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Abstract
1.	 Tree	pathogens	are	a	major	threat	to	forest	ecosystems.	Conservation	manage-
ment	strategies	can	exploit	natural	mechanisms	of	resistance,	such	as	tree	geno-
type	and	host‐associated	microbial	communities.	However,	 fungal	and	bacterial	
communities	are	rarely	looked	at	in	the	same	framework,	particularly	in	conjunc-
tion	with	 host	 genotype.	 Here,	 we	 explore	 these	 relationships	 and	 their	 influ-
ence	on	ash	dieback	disease,	caused	by	the	pathogen	Hymenoscyphus fraxineus,	in	
European	common	ash	trees.

2.	 We	collected	leaves	from	UK	ash	trees	and	used	microsatellite	markers	to	geno-
type	trees,	quantitative	PCR	to	quantify	H. fraxineus	 infection	 load	and	ITS	and	
16S	 rRNA	 amplicon	 sequencing	 to	 identify	 fungal	 and	 bacterial	 communities,	
respectively.

3.	 There	was	a	significant	association	between	H. fraxineus	 infection	 intensity	and	
ash	leaf	fungal	and	bacterial	community	composition.	Higher	infection	levels	were	
positively	correlated	with	fungal	community	alpha‐diversity,	and	a	number	of	fun-
gal	and	bacterial	genera	were	significantly	associated	with	infection	presence	and	
intensity.	Under	higher	 infection	 loads,	 leaf	microbial	networks	were	character-
ized	by	stronger	associations	between	fewer	members	than	those	associated	with	
lower	 infection	 levels.	Together	 these	 results	 suggest	 that	H. fraxineus	 disrupts	
stable	endophyte	communities	after	a	particular	 infection	threshold	 is	 reached,	
and	may	enable	proliferation	of	opportunistic	microbes.	We	identified	three	mi-
crobial	genera	associated	with	an	absence	of	 infection,	potentially	 indicating	an	
antagonistic	relationship	with	H. fraxineus	 that	could	be	utilized	 in	the	develop-
ment	of	anti‐pathogen	treatments.

4.	 Host	genotype	did	not	directly	affect	 infection,	but	did	 significantly	affect	 leaf	
fungal	community	composition.	Thus,	host	genotype	could	have	the	potential	to	
indirectly	 affect	disease	 susceptibility	 through	genotype	×	microbiome	 interac-
tions,	and	should	be	considered	when	selectively	breeding	trees.
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1  | INTRODUC TION

Invasive	pathogens	are	an	increasing	threat	to	trees	and	forest	eco-
systems	 across	 the	 globe	 (Burdon,	 Thrall,	 &	 Ericson,	 2005).	 This	
rise	 can	 be	 largely	 attributed	 to	 human	 activity.	 For	 example,	 the	
international	trade	in	wood	products	and	live	plants	has	introduced	
pathogens	 to	 naive	 tree	 populations	 with	 no	 evolved	 resistance	
mechanisms,	whilst	climate	change	has	also	rendered	environments	
more	 conducive	 to	 tree	 infection	 and	 pathogen	 proliferation	 in	
many	 areas	 (Anderson	et	 al.,	 2004;	 Linnakoski,	 Forbes,	Wingfield,	
Pulkkinen,	&	Asiegbu,	2017;	Roy	et	al.,	2014).	Large‐scale	mortalities	
in	tree	species	endanger	associated	biodiversity,	natural	capital	and	
ecosystem	service	provision	(Boyd,	Freer‐Smith,	Gilligan,	&	Godfray,	
2013;	Freer‐Smith	&	Webber,	2017),	and	are	therefore	a	key	priority	
area	for	natural	resource	management	and	conservation.

One	 pathogen	 of	 great	 concern	 is	 Hymenoscyphus fraxineus 
(Ascomycota;	Leotiomycetes,	Helotiales;	Helotiaceae),	which	causes	
ash	dieback	disease	in	a	number	of	ash	species,	including	European	
ash	(Fraxinus excelsior)—a	highly	abundant	and	ecologically,	economi-
cally	and	culturally	important	tree	species.	This	fungal	pathogen	pro-
duces	the	toxic	compound	viridiol,	which	damages	leaves,	stems	and	
eventually,	the	trunk,	ultimately	causing	xylem	necrosis	and	canopy	
loss	 (Grad,	Kowalski,	&	Kraj,	2009).	Ash	dieback	has	caused	up	 to	
85%	mortality	in	plantations	within	20	years	of	exposure	(Coker	et	
al.,	2019;	McKinney	et	al.,	2014),	and	 is	driving	extensive	declines	
across	mainland	Europe	and	 the	UK	 (Coker	et	 al.,	 2019;	 Jepson	&	
Arakelyan,	2017;	McKinney	et	al.,	2014;	Mitchell	et	al.,	2014).	The	
disease	 is	 likely	 to	 have	 been	 introduced	 by	 trade	 and	 is	 largely	
spread	 by	wind	 and	water‐borne	 ascospores	 at	 a	 rate	 of	 approxi-
mately	20–30	km	per	year	(Gross,	Zaffarano,	Duo,	&	Grünig,	2012).	
Due	 to	 its	 severity	 and	 the	 lack	 of	 effective	 treatment	 or	 control	
methods,	the	import	of	ash	trees	is	currently	banned	in	the	UK.

A	 range	 of	 silvicultural	 and	 arboricultural	 management	 prac-
tices	 have	 been	 suggested	 for	 ash	 dieback	mitigation,	 such	 as	 in-
creasing	local	tree	species	diversity,	removing	infected	tissue	and/
or	 autumn	 leaf	 fall,	 reducing	 tree	 density	 and	 applying	 fungicides	
(Hrabětová,	 Černý,	 Zahradník,	 &	 Havrdová,	 2017;	 Skovsgaard	 et	

al.,	 2017).	 However,	 such	 methods	 may	 be	 expensive,	 labour‐in-
tensive	 and	damaging	 to	 the	 environment.	 Exploiting	 natural	 host	
resistance	 mechanisms	 offers	 a	 promising	 alternative,	 which	 may	
provide	 a	 more	 long‐term	 solution	 whilst	 avoiding	 some	 of	 these	
disadvantages.

Ash	 dieback	 resistance	 has	 a	 strong	 host	 genetic	 component;	
nearly	 50%	 of	 phenotypic	 variation	 in	 crown	 damage	 is	 based	 on	
host	genotype	(McKinney	et	al.,	2014;	McKinney,	Nielsen,	Hansen,	&	
Kjær,	2011;	Muñoz,	Marçais,	Dufour,	&	Dowkiw,	2016).	Furthermore,	
progeny	from	low‐susceptibility	mother	clones	exhibit	lower	symp-
toms	 of	 disease,	 indicating	 a	 heritable	 basis	 for	 tolerance	 (Lobo,	
McKinney,	Hansen,	Kjær,	&	Nielsen,	2015).	The	specific	genetic	driv-
ers	of	tolerance	are	still	unclear,	but	may	be	linked	to	genetically	in-
duced	variation	in	phenology	(McKinney	et	al.,	2011;	Stener,	2018).	
In	addition,	a	suite	of	20	gene	expression	markers	associated	with	
low	susceptibility	to	H. fraxineus	have	been	identified	(Harper	et	al.,	
2016;	Sollars	et	al.,	2017),	demonstrating	that	coding	regions	of	the	
host	genome	are	intrinsically	involved	in	disease	resistance.

Whilst	selective	breeding	for	tolerant	genotypes	may	be	desir-
able	for	timber	production	purposes,	there	are	problems	associated	
with	this	approach.	Given	the	long	generation	time	of	trees,	reduced	
genetic	 diversity	 could	 leave	 populations	 vulnerable	 to	 extinction	
through	pathogen	evolution	as	well	as	other	emerging	threats	(e.g.	
emerald	 ash	 borer,	Agrilus planipennis)	 (Jacobs,	 2007).	 In	 addition,	
the	 proportion	 of	 trees	 tolerant	 to	 ash	 dieback	 are	 currently	 un-
known	but	are	likely	to	be	very	low,	perhaps	in	the	range	of	1%–5%	
(McKinney	et	al.,	2014;	McMullan	et	al.,	2018).	Furthermore,	mor-
tality	 occurs	most	 rapidly	 at	 the	 sapling	 stage,	meaning	 selection	
pressure	is	very	high	and	the	pool	of	genetic	diversity	to	draw	from	
may	be	low.	Thus,	a	more	holistic	understanding	of	the	mechanisms	
of	tolerance	may	assist	the	development	of	management	strategies	
to	maximize	the	regeneration	potential	of	trees	and	forests	at	a	local	
and	 landscape	 level.	This	approach	will	allow	managers	to	 identify	
tolerant	 individuals	 in	the	wider	 landscape,	which	could	then	form	
the	basis	of	tree	breeding	programmes.

The	plant	microbiome	forms	an	 important	component	of	dis-
ease	tolerance.	Host‐microbiome	interactions	encompass	a	range	

5. Synthesis.	We	show	that	the	diversity,	composition	and	network	structure	of	ash	
leaf	microbial	communities	are	associated	with	the	severity	of	infection	from	ash	
dieback	disease,	with	evidence	of	disease‐induced	dysbiosis.	We	also	show	that	
host	 genotype	 influences	 leaf	 fungal	 community	 composition,	 but	 does	 not	 di-
rectly	influence	tree	infection.	These	findings	help	to	elucidate	relationships	be-
tween	host	genetics,	the	microbiome	and	a	tree	pathogen,	highlighting	potential	
resistance	mechanisms	and	possible	co‐infection	concerns	that	could	inform	ash	
tree	management.
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of	 types	 from	 antagonistic	 to	 mutualistic,	 however,	 the	 over-
whelming	benefits	of	a	healthy	microbiome	are	now	clear,	includ-
ing	 protection	 from	 infectious	 diseases	 (Turner,	 James,	&	Poole,	
2013).	In	several	tree	species,	changes	in	microbiome	composition	
in	 response	 to	pathogenic	 infection	have	been	observed	 (Busby,	
Peay,	&	Newcombe,	2016;	Cross	 et	 al.,	 2017;	Koskella,	Meaden,	
Crowther,	Leimu,	&	Metcalf,	2017),	suggesting	an	interaction	be-
tween	the	host	microbiome	and	 invasive	pathogens.	As	such,	 in-
terest	is	growing	in	the	potential	to	engineer	host	microbiomes	to	
enhance	or	 induce	microbially	mediated	 traits	 (Foo,	 Ling,	 Lee,	&	
Chang,	2017;	Mueller	&	Sachs,	2015;	Quiza,	St‐Arnaud,	Yergeau,	
&	Rey,	2015;	Sheth,	Cabral,	Chen,	&	Wang,	2016;	Yergeau	et	al.,	
2015).	Identifying	particular	leaf	endophytes	that	limit	H. fraxineus 
infection	may	allow	us	to	manipulate	the	leaf	microbiome	(i.e.	the	
phyllosphere)	for	tree	resistance.	This	could	be	achieved	through	a	
number	of	mechanisms	including;	selection	of	individuals	based	on	
microbial	communities	associated	with	host	 tolerance	 (Becker	et	
al.,	2015);	addition	of	microbial	inoculants	that	inhibit	pathogenic	
growth	 (Marcano,	 Díaz‐Alcántara,	 Urbano,	 &	 González‐Andrés,	
2016);	alteration	of	environmental	conditions	that	promote	a	de-
sirable	microbiome	(Bender,	Wagg,	&	van	der	Heijden,	2016;	Thijs,	
Sillen,	Rineau,	Weyens,	&	Vangronsveld,	2016);	or	genetic	modi-
fication	of	 trees	 that	 alters	 signalling	or	 selection	 traits	 that	de-
termine	microbial	community	composition	and	function	 (Beckers	
et	al.,	2016).	Culturing	studies	have	identified	a	number	of	endo-
phytic	fungi	of	ash	trees	that	inhibit	the	growth	or	germination	of	
H. fraxineus	and	thus	could	be	used	as	potential	micro‐biocontrol	
agents	(Haňáčková,	Havrdová,	Černý,	Zahradník,	&	Koukol,	2017;	
Kosawang	et	al.,	2018;	Schlegel	et	al.,	2018;	Schulz,	Haas,	Junker,	
Andrée,	&	Schobert,	2015).

In	order	to	 implement	such	strategies,	we	first	need	to	charac-
terize	the	phyllosphere	community	in	response	to	infection.	Cross	et	
al.	 (2017)	previously	showed	fungal	community	composition	in	ash	
leaves	altered	as	H. fraxineus	 infection	 intensified	over	 time,	how-
ever	it	is	not	clear	if	this	was	driven	by	infection	dynamics	or	tempo-
ral	variation	across	the	season.	In	addition,	the	role	of	cross‐kingdom	
(e.g.	 bacterial	 and	 fungal)	 interactions	 in	 determining	 microbiome	
function	 is	 of	 growing	 interest	 (Menezes,	 Richardson,	 &	 Thrall,	
2017).	 For	example,	 cross‐kingdom	 interactions	may	be	 important	
for	biofilm	production	on	leaf	surfaces	(Frey‐Klett	et	al.,	2011;	van	
Overbeek	&	Saikkonen,	2016),	and	fungal	communities	can	influence	
bacterial	community	colonization	via	the	modulation	of	carbon,	ni-
trogen	and	environmental	pH	 (Hassani,	Durán,	&	Hacquard,	2018;	
Johnston,	Hiscox,	Savoury,	Boddy,	&	Weightman,	2018).	Thus,	such	
interactions	 may	 be	 important	 for	 limiting	 pathogen	 invasion,	 al-
though	 bacterial‐fungal	 associations	 are	 not	 well‐characterized	 in	
this	context	(but	see	Jakuschkin	et	al.,	2016).	There	are	also	complex	
interactions	 between	host	 genotype	 and	microbiome	 composition	
(Agler	et	al.,	2016;	Bálint	et	al.,	2013;	Griffiths	et	al.,	2018;	Smith,	
Snowberg,	Gregory	Caporaso,	Knight,	&	Bolnick,	2015;	Wagner	et	
al.,	2016)	that	can	also	alter	pathogen	susceptibility	(Koch	&	Schmid‐
Hempel,	 2012;	Ritpitakphong	et	 al.,	 2016).	Understanding	 genetic	
influences	on	microbial	community	composition	may	allow	us	to	use	

these	two	powerful	determinants	of	disease	susceptibility	in	combi-
nation	to	maximize	disease	tolerance	across	populations.

Here,	 we	 integrate	 these	 genetic	 and	microbial	 factors	 within	
one	framework	by	using	microsatellite	characterization	of	host	gen-
otype,	 ITS	 rRNA	and	16S	 rRNA	sequencing	 to	 identify	 fungal	 and	
bacterial	 communities	 of	 leaves,	 qPCR	 to	 quantify	H. fraxineus in-
fection	and	phenotypic	 scoring	of	 tree	 infection	 levels	across	 two	
sites	(Manchester	and	Stirling,	UK)	to.	We	aimed	to:	(a)	identify	dif-
ferences	 in	 fungal	 and	 bacterial	 communities	 associated	with	 ash	
leaves	 (i.e.	 the	phyllosphere)	according	to	H. fraxineus	 infection	 (at	
specific	time	points	for	multiple	stands);	 (b)	 identify	co‐occurrence	
patterns	between	fungal	and	bacterial	communities	according	to	H. 
fraxineus	infection;	and	(c)	identify	relationships	between	host	gen-
otype,	phyllosphere	composition	and	H. fraxineus	infection	intensity.

2  | MATERIAL S AND METHODS

2.1 | Tree scoring, leaf sampling and DNA extraction

We	conducted	sampling	and	transport	of	ash	material	under	Forestry	
Commission	 licence	 number	 FCPHS2/2016.	 We	 collected	 leaves	
from	 ash	 trees	 in	 semi‐natural	 stands	 during	 the	 summer	months	
from	 two	areas.	We	sampled	saplings	 from	Balquhidderock	Wood	
in	Stirling,	Scotland	 (25th	July	2016)	and	mature	 trees	 from	multi-
ple	sections	of	the	off‐road	National	Cycle	Route	6	in	Manchester,	
England	 (the	 Fallowfield	 Loop,	 River	 Irwell	 and	 Drinkwater	 Park;	
19th–25th	August	2017).	We	sampled	 later	 in	the	season	to	maxi-
mize	 the	potential	 for	 trees	 to	have	been	exposed	 to	H. fraxineus,	
and	 at	 both	 sites,	 widespread	 and	 epidemic	 levels	 of	 ash	 dieback	
were	evident.	We	 selected	and	 scored	 trees	displaying	 a	 range	of	
ash	dieback	infection	signs,	from	visibly	clear	of	infection	(infection	
score	=	0)	 to	 heavily	 infected	with	 extensive	 signs	of	 ash	dieback	
(infection	score	=	5).	We	collected	leaves	that	were	visibly	clear	of	in-
fection	from	25	trees	in	Stirling	(three	leaves	per	tree)	and	63	trees	in	
Manchester	(one	leaf	per	tree)	in	sterile	bags	and	froze	these	imme-
diately	in	the	field	using	dry	ice.	We	transferred	samples	to	a	−20°C	
freezer	within	12	hr	of	collection,	where	they	remained	until	DNA	
extraction.	We	weighed	50mg	of	leaf	material	and	disrupted	samples	
in	a	TissueLyser	bead	beater	(Qiagen)	for	2	min.	We	extracted	DNA	
using	the	Qiagen	DNeasy	Plant	MiniKit	 (along	with	two	extraction	
blanks)	according	to	the	manufacturer’s	protocol,	and	used	this	DNA	
for	all	downstream	molecular	analyses.

2.2 | Hymenoscyphus fraxineus quantitative PCR

To	quantify	H. fraxineus	 infection,	we	 conducted	quantitative	PCR	
(qPCR)	on	leaves	according	to	a	modified	version	of	Ioos	et	al.	(Ioos,	
Kowalski,	Husson,	&	Holdenrieder,	2009)	and	Ioos	&	Fourrier	(Ioos	
&	 Fourrier,	 2011).	 Based	 on	 preliminary	 assessments	 of	 Ct	 values	
obtained	 during	 qPCRs	 (Cross	 et	 al.,	 2017),	 we	 diluted	 our	 DNA	
by	a	 factor	of	10.	We	conducted	10	μl	 reactions	using	0.4	μl each 
of	 10	 μM	 forward	 (5′‐ATTATATTGTTGCTTTAGCAGGTC‐3′)	 and	
reverse	 (5′‐TCCTCTAGCAGGCACAGTC‐3′)	 primers,	 0.25	 μl	 of	
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8 μM	 dual‐labelled	 probe	 (5′‐FAM‐CTCTGGGCGTCGGCCTCG‐
MGBNFQ‐3′),	5	μl	of	QuantiNova	PCR	probe	kit	(Qiagen),	1.95	μl	of	
molecular	grade	water	and	2	μl	of	template	DNA	(~2ng).	We	used	the	
following	 thermocycler	 conditions;	 initial	 denaturation	 of	 95°C	 for	
2	min	followed	by	50	cycles	of	95°C	for	10	s	and	65°C	for	30	s,	using	
the	green	channel	on	a	RotorGene	Q	real‐time	PCR	machine	(Qiagen).	
We	included	H. fraxineus	standards	ranging	from	0.1	to	100	ng.	We	
ran	samples,	standards	and	extraction	blanks	in	duplicate	and	used	
the	mean	average	of	these	for	subsequent	analyses.	We	multiplied	
the	concentrations	obtained	from	the	qPCRs	by	the	dilution	factor	
of	10,	and	normalized	the	data	for	further	analyses	by	calculating	log	
concentrations	using	log(H. fraxineus	infection)+1	(henceforth	‘log	H. 
fraxineus	infection’).	Additionally,	based	on	the	distribution	of	H. frax-
ineus	qPCR	data	(Figure	S1a‐c),	we	assigned	samples	with	infection	
categories	of	‘absent’	for	samples	with	0	ng/μl;	‘low’	for	<200ng/μl; 
‘medium’	for	200	<	2000	ng/μl	and	‘high’	for	>2000	ng/μl.

2.3 | Host genotype characterization

To	 characterize	 tree	 genotype,	 we	 used	 10	 previously	 developed	
F. excelsior	 microsatellite	 markers	 (Brachet,	 Jubier,	 Richard,	 Jung‐
Muller,	 &	 Frascaria‐Lacoste,	 1998;	 Lefort,	 Brachet,	 Frascaria‐
Lacoste,	Edwards,	&	Douglas,	1999;	Harbourne,	Douglas,	Waldren	
&	Hodkinson,	2005)	 (Table	S1).	We	used	a	 three‐primer	 approach	
to	fluorescently	label	PCR	products	(Neilan,	Wilton,	&	Jacobs,	1997)	
using	universal	primers	 (Blacket,	Robin,	Good,	Lee,	&	Miller,	2012;	
Culley	et	al.,	2013)	tagged	with	the	fluorophores	FAM,	NED	and	PET	
(Table	S1).	We	carried	out	PCRs	in	10	μl	singleplex	reactions	using	
5 μl	MyTaq	Red	Mix	(Bioline),	1–10	ng	DNA,	1	μM	of	the	5′	modified	
forward	 primer	 and	 4	μM	each	 of	 the	 reverse	 primer	 and	 univer-
sal	primer.	PCR	cycling	conditions	varied	 in	annealing	temperature	
among	 loci	 (Table	 S1),	 but	 otherwise	 consisted	 of	 an	 initial	 dena-
turation	of	95°C	for	3	min,	30	cycles	of	95°C	for	15	s,	46–60°C	for	
15	s	and	72°C	for	15	s,	followed	by	a	final	extension	step	at	72°C	
for	5	min.	PCR	products	for	certain	loci	were	then	multiplexed	for	
automated	 capillary	 electrophoresis,	 and	 the	 remaining	 loci	 were	
analysed	separately	(Table	S1).	Capillary	electrophoresis	was	carried	
out	 at	 the	 University	 of	Manchester	 Genomic	 Technologies	 Core	
Facility	 using	 a	 3,730	 DNA	 Sequencer	 (Thermo	 Fisher	 Scientific)	
with	GeneScan	500	LIZ	(Thermo	Fisher	Scientific).

We	 scored	 and	 binned	 alleles	 using	 GeneMapper	 v3.7	
(ThermoFisher	Scientific)	and	MsatAllele	v1.05	(Alberto,	2009).	One	
locus,	 CPFRAX6,	 was	 monomorphic	 and	 was	 therefore	 removed	
from	subsequent	analyses.	We	estimated	null	allele	frequency	using	
the	Expectation	Maximization	algorithm	(Dempster,	Laird,	&	Rubin,	
1977)	as	implemented	in	FreeNA	(Chapuis	&	Estoup,	2007).	We	re-
moved	loci	with	null	allele	frequencies	above	20%	for	each	site	for	
individual‐level	 heterozygosity	 analyses	 to	 reduce	 bias	 associated	
with	false	homozygotes.	We	also	removed	locus	CPFRAX5	from	the	
Manchester	data	file	as	this	was	monomorphic.	This	made	datasets	
of	 five	 loci	and	eight	 loci	 for	Manchester	and	Stirling	respectively.	
Five	measures	of	individual‐level	heterozygosity	(proportion	of	het-
erozygous	 loci,	observed	heterozygosity,	expected	heterozygosity,	

internal	 relatedness	 and	 homozygosity	 by	 locus)	 were	 calculated	
using	 the	 genhet	 function	 (Coulon,	 2010)	 in	 RStudio	 (v1.2.1335)	
(RStudio	Team,	2016)	for	R	(v3.4.1)	(R	Core	Team,	2017).

Pairwise	 Euclidean	 genetic	 distances	 between	 trees	 were	
calculated	 for	 each	 site	 separately,	 and	 again	 together,	 using	
GenoDive	v2.0b23	(Meirmans	&	Van	Tiendener,	2004).	As	missing	
data	can	skew	genetic	distance	calculations,	we	used	GenoDive	to	
impute	missing	data	based	on	overall	site	allele	frequencies	prior	
to	calculations.	To	investigate	the	presence	of	genetic	differenti-
ation	 in	trees	between	sites,	we	estimated	FST	corrected	for	null	
alleles	using	ENA	correction	(Chapuis	&	Estoup,	2007)	in	FreeNA,	
and	 conducted	 an	 Analysis	 of	 Molecular	 Variance	 (AMOVA)	 in	
GenoDive	using	the	least	squares	method.	We	also	carried	out	a	
principle	coordinates	analysis	(PCoA)	in	GenAlEx	v6.503	(Peakall	
&	Smouse,	2012)	based	on	Euclidean	distances	using	the	standard-
ized	covariance	method	to	visualize	the	variation	in	host	genotype	
according	to	site.

2.4 | ITS 1F‐2 and 16S V4 rRNA 
amplicon sequencing

To	identify	leaf	fungal	communities,	we	amplified	DNA	for	the	ITS	
1F‐2	 rRNA	gene	 (White,	Bruns,	Lee,	&	Taylor,	1990)	using	single	
indexed	 reverse	 primers	 and	 a	 modified	 protocol	 of	 Smith	 and	
Peay	(2014)	and	Nguyen	et	al.	(2014).	Briefly,	we	ran	PCRs	in	du-
plicate	using	Solis	BioDyne	5x	HOT	FIREPol®	Blend	Master	Mix,	
2 μM	primers	and	1.5	μl	of	sample	DNA.	Thermocycling	conditions	
used	an	initial	denaturation	at	95°C	for	10	min,	with	30	cycles	of	
95°C	for	30	s,	52°C	for	20	s	and	72°C	for	30	s,	and	a	final	exten-
sion	at	72°C	for	8	min.	We	combined	PCR	replicates	into	a	single	
PCR	plate	 and	 cleaned	 products	 using	HighPrep™	PCR	 clean	 up	
beads	(MagBio)	according	to	the	manufacturer’s	instructions.	We	
quality	 checked	 the	 PCR	 products	 using	 an	 Agilent	 TapeStation	
2200.	 To	 quantify	 the	 number	 of	 sequencing	 reads	 per	 sample,	
we	constructed	a	 library	pool	using	1	μl	of	each	sample.	We	ran	
a	 titration	 sequencing	 run	 with	 this	 pool	 using	 an	 Illumina	 v2	
nano	cartridge	(paired‐end	reads;	2	×	150	bp)	 (Kozich,	Westcott,	
Baxter,	Highlander,	&	Schloss,	2013)	on	an	Illumina	MiSeq	at	the	
University	of	Salford.	Based	on	the	percentage	of	reads	sequenced	
per	library,	we	calculated	the	volume	required	for	the	full	sequenc-
ing	run	and	pooled	these	accordingly.	Full	ITS	rRNA	amplicon	se-
quencing	was	conducted	using	paired‐end	reads	with	an	Illumina	
v3	(2	×	300	bp)	cartridge	on	an	Illumina	MiSeq.	We	also	included	
negative	(extraction	blanks)	and	positive	(fungal	mock	community	
and H. fraxineus)	controls.

To	 identify	bacterial	 communities	 in	 leaves,	we	amplified	DNA	
for	the	16S	rRNA	V4	region	using	dual	indexed	forward	and	reverse	
primers	according	to	Kozich	et	al.	(Kozich	et	al.,	2013)	and	Griffiths	
et	al.	(Griffiths	et	al.,	2018).	We	ran	PCRs	in	duplicate	as	described	
above,	using	thermocycling	conditions	of	95°C	for	15	min,	followed	
by	28	cycles	of	95°C	for	20	s,	50°C	for	60	s,	and	72°C	for	60	s,	with	
a	 final	 extension	at	72°C	 for	10	min.	To	quantify	 individual	 librar-
ies,	we	again	pooled	1	μl	of	each	 library	and	sequenced	this	using	
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an	Illumina	v2	nano	cartridge	as	described	above,	then	pooled	sam-
ples	according	to	read	coverage	and	conducted	a	full	paired‐end	se-
quencing	run	using	Illumina	v2	(2	×	250	bp)	chemistry.	We	included	
extraction	blanks	and	a	mock	bacterial	community	as	negative	and	
positive	controls	respectively.

2.5 | Pre‐processing of amplicon sequencing data

We	trimmed	remaining	adapters	and	primers	for	ITS	rRNA	sequenc-
ing	data	using	cutadapt	 (Martin,	2011).	This	step	was	not	required	
for	 16S	 rRNA	 sequencing	 data.	 Unless	 otherwise	 stated,	we	 con-
ducted	all	subsequent	data	processing	and	analysis	in	RStudio	(see	
supplementary	files	for	full	code).

A	total	of	6,346,506	raw	sequence	reads	from	139	samples	were	
generated	during	ITS	sequencing.	We	conducted	ITS	rRNA	gene	am-
plicon	sequence	processing	in	DADA2	v1.5.0	(Callahan	et	al.,	2016).	
Modal	contig	length	was	181	bp	(range	75–315	bp)	once	paired‐end	
reads	were	merged.	We	did	not	 conduct	 additional	 trimming	based	
on	 sequence	 length	 as	 the	 ITS	 region	 is	 highly	 variable	 (Schoch	 et	
al.,	2012).	No	contaminants	were	identified	in	the	negative	controls.	
We	removed	chimeras	and	assigned	taxonomy	using	the	UNITE	v7.2	
database	(UNITE,	2017).	We	obtained	a	median	of	29,043	reads	per	
sample.	We	exported	the	final	exact	sequence	variant	(ESV)	table,	tax-
onomy	table	and	sample	metadata	to	the	phyloseq	package	(McMurdie	
&	Holmes,	2013).	DADA2	identified	12	unique	sequence	variants	 in	
the	sequenced	mock	community	sample	comprising	12	fungal	isolates.

A	total	of	4,055,595	raw	sequence	reads	from	139	samples	were	
generated	during	16S	rRNA	sequencing.	As	with	ITS	rRNA	amplicon	
data,	we	conducted	16S	rRNA	gene	amplicon	sequence	processing	
in	DADA2	v1.5.0.	Modal	contig	length	was	253	bp	once	paired‐end	
reads	were	merged.	We	removed	ESVs	with	length	>260	bp	(78	ESVs;	
0.026%	of	total	sequences)	along	with	chimeras	and	two	ESVs	found	
in	 the	 negative	 controls.	We	 assigned	 taxonomy	 using	 the	 SILVA	
v128	database	(Quast	et	al.,	2013;	Yilmaz	et	al.,	2014).	We	stripped	
out	 chloroplasts	 and	mitochondria	 from	 ash	 leaf	 samples,	 and	 re-
moved	31	samples	for	which	no	sequence	data	remained,	leaving	a	
median	of	2,930	reads	per	sample.	We	exported	the	final	ESV	table,	
taxonomy	table	and	sample	metadata	 to	phyloseq.	DADA2	 identi-
fied	20	unique	sequence	variants	in	the	sequenced	mock	community	
sample	comprising	20	bacterial	isolates.

2.6 | Phyllosphere composition by site and H. 
fraxineus infection

We	converted	the	ESV	abundance	data	of	individual	samples	to	rela-
tive	abundances	for	fungi	and	bacteria	separately.	We	produced	box	
plots	 visualizing	 the	 variation	 in	 relative	 abundance	 of	 the	 top	 10	
most	abundant	 classes	according	 to	 site	and	H. fraxineus	 infection	
category	as	described	above	(i.e.	‘absent’,	 ‘low’,	‘medium’,	or	‘high’).	
We	 conducted	 a	permutational	ANOVA	 (PERMANOVA;	 adonis)	 in	
the	vegan	package	(Oksanen	et	al.,	2018)	to	determine	the	variation	
in	 fungal	 and	 bacterial	 community	 composition	 according	 to	 site	
and H. fraxineus	infection	category,	and	produced	PCoA	plots	using	

Bray‐Curtis	dissimilarity	matrices	in	phyloseq.	We	calculated	alpha‐
diversity	measures	 (species	 richness	and	community	evenness)	 for	
each	sample	by	subsampling	the	raw	ESV	count	table	to	a	standard-
ized	number	of	reads	(equal	to	the	sample	with	the	lowest	number	
of	reads)	using	an	iterative	approach	(100	times),	and	averaged	the	
diversity	estimates	from	each	trial.	In	addition,	as	a	measure	of	beta‐
diversity,	we	extracted	PCoA	scores	for	axes	1	and	2	obtained	from	
ordinating	 relative	 abundance	 data	 for	 each	 sample,	 as	 described	
previously.	To	determine	the	relationship	between	these	microbial	
community	measures	 and	H. fraxineus	 infection	 intensity	 and	 tree	
infection	score,	we	used	separate	 linear	mixed	models	 in	 the	 lme4 
package	(Bates,	Mächler,	Bolker,	&	Walker,	2014),	with	tree	ID	and	
site	as	random	factors	and	log	H. fraxineus	infection	or	tree	score	as	
the	response	variable.	We	used	the	associate	function	in	the	microbi-
ome	package	(Lahti	&	Shetty,	2017)	to	identify	cross‐correlation	be-
tween	the	centred	log	ratios	of	microbial	genera	and	log	H. fraxineus 
infection	using	Spearman's	rank	correlation.	We	constructed	a	heat-
map	in	ggplot2	(Wickham,	2009)	to	visualise	statistically‐significant	
taxa	 (that	were	successfully	 identified	to	genus	 level)	according	to	
their	correlation	coefficients.

As	samples	from	Manchester	included	both	infected	(n	=	36)	and	
uninfected	(n	=	27)	leaves	(whereas	all	samples	from	Stirling	were	
infected;	 see	 Results),	we	 subsetted	 the	Manchester	 samples	 for	
further	analyses	that	aimed	to	identify	microbial	genera	associated	
with	 the	 presence	 or	 absence	 of	 infection.	We	 agglomerated	mi-
crobial	data	to	genus	level	and	calculated	the	relative	abundance	of	
each	taxon,	then	conducted	an	indicator	analysis	using	the	multipatt 
function	in	the	 indicspecies	package	(Cáceres	&	Legendre,	2009)	to	
identify	microbial	genera	associated	with	the	presence	or	absence	
of	H. fraxineus in leaves.	Finally,	we	conducted	a	DESeq2	analysis	
(Love,	Huber,	&	Anders,	 2014)	 to	 identify	 ESVs	with	 significantly	
different	abundances	according	to	infection	status	of	the	leaves.

2.7 | Functional analysis of fungal communities

To	identify	the	trophic	modes	and	functional	guilds	of	fungal	ESVs,	
we	extracted	the	ESV	table	of	all	samples	complete	with	taxonomic	
annotation	and	uploaded	this	to	the	online	FUNGuild	tool	(Nguyen	
et	al.,	2016).	We	plotted	stacked	bar	charts	to	visualize	the	variation	
in	relative	abundance	of	trophic	mode	and	guild	representations	ac-
cording	to	H. fraxineus	infection	category.

2.8 | Relationships between fungal and bacterial 
communities

To	 identify	 relationships	 between	 fungal	 and	 bacterial	 communi-
ties,	we	extracted	Jensen–Shannon	divergence	matrices	between	all	
samples	for	both	fungal	and	bacterial	communities	in	the	phyloseq	
and vegan	packages.	We	used	Mantel	tests	to	correlate	fungal	and	
bacterial	community	distances	and	visualized	the	relationship	using	
a	scatter	plot.

To	 identify	 co‐occurrence	 networks	 between	 taxa	 according	
to	H. fraxineus	 infection	 category	 in	 the	Manchester	 samples,	 we	
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rarefied	fungal	communities	to	14,080	reads	and	bacterial	communi-
ties	to	800	reads	(resulting	in	the	loss	of	three	samples).	We	merged	
these	rarefied	phyloseq	objects	for	bacterial	and	fungal	communities	
and	converted	them	to	binary	presence/absence	data.	We	then	cal-
culated	the	co‐occurrence	between	each	pair	of	ESVs	by	construct-
ing	a	Spearman's	correlation	coefficient	matrix	in	the	bioDist	package	
(Ding,	 Gentleman,	 &	 Carey,	 2018;	Williams,	 Howe,	 &	 Hofmockel,	
2014).	We	 calculated	 the	number	 of	 associations	with	p	 <	 .05	 for	
each	 infection	category	 (absent,	 low,	medium	and	high),	and	those	
with	−0.50	>	rho	>	0.50,	and	−0.75	>	rho	>	0.75.	We	visualized	those	
with	rho	>	0.75	(positive	associations	only)	using	network	plots	for	
the	four	infection	categories.

2.9 | Relationships between tree genotype and 
phyllosphere composition, and tree genotype and H. 
fraxineus infection

For	 the	 Stirling	 samples,	 we	 used	 the	merge_samples	 function	 in	
phyloseq	 to	 calculate	 the	 mean	 phyllosphere	 composition	 across	
the	three	leaf	samples	collected	per	tree	and	converted	the	per‐tree	
values	to	relative	abundance	(for	the	Manchester	samples	we	only	
collected	one	leaf	per	tree	and	so	this	step	was	not	necessary).	To	
measure	pairwise	microbial	community	dissimilarities	among	trees,	
we	extracted	Jensen–Shannon	divergence	matrices	between	trees	
for	both	fungal	and	bacterial	communities	using	phyloseq	and	vegan.	
We	created	separate	datasets	for	each	site,	as	well	as	a	combined	
dataset.	We	then	used	Mantel	tests	to	test	for	correlations	between	
the	microbial	distance	matrices	and	tree	genetic	distance	matrices	
(as	calculated	above).

To	identify	relationships	between	H. fraxineus	infection	and	host	
genotype,	we	used	individual	GLMMin	lme4	(with	site	as	a	random	
factor)	 to	 determine	whether	multiple	measures	 of	 genetic	 diver-
sity	(proportion	of	heterozygous	loci,	observed	heterozygosity,	ex-
pected	 heterozygosity,	 internal	 relatedness	 and	 homozygosity	 by	
locus)	 influenced	 tree	 infection	 score	 and	average	 log	H. fraxineus 
infection	intensity.

3  | RESULTS

3.1 | H. fraxineus prevalence

We	found	variable	H. fraxineus	 infection	prevalence	between	sites.	
All	samples	collected	at	Stirling	were	 infected,	 including	trees	that	
showed	no	visible	signs	of	 infection	 (i.e.	 tree	 infection	score	of	0),	
whereas	in	Manchester,	20	out	of	the	33	(60.6%)	trees	sampled	were	
infected.

3.2 | Phyllosphere composition by site and H. 
fraxineus infection

The	 most	 abundant	 fungal	 classes	 across	 all	 samples	 were	
Tremellomycetes,	Dothideomycetes,	Leotiomycetes,	Eurotiomycetes,	
Taphrinomycetes	 and	 Cystobasidiomycetes	 (Figure	 1a).	 The	 most	

abundant	 bacterial	 classes	were	Alphaproteobacteria,	 Cytophagia,	
Betaproteobacteria,	 Actinobacteria,	 Deltaproteobacteria,	
Sphingobacteriia	and	Deinococci	(Figure	1b).	PERMANOVA	(adonis)	
analysis	 showed	 a	 significant	 effect	 of	 site	 (i.e.	 Manchester	 or	
Stirling;	F1,136	=	34.615,	R

2	=	0.204,	p	=	.001)	but	not	H. fraxineus in-
fection	category	(i.e.	‘absent’,	‘low’,	‘medium’	or	‘high’)	(F3,136	=	1.061,	
R2	=	0.019,	p	=	.342)	(Figure	2a)	on	fungal	community	composition.	
Similarly,	site	had	a	significant	effect	on	bacterial	community	compo-
sition	(F1,105	=	25.968,	R

2	=	0.199,	p	=	.001)	but	H. fraxineus	infection	
category	did	not	 (F3,105	=	1.088,	R

2	=	0.025,	p	=	 .301)	 (Figure	2b).	
Site	explained	a	similar	proportion	of	the	variation	in	fungal	(20.4%)	
and	 bacterial	 (19.9%)	 communities,	 whereas	H. fraxineus	 infection	
category	explained	only	1.9%	and	2.5%	of	fungal	and	bacterial	com-
munity	composition	respectively.	The	relative	abundance	of	the	top	
10	most	abundant	fungal	(Figure	1a)	and	bacterial	(Figure	1b)	classes	
were	considerably	different	between	sites.	Within	sites,	there	were	
also	differences	in	the	relative	abundance	of	different	taxa	accord-
ing	to	H. fraxineus	infection	category,	however,	there	were	no	clear	
patterns	in	how	these	groups	varied	between	these	categories,	ei-
ther	within	sites	or	across	sites	(Figure	1a,b).

In	the	linear	mixed	models,	fungal	community	alpha‐diversity	sig-
nificantly	predicted	H. fraxineus	infection	intensity	in	terms	of	both	
community	richness	(X2	=	4.560,	p	=	.033;	Figure	3a)	and	evenness	
(X2	=	3.932,	p	=	.047;	Figure	3b).	In	both	cases,	as	fungal	community	
alpha‐diversity	increased,	so	did	H. fraxineus	infection.	Relationships	
were	 not	 statistically	 significant	 between	 log	 H. fraxineus	 infec-
tion	and	bacterial	community	alpha‐diversity	 (richness,	X2	=	0.787,	
p	=	.375;	evenness,	X2	=	0.509,	p	=	.475).	There	was	a	significant	re-
lationship	between	log	H. fraxineus	infection	and	fungal	community	
beta‐diversity	(PCoA	axis	1	score,	X2	=	39.528,	p	<	.001,	Figure	3c;	
PCoA	axis	2	score,	X2	=	5.511,	p	=	.019),	and	log	H. fraxineus	infec-
tion	 and	 bacterial	 community	 beta‐diversity	 (PCoA	 axis	 1	 score;	
X2	=	5.4606,	p	=	.019;	Figure	3d).	However,	tree	infection	score	was	
not	 significantly	 predicted	 by	 any	microbial	 diversity	 measure	 (all	
p	>	.05).

We	 identified	 26	 fungal	 genera	 (out	 of	 390)	 and	 six	 bacterial	
genera	 (out	 of	 255)	 with	 significant	 positive	 correlations	with	 log	
H. fraxineus	 infection	intensity	(all	p	<	.05;	Figure	4).	We	also	iden-
tified	 217	 fungal	 genera	 and	 four	 bacterial	 genera	 with	 a	 signifi-
cant	 negative	 correlation	 with	 log	H. fraxineus	 infection	 intensity	
(all	p	 <	 .05;	Figure	4).	 Indicator	analysis	only	 identified	one	 fungal	
genus	(Neofabraea,	IndVal	=	0.378,	p	=	.025)	and	one	bacterial	genus	
(Pedobacter,	 IndVal	=	0.643,	p	=	 .005)	that	were	significantly	asso-
ciated	with	 the	absence	of	H. fraxineus	 infection	 (i.e.	 these	genera	
were	 much	 more	 commonly	 found	 in	 the	 absence	 of	 infection).	
Association	 analysis	 identified	 two	 fungal	 genera	 significantly	 as-
sociated	 with	 the	 presence	 of	 H. fraxineus	 infection	 (Hannaella,	
IndVal	 =	 0.525,	 p = .050; Keissleriella,	 IndVal	 =	 0.450,	 p	 =	 .020).	
DESeq2	analysis	did	not	identify	any	differentially	abundant	bacte-
rial	ESVs	between	infected	and	uninfected	leaves	(Figure	S2),	but	did	
for	fungal	ESVs;	Phyllactinia fraxini	was	significantly	more	abundant	
in	uninfected	leaves	(log2FoldChange	=	−24.429,	p	<	.001)	and	one	
Genolevuria sp.	was	 significantly	more	abundant	 in	 infected	 leaves	
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F I G U R E  1  Relative	abundance	of	(a)	fungal	classes	and	(b)	bacterial	classes	in	ash	tree	leaves	from	Manchester	(red)	and	Stirling	(blue)	
across	four	different	Hymenoscyphus fraxineus	infection	categories

(a)

(b)
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(log2FoldChange	=	3.753,	p	<	 .001;	Figure	S3).	For	both	fungi	and	
bacteria,	however,	the	DESeq2	analysis	indicated	there	was	no	clear	
pattern	of	ESVs	within	genera	showing	particular	patterns	in	abun-
dance	 according	 to	H. fraxineus	 infection.	 That	 is,	 genus	 is	 not	 an	
accurate	indicator	of	anti‐pathogen	capabilities	(Figures	S2	and	S3).

The	 genus	 Hymenoscyphus	 had	 a	 significant	 positive	 cor-
relation	with	H. fraxineus	 infection	 intensity	 (r	=	0.375,	p	<	 .001;	
Figure	4).	Although	six	species	of	Hymenoscyphus	were	identified	
(H. scutula, repandus, menthae, albidus, kathiae, caudatus)	to	species	
level	through	ITS	rRNA	amplicon	sequencing,	as	well	as	one	other	
unidentified	Hymenoscyphus sp.	that	was	found	at	low	prevalence	
and	abundance,	H. fraxineus	itself	was	not	found	in	our	ITS	rRNA	
dataset.	However,	the	amplicon	produced	by	ITS	rRNA	sequencing	
of	DNA	extracted	from	a	pure	H. fraxineus	culture	was	not	 iden-
tified	by	UNITE	(UNITE,	2017).	Further	NCBI	BLAST	searches	of	
all	the	unidentified	Hymenoscyphus and Chalara	sequences	in	ad-
dition	to	unidentified	sequences	belonging	to	Fungi,	Ascomycota,	
Leotiomycetes,	Helotiales	or	Helotiaceae	identified	an	additional	
18	ESVs	in	our	dataset	as	H. fraxineus	(E	value	<e−20,	bit	score	>80).	
However,	five	of	these	were	removed	during	filtering	of	low	read	
numbers,	and	the	remainder	did	not	sum	up	to	more	than	0.001%	
in	 any	 of	 the	 samples.	 Therefore,	 despite	 high	 infection	 loads	
quantified	through	targeted	qPCR,	H. fraxineus	did	not	appear	to	
be	present	in	our	ITS	rRNA	amplicon	sequencing	data	to	any	sub-
stantial	degree.

3.3 | Functional analysis of fungal communities

We	 obtained	 functional	 hypotheses	 for	 65%	 of	 ITS	 rRNA	 ESVs.	
Functional	analysis	of	fungal	communities	indicated	that	the	rela-
tive	abundance	of	pathotrophs	(fungi	causing	disease	and	receiv-
ing	 nutrients	 at	 the	 expense	 of	 host	 cells;	 Nguyen	 et	 al.,	 2016;	
Tedersoo	et	al.,	2014)	increased	as	H. fraxineus	infection	intensity	
increased	(Figure	5	and	Figure	S4).	However,	the	proportion	of	fun-
gal	species	with	unidentified	trophic	modes	were	higher	in	the	ab-
sent	and	low	infection	categories	(Figure	5).	Despite	this,	the	most	
abundant	pathogen,	Phyllactinia fraxini,	had	a	relatively	high	abun-
dance	 in	 leaves	absent	of	 infection	 (7.0%)	and	with	 low	 infection	
levels	(6.2%),	compared	to	medium	(0.1%)	and	high	(1.7%)	infection	
levels.	The	genus	Phyllactinia	also	had	a	significant	negative	corre-
lation	with	log	H. fraxineus	infection	intensity	(r	=	−0.378,	p	<	.001)	
although	 the	 negative	 relationship	 between	 log	H. fraxineus	 (+1)	
and	 log	P. fraxini	 (+1)	was	only	approaching	significance	(r	=	−.15,	
p	=	.077).	Overall,	P. fraxini	was	the	most	abundant	pathogen	and	

(a)

(b)

(c)

F I G U R E  2  PCoA	plots	for	Bray–Curtis	distances	among	(a)	
fungal	communities	and	(b)	bacterial	communities	of	ash	tree	
leaves	collected	from	Manchester	(circles)	and	Stirling	(triangles)	
with	either	absent	(red),	low	(blue),	medium	(purple)	or	high	(green)	
Hymenoscyphus fraxineus	infection;	(c)	PCoA	plot	of	Euclidean	
genetic	distances	between	ash	trees	in	Manchester	(circles)	and	
Stirling	(triangles),	calculated	using	multilocus	microsatellite	
genotypes
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the	fifth	most	abundant	fungus	across	all	samples	(Vishniacozyma 
foliicola, V. victoriae	 and	 two	 species	 of	 Venturiales	 were	 more	
abundant;	 Table	 S2).	 The	 second	 most	 abundant	 pathogen	 was	
the	 yeast	 Itersonilia pannonica	 (formerly	 Udeniomyces pannoni-
cus;	Niwata,	Takashima,	Tornai‐Lehoczki,	Deak,	&	Nakase,	2002), 
which	in	contrast	to	P. fraxini,	had	lower	abundance	in	leaves	with	
absent	 (0.2%)	and	 low	 (1.2%)	H. fraxineus	 infection	 than	 in	 those	
with	medium	 (6.5%)	 and	 high	 (8.1%)	 infection	 levels.	 Correlation	
analysis	indicated	a	significant	positive	relationship	between	log	H. 
fraxineus	(+1)	and	log	I. pannonica	(+1)	(r	=	.49,	p	<	.001).	In	addition,	
the	 relative	abundance	of	 symbiotrophs	 (which	 receive	nutrients	
through	exchange	with	host	cells),	primarily	lichens,	also	increased	
on	infection	by	H. fraxineus	(Figure	5;	Figure	S4).

3.4 | Relationships between fungal and bacterial 
communities

Mantel	 tests	 identified	 significant	 correlations	between	 fungal	 and	
bacterial	communities	of	leaves	across	both	sites	(r	=	.552,	p = .001; 
Figure	 6a).	 Co‐occurrence	 analysis	 indicated	 that	 leaves	 highly	 in-
fected	with	H. fraxineus	 had	 fewer	 statistically	 significant	 (p	 <	 .05)	
cross‐kingdom	microbial	connections	than	the	other	infection	catego-
ries	(Table	1).	The	majority	of	microbial	associations	in	the	uninfected	
categories	were	 of	medium	 strength	 (−0.50	 >	 rho	 and	 rho	 >	 0.50)	
rather	 than	 strong	 (−0.75	>	 rho	 and	 rho	>	0.75),	 and	were	 charac-
terized	by	 sprawling,	 less	well‐connected	hubs	with	a	 considerable	
number	 of	members	 (Table	 1;	 Figure	 7).	 The	 proportion	 of	 strong	
microbial	connections	 increased	as	H. fraxineus	 infection	 increased,	
and	in	highly	infected	leaves,	100%	of	associations	were	strong	and	
positive	(rho	>	0.75),	but	characterized	by	very	few,	strongly	associ-
ated	larger	hubs	involving	relatively	few	members	(Table	1;	Figure	7;	
Table	S3).

3.5 | Effects of host genotype on phyllosphere 
composition and H. fraxineus infection

We	 found	 very	 little	 genetic	 differentiation	 between	 trees	 in	
Stirling	and	Manchester;	FST	between	the	sites	was	0.034,	while	an	
AMOVA	showed	that	only	2.4%	of	total	genetic	variation	was	found	
between	sites	(Table	S3),	with	little	clustering	of	sites	in	the	PCoA	
(Figure	2c).

Across	sites,	there	was	a	significant	correlation	between	genetic	
distance	 and	 fungal	 community	 composition	 (r	 =	 .106,	 p = .005; 
Figure	6b),	but	no	significant	relationship	between	genetic	distance	
and	 bacterial	 community	 composition	 (r	 =	 .013,	 p	 =	 .365).	Within	
sites,	 the	 correlation	 between	 tree	 genetic	 distance	 and	 fungal	
community	composition	was	statistically	significant	for	Manchester	
(r	=	.155,	p	=	.002)	but	not	Stirling	(r	=	.042,	p	=	.372).	Genetic	dis-
tance	 was	 not	 significantly	 correlated	 with	 bacterial	 community	
composition	at	either	site	(Manchester:	r	=	−.065,	p	=	.749;	Stirling:	
r	=	.151,	p	=	.091).

No	heterozygosity	measures	significantly	predicted	H. fraxineus 
infection	intensity	or	tree	infection	score	(all	p	>	.05).

F I G U R E  3  Relationship	between	Hymenoscyphus fraxineus 
infection	and	(a)	fungal	community	richness,	(b)	fungal	community	
evenness	(Inverse	Shannon),	(c)	fungal	community	beta‐diversity,	
and	(d)	bacterial	community	beta‐diversity

(a)

(b)

(c)

(d)
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4  | DISCUSSION

Our	 results	 show	 that	 both	 fungal	 and	 bacterial	 community	 com-
position,	 as	 well	 a	 considerable	 number	 of	 microbial	 genera,	 are	
significantly	 correlated	with	H. fraxineus	 infection	 intensity.	 Cross	
et	al.	 (2017)	previously	demonstrated	that	fungal	community	com-
position	altered	as	the	season	progressed	and	H. fraxineus	infection	
intensified,	although	it	was	not	clear	whether	these	changes	resulted	
from	 seasonal	 effects	 or	 infection	 intensity.	We	 extend	 this	work	
to	show	that	at	a	given	 time	point,	differences	 in	both	 fungal	and	
bacterial	phyllosphere	communities	relate	to	H. fraxineus	 infection,	
even	in	the	absence	of	phenotypic	signs	of	infection.	These	effects	
were	 apparent	 in	 our	mixed	model	 analysis,	 but	 not	 significant	 in	
the	PERMANOVA	analysis;	 this	may	be	due	 to	a	 loss	of	 statistical	
power	from	the	use	of	infection	categories	(i.e.,	‘absent’,	‘low’,	‘me-
dium’	or	‘high’)	in	the	PERMANOVA	rather	than	the	continuous	log	
H. fraxineus	data	used	 in	the	 linear	mixed	model	analysis.	Changes	
in	microbiome	composition	that	correlate	with	pathogenic	infection	
have	 also	 been	 identified	 in	 other	 tree	 species.	 For	 example,	 the	
bacterial	microbiome	of	horse	chestnut	bark	was	altered	by	bleed-
ing	 canker	disease	 caused	by	 the	bacterium	Pseudomonas syringae 
pv	aesculi	 (Koskella	et	 al.,	2017).	Similarly,	 Jakuschkin	et	 al.	 (2016)	
found	evidence	of	cross‐kingdom	endophytic	dysbiosis	in	peduncu-
late	oak	 (Quercus robur	 L.)	on	 infection	by	Erysiphe alphitoides,	 the	
causal	agent	of	oak	powdery	mildew.

Fungal	 alpha‐diversity	 was	 positively	 correlated	 with	 H. 
fraxineus	 infection	 intensity,	 although	 bacterial	 alpha‐diversity	
was	 not.	 Although	 it	 may	 be	 expected	 that	 higher	 microbiome	
diversity	 would	 increase	 microbiome‐mediated	 resistance	 to	 in-
vasive	pathogens	through	competitive	exclusion,	the	relationship	
between	microbiome	diversity	and	pathogen	susceptibility	actu-
ally	varies	considerably	among	host	 taxa	 (e.g.	Bates	et	al.,	2018;	
Dillon,	Vennard,	Buckling,	&	Charnley,	2005;	Johnson	&	Hoverman,	
2012;	Näpflin	&	Schmid‐Hempel,	2018;	Upreti	&	Thomas,	2015;	
Wehner,	Antunes,	Powell,	Mazukatow,	&	Rillig,	2010).	Our	results	
suggest	 that	 low	 diversity	may	 reflect	 a	 stable	 and	 resilient	mi-
crobiome	that	resists	infection,	or	that	H. fraxineus	infection	is	as-
sociated	with	dysbiosis	 that	allows	 for	 the	proliferation	of	many	
new	members	in	the	microbiome.	Indeed,	co‐occurrence	analysis	
showed	that	medium‐strength,	minimally	connected	networks	 in	
leaves	 with	 absent	 or	 low	H. fraxineus	 infection	 become	 a	 few,	
high‐strength,	 highly	 connected	 hubs	 under	medium	 or	 high	 in-
fection.	 The	 co‐occurrence	 analysis	 indicates	 that	 although	 H. 
fraxineus	 infection	 is	 associated	with	 strong	microbial	 networks,	
these	are	relatively	depauperate	 in	members	and	so	the	stability	
of	phyllosphere	 communities	 in	 infected	 leaves	may	be	 compro-
mised.	Conversely,	leaves	with	absent	or	low	infection	rates	have	
more	 complex	 co‐occurrence	 hubs	 with	 more	 medium‐strength	

F I G U R E  4  Heatmap	of	fungal	(black	text)	and	bacterial	(red	
text)	genera	significantly	associated	with	Hymenoscyphus fraxineus 
infection	intensity	in	ash	tree	leaves
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connections	 involving	more	members.	 Together	 with	 the	 higher	
fungal	 diversity	 observed	 as	 H. fraxineus	 infection	 intensity	 in-
creased,	these	results	suggest	H. fraxineus	infection	is	associated	
with	dysbiosis	in	ash	leaves	that	allows	for	the	proliferation	of	mi-
crobial	phyllosphere	endophytes.	Furthermore,	Cross	et	al.	(2017)	
suggested	that	phyllosphere	communities	are	not	significantly	al-
tered	by	H. fraxineus	until	a	particular	infection	density	is	reached,	
and	our	findings	support	this.	We	also	show	that	even	leaves	with	
high	 infection	 intensities	 can	 appear	 asymptotic	 but	 exhibit	 evi-
dence	of	phyllosphere	dysbiosis,	although	it	 is	not	clear	whether	
such	dysbiosis	 is	a	 result	of	 infection,	or	 in	 fact	 facilitates	 infec-
tion.	Although	causality	can	be	hard	to	identify	without	explicit	in-
fection	trials,	leaves	in	this	study	were	collected	late	in	the	season	
in	areas	of	epidemic	infection.	This	suggests	leaves	that	were	clear	
of	infection	at	the	time	of	sampling	may	have	been	able	to	resist	
infection	up	to	that	point,	and	so	patterns	identified	here	may	be	
representative	of	real‐world	infection	trials.

There	 is	other	evidence	that	associations	between	plants	and	
microbes	 become	 stronger	when	 the	 host	 is	 stressed,	with	 pos-
itive	 effects	 for	 the	 host	 (Mendes	 et	 al.,	 2011;	 Pineda,	 Dicke,	
Pieterse,	&	Pozo,	2013).	For	example,	plants	can	exploit	beneficial	
microbes	when	 under	water	 or	 nutrient	 stress,	 with	 positive	 ef-
fects	on	plant	growth	and	insect	attack	(Pineda	et	al.,	2013).	How	
the	networks	identified	in	our	data	influence	the	host	to	improve	
resistance	to	H. fraxineus	remains	to	be	explored.	We	also	identify	

considerable	covariation	between	bacterial	 and	 fungal	 communi-
ties	and	extensive	cross‐kingdom	associations	in	the	leaves	of	ash	
trees.	Syntrophy	 (i.e.	 cross‐feeding	between	microbial	 species)	 is	
phylogenetically	and	environmentally	widespread	throughout	mi-
crobial	taxa	and	leads	to	high	connectedness	between	members	of	
the	microbiome	(Hassani	et	al.,	2018;	Kouzuma,	Kato,	&	Watanabe,	
2015;	McInerney	et	al.,	2008).	Furthermore,	nutrient	and	pH	mod-
ulation	by	fungal	communities	can	influence	bacterial	colonization	
(Hassani	et	al.,	2018;	Johnston	et	al.,	2018).	Thus,	such	interactions	
between	 these	 two	 kingdoms	may	 be	 expected,	 and	 the	 impor-
tance	of	these	in	the	context	of	disease	resistance	warrants	con-
siderable	attention.

The	 functional	 analysis	 identified	 an	 overall	 increase	 in	 fungal	
pathogens	as	H. fraxineus	infection	increased.	Disruption	to	the	nat-
ural	endosymbiont	community	by	H. fraxineus	 infection	may	break	
up	 previously	 filled	 niches,	 thus	 allowing	 co‐	 or	 secondary	 infec-
tions.	Alternatively,	prior	infection	by	other	pathogens	may	allow	H. 
fraxineus	to	proliferate.	In	particular,	we	found	convincing	evidence	
of	 co‐infection	 by	 Itersonilia pannonica,	 a	 likely	 yeast	 pathogen	
(Nguyen	et	 al.,	 2016).	Other	 secondary	 infections	have	previously	
been	documented	in	ash	dieback	outbreaks,	including	Alternaria al-
ternata, Armillaria spp., Cytospora pruinosa, Diaporthe eres, Diplodia 
mutila, Fusarium avenaceum, Fusarium lateritium, Fusarium solani, 
Phoma exigua, Phytophthora spp.	and	Valsa ambiens	(Kowalski,	Kraj,	&	
Bednarz,	2016;	Marçais,	Husson,	Godart,	&	Caël,	2016;	Orlikowski	

F I G U R E  5  Functional	analysis	of	
trophic	modes	of	fungal	ESVs	associated	
with	ash	leaves	with	varying	degrees	of	
Hymenoscyphus fraxineus	infection
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et	 al.,	 2011).	 Co‐infection	 can	 have	 considerable	 implications	 for	
host	 fitness	 and	 the	 evolution	 of	 pathogens	 (Tollenaere,	 Susi,	 &	
Laine,	 2016),	 and	 may	 well	 contribute	 to	 the	 progression	 of	 ash	

dieback.	Similar	findings	have	been	shown	in	other	study	systems,	
whereby	disruption	of	the	resident	microbiome	allows	other	micro-
bial	groups	to	proliferate	(Antwis,	Garcia,	Fidgett,	&	Preziosi,	2014;	

F I G U R E  6  Relationship	between	
(a)	Jensen–Shannon	divergence	values	
of	fungal	communities	and	bacterial	
communities	associated	with	ash	
tree	leaves,	and	(b)	Jensen–Shannon	
divergence	values	of	fungal	communities	
and	Euclidean	genetic	distance	of	ash	
trees

(a)

(b)

TA B L E  1  Number	of	statistically	significant	(p	<	.05)	microbial	associations	(proportions	in	brackets)	and	number	of	hubs	(small	=	10	or	
less	members,	large	=	more	than	10	members)	for	various	correlation	strengths	identified	using	co‐occurrence	analysis	for	leaves	across	four	
different	Hymenoscyphus fraxineus	infection	categories

H. fraxineus in‐
fection category

Number of 
associations

Number of associations 
(−0.50 > rho and rho > 0.50)

Number of associations 
(−0.75 > rho and rho > 0.75)

Number of associ‐
ations (rho > 0.75)

Number of hubs 
(rho > 0.75)

Absent 604 604	(100%) 136	(23%) 107	(18%) 12	(10	small,	2	large)

Low 892 892	(100%) 254	(28%) 212	(24%) 13	(11	small,	2	large)

Medium 505 505	(100%) 505	(100%) 347	(69%) 7	(5	small,	2	large)

High 261 261	(100%) 261	(100%) 261	(100%) 3	(1	small,	2	large)
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Erkosar	&	Leulier,	2014;	Kamada,	Chen,	Inohara,	&	Núñez,	2013;	Liu,	
Liu,	Ran,	Hu,	&	Zhou,	2016).	Hymenoscyphus fraxineus	infection	also	
appeared	to	be	associated	with	the	growth	of	fungal	symbiotrophs,	
particularly	lichens.	Mitchell	et	al.	(2014)	identified	548	lichen	spe-
cies	associated	with	F. excelsior,	indicating	that	such	associations	are	
common	for	this	host.	Converse	to	these	positive	associations	be-
tween	H. fraxineus	 and	other	microbes,	we	saw	a	 reduction	 in	 the	
pathogen	Phyllactinia fraxini as H. fraxineus	increased,	suggesting	the	
latter	may	 displace	 the	 former.	Phyllactinia fraxini	 is	 an	 ecto‐para-
sitic	 fungus	 that	 causes	 powdery	mildew	 in	 ash	 trees	 (Takamatsu	
et	al.,	2008).	The	rapid	outcompeting	of	one	pathogen	by	another	
has	been	termed	a	‘selective	sweep’	and	is	well‐documented	in	plant	
hosts,	particularly	crops	(Zhan	&	McDonald,	2013).	These	results	are	
contrary	to	Cross	et	al.	(2017),	who	found	Phyllactinia	positively	cor-
related	with	H. fraxineus	infection,	indicating	that	further	research	is	
required	to	improve	our	understanding	of	the	interactions	between	
H. fraxineus	and	other	pathogens.

Based	 on	 a	 combination	 of	 analyses,	we	 identified	Neofabraea 
fungi	and	Pedobacter	bacteria	as	potential	antagonists	of	H. fraxineus 
infection,	which	may	have	potential	for	development	of	anti‐patho-
genic	 inoculants	 or	 probiotics.	 Neofabraea	 has	 previously	 been	
shown	to	inhibit	H. fraxineus in	vitro	(Schlegel	et	al.,	2018).	Given	the	
large	number	of	microbial	genera	present	in	the	leaves,	it	is	surprising	
that	only	three	genera	showed	significant	association	with	the	ab-
sence	of	H. fraxineus,	despite	widespread	and	heavy	infection	in	the	
study	sites.	This	finding	may	reflect	the	propensity	for	wide	varia-
tion	within	genera	for	anti‐pathogen	capabilities	(Antwis	&	Harrison,	

2018;	Becker	et	al.,	2015),	as	 indicated	by	the	DESeq2	analysis,	 in	
which	ESVs	within	a	genus	did	not	necessarily	show	the	same	type	
of	response	(i.e.	positive	or	negative)	to	H. fraxineus.	Thus,	although	
we	identify	potential	genera	of	interest,	a	genus‐by‐genus	approach	
may	not	be	the	best	method	for	identifying	potential	probiotics.	In	
vitro	studies	have	identified	over	70	species	of	fungi	that	inhibit	the	
growth	of	H. fraxineus	(Kosawang	et	al.,	2018;	Schlegel	et	al.,	2018;	
Schulz	et	al.,	2015).	In	addition,	secondary	metabolite	production	by	
endophytes	is	generally	down‐regulated	when	cultured	individually	
but	activated	in	response	to	other	microbes	(Schroeckh	et	al.,	2009;	
Suryanarayanan,	2013),	indicating	complex	and	bi‐directional	inter-
actions	 between	members	 of	 the	 phyllosphere	microbiome.	 Thus,	
co‐culturing	such	microbes,	potentially	identified	through	co‐occur-
rence	hubs,	may	help	guide	the	development	of	consortium‐based	
approaches	to	probiotic	development,	which	may	be	more	effective	
than	single‐species	probiotics	(Antwis	&	Harrison,	2018;	Kaminsky,	
Trexler,	Malik,	Hockett,	&	Bell,	2018;	Schulz	et	al.,	2015).

We	did	not	find	evidence	of	host	genotype	influencing	tree	in-
fection	score	or	H. fraxineus	pathogen	loads.	Host	genetic	variation	
has	 previously	 been	 found	 to	 influence	 ash	 dieback	 susceptibility	
(Harper	 et	 al.,	 2016;	 Sollars	 et	 al.,	 2017).	 However,	 these	 studies	
used	genomic	and	 transcriptomic	approaches	 that	give	 finer	 reso-
lution	 than	 microsatellite	 markers	 allow.	 Furthermore,	 microsat-
ellites	cover	non‐coding	 regions	of	DNA	and	so	may	be	 less	 likely	
to	 directly	 affect	 pathogen	 susceptibility,	 although	 they	 are	 often	
physically	 linked	to	genes	that	code	for	 functional	 traits	 (Santucci,	
Ibrahim,	 Bruzzone,	 &	Hewit,	 2007;	 Gemayel,	 Vinces,	 Legendre,	 &	
Verstrepen,	2010;	Tollenaere	et	al.,	2012).	Host	genetic	distance	did,	
however,	predict	variation	 in	 fungal	 community	composition	 (both	
across	 sites	 and	within	Manchester,	 but	 not	within	 Stirling	 alone).	
Thus,	microsatellites	used	in	this	study	may	be	linked	to	functional	
traits	 that	 influence	 phyllosphere	 fungal	 communities.	 As	 such,	
host	 genetic	 influence	 on	 phyllosphere	 fungal	 communities	 could	
indirectly	 influence	H. fraxineus	 susceptibility.	The	expression	of	 a	
number	of	MADS	box	genes	varies	between	susceptible	and	tolerant	
genotypes	of	ash	trees,	which	may	influence	secondary	metabolite	
production	(Gantet	&	Memelink,	2002;	Sollars	et	al.,	2017)	and	thus,	
influence	microbial	 community	 diversity	 on	 the	 leaf.	 Furthermore,	
higher	 iridoid	 glycoside	 concentrations	 were	 identified	 from	 bio-
chemical	 profiles	 of	 leaves	 from	 susceptible	 ash	 trees,	which	may	
alter	 fungal	 growth	 (Sollars	 et	 al.,	 2017;	 Whitehead,	 Tiramani,	 &	
Bowers,	2016).	 Identifying	genes	 associated	microbiome	composi-
tion	 in	 ash	 trees	will	 allow	us	 to	determine	whether	 these	 can	be	
used	along	with	host	genetic	markers	to	improve	selection	of	toler-
ant	trees	and	thus	increase	the	pool	from	which	selective	breeding	
could occur.

Sampling	site	was	the	main	predictor	of	total	community	com-
position	 for	 both	 fungal	 and	 bacterial	 communities	 of	 ash	 leaves.	
Considerable	 variation	 in	 phyllosphere	 composition	 still	 existed	
between	the	sites	despite	the	Stirling	and	Manchester	trees	being	
genetically	 similar,	 indicating	 that	 site‐level	 variation	was	 not	 due	
to	 population	 differentiation.	 Both	 fine‐	 and	 broad‐scale	 geo-
graphic	 variation	 affects	 microbiome	 composition	 in	 many	 study	

F I G U R E  7  Co‐occurrence	networks	between	fungi	and	bacteria	
in	the	leaves	of	ash	trees	with	varying	degrees	of	Hymenoscyphus 
fraxineus	infection;	(a)	absent;	(b)	low;	(c)	medium	and	(d)	high.	
Edges	coloured	orange	indicate	fungi‐fungi	associations,	those	
coloured	green	indicate	bacteria‐bacteria	associations,	and	those	in	
blue	are	fungi‐bacteria	associations

(a) (b)

(c) (d)
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organisms	 (Antwis,	 Lea,	 Unwin,	 &	 Shultz,	 2018;	 Griffiths	 et	 al.,	
2018;	 Yatsunenko	 et	 al.,	 2012)	 including	 plants	 (Edwards	 et	 al.,	
2015;	Peiffer	et	al.,	2013;	Wagner	et	al.,	2016).	The	site‐level	dif-
ferences	observed	in	this	study	may	reflect	a	range	of	differences	
in	 abiotic	 conditions,	 given	 that	 environmental	 variables,	 such	 as	
temperature	and	rainfall	are	considerable	determinants	of	both	mi-
crobiome	composition	and	pathogen	activity	(Barge,	Leopold,	Peay,	
Newcombe,	&	Busby,	2019;	Busby,	Newcombe,	Dirzo,	&	Whitham,	
2014;	Busby,	Ridout,	&	Newcombe,	2016;	Dal	Maso	&	Montecchio,	
2014;	Laforest‐Lapointe,	Messier,	&	Kembel,	2016;	Zimmerman	&	
Vitousek,	2012).	Methodological	differences	could	also	be	respon-
sible	–	 in	Stirling,	we	sampled	saplings	whereas	in	Manchester	we	
sampled	mature	 trees.	 Tree	 and	 leaf	 age	 both	 significantly	 affect	
phyllosphere	microbiome	structure,	possibly	due	to	microbial	com-
munity	 succession	 patterns,	 as	 well	 as	 niche	 variation	 associated	
with	age‐related	physiological	changes	 in	 leaves	(Redford	&	Fierer	
2009;	Meaden,	Metcalf,	&	Koskella,	2016).	Thus,	site‐level	patterns	
in	 our	 data	may	 reflect	 these	 considerable	 drivers	 of	microbiome	
composition.	 Alternatively,	 there	 may	 well	 have	 been	 different	
isolates	of	H. fraxineus	 at	 the	 two	sites,	which	may	have	differen-
tially	affected	leaf	microbial	communities	through	isolate	variation	
in	enzyme	profiles	and	growth	rates	(Junker,	de	Vries,	Eickhorst,	&	
Schulz,	2017).	We	also	observed	variation	 in	 the	strength	of	gen-
otype	 ×	microbiome	 interactions	 between	 sites.	 This	may	 be	 due	
to	environmental	differences,	and	thus	could	indicate	the	presence	
of	 genotype	 by	microbiome	 by	 environment	 (G	 ×	M	×	 E)	 interac-
tions	(Smith	et	al.,	2015).	G	×	M	×	E	interactions	may	be	particularly	
important	for	disease	susceptibility	and	mitigation	as	environment	
plays	 a	 considerable	 role	 in	 pathogenicity.	 Thus,	 microbially	 de-
rived	resistance	to	H. fraxineus,	 in	addition	to	the	effectiveness	of	
any	microbial	 treatments,	may	be	population,	 age	or	 site	 specific,	
and	may	vary	between	sites	based	on	environmental	and	biological	
variables,	including	abiotic	factors	as	well	as	pollution,	tree	density,	
species	mix	and	herbivore	activity.	Much	more	work	is	required	to	
determine	 how	 environmental	 factors	 and	 pathogen	 strain	 varia-
tion	 affect	microbially	 derived	 resilience	 to	H. fraxineus	 infection,	
and	 identifying	cross‐population	and	cross‐isolate	microbial	signa-
tures	of	resistance	will	be	key	to	the	success	of	a	microbial‐based	
approach	to	disease	management.

It	is	worth	noting	that	we	did	not	identify	H. fraxineus	itself	to	spe-
cies	level	using	ITS	rRNA	amplicon	sequencing	(or	through	additional	
BLAST	searches),	despite	qPCR	demonstrating	widespread	and	high	
infection	 rates.	 Cross	 et	 al.	 (2017)	 found	 similar	 results	when	 using	
ITS‐1.	This	may	be	because	H. fraxineus	(or	its	many	strains)	is	not	fully	
represented	in	the	UNITE	database,	or	because	H. fraxineus	has	a	long	
fragment	length	(~550	bp)	for	the	primer	combination	we	used,	which	
would	be	 less	 readily	 sequenced	 than	 shorter	 reads	on	 the	 Illumina	
MiSeq	platform	 (Lindahl	et	al.,	2013).	As	with	all	 amplicon	sequenc-
ing,	there	are	 limitations	to	the	taxa	that	can	be	 identified	based	on	
the	primers	used,	and	wider	analysis	using	multiple	markers	will	iden-
tify	further	genera	involved	in	H. fraxineus	infection	dynamics	on	ash	
leaves	(Cross	et	al.,	2017;	Lindahl	et	al.,	2013).

In	conclusion,	we	show	that	bacterial	and	fungal	communities	of	
ash	 leaves	are	strongly	associated	with	one	another,	and	 the	com-
position	of	both	 is	associated	with	H. fraxineus	 infection	dynamics.	
Leaves	with	 absent	 or	 low	 infection	 rates	 have	more	 complex	mi-
crobial	co‐occurrence	hubs	characterized	by	medium‐strength	con-
nections	 involving	many	members,	whereas	under	medium	to	high	
infection	levels,	microbial	networks	were	characterized	by	stronger	
associations	 between	 fewer	 members	 and	 with	 fewer	 hubs.	 This	
suggests	that	after	a	particular	 infection	pressure	 is	reached,	phyl-
losphere	 communities	 become	 disrupted.	 Although	 host	 genotype	
did	not	affect	H. fraxineus	infection	directly,	it	did	have	a	significant	
effect	on	fungal	community	composition	and	thus,	may	have	indirect	
consequences	 for	 pathogen	 susceptibility.	 Identifying	 host	 genes	
that	 determine	microbiome	 composition	 in	 ash	 trees	may	 improve	
selection	of	 trees	with	more	 resistant	microbiomes,	which	 in	com-
bination	with	 host	 genetic	markers	 of	 tolerance,	may	 increase	 the	
proportion	of	ash	trees	from	which	selective	breeding	could	occur.
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