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Abstract

This paper presents a numerical study of oblique focused wave group generation and interaction with a
fixed FPSO-shaped body, with thorough validations against available experimental data. The 3D numerical
model is based on the open-source toolbox OpenFOAM R©, where the oblique waves are generated using
multiple virtual segmented wave paddles. The surface elevation and velocity profiles on each paddle are
derived based on the snake principle, which mimics the behaviour of wave paddles in the physical wave
tank. Numerical tests are firstly conducted for focused wave groups propagating obliquely in an empty
wave tank using the proposed scheme. By analysis of the surface elevation, it is found that reasonably
good quality of oblique wave fields can be generated in the central area of the wave basin. Furthermore,
investigations are carried out on the effects of wave angles on the harmonic structures of the wave groups
using the phase-inversion method. It is shown that while the wave angle has minor effects on the linear
and second order harmonics, the third order harmonic is altered by the wave angles, albeit its magnitude
is very small. Finally, to show the effectiveness of the numerical oblique wave generation method and the
importance of the angle effects in the wave-structure interaction process, simulations are carried out for the
oblique focused wave group interacting with a fixed FPSO-shaped body. The effects of the wave incidence
angle are clearly shown from the comparison of the integrated wave forces between the cases with different
wave propagating angles.
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Oblique waves; Focused wave groups; Wave-maker theory.

1. Introduction

The floating production storage and offloading (FPSO) vessels are commonly used in offshore oil and gas
industry for production and processing of hydrocarbons, and for the storage of oil. With the expansion of
oil and gas industry, they are being designed to work in increasingly deep water of potentially harsh marine
environment, e.g. during storms and hurricanes. In contrast with ships or naval vessels, FPSOs are usually
moored in a specific location for a relatively long time. Therefore, it is of vital importance to examine the
survivability of FPSO in such extreme sea states.

A number of physical mechanisms have been proposed regarding the formation of extreme waves, which
include spatial focusing, dispersive focusing and nonlinear focusing (Dysthe et al., 2008). Spatial focusing
can be achieved by wave refraction due to varying seabed topologies. Along irregular coastlines, this may
lead to the focusing of wave energy in particular places, which provide suitable locations for wave power
devices Halliday and Dorrell (2004). However, this mainly occurs in shallow or intermediate water area where
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seabed bottom plays a critical role on the wave propagation. Meanwhile, modulation instability, based on
the breather solutions to the nonlinear Schrodinger equation is also an important reason for the extreme
waves, see e.g. Peregrine (1983); Chabchoub et al. (2011); Karjanto and Van Groesen (2010). However, in
the present work, we only focus on the extreme waves due to dispersive focusing.

The dispersive focused wave groups have been used to represent the statistically expected extreme wave
profile based on the NewWave theory (Tromans et al., 1991). The NewWave theory assumes that the profile
of extreme waves in a random Gaussian sea can be represented by a suitably scaled focused wave group
with its elevation proportional to the auto-correlation function of the underlying random process (Vyzikas
et al., 2018). A recent field study also related the occurrence of extreme events to the dispersive focusing
of the most energetic wave components (Christou and Ewans, 2014), so that the NewWave-type waves were
actually formed. Comparing to application of the regular waves with the corresponding wave height and
period, it is believed that the use of focused waves can generally better represent the spectral broadband
properties of ocean waves (Chen et al., 2018).

However, ocean waves are multi-directional irregular waves, of which the energy is distributed over a
wide range of both frequencies and directions. As well reported in the literature (Ji et al. (2015a,b); Li et al.
(2012, 2014b)), the directionality of the wave field plays a critical role in determining the wave kinematics,
and essentially the wave loads on offshore structure. Ji et al. (2015b) computed the wave run-up and wave
forces on a single cylinder under multi-directional irregular wave conditions, where they found that the front
run-up increases but the rear run-up decreases, as the directional distribution becomes narrower. Ji et al.
(2015a) further extended their model to an array of cylinders, and they concluded that the combination of
wave spreading parameter and the arrangement of the array of cylinders determines the wave run-up and
wave forces on the cylinders. Li et al. (2000) applied a Boussinesq-type solver to simulate multi-directional
irregular wave diffraction around a semi-infinite breakwater. It was shown that the directional spreading of
the incident waves has a significant effect on the wave diffraction, leading to a distinct diffraction contour
compared to the case under uni-directional waves. Hereby when evaluating the extreme wave load on FPSOs,
of which the geometry is non-axisymmetric, directionality effects should be taken into account. The cases
of incident focused wave groups propagating in different angles should be considered.

In many physical wave tank tests, relatively wide rectangular basins have been used, in which directional
seas can be generated by prescribing the motion of an array of segmented wave paddles located along one or
more sides of the basin based on the so-called ”snake-principle” (Dean and Dalrymple, 1991). This theory
is derived by assuming that the width of wave paddle tends to infinitely small. Therefore, the displacement
of the segmented wave paddles are continuous. Maenwhile, the width of the wave-maker side is assumed
to be infinitely long. However, physical wave basins have finite dimensions, which changes wave generation
theory in a fundamental manner, as waves are reflected from the basin walls, and there is no energy radiation
(Newman, 2010). Therefore, the segmented wave-makers can only reproduce the directional waves within a
limited area, inside which the generated waves can be used for the model test. In Li et al. (2014a), the size
and shape of this effective testing area were investigated experimentally under short-crested waves.

With regard to the numerical simulations, different methods have been proposed for wave generations.
For potential flow solver, Ducrozet et al. (2006) applied a high order spectral methods, where the wave-maker
boundary condition was expressed as a no-flux boundary condition plus an additional potential specially for
wave-making. In Williams and Crull (2000), the governing equations for the potential flow were solved by
an integral equation technique. The unknown potential on the wave-maker boundary was determined by
the snake-principle. Chen (2017) extended the functionality of the numerical wave tank developed in Bai
and Eatock Taylor (2006, 2007) using high order boundary element methods, which is shown to be capable
of generating oblique regular waves and 3D focusing wave groups.

When it comes to the numerical wave tanks based on the solution of the Navier-Stokes equations,
mainly three methodologies are being used for wave generations, namely by adding internal sources, directly
modelling wave-maker motions, and impose of Dirichlet boundary conditions based on the wave properties.
Internal wave-makers have been used in Ha et al. (2013), where a momentum source term was added in order
to drive various kinds of waves. Direct modelling of wave-maker motion has been seen in e.g. Dao et al.
(2018); Mart́ınez-Ferrer et al. (2018); Higuera et al. (2015). Actually, better agreement with experiments
could be expected when using this method, as the wave-maker motion is explicitly modelled. However,
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the downside is the computational cost, as extra effort is taken by solving the mesh motion equations.
Furthermore, one also needs to deal with the discontinuity of motion between paddles, when directional
waves are generated. Certain smooth functions need to be introduced to make the mesh motion continuous
at the wave-maker boundary. Meanwhile, Direct impose of Dirichlet type boundary conditions is still one
of the most widely used wave generation methods, which has been used to generate normal uni-directional
focused wave groups as shown in Cao and Wan (2014); Hu et al. (2016); Kim et al. (2001); Ojieh et al.
(2009).

In the present work, we will implement a set of boundary conditions to generate oblique uni-directional
focused wave groups under different propagation angles in a large 3D numerical wave basin. The modelling
framework is based on the open-source toolbox OpenFOAM R©. The boundary conditions mimic the way
oblique waves are generated in laboratory tests by introducing certain amount of flux on each virtual wave
paddle. By doing this, it is expected that closer agreement between experimental and simulation results are
obtained. The quality of the generated wave groups are assessed, where the surface elevation is compared to
the available experimental data. Furthermore, harmonic analysis is carried out and the effect of wave angle
on the harmonic structure of the generated focused wave groups is thoroughly analysed. Finally, the angle
effects of the extreme wave loads on the FPSO-shape body are evaluated, where the body is subjected to
the focused wave groups with three different incident wave angles.

2. Generation of oblique focused wave groups

2.1. Overview

The present numerical model applies the wave generation toolbox olaFlow, which was based on and
further developed from IHFOAM (Higuera et al., 2013), to generate regular and irregular waves. By using
this toolbox, waves are produced at a fixed boundary by means of special Dirichlet-type boundary conditions.

For a two-phase Navier-Stokes solver where the interface is tracked by volume of fluid method (see Section
3.2 for details of the model), the typical unknowns are the volume fraction field α, the velocity field u and the
dynamic pressure p∗. They need to be properly defined on the wave-maker boundary. Actually, the surface
elevation and the velocity are directly extracted from the underlying wave theory. Meanwhile, the pressure
is obtained as a part of the solution from PISO algorithm. Therefore, assignment of the boundary condition
for the velocity and surface elevation at the wave-maker is the key part of the present work. We apply
a generation scheme based on the snake principle, where a phase lag exists for the elevation and velocity
components between the neighbouring wave paddles. However, as the same in Chen (2017), a static domain
boundary is applied, where only certain velocity is imposed to each virtual wave paddle. But the difference
between the current scheme and the scheme used in Chen (2017) is that the velocity is not the oscillating
velocity of the piston type wave-maker. Instead, the particle velocity of the generated plane waves from each
wave paddle is used. Therefore, the evanescent modes are excluded. It is emphasized here that this approach
is used to achieve a better agreement between the numerical and experimental results, as in the numerical
model, the virtual wave paddles work in a similar way to the wave-maker in the physical experiments. The
underlying requirements are that the same width at the wave-maker side and the same number of flaps as
in the experiments should be used. However, if one does not aim to reproduce the experiments, but just
to generate oblique waves, it is recommended to use the boundary conditions derived based on the surface
elevation and velocity profiles from the oblique progressive waves.

2.2. Surface elevation and particle velocity for the oblique focused wave groups

This section derives the expressions of the surface elevation and velocity components for the oblique
focused wave groups in the global coordinate system x = (x, y, z). Here we define the coordinate system
x = (x, y, z) that x direction is the longitudinal direction which is normal to the wave-maker side. y direction
is the transverse direction along the wave-maker side. z direction is the vertical direction and gravity is
acting along −z direction. The origin of the coordinate system is located at the still free surface at the focal
position. Meanwhile, a second coordinate system (x′, y′, z′) is also used in the derivation where x′ direction is
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Figure 1: Illustration on the general configuration of focused wave propagation obliquely with an angle of β. The numerical
model applies a Cartisan coordinate system of (x, y, z), while (x′, y′, z′) is defined where x′ axis is aligned with the direction
of wave propagation. Point P (xp, yp) is the designated focal point. For an arbitrary point A with coordinate (x, y), Point f is
its corresponding focal point, whose coordinate is (xf , yf ).

aligned with the wave propagation direction. Therefore, the rotation angle between two coordinate systems
is actually the wave propagation angle β.

Fig. 1 presents the general configuration of this problem with the defined two coordinate systems.
Consider that a focused wave group is propagating obliquely with an angle of β in the wave tank. Point
P (xp, yp) is the desired focal point, where wave groups are supposed to be focused. This can be the place
where the structure is located. Recall that for uni-directional focused wave groups, the wave front at focal
time is actually a straight line, which is denoted as the dashed line passing Point P in Fig. 1. For an
arbitrary point A with its coordinate (x, y), its corresponding focal point is f, whose coordinate is given as
(xf , yf ).

As the starting point of the derivation, it is known that in (x′, y′, z′) coordinate system, the surface
elevation η′, for the uni-directional focused wave group for an arbitrary point (x′, y′) at an arbitrary time t,
is expressed as:

η′(x′, t) =

N∑

i=1

ai cos[ki(x
′ − x′f )− ωi(t− tp) + εi] (1)

where tp is the focal time and N is the number of wave components, a is the wave amplitude, ε is the initial
phase, ω is the angular frequency and k is the wave number. Given that (x′, y′) is obtained from (x, y) by
rotating β, the relation between two coordinate systems yields:

x′ = x cosβ + y sinβ (2)

Substituting Eq. (2) into Eq. (1), the expression of the surface elevation in (x, y, z) coordinate system
reads:

η(x, y, t) =

N∑

i=1

ai cos[ki cosβ(x− xf ) + ki sinβ(y − yf )− ωi(t− tp) + εi] (3)

Eq. (3) has a similar form as the 3D wave focusing on a point. However, it should be mentioned that in Eq.
(3), the position of the actual point (xf , yf ) is not fixed. For an arbitrary point (x, y), its corresponding
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focal position is calculated as:

xf =
1

1 + tan2 β
(x tan2 β − (y + yp) tanβ + xp)

yf = tanβ(xf − x) + y

(4)

The expressions for the velocity components can be derived in the same way, which are given below:

u(x, y, z, t) =

N∑

i=1

aiωi
cosh(ki(z + h))

sinh(kih)
cosβ cos[ki cosβ(x− xf ) + ki sinβ(y − yf )− ωi(t− tp) + εi]

v(x, y, z, t) =

N∑

i=1

aiωi
cosh(ki(z + h))

sinh(kih)
sinβ cos[ki cosβ(x− xf ) + ki sinβ(y − yf )− ωi(t− tp) + εi]

w(x, y, z, t) =

N∑

i=1

aiωi
sinh(ki(z + h))

sinh(kih)
sin[ki cosβ(x− xf ) + ki sinβ(y − yf )− ωi(t− tp) + εi]

(5)

The amplitude of each component ai is calculated based on the target variance density spectrum as
below:

ai =
A

m0

N∑

n=1

Sndf (6)

which is a re-scale of the normalised auto-correlation function to the actual focal crest amplitude A. Sn is
the variance spectrum density and m0 is the zero-th momentum of the spectrum. An empirical correction
based on Li et al. (2018) is further employed to correct the amplitudes, in order to achieve better agreement
with the experimental data. This correction scheme iteratively corrects the amplitude and phase of each
component as below:

ak+1
i,input = aki,input

ai,target
aki,output

(7)

εk+1
i,input = εki,input − (εi,target − εki,output) (8)

Here the i-th component of the amplitude at the (k + 1)th iteration ak+1
i,input is corrected by the ratio of the

i-th component of the target amplitude ai,target and the i-th component of the output amplitude from the
k-th iteration aki,output. Meanwhile, the i-th component of the phase at the (k + 1)th iteration εk+1

i,input is
corrected by the difference between the i-th target phase εi,target and the i−th component of the output
phase from the k−th iteration εki,output.

Fig. 2 presents an example of the surface elevation for an oblique phase-focused wave group using Eq.
(3) and Eq. (4). The wave group is generated based on JONSWAP spectrum (Hasselmann et al., 1973)
with a focal crest of 22 m. It is propagating obliquely with an angle of 25◦ in a domain of ([-1000 m 1000
m], [-1000 m 1000 m]).

2.3. Expressions at the wave-maker side for oblique focused wave groups

The expressions at the wave-maker side for the oblique focused wave groups can be obtained by super-
position of the expressions induced by its linear components. Appendix A presents a short overview of the
derivation on the linear oblique progressive wave field in the basin with prescribed velocity on each wave
paddle. The direction of the propagating waves is determined by the phase lag between the neighbouring
paddles.

Given Eq. (3) as the target wave elevation, each component ηi is given as:

ηi = ai cos[kix cosβ + kiy sinβ − ωit+ ε′i] (9)

where ε′i = kixf cosβ + kiyf sinβ − ωtf + εi. Therefore, such oblique wave component can be generated by
a prescribed snake-type wave-maker motion. However, in the present work, instead of using the velocity of
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Figure 2: An example on the surface elevation of the oblique phase-focused wave group using Eq. (3) and Eq. (4). JONSWAP
spectrum is applied with the peak period Tp = 12.5 s, significant wave height Hs = 11.0 m and enhancement factor γ = 2.0.
The crest height at focal position A = 22 m. The desired focal position is located xp = 0, yp = 0. The wave group is focused
at t = 900 s. The wave angle β = 25◦ and water depth h = 45 m. Upper left: The applied JONSWAP spectrum. Upper right:
The time series of surface elevation at focal point x = 0, y = 0. Lower Left: 3D bird view of surface elevation at focal time
t = 900 s. Lower right: top view of surface elevation at focal time t = 900 s.

the wave-maker as the boundary condition, we applied the particle velocity of the plane progressive waves
generated by the wave-maker. Therefore, given the coordinate of the wave paddle as (xj , yj), the boundary
conditions are written as:

ηj(t) =

N∑

i=1

ai cosβ cos(ki cosβ(xj − xj,f ) + ki sinβ(yj − yj,f )− ωi(t− tp) + εi) j = 1 · · ·M

uj(z, t) =

N∑

i=1

aiωi cosβ
cosh(ki(z + h))

sinh(kih)
cos(ki cosβ(xj − xj,f ) + ki sinβ(yj − yj,f )− ωi(t− tp) + εi) j = 1 · · ·M

vj(z, t) = 0

wj(z, t) =

N∑

i=1

aiωi cosβ
sinh(ki(z + h))

sinh(kih)
sin(ki cosβ(xj − xj,f ) + ki sinβ(yj − yj,f )− ωi(t− tp) + εi) j = 1 · · ·M

(10)
It should be mentioned that there is an angle factor of cosβ in Eq. (10), which is due to the difference

of the transfer function in the 2D and 3D cases.
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Figure 3: The dimensions and configuration of the Ocean Basin.

Table 1: The selected focused wave conditions for validation of the numerical model. A is the focal crest amplitude, Tp is the
wave period for the wave component at peak frequency, Hs is the significant wave height, kp is the wave number for the wave
component at peak frequency and ε is the initial phase.

Case A [m] Tp [s] Hs [m] h [m] kpA [-] ε [rad] β [◦]
1 0.08930 1.456 0.103 2.93 0.13 π 0
2 0.08930 1.456 0.103 2.93 0.13 π 10
3 0.08930 1.456 0.103 2.93 0.13 π 20

3. Results and discussions

3.1. Experiments

A set of dedicated experiments were performed at the Ocean Basin, COAST Laboratory in Plymouth
University. The data is used to be compared with our numerical results. The dimension of the wave tank is
35 m long and 15.5 m wide. At the wave-maker side, there are 24 flap-type feedback controlled wave paddles
with a hinge depth of 2 m. The water depth at the wave-maker is 4 m and there is a linear slope connecting
to the bottom at the working area. The depth at the working area is adjustable with a maximum of 3 m
and it was set to 2.93 m in present experiments. The dimensions and configuration of the basin is presented
in Fig. 3. The 24 flap type paddles can produce regular waves with a maximum height of 0.9 m at 0.4 Hz
and wave height above 0.2 m in a range of 0.166 Hz - 1 Hz. Oblique waves can be generated up to 40◦ from
the normal direction.

The selected test conditions are given in Table 1, which have the same steepness but with different
propagation angles. Essentially, these waves were generated by using the linear superposition of 244 wave
fronts with frequencies evenly spaced between 0.1 Hz and 2 Hz and a theoretical focus location of 13.886 m
from the wave paddles. The amplitudes of the frequency components were derived by applying the NewWave
theory to a JONSWAP spectrum with the parameters in Table 1.

Totally two sets of experiments were carried out, one set for focused wave groups propagating in the
empty tank, and the other with an FPSO-shaped body in place. The FPSO model was made of aluminium
and fabricated at 1:100 scale comprising of a rectangular box and a half circular cylinder at the bow and
the stern. The height and width of the model were 0.3 m and length of the model was 1.2 m. It was initially
half immersed in the still water and rigidly fixed to the gantry, which spanned the width of the Ocean Basin.
In both sets of experiments, the surface elevation were measured by the resistance type wave gauges with a
sampling frequency of 128 Hz. The positions of the wave gauges are given in Fig. 4 and Fig. 5, for each set

7



x

y

Figure 4: Top view (x-y plane) of the positions of the wave gauges for the cases with oblique phase-focused wave groups
propagating in the empty wave tank (unit: mm).

x

y

Figure 5: Same as in Fig. 4, but for the cases with FPSO in place.

of experiments, respectively. Meanwhile, for the second set of experiments, the local pressure on the FPSO
was also measured at nine positions on the surface of the bow of the FPSO, as shown in Fig. 6. Readers
are referred to Mai et al. (2016) for further details on the setup of the experiments.

3.2. Numerical model

3.2.1. Governing equations

The present numerical model solves the incompressible Navier-Stokes equations for a two-phase flow of
water and air with incorporation of a volume of fluid (VOF) scheme to capture the free surface (Hirt and
Nichols, 1981). The governing equations include conservation equations for the mass and momentum plus a
transport equation for the volume fraction of water in the Eulerian frame of reference as shown below:

∂ui
∂xi

= 0 (11)

∂ρui
∂t

+
∂ρujui
∂xj

− ∂

∂xj
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
= −∂p

∗

∂xi
− gjxj

∂ρ

∂xi
(12)
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Figure 6: The layout of the pressure sensor on the surface of the bow of the FPSO.

∂α

∂t
+

∂

∂xi
(uiα) +

∂

∂xi
(uriα(1− α)) = 0 (13)

where xi = (x, y, z) is the Cartesian coordinate system, which is the same as used in Section 2. ui = (u, v, w)
is the velocity component, gi = (0, 0,−9.81) is the gravity component, ρ is the density, µ is the viscosity and
p∗ = p − ρgixi is the dynamic pressure, as the coordinate system is defined that z = 0 corresponds to the
still free surface. Introducing p∗ can ease the definition of the boundary condition, while the total pressure
p is reconstructed at each time step when p∗ is solved. α is the water volume fraction, where α = 1 gives
a cell filled by water and α = 0 represents a cell with air. The interface lies between 0 < α < 1. uri here
is referred as the compressive velocity component (Berberović et al., 2009), which aids in retaining a sharp
interface. The term α(1− α) vanishes everywhere except at the interface.

3.2.2. Discretization schemes and algorithms

This set of equations are discretized and solved within the framework of the open source CFD-toolbox
OpenFOAM R©. Finite volume method is employed to solve them with a collocated variable arrangement. The
time derivative terms are discretised using a first-order implicit Euler scheme, while the convection terms are
discretised using TVD (Total Variation Diminishing) schemes, i.e. a blend of central difference and upwind
schemes, depending on the ratio of the successive gradients. They are globally second order, although locally
can be reduced to the first order. The Laplacian operator is discretised using the linear differencing scheme,
which is further corrected to account for the mesh non-orthogonality. The applied schemes are presented in
Table 2 in details, for the convenience of the readers to reproduce the simulations. The inner-coupling of
pressure and velocity is resolved by using PISO (Pressure Implicit with Splitting of Operators) algorithm
(Issa, 1986), where Rhie-Chow interpolation is implicitly implemented in the present solver to avoid the
pressure-velocity decoupling due to the segregated solution of momentum and mass-conservation equation
when using a collocated discretisation (Rhie and Chow, 1982).
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Table 2: The employed discretisation scheme for each term in Eq. (11), Eq. (12) and Eq. (13).

Term
Applied schemes
in OpenFOAM

Brief explanation

∂α
∂t - First order explicit Euler scheme

∂
∂xi

(uiα) MUSCL Monotonic Upwind Scheme for Conservation Laws

∂
∂xi

(uriα(1− α)) interfaceCompression
A special designed TVD scheme
for interface compression term

∂ρui
∂t

Euler First order implicit Euler scheme

∂ρujui

∂xj
limitedLinearV 1

Linear scheme that limits towards upwind
in regions of rapid changing gradient.

∂
∂xj

µ
(
∂ui

∂xj
+

∂uj

∂xi

)
linear corrected

µ and ∇u from centre differencing scheme,
with explicit non-orthogonal corrections for ∇u

3.2.3. Model setup

This section introduces the configuration of the numerical model. Prior to set up the final numerical
model, a series of numerical experiments are firstly conducted to examine the sensitivity of the numerical
solution on the domain width, paddle number at the wave-maker side, the computational mesh and the
time step, which are shown in Appendix B. The brief conclusions are that (1) The width of the paddle
is recommended to be smaller than 0.33L, where L is the characteristic wave length. (2) The length of
the wave-maker side should be larger than 6.58L. (3) Regarding the mesh resolutions, four different mesh
resolutions are tested as shown in Table 3 for focused wave group propagating in the empty wave tank
normal to the wave-maker. Please refer to Table 3 for the detailed parameters related to the different mesh
resolutions. We are not able to achieve a really converged numerical solution even if the total mesh cells reach
18.26 million. The difference of the surface elevation at the focal time between the finest two resolutions is
around 7%. (4) Four different Courant number limits are also tested, and the numerical results are unlikely
to be affected by the time step as long as the Courant number limit is below 0.35. Readers are referred
Table 4 for detailed parameters related to the time step convergence test.

In the present work, in order to reproduce the experiments, we use exactly the same tank width and depth
as in the experiments. But the length of the tank is shortened to 10 m long, to reduce the computational cost.
Meanwhile, the paddle number is also the same, namely 24 virtual paddles are applied. Such a configuration
also satisfy the requirements shown above. The maximum Courant number that is allowed in the simulation
is 0.25, which can produce a numerical solution that is independent of time step. Regarding the mesh, in
order to achieve a computationally affordable model, we choose to use Grid 3, as shown in Table 3, for
oblique wave propagating in the empty wave tank. Such a grid resolution makes a reasonable compromise
between the accuracy of the numerical solution and the computational cost. For the case with FPSO in
place, this is also used as the background mesh. Three levels of refinement is further performed close to the
FPSO in x and y directions. This ensures a nearly unit aspect ratio for the mesh cells in the vicinity of
the FPSO, which is optimal for the application of the utility snappyHexMesh, where the background mesh
eventually conforms to the surface by iteratively refining the initial background mesh and morphing the
resulting split-hex mesh to the surfaces. Furthermore, significant free surface deformation may arise near
the FPSO, which is better resolved by the refined mesh. An example of the snapshot of the computational
mesh near the FPSO is given in Fig. 7.

The waves are generated based on the same target spectrum, and the surface elevation and velocity
profiles are superposed by 244 components in the same frequency interval. Essentially they should focus
at tf = 8 s based on the linear dispersion relation. The amplitudes and initial phase of these components
are further corrected based on the correction scheme introduced in Eq. (7 - 8). Regarding the boundary
conditions used for the numerical wave tank, the inlet condition has been presented in Section 2. Active
absorption boundary presented in Higuera et al. (2013) is used as the outlet boundary condition, which
can enhance the stability of the system by decreasing the energy and correcting the increasing water level
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Figure 7: The computational mesh near the FPSO cylinder.

in long simulations. Meanwhile, it does not increase the computational cost. Hereby it is preferred in the
present work. Atmospheric condition is used on the top of the wave tank, where the velocity is set to the
so-called pressureInletOutletVelocity, a native boundary condition supplied with OpenFOAM, which applies
zero gradient on all components of the velocity except where there is inflow, in which case a fixed-value
condition is applied. The pressure boundary condition is set to totalPressure. This means when there is
reversed inflow, the pressure needs to be reduced by subtracting the dynamic pressure 1/2ρ|u|2. We also
test the difference of the solutions when using reflective and absorptive wall as the side wall condition, when
is shown in Appendix B. Essentially it is found that the difference is visually negligible. Therefore, we just
choose absorptive side wall, i.e. the same boundary condition as used in the outlet.

3.3. Modelling of obliquely propagating focused wave groups

3.3.1. Surface elevation

The surface elevation contour at the theoretical focal time tf is given in Fig. 8. When β = 0◦, the
incident wave group is normal to the wave-maker, and the flux injected into the computational domain are
identical for all the wave paddles. Therefore, the side wall and limited tank width do not affect the wave
propagation, and the generated waves cover all the domain. However, when β is increasing, the side wall
and limited tank width start to affect the generated waves. In the lower part, a shadow area due to the
limited tank width appears where the wave amplitudes are significantly reduced. The area of this shadow
area is dependent on the propagation angle β. Similar phenomenon have also been observed in O’Dea and
Newman (2007), based on the linear potential solver WAMIT. In the upper part, we still notice the form
of standing waves due to reflection, as the absorbing boundary did not absorb all the wave energy that is
perpendicular to the side wall perfectly, especially for such case where the ambient angle of the propagating
wave is rather large for the side wall. However, in the central part far away from the side wall, a uniform
wave front is formed, which is the effective area for the model test. It is of difficulty to give an exact solution
on the range of the effective working area. However, it can be roughly estimated as shown in Fig. 8 for
the area between the black lines, which is determined by the propagation angle. One can see that with the
increasing propagation angle, the area is rapidly reduced.

We present comparison of the surface elevation in Fig. 9 at a number of wave gauges ranging from
the field near the wave-maker to the outlet area for the cases of three directional waves propagating in the
empty wave tank. Meanwhile, a zoom-in of the comparison at Gauge 11 (the theoretical focal position for
the normal wave group) is given in Fig. 10. For β = 0◦, the average discrepancy between the numerical
solution and the experimental data is 7%, taken the experimental data as the reference. The discrepancy
should be mainly due to the reason that the numerical model does not consider the shoaling process, as
occurred in the physical wave tank due to the elevation of the bottom (see Fig. 3). The wave-maker
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Figure 8: The surface elevation contour at the theoretical focal time for the three cases β = 0◦ (left), β = 10◦ (middle) and
β = 20◦ (right). The black lines in the middle and right figure are the boarder of the estimated area that is not affected by
the side wall effect. The unit shown in the figure legend for surface elevation Eta is meter.

signal was corrected to minimize the shoaling effect, but it was unknown to the authors, as the signal of
the displacement was not released to the authors. The correction scheme in the numerical wave-making,
as shown in Eq. (7 - 8), reduces the difference to some extent, but is not able to completely remove the
discrepancy. Furthermore, the simulated JONSWAP spectrum has a relatively long tail with low and high
frequency components. As the domain length in the numerical model is shorter than in the experiments,
these components are prohibitively difficult to capture by the model. However, we should also emphasize
that the experiments can neither capture all the components, considering the very low cut-off frequency.

As the incident angle β increases, the effect of finite width of wave-maker is also introduced in both the
numerical model and the experiments. This generally violates the assumption of the snake theory, where
the wave-maker side is infinitely long and radiation boundary condition is typically assigned for the side
walls. Though the configuration of the numerical model is very much similar to the experiments (same wave
paddle number, wave-maker width, cut-off frequency and spectrum component), certain differences of the
surface elevation are still observed, especially for the case with β = 20◦, which reaches 15%. The reasons
are credited to the difference on the wave-making. We typically assign the surface elevation and the velocity
based on the progressive plane wave generated by each paddle. However, in physical experiments, segmented
wave paddles are moving based on the prescribed displacement. This is accompany with the local diffraction
effect and water leakage between paddles. These effects are likely to influence the wave-making and result
in the discrepancies.

3.3.2. Free surface evolution

The evolution of the free surface along its propagation direction is given in Fig. 11, which shows the
dispersive focusing and defocusing process. The evolution process including both focusing and de-focusing is
quite similar between the three cases, indicating that the angle has minor effect on the evolution. Due to the
high order wave-wave interactions (predominantly by third order interaction effect (Ning et al., 2009)), the
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Figure 9: Comparison of the surface elevation at a variety of gauges between the numerical and experimental results, which
are for the case of oblique focused wave groups propagating obliquely in an empty wave tank. The propagating angle β = 0◦

(left), β = 10◦ (middle), β = 20◦ (right). Solid line: experimental results. Dashed line: numerical results from OpenFOAM.
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Figure 10: Detailed comparison of the surface elevation at Gauge 11 for the cases of oblique focused wave groups propagating in
an empty wave tank under different angles. Dashed line: numerical results from OpenFOAM. Solid line: experimental results.

actual focal time and position are downshifted. However, the downshift time and distance are approximately
identical for all the three cases, irrespective of the wave angle. This further indicates that the harmonic
structures of the wave groups are kept almost the same, which motivates the harmonic analysis below in
Section 3.3.3.

3.3.3. Harmonic analysis

In order to further analyse the effect of wave angle on the harmonic structure of the generated waves, we
separate the higher order harmonics using the phase-inversion method presented in Fitzgerald et al. (2014).
The idea is that for focused wave groups, the crests of all the linear components coincide at the focal event.
Hereby significant nonlinearity is only confined to the neighbourhood of the focal location around the focal
time, where the envelope of the elevation can be regarded as a slow varying function of time A(t) relative to
the peak frequency component ωp. Therefore, the elevation is expanded in a way similar to regular waves:

η(t) = B11A(t) cosϕp +A2(t)(B20 +B22 cos(2ϕp)) +A3(t)(B31 cosϕp +B33 cos(3ϕp)) +O(4) (14)

where ϕp = ωpt+ ε. Bij is the coefficients for the super-harmonics and sub-harmonics.
Given the harmonic structure of the surface elevation in Eq. (14), the first three harmonics can be

separated via the linear combination as below:

1

4
(η0 −H(η90)− η180 + H(η270)) = B11A(t) cosϕp +B31A

3(t) cosϕp +O(A5(t))

1

4
(η0 − η90 + η180 − η270) = B22A

2(t) cos(2ϕp) +B42A
4(t) cos(2ϕp) +O(A6(t))

1

4
(η0 + H(η90)− η180 −H(η270)) = B33A

3(t) cos(3ϕp) +O(A5(t))

(15)

where H is the operator of Hilbert transformation for a given signal.
Fig. 12 reveals the harmonic structure of the focused wave groups under different propagation angles.

In this case, the linear component is dominant over the higher order harmonics, which is around 88% of the
amplitude crest A. We observe an excellent match of the first order harmonic for all the three cases. We
notice a deviation of the second order harmonic at trough at t′ = −0.18, where t′ = (t − tf )

√
gkp is the

non-dimensional time. However, the peak amplitude at t′ = 1.16 remains a good agreement with deviation of
less than 1%A. The same phenomenon is observed in the third order harmonic, where significant deviations
are presented at t′ = −0.58. The deviations on the peak of the third order harmonic at t′ = 1.16 is 0.2%A,
given that the magnitude of the third order harmonic itself is very small, i.e. less than 2%A.
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Figure 11: Free surface elevations at a series of gauges along the wave propagation direction passing the focal point. The wave
gauges are distributed evenly with a distance of 0.1 m from the starting point of 2 m in front of the theoretical focal position to
the end point of 1.4 m behind the theoretical focal position. The bold solid lines indicate the elevation where the wave group
is focused.

3.4. Modelling of oblique wave interaction with a fixed FPSO-shaped body

3.4.1. Surface elevation

The comparison of the surface elevation at the selected wave gauges is presented in Fig. 14. We notice
that the discrepancy between the numerical and the experimental results is likely to increase, comparing to
the case with empty wave tank, especially at the gauges at the FPSO bow where the deviation can be up to
16% for β = 0◦. Moreover, due to the side wall effect, the discrepancy is likely to grow with the increase of
the propagation angle, where the numerical model tends to overestimate the surface elevation consistently.

We emphasize that the flow at the bow can be violent, as the trough is focused at that area. A snapshot
of the flow near the FPSO is presented in Fig. 13. As can be seen, the incident wave group interacts with
the FPSO and partially reflected. The reflected waves further interact with the incident wave group and a
small concentric wave front is formed in front of the bow. This is the Type-1 diffracted wave as defined in
Swan and Sheikh (2015). However, at Gauge 24 which is located at the stern of the FPSO, the agreement
is much better.

Furthermore, the discrepancy can be due to the reason that the wave gauge may not be exactly in
the same place as in the experiments. The gauge was installed almost at the surface of the FPSO in the
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Figure 12: The extracted first, second and third order harmonics based on the phase-inversion method for the cases with
different propagation angles.

laboratory test. However, in the numerical model, the elevation is not extracted from the boundary patch of
the FPSO, which is not straightforward to extract and do the post-processing. We take the elevation from
the numerical gauges at a few millimeters away from the surface. This can potentually introduce certain
differences, especially where violent flow appears and substantial changes can occur within small areas.

3.4.2. Local pressure

The comparison of the local pressure is given in Fig. 15. The main discrepancy occurs at Sensor 02,
which are installed at the still free surface. Therefore, the pressure is largely induced by the hydrodynamic
effect. The overprediction of the second peak at (t−tf )

√
gkp ∼ 2.5 is also consistent with the overprediction

of the free surface elevation at Gauge 16. This indicates that the angle effect is under estimated by the
numerical model. On the other hand, as Sensor 03 and 06 are initially submerged below the free surface, the
hydrostatic pressure also contributes to the total pressure. As hydrostatic pressure is should be captured
more accurately by the numerical model, the discrepancy is relatively small.

3.4.3. Integrated wave forces on the FPSO

The integrated forces on the FPSO is shown in Fig. 16. As the forces were not measured in the
experiments, only numerical results are given here. From Fig. 16, the effect of incident angle is quite clearly
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Figure 13: The surface elevation contour near the FPSO under the propagation angle β = 0◦ (left), β = 10◦ (middle) and
β = 20◦ (right). The unit shown in the figure legend for surface elevation Eta is meter.

shown. Due to geometric and flow symmetry, the transverse force component is zero for the case with
β = 0◦. However, with the increase of the incident angle to β = 20◦, the transverse component rapidly
grows to the same order of magnitude as the longitudinal force component. Meanwhile, the longitudinal
force component remains nearly the same. This indicates that in the practical design, the angle effect should
be taken into account, as the moment of inertia for the FPSO in the transverse direction is much lower than
in the longitudinal direction.

4. Summary and conclusions

This paper presents a numerical study of the generation of oblique focused wave groups and their inter-
action with a fixed FPSO-shape body. The generation scheme is based on the snake principle, where the
surface elevation and the velocity profiles are imposed on each virtual wave paddle. The wave propagation
angle is controlled by the phase lag between the neighbouring wave paddles.

The focused wave groups are first generated in an empty wave basin without the presence of the FPSO.
The surface elevations at a number of positions are compared with the available experimental data. It is
found that the numerical results agree best with the experimental data when β = 0◦, where the differences
in surface elevation are up to 7%. The discrepancy is likely to increase with the increase of the incident
angle and the differences in the surface elevation reach up to 15% for β = 20◦. Further analysis on the
harmonic structure of each wave group shows that the first and second order harmonics agree with each
other fairly well, but significant discrepancies occur for the third order harmonic, although its magnitude
(less than 2%A) is fairly small.

In the final part of the paper, we present the results from the simulation of oblique focused wave groups
interaction with a fixed FPSO-shaped body, from which the similar trend can be observed, i.e. with the
increase of the incident angle, the differences between the numerical model and the experimental data become
larger and the numerical model tends to underestimate the angle effect. The integrated forces on the FPSO
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Figure 14: Comparison of the surface elevation at selected wave gauges between the numerical and experimental results for the
case of oblique focused wave groups propagating obliquely in the wave tank with FPSO in place. Left column: β = 0◦. Middle
column: β = 10◦. Right column: β = 20◦. The location of the wave gauges is presented in Fig. 5. Solid line: experimental
results. Dashed line: numerical results from OpenFOAM.

are also presented and a strong angle dependence of the transverse force component is observed, e.g. when
the incident wave angle is increased to 20◦, the transverse component is in the same order of magnitude as
the longitudinal force component, while it is effectively zero when β = 0◦.

The present work demonstrates the capability of the numerical wave basin for studying directional waves
and their effects on dynamic loading on FPSOs. In the future, the developed methods will be extended for
more complex cases of the generation of multi-directional irregular waves or focused wave groups, involving
both frequency and direction spectrum, and applied to study their loading on and dynamic responses of
offshore and ocean structures under extreme sea states.
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Figure 15: Comparison of the local pressure measured from the numerical model and the experiments. Left column: β = 0◦.
Middle column: β = 10◦. Right column: β = 20◦. The location of the pressure sensor is presented in Fig. 6.
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Appendix A: Three-dimensional wave-maker motion based on the snake principle

In the laboratory, the oblique waves are generated via a number of segmented wave paddles, where the
phase of each paddle is carefully adjusted based on the snake principle. This section briefly summarises
the key points of the principle, and readers are referred to Dean and Dalrymple (1991) and Frigaard et al.
(1993) for further details.

For a plane wave-maker which generates progressive waves normal to the wave-maker direction, the
wave-maker motion can be obtained by solving the linear boundary value problem. This assumes that the
flow is irrotational and inviscid. Therefore, the governing equations reduce to the Laplacian equation with
certain boundary conditions. For linear wave-maker problems, the boundary conditions remain the same
as other typical linear water wave problems at the seabed and the linearised free surface. However, at the
wave-maker side, the boundary condition becomes

F (x, z, t) = x− S(z)

2
sinωt = 0 (16)

By proper linearisation, this boundary condition is reduced to

u(0, z, t) =
S(z)

2
ω cosωt (17)
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Figure 16: Numerical results of the longitudinal and transverse force components on the FPSO surface under three different
incident wave angles.

Solution of this problem requires separation of variable, leading to the final velocity potential as shown
below:

φ(x, z, t) = A cosh k(h+ z) sin(kx− ωt) +

∞∑

n=1

Cne
−ks(n)x cos[ks(n)(h+ z)] cosωt (18)

where A and C are the parameters determined by the wave-maker motions. This velocity potential is
comprised of two components, namely the progressive wave mode and the evanescent modes, where ks is
the wave number for the evanescent wave modes. These evanescent modes decay soon within two to three
water depth distance. Therefore, given a proper transfer function, i.e. H/S where H is the wave height
and S is the stroke of the wave-maker, the elevation far away from the wave-maker coincides with the linear
progressive wave:

η =
H

2
cos(kx− ωt) (19)

In 3D case, plane progressive waves propagating in different directions can be generated by using an
articulated long wave-makers in a 3D wave basin. By assuming that the wave-maker is infinitely long and
the length of the wave paddles is negligible, the following boundary condition can be applied:

u(0, y, z, t) = U(z) cos(ky sinβ − ωt) (20)

By examining all the possible solutions, only one form involves a progressive wave mode which reads:

φ =A′ cosh k(h+ z) sin(kx cosβ + ky sinβ − ωt) (21)

+

∞∑

n=1

Cn cos[ks(n)(h+ z)] exp[−
√
k2s(n) + (k sinβ)2x] cos(ky sinβ − ωt) (22)

Note that A′ is related to A by cos−1 β. This corresponds to the surface elevation far away from the
wave-maker:

η =
H ′

2
cos(kx cosβ + ky sinβ − ωt) (23)

where H ′ = H/ cosβ.
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Figure 17: Free surface contour for directional linear regular wave propagating in 30◦ with the target wave condition of H = 0.02
m and T = 1 s with different wave paddles at the wave-maker side. The domain size is 5 m long and 10 m wide. The water
depth h is set to 0.543 m. The paddle number at the wave-maker side is 10 (left), 20 (middle) and 30 (right).

Appendix B: Sensitivity tests

This section presents the sensitivity tests of several important parameters related to the numerical
model, which includes the paddle number, mesh and time step convergence and the wave-maker length.
Furthermore, we also examine the difference of the numerical solution between using reflective side walls
and absorptive side walls.

Paddle number

The paddle number at the wave-maker side is important to both the numerical and experimental solu-
tions, as insufficient paddle at the wave-maker side can lead to bumpy wave field, especially in the near field
close to the wave-maker. Numerical experiments with three different paddle numbers, namely 10, 20 and
30, are conducted. This corresponds to a paddle width of 0.67, 0.33 and 0.22 L, where L is the wave length,
as the target regular wave condition is H = 0.02 m and T = 1 s. The water depth is set to 0.543 m.

Fig. 17 shows the surface elevation contour using different number of wave paddles. With a paddle
width of 0.67 L, the numerical wave tank can not produce a smooth elevation profile, especially in the
area near the wave-maker, where standing waves are formed. This is due to the finite width effect of the
wave paddle, as essentially the wave-maker motion is discontinuous, which significantly deviates from the
assumption of the snake-principle. However, the wave field is becoming smoother with increasing paddle
number at the wave-maker side. The difference between the cases using 20 and 30 wave paddles is nearly
invisible, indicating that the solution is convergent. Hereby it is recommended that the width of the paddle
should not exceed to 0.33 L.

Wave-maker length

The wave-maker length is a critical parameter to the quality of the generated waves. Fig. 18 depicts the
wave elevation contour with length of 2 m, 5 m, 10 m and 20 m on the wave-maker side, corresponding to
1.31, 3.29, 6.58 and 13.16 L. It is clearly seen that when the wave-maker side is reduced to 1.31 L, the side
wall has significant effects on the wave profiles. A curved wave front is generated instead of a front with
straight line. With increasing wave-maker length, this wave front tends to form a straight line far away from
the side walls, where the curvature eventually disappears. Actually with a wave-maker length of 6.58L, the
generated oblique wave field is fine enough, which is recommended to use in the simulations.
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Figure 18: Free surface contour for directional linear regular wave propagating in 30◦ with the target wave condition of H = 0.02
m and T = 1 s with different wave-maker length. The water depth h is set to 0.543 m. The length of the domain is 5 m, and
the width of the domain is 2 m (left upper), 5 m (left middle), 10 m (left lower) and 20 m (right).

Reflective side walls vs. absorptive side walls

In the physical laboratory, solid walls were arranged at the side, which is reflective. However, in the
numerical model, one can choose to use either reflective wall or absorptive wall (the active absorption
boundary condition in IHFOAM) as the boundary condition. Hereby we test the difference of the numerical
solutions using these two boundary conditions. In this case the propagation angle is 20◦. Exactly the same
boundary conditions and numerical parameters are used, except at the side walls.

The surface elevation at Gauge 11 is plotted in Fig. 19. The difference is visually negligible. This is
reasonable as the central area which is of our interest is far away from the side wall. Furthermore, even if
an active absorption boundary is applied, one should not expect that the y component of the wave velocity
is all absorbed. Therefore, the overall difference using these two boundary conditions is rather small.

Computational mesh

Sensitivity tests on the computational mesh is presented in this section. The tested case is for the focused
wave with β = 0◦ propagating in the empty tank. Totally four different mesh resolutions are used in the
sensitivity analysis, where the ratio of the cell size is 1/

√
2 between the neighbouring resolutions, as shown

in Table 3. Therefore, this test covers a refinement factor of 22.8, as the ratio of mesh number between the
finest and the coarsest mesh. For all the meshes, the cells are uniformly distributed in x and y directions.
In the vertical z direction, the cells are stretched to achieve a relatively fine mesh at the free surface area.
The geometric similarity between the meshes are ensured.

Comparison of the surface elevation at the theoretical focal position (Gauge 11) is presented in Fig. 20.
The numerical solutions are found to be unlikely converged even with the finest resolution. This is due to
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Figure 19: Comparison of the surface elevation at Gauge 11 between using reflective side walls and absorptive side walls.

Table 3: The mesh resolutions used in the convergence analysis for the numerical model. ∆x, ∆y and ∆z are the grid size at
the refined free surface area. Co is the maximum allowed Courant number. ∆t is the typical time step used in the simulation
near the focal time. ηmin is the surface elevation at the focal time.

Grid ID Lp/∆x [-] Lp/∆y [-] A/∆z [-] Mesh NO. [-] Co. NO. [-] ∆t [s] ηmin/A [-]
1 14.60 13.27 7.41 0.80 million 0.25 ∼ 0.0030 0.708
2 20.85 18.02 10.22 2.27 milliom 0.25 ∼ 0.0025 0.786
3 29.20 25.61 14.35 6.48 million 0.25 ∼ 0.0018 0.866
4 41.24 36.50 20.32 18.26 milliom 0.25 ∼ 0.0015 0.935

the reason that the domain in the numerical model is fairly large, comparing with normal Navier-Stokes
solver based numerical models. Even with 18 million cells, the resolution can be somehow only defined as
moderately fine, especially in x and y direction. This may lead to both dispersion and diffusion errors. The
dispersion error is due to the difference of the resolved celerities when using different resolutions. This can
be seen in Fig. 20 that there is a clear discrepancy on the crests close to the neighbouring trough, in the
perspective of occurrence time. Meanwhile, the difference in the wave height can be owed to the diffusion
error. which are shown in both the focal trough and the neighbouring crests.

Actually focused wave group is rather complex and not straightforward to model, as they contain many
different components, which are induced by the wave-maker motion and the wave-wave interaction during
the evolution. While the mesh can resolve most of the energetic components near the peak frequency, the
components at the tail of the spectrum are difficult to resolve. Considering that a JONSWAP spectrum has
a relatively long tail, which probably makes the convergence more difficult.
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Figure 20: The surface elevation at Gauge 11 using four different grid resolutions. The resolutions are given in Table 3 and the
position of Gauge 11 is given in Fig. 4.
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Table 4: The mesh resolutions used in the convergence analysis for the numerical model. ∆x, ∆y and ∆z are the grid size at
the refined free surface area. Co is the maximum allowed Courant number. ∆t is the typical time step used in the simulation
near the focal time. ηmin is the surface elevation at the focal time.

Case ID Lp/∆x [-] Lp/∆y [-] A/∆z [-] Mesh NO. [-] Co. NO. [-] ∆t [s] ηmin/A [-]
1 29.20 25.61 14.35 6.48 million 0.45 ∼ 0.0010 0.822
2 29.20 25.61 14.35 6.48 milliom 0.35 ∼ 0.0030 0.863
3 29.20 25.61 14.35 6.48 million 0.25 ∼ 0.0018 0.866
4 29.20 25.61 14.35 6.48 milliom 0.15 ∼ 0.0007 0.884
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Figure 21: The surface elevation at Gauge 11 using four different Courant numbers.

Time step

Convergence tests are also carried out for the time step used in the simulations. As adjustable time step
is applied based on the limitation of Courant number, here the characteristic time step is also represented
by the maximum Courant number that is allowed during the computation. Four different Courant numbers
are used in the convergence test, namely 0.45, 0.35, 0.25 and 0.15, while the same mesh resolution is applied,
i.e. Grid 3. The relevant parameters for this convergence test is given in Table 4 and the results are shown
in Fig. 21. Unlike mesh resolution, the numerical results are well converged for different Courant number
limits when it is below 0.35. The difference of the surface elevation at the focal time between Case 2 and
Case 4 is 2%, indicating that the results are independent of the time step that is applied in the simulations.
Moreover, it is noted that the time step used in Case 1 is significantly smaller than in Case 2. This somehow
indicates that certain stability issues arise, resulting in spurious large velocities which limit the time step to
unreasonably small.
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