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Abstract: 24 

With promising activity and stability for the oxygen reduction reaction (ORR), transition 25 

metal (TM) nitrides are an interesting class of non-platinum group catalysts for polymer 26 

electrolyte membrane fuel cells (PEMFCs). Here we report an active thin film nickel nitride 27 

catalyst synthesized through a reactive sputtering method. In RDE testing in 0.1M HClO4 28 

electrolyte, the crystalline nickel nitride film achieved high ORR activity and selectivity to 29 

4 electron ORR. It also exhibited good stability during 10 h and 40 h chronoamperometry 30 

(CA) measurements in acid and alkaline, respectively. A combined experiment-theory 31 

approach, with detailed ex-situ characterization with TEM and NEXAFS to reveal a mixed 32 

Ni4N/Ni3N structure with an amorphous surface oxide and DFT calculations to provide 33 

insight into the surface structure during catalysis, is highlighted. Design strategies for 34 

activity and stability improvement through alloying and nanostructuring are discussed.  35 

 36 
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 2 

Introduction 3 

Proton-exchange membrane fuel cells (PEMFCs) are a promising technology towards 4 

enabling efficient and clean electricity production for transportation and industrial 5 

applications. In a PEMFC, hydrogen fuel is oxidized at the anode and oxygen is reduced 6 

at the cathode, generating electricity and releasing water as a benign by-product. Current 7 

commercial PEMFCs utilize expensive platinum-based catalysts for both the anode and 8 

cathode.1 In particular, prohibitively large Pt loadings are required at the cathode to 9 

overcome the sluggish kinetics of the oxygen reduction reaction (ORR).2,3  While much 10 

work has focused on improving the mass activity of Pt ORR catalysts,4–7 limitations, 11 

including scarcity, instability, and susceptibility to carbon monoxide poisoning, remain.8–12 
10 Therefore, the discovery of earth abundant, non-precious metal ORR catalysts is of 13 

critical interest for the large scale implementation of fuel cell technology. 14 

Many non-platinum group (non-PGM) materials have been explored for ORR, including 15 

transition metal oxide11,12 and nitrogen-doped carbon13 catalysts that have shown 16 

promising activity in alkaline electrolyte, and metal-nitrogen-carbon14–16 catalysts that 17 

have achieved Pt-like activity in acid. Another promising class of earth-abundant materials 18 

are the transition metal nitrides, which are electronically conductive and have shown 19 

enhanced catalytic activity relative to their parent metal due to beneficial changes in the 20 

d-band structure.17  Moreover, nitrides have achieved activity approaching that of the 21 

noble metals for a variety of reactions.18 ORR activity has been demonstrated for several 22 

nitrides, including Co, Fe, and Ti.19–24 Nitrides of Mo and W have also shown promising 23 

stability in acidic electrolyte due to their high corrosion resistance.25–27 Particular interest 24 

has focused on the bimetallic nitride Co0.6Mo1.4N2, which combines the activity of CoxN 25 

with the acid stability of MoxN.28–30  26 

Nickel-based nitride catalysts have also shown some ORR activity. Specifically, a high 27 

surface area Ni3N on Ni-foam catalyst demonstrated low overpotential and good stability 28 

for HER and OER, as well as preliminary evidence of activity for ORR in alkaline 29 

media.31 Ni3FeN nanostructures have shown promising bifunctional activity, both as 30 

supports and catalysts, for metal-air batteries in alkaline media. 32–34  Additionally, Ni3N 31 

quantum dots supported on NiO nanosheets have shown good activity and stability for 32 

ORR in alkaline.35 Herein, we demonstrate an ORR active nickel nitride catalyst in acid 33 

for the first time. Through extensive electrochemical, materials, and theoretical 34 

characterization of a well-defined, carbon-free thin film catalyst, we investigate the 35 

fundamental ORR activity, selectivity, and stability of nickel nitride in both acidic and 36 

alkaline electrolyte. DFT is utilized to construct Pourbaix diagrams and identify the 37 

active surface of the catalyst.   38 
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Materials and Methods 2 

Materials 3 

Glassy carbon electrodes (Pine Research Instrument, 0.196 cm2 geometrical area), 4 

graphite counter electrode, platinum wire, silicon wafers (WRS, 100 mm, P/Bor <100>, 5 

10-20 Ohm-cm), Ni sputtering target (Kurt J Lesker, 99.99% purity, 2” diameter), Ti 6 

sputtering target (Kurt J Lesker, 99.99% purity, 2” diameter), perchloric acid (Honeywell 7 

Fluka, 70%), potassium hydroxide (Fisher Chemical, 86.4% assay), were all used as 8 

received and without further purification unless otherwise stated. 9 

 10 

Synthesis  11 

Nickel nitride thin films were prepared by DC reactive sputtering using a Lesker Sputter. 12 

Prior to the nitride synthesis, a 20 nm thick Ti sticking layer was synthesized by sputter 13 

deposition (3 minutes, 200W, 100% Ar, 3 mTorr) onto the polished glassy carbon disk 14 

electrode. Subsequently, without breaking vacuum, the Ni target was sputtered in a 15 

mixture of 75% Ar, 25% N2 plasma to deposit ~130 nm of NixN. The magnetron power 16 

supply was maintained at 200 W and the chamber pressure was 8 mTorr. The substrate 17 

was held at 180 ± 10 ˚C with a substrate bias of 100 V throughout the deposition. The 18 

Ni3N and Ni4N standards used for near edge X-ray absorption fine structure (NEXAFS) 19 

spectroscopy were synthesized on silicon substrates; Ni3N was made by increasing 20 

chamber pressure to 18 mTorr, while Ni4N was made by decreasing the substrate 21 

temperature to 90 ˚C. Ni and NiO thin films were synthesized using the same conditions, 22 

but with 100% Ar and 20% O2 & 80% Ar plasma, respectively. Films were also 23 

synthesized on Si wafers, with native SiO2 layer, for structural characterization. 24 

Physical characterization  25 

Grazing-incidence X-ray diffraction (XRD) data were obtained using a D8 Venture single 26 

crystal diffractometer (Bruker, λ=1.5418 Å) at an incidence angle of 5˚. Top-down and 27 

cross-sectional scanning electron microscopy (SEM) was conducted with a FEI Magellan 28 

400 XHR SEM. X-ray photoelectron spectroscopy (XPS) was performed with a Phi 29 

Versaprobe 1 using monochromatized Al Kα (1486 eV) radiation. All XPS spectra were 30 

calibrated to the C 1s peak at a binding energy of 284.8 eV.  CasaXPS software was used 31 

to perform peak fitting with Shirley backgrounds. 32 

The cross-section TEM specimen was prepared conventionally.36 The samples were 33 

glued and mechanically grounded to approximately 15 μm in thickness. The cross-section 34 

specimen was further ion milled until electron transparent in a Gatan PIPS II ion milling 35 

machine. Argon ion beams with 5 keV energy were induced at an incident angle of 5 36 

degrees to create a hole at the center of the specimen. After the formation of the hole, 37 
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the beam energy was gradually reduced to 0.5 keV for final cleaning. TEM experiments 1 

were conducted in a FEI Titan 80-300 environmental transmission electron microscope 2 

equipped with a spherical aberration corrector in the image-forming (objective) lens. 3 

Selected Area Diffraction Patterns (SADP) were calibrated using a standard Si [110] 4 

diffraction pattern taken under the same conditions. 5 

NEXAFS data for N and O K-edge and Ni L-edge were collected at the Stanford 6 

Synchrotron Radiation Light Source (SSRL) on BL 8-2 and 10-1 in total fluorescence yield 7 

(TFY) and total electron yield (TEY) modes, operating the monochromator with 0.2 eV 8 

(for N and O K-edges) and 0.3 eV (for Ni L-edge) resolution, respectively. NiO, Ni3N, and 9 

Ni4N were used as standards. The collected data were normalized to the edge jump after 10 

subtraction of the pre-edge region. TFY enables bulk sensitivity with a penetration depth 11 

on the order of 100 nm, while TEY has a penetration depth of 5-10 nm. 12 

NEXAFS simulations for the N K-edge were conducted with OCEAN code37,38 and FEFF 13 

9 code39 using a broadening of 1.0 eV and 0.52 eV, respectively, and the crystallographic 14 

structures of Ni4N and Ni3N. O K-edge was simulated with the FEFF 9 code using a SCF 15 

cluster of 6 Å and increasing the radius of the FMS cluster from 3 Å to 9 Å starting from 16 

the crystallographic structure of NiO. A broadening of 0.8 eV was applied to simulate the 17 

experimental broadening (primarily instrumental, core-hole, and vibrational broadening). 18 

The screening of the core-hole was computed using random phase approximation (RPA) 19 

and the H-L self-energy was used for the calculation of the exchange correlation potential. 20 

Electrochemical Testing 21 

Electrochemistry was performed using a rotating disk electrode (Pine Research 22 

Instrument) in a three-electrode glass cell, with 0.1 M HClO4 or 0.1 M KOH electrolyte 23 

purged with oxygen or nitrogen. An in-house built reversible hydrogen electrode (RHE) 24 

was used as the reference electrode and a graphite rod as the counter electrode. The 25 

series resistance of the cell was measured at 100 kHz and the iR losses were 26 

compensated at 85%. The remaining 15% was corrected after testing. Electrochemical 27 

activity was assessed using cyclic voltammetry (CV), sweeping reversibly from 0.8 V to 28 

0.05 V at a scan rate of 20 mV/s using a Biologic VSP-300 Potentiostat. Unless otherwise 29 

stated, the oxygen purged voltammograms were corrected for background current by 30 

subtracting the baseline (nitrogen) sweep. For simplicity, only cathodic CV sweeps are 31 

shown in the main text; full CVs are shown in the SI. Stability was evaluated using 32 

chronoamperometry, holding at a constant potential of 0.15 V. Selectivity measurements 33 

were conducted using a rotating ring disk electrode (Pine Research Instrument) with a Pt 34 

ring held at 1.2 V vs RHE to measure the H2O2 produced in the reaction. See the SI for 35 

details of ring calibration and selectivity calculations. 36 

Computational Details 37 
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We performed density functional theory (DFT) calculations using the Vienna Ab Initio 1 

Simulation Package (VASP)40,41 with the PBE exchange-correlation functional42 and 2 

projector augmented-wave (PAW) pseudopotentials.43 We added a Hubbard-U correction 3 

(PBE+U)44 on insulating Ni oxide materials to include the on-site Coulomb interaction of 4 

localized electrons. The value of the Hubbard interaction, U, for Ni was chosen to be 6.2 5 

eV in accordance with the literature.45,46 The energy cutoff, convergence criteria for self-6 

consistent iterations, and for geometry relaxation were set to 500 eV, 10−4 eV, 0.05 eV/Å, 7 

respectively. Further computational details can be found in the SI. 8 

 9 

Results and Discussion 10 

Characterization 11 

The reactively sputtered nickel nitride films are ~160 nm in thickness as shown by cross-12 

sectional scanning electron microscopy (SEM) in Figure 1A. The film consists of well-13 

defined nanopillars, which are variable in height but closely packed to form a rough, dense 14 

film. The 20-30 nm Ti sticking layer is visible beneath the pillars. The top down SEM in 15 

Figure 1B shows that the nanopillars are pyramids with either square or triangular base 16 

shapes. The larger square prisms have an average diameter (distance from opposite 17 

corners, viewed from above) of 70 nm, while the triangular prisms are 30-40 nm.  18 

 19 

Figure 1. Characterization of as-prepared, sputtered NixN thin films. (A) Cross-sectional 20 

and (B) top down SEM micrographs, (C) XRD pattern with ICDD references and 21 

corresponding crystal planes. 22 

X-ray diffraction (XRD) of the thin films shows peaks corresponding to both hexagonal 23 

Ni3N (ICDD 00-010-0280 at 2Θ of 39.9˚, 42.7˚, and 45.2˚) and cubic Ni4N (ICDD 00-036-24 

1300 at 42.0˚, 49.3˚, and 72.0˚), confirming that no other crystalline species are present 25 

(Figure 1C).  26 
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 1 

Figure 2. TEM-SADP (selected area diffraction pattern) characterization of as-prepared 2 

NixN thin films. (A) Cross-sectional view, (B) SADP taken from top surface of the film 3 

matching diffraction pattern of Ni4N from [233] zone axis, (C) SADP taken from the bulk 4 

region of the film showing diffraction rings of Ni4N and Ni3N. 5 

 6 

The films were also analyzed using cross-sectional transmission electron microscopy 7 

(TEM). The TEM image of the film in Figure 2A shows a pillar morphology, as seen in 8 

SEM, as well as discrete titanium (20 nm thick), silicon dioxide (7 nm thick), and silicon 9 

layers. Distinct crystalline regions are also visible (Fig. S1). Selected area diffraction 10 

patterns (SADP) were used to determine the crystal structures at the surface and in the 11 

bulk, as shown in Figure 2B and C, respectively. The selected area aperture positions are 12 

shown in Figure S2. In Figure 2B, the diffraction pattern measured at the surface matches 13 

the Ni4N cubic structure. The measured d-spacings of diffraction spots along the two 14 

orthogonal directions are 0.131 nm and 0.111 nm. These match well with the (022) and 15 

(311) planes of the reference Ni4N. These also suggest that the diffraction pattern was 16 

taken near a [233] zone axis of Ni4N. The diffraction pattern from the bulk region shows 17 

diffraction rings (labeled in red) of Ni4N which correspond to the (111), (200), (220), and 18 

(311) planes. This indicates that the bulk of the thin film is polycrystalline. An additional 19 

ring (labeled in yellow) was observed between the (111) and (200) rings of Ni4N. The d-20 

spacing of this ring matches the (111) plane spacing of Ni3N. The SADP indicates that 21 

the film is primarily composed of Ni4N, with a minor phase of Ni3N in the bulk. However, 22 

it is important to note that the analyzed volume of our polycrystalline film from this method 23 

is limited. To probe a broader region of the sample, we employed NEXAFS spectroscopy, 24 

as discussed in the next section. 25 
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 1 

Figure 3. NEXAFS spectra of as-prepared, sputtered NixN thin films. (A) N K-edge of the 2 

sample, Ni3N and Ni4N standards, and simulated spectra; (B) O K-edge of the sample 3 

and NiO standard. Dashed lines are intended as guides for the reader. TEY: surface; 4 

TFY: bulk. 5 

To further probe the structure and chemical state of the catalyst, the films were 6 

characterized using NEXAFS spectroscopy. In Figure 3A, the N K-edge NEXAFS spectra 7 

for the as-prepared catalyst are compared with experimental and simulated spectra for 8 

Ni3N and Ni4N standards. The spectra were collected in TEY and TFY modes, allowing 9 

for a comparison between the surface (TEY: few nm) and the bulk of the film (TFY). Two 10 

main peaks are present both for the surface and the bulk of the as-prepared sample, 11 

though differences are evident between the two spectra. For TEY, the feature at 397.5 12 

eV matches well with both the experimental and simulated spectrum of Ni4N. The TFY 13 

signal shows a shift of the peak at 397.5 eV towards higher energy and the appearance 14 

of a shoulder corresponding to Ni3N. We can thus confirm that the catalyst is a mixture of 15 

Ni4N and Ni3N, as indicated by XRD and TEM analyses, and locate Ni3N in the bulk. The 16 

feature at 400.5 eV is associated with the oxidation of the surface of the nitride film upon 17 

exposure to air after synthesis, as has been previously reported for other transition metal 18 

nitrides.47,48 Notably, the fact that the intensity of this feature considerably decreases in 19 

the bulk of the material provides evidence for the presence of a surface N state different 20 

than in the pure bulk nitride film. This is also observed in the experimental spectra for the 21 

Ni4N and Ni3N standards (Figure S3).  22 

Figure 3B shows experimental O K-edge spectra for the catalyst and the NiO standard, 23 

which allow for further characterization of surface oxidation. The TFY signal for O was 24 

negligible, confirming that the oxidation process is limited to the surface and there is no 25 

oxygen incorporation in the bulk. The signal for the oxidized layer on top of the nitride film 26 

consists of a peak at 532.8 eV, shifted to higher energy compared to the bulk NiO, and a 27 

broad feature at 540.5 eV, which has been reported for small native Ni oxide clusters on 28 

top of Ni films.49 It was concluded that none of the defined features typical of crystalline 29 

NiO were detected due to the amorphous nature of the small NiO domains. O K-edge 30 

spectra for NiO clusters of various dimensions were simulated (Fig. S4). The simulated 31 
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spectrum for a NiO cluster with ca. 5 Å radius (57 atom cluster) is the best match to the 1 

experimental, suggesting the presence of these clusters on the nitride surface. The Ni L3- 2 

and L2-edge spectra also support the presence of oxidized Ni4N on top of Ni3N (Fig. S5). 3 

Our spectroscopic measurements thus indicate that prior to testing, the catalyst structure 4 

consists of small clusters of NiO on top of Ni4N, with Ni3N crystallites also present in the 5 

bulk.     6 

 7 

Electrochemistry 8 

The ORR activity and selectivity of the nickel nitride catalyst was assessed using a 9 

rotating ring disk electrode (RRDE) in both acidic (0.1 M perchloric acid) and alkaline 10 

(0.1 M potassium hydroxide) electrolyte. Figure 4A shows the activity and selectivity of 11 

the synthesized catalyst, with the ORR polarization curve measured on the disk 12 

electrode (solid lines) and the H2O2 oxidation current measured on the platinum ring 13 

electrode (dashed lines). Comparison with the activity of a commercial Pt/C (46.6% from 14 

TKK) catalyst is shown in Figure S6.50 In acid, the ORR onsets (defined as the potential 15 

required to reach 100 μA/cm2 geometric current density) at 0.68 V vs RHE and reaches 16 

the mass transport limited current density of 6.1 mA/cm2 at 0.2 V vs RHE. Furthermore, 17 

the halfwave potential is 0.49 V vs RHE, indicating a relatively sharp onset. This is 18 

promising activity for a non-Pt group metal catalyst in acid and is comparable to the 19 

metal nitrides currently reported in the literature (Table S3).51–53 Nickel nitrogen-doped 20 

carbon (Ni-NC) type catalysts have also demonstrated good ORR performance, but 21 

they cannot be directly compared with this work due to their high surface area and the 22 

contributions of the NC support.54,55 In alkaline electrolyte, nickel nitride shows similar 23 

activity with an onset at 0.68 V vs RHE but has a lower mass transport limited current 24 

density of 4 mA/cm2, as well as a slower onset with a halfwave potential of 0.42 V vs 25 

RHE. This difference in activity is reflected in the Tafel slopes: 89.7 mV/decade in acid 26 

compared to 175 mV/decade in alkaline (Fig. S7). Similar pH dependent Tafel slope 27 

trends have been reported in the literature.56 Aside from the Tafel slopes, PGM-free 28 

catalysts are generally more ORR active in alkaline, with higher onset and halfwave 29 

potentials (Table S3). The reversal in that trend for this nickel nitride system can likely 30 

be attributed to different H2O2 selectivity and different surface structures under reaction 31 

conditions, which will be discussed in the following sections. 32 
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 1 

Figure 4. Electrochemical performance of NixN in acid (red) and base (blue). (A) RRDE 2 

measurements showing ORR polarization curves and H2O2 current density for nickel 3 

nitride. (B) Chronoamperometry (CA) profile at 0.15 V vs RHE in acid, for 2 samples 4 

tested under different cycling parameters, and in base. 5 

For PEMFCs, high selectivity to the 4-election reduction, corresponding to a low H2O2 6 

current, is preferred. In acid, the selectivity of the catalyst to H2O2 (2-electron reduction) 7 

was found to decrease with increasing overpotential and was negligible at potentials 8 

below 0.3 V vs RHE. (Fig. S10). The H2O2 current was used to calculate the electron 9 

transfer number, n, which was found to range from 3.2 (at 0.6 V vs RHE) to 4.0 (at 0.1 V 10 

vs RHE) (see SI for calculations). In alkaline electrolyte, nickel nitride has higher 11 

selectivity towards H2O2, with n values ranging from 2.4 at 0.6 V vs RHE up to 3.4 at 0.1 12 

V vs RHE. This high selectivity to H2O2, as well as the onset of ORR activity close to the 13 

thermodynamic limiting potential of 0.70 V vs RHE for 2-electron ORR, indicates that in 14 

alkaline electrolyte the catalyst is unable to turnover 4-electron ORR until the onset of 2-15 

electron ORR. This limitation to the thermodynamic potential of 2-electron ORR likely 16 

contributes to the lower activity in alkaline electrolyte. 17 

In addition to activity and selectivity, stability is a crucial performance metric for any 18 

catalyst. Here, electrochemical stability was assessed using chronoamperometry, and the 19 

use of post-test characterization and theoretical calculations to evaluate chemical stability 20 

will be discussed in later sections. Figure 4B shows stability tests for nickel nitride in acid 21 

and alkaline electrolyte. After 3 CVs, catalyst stability was evaluated by 22 

chronoamperometry (CA) at 0.15 V vs RHE. CVs were run every 5 h to assess changes 23 

in activity (Fig. S11). 24 

 In alkaline, the catalyst improved over the first 5 h of the chronoamperometry hold, 25 

increasing from 3.3 to 3.5 mA/cm2 of current density in the CA, and the CV after 5 h 26 

demonstrated improvement of 25 mV and 75 mV in onset and half-wave potential, 27 

respectively (Fig. S11B). Subsequent CVs show a slow degradation, with a loss of 28 

approximately 0.2 mA/cm2 every 5 h from 10 h to 30 h. The noise in the data, observed 29 

at 3 h, is due to bubble formation on the surface of the catalyst. The bubble was removed 30 

mechanically and had no lasting effect on catalyst performance. All other spikes 31 

correspond to switching between the CA and CVs. The catalyst continued to degrade 32 
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slowly, with current density losses of 25% at 24 h and 40% at 40 h, at which time the 1 

stability test was ended. 2 

Interestingly, in acid, the activity and stability of the nickel nitride catalyst was found to be 3 

dependent on the cycling parameters of the cyclic voltammogram (CV). To illustrate this 4 

dependence, Figure S12 shows cathodic sweeps, with no background subtraction, for 5 

two sibling catalysts in acid. The catalysts were tested identically, except that the sweeps 6 

started either at more positive (0.8 V vs RHE), as was shown in Figure 4A, or less positive 7 

(0.15 V vs RHE) potential. The “more positive start” catalyst shows superior activity, with 8 

both an earlier onset and larger limiting current density. However, it loses activity more 9 

rapidly, producing only 3 mA/cm2 after 5 h, corresponding to a 50% loss in activity. CVs 10 

during the stability test for the “less positive start” catalyst are shown in Figure S11A, with 11 

relatively similar ORR activity at 0 and 5 h, but a significant loss of activity during the cycle 12 

at 10 h. These differences in activity and stability between these testing protocols, as well 13 

as the losses caused by the CVs during the CA, provide evidence that the catalyst is very 14 

sensitive to applied potential. 15 

Sensitivity to potential is likely a consequence of surface oxidation reactions which occur 16 

in the ORR potential window.57 In both N2 and O2 scans, there was an irreversible 17 

oxidative peak on the anodic sweep in the 0.65 – 0.8 V vs RHE region during the first 4 18 

sweeps (Figure S13). Between sweeps 1 and 3, this results in a positive shift in onset 19 

potential by 100 mV and a 2 mA/cm2 gain in mass transport limited-current density. This 20 

oxidation peak shrinks after 4 sweeps, indicating that further oxidation of the catalyst was 21 

limited. This coincided with a loss of activity, with current density decreasing to zero over 22 

the subsequent 4 sweeps. We therefore hypothesize that the active surface is a partially 23 

oxidized nitride and that the activity is suppressed, as the oxidation progresses, through 24 

decreased conductivity and dissolution. This reveals the sensitivity of the catalyst to open 25 

circuit potential and oxidizing potentials; durability could be improved by maintaining the 26 

catalyst at reducing currents. 27 

 28 

Characterization After Electrochemical Testing 29 

To better understand chemical stability and investigate the mechanisms of failure in acid 30 

and base, the films were characterized after activity (CV) and stability (CA) testing using 31 

SEM and XPS. After the 10 h CA in acid (Figure 5A), SEM shows that the surface 32 

structure had changed completely, with most of the material gone. This structural change 33 

likely contributes to the loss in performance over time. After the 40 h CA in base (Figure 34 

5B,C), the structure is distinct from the as-prepared catalyst. The surface was covered 35 

with rod-shaped structures, loosely packed into clusters approximately 0.1 μm2 in area, 36 

and large cracks (approximately 300 nm across) appeared in the film. We hypothesize 37 
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that these cracks may have undercut the film, disturbing its electrical connectivity and 1 

performance. 2 

  3 

Figure 5. Top down SEM images of the nickel nitride films after (A) stability test in acid, 4 

and (B, C) stability test in base. (D) High-resolution XPS spectra for as-prepared (black), 5 

post-stability acid (red), and post-stability base (blue) for Ni 2p, O 1s, and N 1s regions. 6 

Dashed lines are intended as guides for the reader. 7 

 8 

 The XPS spectra (Figure 5D) also show a change in elemental composition. Before 9 

continuing with this discussion, it is necessary to note that accurate quantitative analysis 10 

of this XPS data is difficult due to the complexity of the Ni 2p spectrum, so all statements 11 

of composition are meant as best approximation. Elemental quantification of the nickel 12 

nitride revealed a ratio of Ni to N of approximately 3.5, consistent with a mixture of Ni3N 13 

and Ni4N observed in XRD. Prior to testing, peaks were identified in the Ni 2p3/2 region at 14 

binding energies of 853.0 and 855.2 eV (dashed lines), corresponding to the interstitial 15 

nitride (Niδ+, δ = 0-2) and oxide (Ni2+), respectively. There are satellite peaks in the region 16 

860 – 865 eV. This matches well with literature spectra for nickel nitride.58 In the O 1s 17 

region, the low energy peak at 529.3 eV corresponds to the nickel oxide, while we 18 

associate the higher energy peak with hydroxide (literature value of 531.1 eV) and 19 

carbonyl species (most likely carbonate, literature value of 532.8 eV).59 Finally, the N 1s 20 

peak at 397.6 eV corresponds to a metal nitride.  21 

After stability testing in acid, the surface composition changed drastically. The Ni 2p3/2 22 

peaks shifted to higher binding energies, with the largest peak at 855.8 eV, indicating the 23 
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Ni2+ oxidation state. The N 1s peak disappeared, corresponding to a loss of nitrogen from 1 

the surface. The O 1s peaks increased in intensity relative to the Ni and indicate the 2 

presence of hydroxide and carbonate species (from air exposure prior to 3 

characterization).60 In conjunction with the structural changes observed by SEM, this 4 

indicates an extensive reorganization of the surface during testing, resulting in a surface 5 

that more closely resembles Ni(OH)2 than the original Ni4N.61 Similar composition 6 

changes were observed after CV testing in acid (Figure S14). From XPS it is not possible 7 

to determine when these changes occurred, though it seems likely that they were caused 8 

by exposure to oxidizing potentials during testing or open circuit potential when the 9 

catalyst is removed from electrolyte. These structural and composition changes indicate 10 

that overall chemical stability is poor in acid. However, an analysis of potential corrosion 11 

current, as well as the poor ORR activity of the underlying Ti and glassy carbon in acid, 12 

indicates that the NixN catalyst is responsible for the current observed during the stability 13 

test (see SI for details).  14 

The composition change after stability testing in base is similar. The primary remaining 15 

Ni 2p3/2 peak is at 855.9 eV and there is no N 1s signal at the surface, indicating a 16 

complete conversion at the surface to a hydroxide structure. The O 1s spectrum shows a 17 

small oxide peak, but hydroxide is the dominant species. Comparatively, the composition 18 

changes after CV testing are minor, with nitride composition retained (Fig. S14). This was 19 

confirmed by the bulk NEXAFS spectra, which showed no significant change between 20 

this and the as-deposited sample (Fig. S15). This electrochemical, microscopic, and 21 

spectroscopic investigation of stability and failure mechanisms has revealed that activity 22 

loss is correlated with the conversion of the nitride to hydroxide and associated material 23 

property changes. Due to the sensitivity of the activity and stability of these catalysts to 24 

applied potential, future work should focus on probing the stability of these catalysts as a 25 

function of applied potential. We hypothesize that stability would be more challenging at 26 

more oxidizing conditions, since extensive catalyst oxidation was found to detrimentally 27 

impact activity and stability. 28 

To gain insight into oxide phases observed experimentally, we evaluated the stability of 29 

oxide phases in the presence of Ni3N and Ni4N with DFT. The optimized bulk structures 30 

of Ni3N and Ni4N are in good agreement with the XRD and SADP results, as well as 31 

previously reported bulk parameters (a=b=4.619 and c=4.307 Å for Ni3N, a=b=c=3.730 Å 32 

for Ni4N).62,63 We modeled √3 × √3 structures for Ni3N (0001) and Ni4N (111)  to minimize 33 

the lattice mismatch between nickel nitrides (Ni3N and Ni4N) and nickel oxides (NiOOH 34 

and NiO). In the next step we simulated monolayer films of NiOOH and NiO supported on 35 

Ni3N and Ni4N (Figure 6A). We considered all possible adsorption sites and surface 36 

termination to minimize the oxide nitride interface formation energy. The formation 37 

energies of nickel oxides films (NiOOH and NiO) on nickel nitrides (Ni3N and Ni4N) are 38 

calculated as following: 39 
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EFormation = [Eslab,oxide+nitride − Eslab,nitride − nEbulk,oxide]/n,   1 

Where Eslab,oxide+nitride, Eslab,nitride and Ebulk,nitride are electronic energies of the total 2 

system, slab structure of nitrides and bulk nickel oxides. The n is the number of oxide 3 

units in the total system. The most stable geometries for NiOOH and NiO on Ni3N and 4 

Ni4N are shown in Figure 6A and Table 1 summarizes the results of formation energy 5 

calculations. These results show that NiOOH layer is effectively stabilized by -0.67 and -6 

0.53 eV/f.u on Ni3N and Ni4N, respectively, while NiO is significantly destabilized. 7 

 8 

Table 1. The calculated formation energy of Ni oxide species on Ni nitrides.  9 

Formation 

energy (eV/f.u.) 

Ni3N Ni4N 

NiOOH -0.67 -0.53 

NiO 1.60 1.64 

 10 

To further elaborate the formation of different oxide phases during ORR testing, as well 11 

as differences in stability between acid and alkaline electrolyte, we constructed Pourbaix 12 

diagrams. Figure 6 shows (A) the most stable geometries of the NiO and NiOOH 13 

overlayers as well as the theoretically calculated Pourbaix diagrams for (B) bulk Ni, (C) 14 

Ni3N, and (D) Ni4N. The region of interest for ORR is 0.2 VRHE to 1.23 VRHE, below the 15 

upper dashed line in the Pourbaix diagram. The strong formation energy of NiOOH on 16 

both Ni3N and Ni4N results in the expansion of NiOOH area in the Pourbaix diagrams (Fig 17 

6C and D). Hence, the observed oxidized phase in the experiment can be attributed to 18 

the stabilized NiOOH on the nickel nitride surfaces, particularly in alkaline electrolyte. This 19 

analysis also shows that nickel nitride surfaces are not stable under acidic environment 20 

due to dissolution of Ni2+ ions. Differences in surface composition and coverage between 21 

these electrolytes may contribute to the observed differences in ORR activity and 22 

selectivity. 23 
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 1 

Figure 6. (A) Optimized geometries of NiO and NiOOH supported on Ni3N and Ni4N, 2 

respectively. Pourbaix diagrams of (B) bulk Ni, (C) Ni3N, and (D) Ni4N. (B) is based on 3 

the experimental values of formation free energies of bulk phases62,63, and the 4 

stabilization energies of nickel nitrides on NiOOH were added to construct (C) and (D). 5 

NiO is destabilized on the nickel nitrides, thus the bulk formation free energy was used. 6 

Color codes: silver (Ni), blue (N), red (O), pink (H). The equilibrium potentials of O2/H2O 7 

(1.23 VRHE) and H+/H2 (0.00 VRHE) are marked with dashed lines. 8 

The above theoretical investigation provides a basic understanding of the formation of 9 

possible nickel oxide phases on the examined nickel nitrides, which is of particular interest 10 

due to recent DFT calculations showing that the formation of an oxide over-layer on cobalt 11 

nitride promotes ORR.64 This is in agreement with our experimental observation of 12 

extensive surface oxidation after ORR testing. While the XPS and NEXAFS results 13 

indicate a surface hydroxide species, these are ex situ measurements, taken after the 14 

catalysts had been exposed to air, and thus cannot be used to determine the surface 15 

composition under reaction conditions. This will be the subject of future investigations 16 

utilizing operando spectroscopies.   17 

It is important to note that the Pourbaix diagram is based on thermodynamics and does 18 

not provide any information about the kinetics of the phase transition. Thus, while the 19 

nickel nitride is not predicted to be stable in acid, several hours of stability were achieved, 20 

perhaps because the oxidation or dissolution processes are slow kinetically. This can 21 

serve as a design principle for further catalyst development. Superior stability is observed 22 

in base, where the catalyst is more thermodynamically stable. 23 

The use of a well-defined and carbon-free catalyst morphology facilitated a combined 24 

experiment-theory approach to determining the active surface of the catalyst. With the 25 
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insights into the origins of activity and stability obtained through the study of this model 1 

system, efforts to improve this catalyst fall into two main categories.65 First, intrinsic 2 

activity and stability can be improved through alloying with a more stable transition metal 3 

nitride, which has been demonstrated for several nitride systems.22,23,29 Based on the 4 

Pourbaix calculations and the potential of activation via oxide over-layer formation,64 a 5 

promising candidate would be a metal nitride which forms a stable, passivating oxide or 6 

hydroxide surface in acid and alkaline electrolyte. Second, after discovery of a promising 7 

material system, the number of active sites can be increased through nanostructuring and 8 

supporting the catalyst on a high surface area material such as N-doped carbon.54,55   9 

 10 

Conclusions 11 

In summary, nickel nitride thin films were found to be active ORR catalysts, achieving 12 

activity comparable to the metal nitrides reported in the literature. Reactive sputtering is 13 

highlighted as a promising route to synthesize transition metal nitride electrocatalysts with 14 

a variety of compositions and crystal structures, allowing for fundamental investigation of 15 

the active surface.  By synthesizing the catalyst in a carbon-free morphology, we were 16 

able to use a combined experiment-theory approach to isolate the activity of the nickel 17 

nitride and found that it is an active and reasonably stable non-precious metal catalyst for 18 

ORR in acid, as well as in base. In future work, catalyst activity and stability could be 19 

improved through alloying and nanostructuring. Ex situ XAS and XPS characterization 20 

indicated that an oxide overlayer readily forms on the catalyst surface. DFT calculations 21 

predicted similar surface oxidation under reaction conditions, which was shown to 22 

correlate with changes in electrochemical activity and stability. This surface oxidation can 23 

serve as a design principle for a variety of metal nitride catalysts and demonstrates the 24 

importance of complementary experimental and theoretical studies. 25 
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