering Research Board (SERB), Govt. of India through its Early Career Research (ECR) Award (Ref. No. ECR/2016/001377), and the Research Board (SERB), Govt. of India through its Early Career Research (ECR) Award (Ref. No. ECR/2016/001377), and the Department of Science and Technology (DST), Govt. of India (Ref. No. TMD/CE/R/IEEE/2016/0599(G)).

7 References

