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Abstract—Smoking is a commonly observed habit worldwide,
and is a major cause of disease leading to death. Many techniques
have been established in medical and psychological science to help
people quit smoking. However, the existing systems are complex,
and usually expensive. Recently, wearable sensors and mobile
application have become an alternative method of improving
health. We propose a human behavioural classification based
on the use of a one-dimensional local binary pattern (LBP),
combined with a Probabilistic Neural Net (PNN) to differentiate
smoking from other movements as measured from a wearable
device. Human activity signals were recorded from two sets of
6 and 11 participants, using a smart phones equipped with an
accelerometer and gyroscope mounted on a wrist module. The
data combined structured and naturalistic scenarios. The pro-
posed architecture was compared to previously studied machine
learning algorithms and found to out-perform them, exhibiting
ceiling level performance.

Index Terms—smoking behaviour, hand movements, accelera-
tion data, machine learning, 1-D Local Binary Patterns.

I. INTRODUCTION

Human activity recognition has received much attention as it

is considered one of the most efficient methods for improving

health-care by monitoring and prompting improvement in

well-being [1]. Some notable systems include a component

that detects human gestures and automatically distinguishes

between complex activity in real life situations. These systems

recognize human motions based on sensor values or self-

reported data, store them as behavioural features that are

adapted to the available resources (memory, and battery life),

and then use the data to automatically predict human activity.

However, although such applications have been able to detect

a few human activities, difficulties arise when dealing with

natural human activity, which has higher levels of complexity.

As such, methods for automatically identifying and predicting

unique hand movement gestures among a large dataset from

sensors are crucially required.

In this paper, we assume that the important information to

be detected can be learned from the users’ accelerometers data,

and propose a method for classifying human activity such as

smoking and non-smoking by applying a well-known machine-

learning techniques. In the proposed method, we first extract

feature values from sequential sensor data, and then train a

detector using important features, with training labels of the

user’s movements. Using the 1D-local binary pattern extraction

[2], allows the different movements that are recorded by

the user’s Smartphone to be classified as either smoking or

non-smoking, independent of the presence of simultaneous,

confounding behaviours such as eating. Furthermore, because

this method uses the feature vectors from sensors instead of

self-report as input, the method has the advantage that the

model can be easily trained and classify the activity data with

high accuracy. To evaluate the proposed method, the data set

collected from the University of Twente [3] was used. As a

result, for all of the sensor data, the accuracy reached 100%;

the accuracy on the more difficult dataset collected for this was

lower (at 85%), but still higher than that for other techniques.

A. Related work

Work related to the present study includes approaches that

employ the inertial measurements units (IMU) of Smartphones

to detect smoking. Several studies in the literature focused

on detecting daily human activities [4] in general, and more

specifically smoking detection was shown to be feasible when

using sensor data acquired from custom [5, 6] or commercial

[4, 7] wrist-worn devices. In this work, we focus on detecting

smoking gestures using accelerometer data.

Ecological Momentary Assessment (EMA) techniques use

mobile devices to continuously collect data about experiences

and behaviours in the natural environment [8]. As there is

lower likelihood of memory errors or other biases, EMAs have

enabled the collection of ecologically valid data. Many studies

have used EMAs to model smoking behaviour and/or predict

smoking lapses [3, 9, 10, 11, 12, 13, 14] resulting in important

insights into smoking behaviour patterns.
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For example, two studies using EMA by Businelle et al

[9, 10], have been able to identify imminent risk for smoking

lapse among smokers seeking smoking cessation treatment.

Estimation of the risk of smoking lapse was significantly

improved by weighting six risk variables (i.e., urge to smoke,

stress, recent alcohol consumption, interaction with other

smokers, cessation motivation, and cigarette availability) [10].

In a follow-up [9], EMA was used to deliver tailored messages

to individuals to help them to maintain abstinence from

smoking.

Most recently, a study by Schick et al [5] has evaluated the

effectiveness of a smart-phone application which integrates

time and space (measured via GPS) with EMA data. The

collected data was then sent to the user’s General Practitioner

(GP) to review and agree a quitting plan with the smoker. The

time and places that the smokers are most likely to smoke

was also predicted, in order to implement better delivery of

the support messages. Although the results demonstrate that

sending timely messages helped smokers quit smoking and

prevented relapse, the specific application still relied on self-

reporting, and still involved face-to-face meeting with the GP.

In fact, to date all studies using EMA have relied on self-

reporting of smoking events by participants. Self-reporting is

a problematic weak point, as the reliability of information

collected is still at the mercy of users, who may forget or prefer

to not report smoking events [15] for reasons such as self-

enhancement. In addition, monitoring behaviour is a known

behaviour change technique [16], and as such monitoring

smoking events is likely to influence the smoker’s behaviour,

hence directly challenging the ecological validity assumed in

self-reported EMA. Therefore, we suggest that reliability of

self-reporting style EMA could be dramatically improved if

mobile apps could use EMA without relying on user input, but

instead detect smoking behaviour automatically, and combine

it with environmental data in order to make lapse- prediction

and help smokers. In addition, it will allow for a more

effective evaluation of the intervention component, without the

‘contamination’ of behaviour monitoring.

Automatic detection of smoking behaviour presents its

own challenges. When measuring smoking related movement,

wearing the accelerometer on the non-dominant arm is likely

to have great impact. Furthermore, being able to uniquely iden-

tify smoking related movement from other similar movement

such as eating or drinking is not a trivial task.

Sazonov et al [11] have proposed a method based on the

use of wearable sensors to detect and characterize cigarette

smoke inhalations through monitoring of breathing and hand-

to-mouth gestures. Results indicated that smoking results in

a unique breathing pattern that is highly correlated with

hand-to-mouth cigarette gestures and as such, the combined

signals could be effectively used to detect smoking behaviour.

However, the wearable sensors included not only the hand

gesture sensor (attached to the wrist) but also a respiration

sensor, which is a thoracic and abdominal respiration bands

of the respiratory plethysmograph, as well as a chest-mounted

antenna that combined chest movement with signals from the

hand gesture sensor. This makes it a less suitable solution for

using in a naturalistic environment.

Others have managed to make good predictions of smoking

behaviour using just arm-movement data [7, 12, 17] including

commercially available smart watches [3, 13, 14, 18]. Perhaps

the best prediction rate were made by Parate et al [7] who

designed a low-power wristband device, which contains a 9-

axis inertial measurement unit, fusing information from an

accelerometer, gyroscope, and compass to provide 3D orien-

tation of the wrist. This gave a smoking detection accuracy of

95.7%. However, their analysis partially relied on an elbow-

worn sensor, while those using commercially available smart-

watches generally report lower accuracy (e.g., Alharbi and

Farrahi [19]: 92–96%, Cole et al. [18]: 85%–95%). Even when

a similar algorithm to Parate et al was used with a smart watch

[20], precision was limited to 86% and recall to 71%.

B. Algorithmic issues

Most human activity classification approaches seek to ex-

tract the relevant information associated with a particular time

(t) (i.e., an action event). However, the action definitions

usually do not specify the duration time as well as the

discriminate motion features needed to distinguish between

them and other events. In other words, the size of the window

for each action differs and this is considered one the most

serious issues facing the times series segmentation field.

Following the approach of Shoaib et al. [3], this study

investigates the efficiency of local binary patterns as a single

layer to minimize the confusion between smoking and other

activities. A three-stage analysis pipeline was used, where

raw motion data are isolated from other information, and a

feature extraction procedure applied to extract the relevant

information. These features are fed to three classifiers, KNN,

SSRC and PNN, to identify the hand movements which

corresponding with hand-to-mouth gestures.

Motion features are described with LBP histograms, which

look for patterns of values occurring in short as well as in long

periods. The optimal window size has not been resolved and

the most of studies have used manual selection of windows

size. Here, different window sizes were considered and and a

window size of 18 samples (180 ms) was adopted.

II. METHODS

Two data sets were used; one collected for the study, and

one used by experimenters previously. This ensured that two

forms of data were considered; the new dataset had a large,

balanced set of smoking gestures (many combining smoking

and other activities), with the participant also performing a

range of similar, non-smoking actions. The older set was more

naturalistic, with data collected over longer periods and with

“genuine”, rather than prompted or mimed smoking actions.

A. Data collection procedure

Full ethical approval was granted from the University ethics

committee. Data was collected from 6 healthy smokers (at

least 5 cigarettes a day for at least 6 months; 3 females, none



smoked e-cigarettes), aged between 18-55 years (mean 33.6,

SD 11.3). Following informed consent, participants performed

16 activities, with an Huawei P smartphone attached to their

dominant arm’s wrist using an armband. A mobile application

was installed on the phone, and facilitated the recording and

labelling of data. Before each activity, the researcher selected

the appropriate options on the app interface.

Data was collected from 9 sensors (see Table I), and

was stored with the appropriate labels on an internal SQLite

database. The set of activities included 4 short activities lasting

30 seconds (fast drinking - i.e., from a bottle while standing;

hair brushing, teeth brushing, and opening an umbrella while

standing still) while the other 12 activities (drinking while

sitting, eating with knife and fork, eating snack from bag like

crisp, sitting, walking, standing still, reclining, writing, typing,

reading, making a phone call, and driving using a simulator)

lasted 60 sec. All activities were performed once without

smoking, and then together with mimicking either smoking

or interacting with a mobile phone or both.

For most actions, participants were given the choice to

perform the activity while sitting or standing in order to

simulate their normal behaviour. The sitting activities were

performed once on a chair with handles, and once without

handles. The driving activity was also performed twice: once

driving with one hand and then with two hands. In addition,

participant were asked to act-out opening cigarette pack,

rolling a cigarette, and lighting a cigarette several times in

between the other activities. These actions were not fixed in

time, allowing participants to perform these naturally. Given

that the experiment took place in-doors, no actual smoking

took place; the smoking actions were mimed, using real

tobacco products as props.

Data group name Description

Participant code Unique participant ID
Creation date Time stamp (DD-MM-YYYY,

HH:MM:SS)

Motion sensor data

Accelerometer
Gyroscope
Linear acceleration
Orientation
Rotation vector.

Environmental data

Magnetic field
Light level
Ambient temperature
Relative humidity

Labels

Type of activity
Smoking / not smoking
Interacting / not interacting with their
personal mobile phone
Cigarette type (traditional or e-
cigarette)
Chair type (no arm / two arm chair,
also used for indicating one / two hand
driving)

TABLE I: Categories of parameters collected by the app.

B. Twente Dataset

The Shoaib et al [13] dataset has 45 hours of 50Hz wrist-

mounted accelerometer data of smoking and other similar

activities such as eating, and drinking coffee or tea. Out

of these 45 hours, the smoking activity was performed for

16.86 hours in various forms including smoking while standing

(SmkSTD); smoking while sitting (SmkSIT); smoking while

partaking in a group conversation (SmkG); smoking while

walking (SmkW). Non-smoking activities included drinking

while standing (DrinkSTD); drinking while sitting (DrinkSIT);

standing (STD); sitting (SIT); walking (WALK) and eating

(Eat). Each activity was performed several times by each

participant on various days over a period of three months.

Usually, the participants smoked 1-4 cigarettes in a day, and

performed the non-smoking eating and drinking activities on

different days according to their availability. The participants

were divided into three groups, as shown in Table II, on the

basis of which activities they performed.

Scenario Participants Activities performed
Senario 1 1–11 SmkSTD, SmkSIT, DrinkSTD,

DrinSIT, Eat
Scenario 2 1–8 SmkG, SmkSTD, SmkSIT,

DrinkSTD, DrinkSIT, Eat
Scenario 3 1–3 SmkW, SmkG, SmkSTD, Smk-

SIT, DrinkSTD, DrinkSIT, Eat

TABLE II: Activities performed by sub-groups of the Twente

participants, identified as “Scenarios”.

Examples of the acceleration magnitudes obtained for par-

ticipants undertaking the “smoking while standing” (SmkSTD)

activity are given in Figure 1. It demonstrates the potential

variation which can be captured by appropriate processing.

Fig. 1: Acceleration vector magnitude persons of 10 people

undertaking the “smoking while standing” (SmkSTD) activity.

Each person is a separate line on the axis “Participant ID”.

C. Data normalisation and feature extraction

The phone used for data-collection did not generate obser-

vations with consistent intervals; data was timestamped to the

start of the second in which they were made, but timestamps

varied in the number of observations recorded. The data was

thus re-sampled, adding additional copies of observations (and

also removing excess ones), on the following basis:

c = 0, k = 1, newsamples = sample(1)



while k < #samples
if c < sr
k = k + 1
if k < #samples - 1
c = c + 1;
if timestamp(k) == timestamp(k+1)
concat newsamples, samples(k)

else
for c = c : sr
concat newsamples, samples(k)

end-for
end-if

end-if
else
if timestamp(k) != timestamp(k+1)
c = 0

end-if
k = k + 1

end-if
end-while

where sr was a tunable parameter, set here to 10Hz, and

concat adds samples(k) to the end of newsamples.

The signal was then normalised to give a standard range of 1.

An important aspect of describing an action is to quantify

its information content. Typically, the statistical properties of

the variation inside the signal are used. Recently, techniques

based on LBPs have been spreading widely [21, 22]. The suc-

cess of LBP in signal description reflects their discriminative

power, the computational simplicity of the operator, and their

robustness to monotonic amplitude values changes caused by

artefacts or noise due to the intra/inter-person variability.

The 1D-LBP transformation of the signal point Sc is

S1D−LBP =
m−1∑
i=0

sig(Pi − Sc)2
i (1)

where

S(x) =

{
1 if x ≥ 0
0 otherwise.

(2)

Hence, the transformation codes obtained describe the be-

haviour across the full extent of the sequence. The histogram

of these codes provides the feature vector, which is then fed

to a classifier to identify the sequence. Processing is thus not

dependent on the overall length of the sequence. The mean

and standard deviation of each sample was then used as the

features passed to the classifier. Following examination of

classification performance, it was found that m = 18 gave

optimal results for both the MMU and Twente datasets.

D. Classification techniques

Three representative techniques was investigated:

1) k Nearest Neighbours (kNN) - a standard, non-

parametric machine learning technique. All of the train-

ing samples are retained, with their labels. A distance

metric (in this case, sum of squares) is used to find

the similarity between a test sample and each training

sample. The test sample is assigned the modal label of

the k training samples with the smallest distances.

2) Sparse Supervised Representation Classifier (SSRC) - a

recently-developed technique for processing data with

un-balanced, non-linear class distributions [23]. Class

label information is used during the modelling phase to

deal with uncontrolled data sets. Both the one-norm of

the observation code and a two-norm of the representa-

tion error are minimized; each class linearly represents

the test sample in its subspace. The test sample is

assigned to the class with the lowest representation error.

3) Probabilistic Neural Network (PNN) - a standard, non-

parametric classification technique [24] based on the

feed-forward neural network. The probability distribu-

tion of each class is approximated by a Parzen window.

Given a test sample, the likelihood for each class if

estimated and Bayes’ rule used to allocate the sample

to the class with the highest posterior probability.

The evaluation was performed using a ten-fold cross-

validation procedure. The samples were processed and three

classifiers implemented and tested using the Matlab2017

“Statistics and Machine Learning Toolbox”.

III. RESULTS

A. MMU dataset

The system performance was evaluated using the true posi-

tive (TP) rate, comparing the categories of smoking and non-

smoking, pooled across other concurrent activities. While the

KNN was unable to identify either smoking non-smoking

cases (see Table III), the PNN shows a ceiling level of

performance on both, with the SSRC at an intermediate level.

KNN SSRC PNN
Smoking 0.50 1.00 1.00
Non-smoking 0.14 0.90 1.00

TABLE III: TP rates on the MMU dataset.

The detection of the concurrent activities was also consid-

ered, obtaining values separately for them (see Table IV)).

Again, the PNN performance is at, or close to, ceiling with

SSRC and KNN lower. Interestingly, the hit rates for the non-

smoking condition is consistently lower than that for smoking.

This may reflect a greater variability of the actions when they

are not constrained by the need to manipulate a cigarette.

The data was also classified using the KNN while varying

m. This altered the time-period considered for each classifica-

tion. The effects of varying m between 8 and 53 were explored

for smoking detection under Scenario 3, clustered into sets of

4 to allow measurement of distributions. The results are shown

in Figure 2; optimal performance is seen with m = 18. Since

the data is sampled at 10Hz, this corresponds to 1800ms.

B. Twente dataset

The assessment of the Twente dataset was divided between

the three Scenarios, as the activities performed varied between

participants. In Scenario 1, all participants are considered,



Condition KNN SSRC PNN

Smoking

Calling 0.90 0.87 0.90
Drinking 0.50 0.70 0.80
Driving 0.87 1.00 1.00
Lying down 0.90 0.90 0.87
Sitting 0.50 0.87 1.00
Standing 0.90 0.80 1.00
Walking 0.50 0.70 0.80

Non-smoking

Calling 0.90 0.87 0.90
Drinking 0.50 0.70 0.80
Driving 0.25 0.87 1.00
Lying down 0.90 0.90 0.87
Sitting 1.00 1.00 1.00
Standing 0.50 0.60 0.70
Walking 0.50 0.70 0.80

TABLE IV: TP rates by activity on the MMU dataset.

Fig. 2: Effects (mean, standard deviation and range) on classi-

fication accuracy of varying the number of items entering the

1-D LBP calculation on the MMU dataset.

but smoking while walking and smoking while in group

conversation are ignored, as not all participants performed

these two variations of smoking. In Scenario 2, the first eight

participants are considered, as all of them performed smoking

while in a group conversation. However, in this scenario,

the smoking while walking is not considered for the first

three participants. Finally, in Scenario 3, only the first three

participants are considered, and all of their activities. These

participants are notable as only they performed smoking while

walking and walking without smoking.

Table V reports the hit rates for the three basic activities of

smoking, eating and drinking. As can be seen, a ceiling level

accuracy (100%) was obtained from the PNN; SSRC came

close to it, with KNN significantly lower. It should be noted

that higher levels of performance are seen when the number

of participants is reduced.

To make the discriminations more challenging and realistic,

a constant level of white noise was added to the acceleration

data. The results of this manipulation are shown in Table VI;

although the pattern has not changed, the hit rate for KNN

and SSRC is reduced. Across the scenarios, it should be

observed that it is relatively easy to recognize smoking while

standing and while walking, but relatively difficult to detect

the other activities. Such a pattern was found by Sohaib et

al.,[3, 13], who reported particular difficulty with ’smoking

Scenario KNN SSRC PNN

Scenario 1
Smoke 0.45 0.90 1.00
Eat 0.36 0.45 1.00
Drink 0.63 0.63 1.00

Scenario 2
Smoke 0.50 0.87 1.00
Eat 0.36 1.00 1.00
Drink 0.50 0.87 1.00

Scenario 3
Smoke 1.00 1.00 1.00
Eat 0.36 1.00 1.00
Drink 0.63 1.00 1.00

TABLE V: TP rates on the Twente dataset, no noise.

while sitting, which was on occasion very similar to drinking

tea or coffee. This made it difficult to recognize. In contrast,

the current study achieved 100% identification in all scenarios,

when using the PNN with 1D-LBP.

Scenario KNN SSRC PNN

Scenario 1
Smoke 0.27 0.90 1.00
Eat 0.36 0.54 1.00
Drink 0.63 0.67 1.00

Scenario 2
Smoke 0.31 0.91 1.00
Eat 0.12 1.00 1.00
Drink 0.63 0.63 1.00

Scenario 3
Smoke 0.33 1.00 1.00
Eat 0.33 1.00 1.00
Drink 0.33 1.00 1.00

TABLE VI: TP rates on the Twente dataset, added noise.

IV. CONCLUSIONS

This study has shown that the combination of 1D-LBP and

a PNN, both applied to the acceleration magnitude recorded

from a wrist-mounted smart-phone, can be used to distinguish

between smoking and other similar activities at a ceiling

level of performance. This applied to both structured and

more naturalistic datasets, also making it possible to identify

particular concurrent or separate non-smoking activities with

a somewhat lower level of accuracy. This latter result is

important since it enables the detection of behaviours which

precede the particular act of cigarette smoking, hence allowing

both analysis of the context of smoking and also of real-time

cuing of participants to not smoke.

As this study did not seek to find the optimal sequence

length for smoking detection, the whole of each recorded sub-

sequence was used as input. It does however appear that ap-

proximately 180ms is appropriate. Future work should be able

to detect smoking events within longer sequences and measure

error between times of actual and detected smoking events. As

smoking actions are likely to vary over shorter periods than

other quasi periodic hand to mouth movements, a wider range

of LBP distribution measures should be investigated.

Wearable technology potentially provides a more reliable

way to identify smoking episodes than approaches that rely

on traditional self-report. The overall aim of this project is

to provide longer-term records of the times at which the

smoking occurs, which can then be used as labels in a machine

learning system describing behaviours antecedent to smoking,

and collected from smart-phones that can be held and carried



in more variable and natural locations. This will in turn provide

real-time indicators of the antecedents of smoking, without the

requirement to wear a smart-watch in a particular location

(especially the need to wear the watch on the hand used

for smoking). This will ensure that the recording process

is minimally invasive for the participants. Thus there is no

need to use the smart-watch data about hand-movement to

provide real-time information about activities. The next stage

of this research will thus centre on the collection of an

extended, naturalistic dataset, via multiple sensors. This will

allow combined analysis of the short-term smoking actions, as

here, and also the longer-term behavioural and environmental

circumstances under which individuals smoke.

REFERENCES

[1] O. D. Lara and M. A. Labrador, “A survey on human

activity recognition using wearable sensors.” IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 3, pp.

1192–1209, 2013.
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