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Abstract 

 

Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular (NM) 

pathologies and development of novel therapies for diseases associated with NM dysfunction and 

deterioration. Several in vivo animal models manifest phenotypes observed in NM diseases. 

Unfortunately, in vivo NMJ research with animal models present many challenges due to inaccurate 

reproduction of human disease. For example, the most widely used animal model for Duchenne 

muscular dystrophy, the mdx mouse, is a good genetic and biochemical model, presenting total 

deficiency of the protein dystrophin in the muscle. However, this in vivo model is not useful for clinical 

trials due to the very mild phenotype expressed. Therefore, in vitro models were established, yet 

limitations exist. For example, inclusion of serum influences translation of animal data into human 

trials, inclusion of complex neurotrophic/growth factors can interfere with drug discovery, the initiation 

of skeletal muscle (SkM) contractions requiring electric pulse or chemical stimuli, and time consuming 

culture methods to induce spontaneous SkM contractions. Therefore, the aim of this thesis was to 

establish and characterise a simplified co-culture system that allows in vitro research of functional 

NMJs, representative of in vivo conditions. Immortalised human SkM stem cells were co-cultured with 

motor neurons (MNs) from rat embryo spinal cord explants, using for the first time a culture media 

formulation free from serum and neurotrophic or growth factors. This co-culture resulted in NMJ 

formation and contractile SkM cells. The de novo formation of NMJs was validated via characterisation 

of pre- and post-synaptic structures of the junctional apparatus. Interactions between the specialised 

membranes of presynaptic MN terminals with postsynaptic motor end plates (MEPs) located on SkM 

cells, along with supporting neuroglia, permitted chemical transmission of acetylcholine from MNs 

across structural bridges to bind with receptors on the MEPs. These interactions were associated with 

contractile activity and advanced differentiation of innervated SkM fibres. Functionality of NMJs was 

verified through the application of known agonists and antagonists to the co-culture system and 

confirmed that the contractile activity observed in the innervated SkM fibres were driven via NMJs.  An 

ELISA-based microarray identified the presence of trophic factors required for MN, SkM, and NMJ 

development. Ultimately, engineering of this novel in vitro NMJ system represents an accessible 

platform to investigate NMJ formation and function, as well as providing a breakthrough assay via the 

system’s ability to respond to drug interventions through measurable output, initiate spontaneous SkM 

cell contractions, and induce advanced differentiation of SkM Cells. Therefore, this novel system 

provides a tool to screen pharmacological or genetic therapies for diseased linked with SkM, MNs, and 

NMJs.   
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Chapter 1: Introduction 

 

This thesis describes the generation of a novel in vitro platform consisting of immortalised human 

skeletal muscle stem cells innervated by embryonic rat neurons in order to model neuromuscular 

junction formation and development. The in vitro differentiation of stem cells into the required 

terminal cells necessitates the recapitulation of the molecular signalling that transpires in vivo during 

development. Thus, a comprehensive understanding of the generation and development of cells being 

studied and used in this research project is required. The forthcoming introduction aims to set the 

context and scope of the project by detailing the developmental biology of skeletal muscle cells and 

motor neurons, beginning with embryotic development through postnatal maturation before 

discussing the fundamental genetic regulation of neuromuscular synapse formation and 

neuromuscular junction function.  

 

1.0 Myogenesis 

 

1.0.0 Embryonic Myogenesis 

 

The genesis of skeletal muscle cells (SkMCs) is initiated during embryonic development. The primitive 

germ layers of the early embryo give rise to the paraxial mesoderm, which leads to the formation of 

the somites (Aulehla and Pourquié, 2010). The somites are prompted by factors from the dorsal 

ectoderm, neural tube, and notochord to differentiate further (Buckingham et al., 2003; Pourquie, 

2001). As the somite transforms, the dorsal region produces the dermomyotome, which contains the 

precursors of the skeletal muscle (SkM) progenitor cells. The paired-homeobox transcription factors, 

paired box protein 3 (Pax3) and paired box protein 7 (Pax7) are two of the first genetic regulators of 

myogenesis observed in the genetic hierarchy of SkMC formation. The expression of one or both of 

these genes has been detected in all vertebrate animals, including humans (Balczarek et al., 1997). Both 

Pax3 and Pax7 are expressed upstream of myogenesis by dermomyotome cells that will differentiate 

to SkMC progenitors. Research has demonstrated that the expression of Pax3 is vital for the primary 

formation of myofibers, whereas Pax7 expressing cells are involved with secondary myofibre 

development and generating a population of satellite cells (SCs), which are the quiescent SkM stem 

cells (i.e. myoblasts) found in the postnatal basal lamina of SkM, needed for SkM repair and 

regeneration (Bismuth and Relaix, 2010).  
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Low expression of Myogenic Factor 5 (Myf5), a member of the basic helix–loop–helix (bHLH) 

transcription factors is also expressed by these SkMC precursors (Buckingham and Relaix, 2007; Kiefer 

and Hauschka, 2001). The dermomyotome cells situated at the dorsomedial lip of the paraxial 

mesoderm form the myotome (Figure 1.0), which generates committed muscle progenitor cells 

(embryonic myoblasts). Elevated expression of MyoD, another bHLH transcription factors, and Myf5 is 

also observed in the committed progenitors (Kiefer and Hauschka, 2001; Ordahl et al., 2001). It has 

been demonstrated that MyoD performs downstream from Pax3 and Pax7, but Myf5 can act 

simultaneously alongside Pax3/7 (Tajbakhsh, 2009; Hutcheson et al., 2009). Both MyoD and Myf5 are 

known to direct muscle lineage specification toward myoblast commitment (Tajbakhsh et al., 1997). 

Upon formation of embryonic myoblasts, the myogenic process is controlled by the bHLH myogenic 

regulatory factors (MRFs). Initially by the MRFs Myf5 and MyoD for their function in myoblast 

determination, activation, and proliferation, followed by myogenin (aka MyoG, Myf4) and MRF4 (aka 

Myf6) for early differentiation of myoblasts to myocytes and late differentiation of myocytes to 

myotubes and ultimately into mature myofibers. 

One of the first bHLH transcription factors discovered was MyoD. This early research showed how 

MyoD could be used to transform certain fibroblast-like cells to commence cellular fusion and myotube 

formation (Davis et al., 1987). Shortly after the discovery of MyoD three additional bHLH factors were 

discovered, namely Myf5 (Braun et al., 1989), myogenin (Edmondson and Olson, 1989), and MRF4 

(Rhodes and Konieczny, 1989), for their ability to induce the myogenic features of myoblasts in different 

cell types.  Since it was determined that these bHLH factors were expressed throughout and involved 

with controlling development of SkMCs, they were labelled as the myogenic regulatory factors 

(Rudnicki and Jaenisch, 1995). The actions of the MRFs are executed by binding with regulatory regions 

of DNA. Heterodimers are formed with E proteins, which facilitate the identification of E-boxes, a 

pattern located in the promoters of numerous genes specific to SkM (Shklover et al., 2007).  

 

 



3 
 

 
 

Figure 1.0: Schematic representation of somite maturation underlining embryonic myogenesis.  
Somite development and maturation follows a rostral to caudal gradient. The myotome arises from the 
dermomyotome to generate myogenic precursor cells. Myogenic genes and regulatory factors direct 
precursor cells toward a muscle lineage specification and myoblast differentiation. Adapted from 
(Sachidanandan and Dhawan, 2003; Buckingham, 2001) 
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1.0.1 Adult Myogenesis 

 

The ability for SkM to repair and regenerate is a strictly regulated process involving four precisely 

programmed stages, which include deterioration, inflammation, repair-restoration and finally 

remodelling (Carosio et al., 2011). Damage to SkM induces prompt necrosis of SkMCs, which leads to 

the progressive infiltration of SkM by inflammatory cells, eliciting an inflammatory response in the 

damaged area (Tidball, 2005). Following inflammation, a regenerative phase is initiated by the 

activation of quiescent SCs. Under normal physiological conditions, upstream embryonic myogenesis 

generates Pax7 expressing cells within the dermomyotome, which become the SC population of SkM 

stem cells that remain present after birth and are required for future SkM regeneration. The specialised 

quiescent SCs are situated amongst the basal lamina and sarcolemma of SkM fibres and are governed 

by the same genetic hierarchy as embryonic myogenesis. Thus, SkM regeneration can only occur when 

the mitotically quiescent SCs are activated and develop into myoblasts (Siegel et al., 2011). Upon 

activation, the SCs become proliferative myoblasts and promptly re-enter the cell cycle and commence 

proliferation (Sousa-Victor et al., 2015). As the proliferative threshold for myofibrillar protein synthesis 

is reached, a population of SCs undergo asymmetric division for self-renewal and replenishment of the 

SkM stem cell pool. This population of SCs return to the periphery of the muscle fibres and remain in a 

state of quiescence with the intention of responding to future muscle damage upon subsequent 

activation (Relaix and Zammit, 2012). After several rounds of proliferation the committed myoblasts 

exit the cell cycle, they migrate to the site of injury and begin fusing into myocytes and then myotubes. 

As the myotubes mature, they fuse with pre-existing intact myofibres as a scaffolding and replace the 

damaged area to complete the muscular repair and regeneration (Simionescu and Pavlath, 2011). 

Finally, the regenerated myofibres continue to mature, remodelling of the extracellular matrix (ECM) 

occurs, and function is restored (Carosio et al., 2011). There are many parallels between embryonic 

myogenesis and SkM regeneration, which are both regulated by genetic and myogenic transcriptions 

factors. During SkM regeneration, SCs express the myogenic regulator Pax7 in the initial stages of 

activation (Seale et al., 2000). Studies have shown SC activation and proliferation are dependent on 

Pax7. Inhibiting Pax7 expression leads to a diminished capacity for self-renewal, thus a diminished pool 

of quiescent cells for future sequences of repair (von Maltzahn et al., 2013). Research findings have 

demonstrated that activated Pax7 expressing SCs can travel amongst myofibers and can surmount 

obstacles such as the basal lamina and connective tissues to migrate across muscle during regeneration 

(Hughes and Blau, 1990; Jockusch and Voigt, 2003; Watt et al., 1987; Siegel et al., 2009). Investigations 

of Pax7 deficient mice revealed the premature arrest of myoblast proliferation and accelerated 

myoblast differentiation, which ultimately resulted in diminished muscle growth and significant muscle 
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degeneration and a total deficiency of functional SCs (Kuang et al., 2006). This validates the vital 

functions of Pax7 in the initial phase of SkM regeneration and is necessary for normal myogenic 

development. Furthermore, Pax7 initiates the successive activation of the MRFs Myf5, MyoD, 

myogenin, and MRF4 (Jones et al., 2015). Myf5 expression is detected in the early stages of the 

regenerative process after injury, suggesting a primarily proliferative function. Variable amounts of 

myoblast differentiation can be initiated in vitro by MyoD, myogenin, and MRF4, but not Myf5, 

signifying its functions as a MRF involved with the primary proliferation of SCs (Yin et al., 2013). Mice 

devoid of Myf5 display minor impairment of SkM regeneration, manifesting as endomysium fibrosis 

and adipocyte accumulation (Gayraud-Morel et al., 2007). Similar impairments are observed in MyoD 

deficient mice (White et al., 2000). During SkM regeneration, SC proliferation persists until a protein 

synthesis threshold is reached. Subsequently, proliferative MRFs decrease while differentiation MRFs 

increase. Myogenin is recognised as a mandatory MRF for the normal myoblasts-to-myocytes-to-

myotube differentiation. Thus, Myogenin deficient mice exhibit severe deficiencies in muscle 

regeneration (Venuti et al., 1995). Research has revealed that a flawed muscle regeneration is possible 

without myogenin, mice devoid of myogenin can regenerate muscle, but are one-third the size of wild-

type mice (Knapp et al., 2006). Suggesting MRF-independent mechanism can moderately compensate 

during postnatal myogenesis. During normal SkMC regeneration, the final MRF to be expressed is MRF4 

(Charge and Rudnicki, 2004). Modifying the timing of MRF4 expression impairs SkM regeneration. Early 

expression of MRF4 in transgenic mice causes a transient delay in SkM regeneration (Pavlath et al., 

2003). Premature myotube development and delays in SkM regeneration are also observed when 

MRF4 is expressed early. In summary, the complex and essential process of proliferation and 

differentiation via MRF expression during adult myogenesis occurs upon activation of quiescent SCs 

(Figure 1.1), ensuring proper SkM repair and regeneration.  
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Figure 1.1: Adult myogenesis. The activation, proliferation, and differentiation of SCs from a state of 
quiescence to mature muscle fibre is regulated by the precise expression of myogenic transcription and 
regulatory factors. Adapted from (Hernandez-Torres et al., 2017).  
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1.1 Skeletal Muscle 

 

1.1.0 Anatomy 

Accounting for ~50% of the mass in healthy adult human males (Yin et al., 2013) and consisting of over 

650 designated muscles, SkM is the largest metabolically active tissue in the human body. Distinct from 

both the other major muscle types (cardiac and smooth); SkM is regulated via the somatic nervous 

system, allowing the individual to command its function. Preparation, regulation, and implementation 

of voluntary locomotion of the body is regulated in the motor cortex region of the brain (Biswal et al., 

1995). Upper motor neurons transmit information from the motor cortex of brain through the spinal 

cord to lower motor neurons. Although the primary function of SkM is to power physical movement, 

metabolism regulation via macronutrient storage and substrate oxidation to replace depleted 

adenosine triphosphate stores (ATP) (Leto and Saltiel, 2012) is also vitally performed by SkM, as well as 

executing crucial tasks in respiration and endocrine functions (Pedersen and Febbraio, 2008). Local and 

systemic environments in the body are also influenced by the growth factors, myokines, and cytokines 

secreted by SkM fibres into the ECM (Pedersen, 2011).  

Development of SkM involves the fusion of myoblasts to form multinucleated fibres called myotubes, 

eventually maturing into myofibres. These singular contractile cells of SkM are innervated by a motor 

neuron (MN). A single MN can innervate hundreds of muscle fibres, but each mature muscle fibre is 

innervated by just one MN. This arrangement of a MN and all of the muscle fibres innervated by that 

neuron is known as a functional motor unit (Sherrington, 1925). Individual myofibres are ensheathed 

by endomysium and arrange in bundles. These bundles of myofibres known as muscle fascicle are 

bound by perimysium. Subsequently, fascicles are wrapped and encapsulated by the fibrous outer 

connective tissue called epimysium, to procedure a whole muscle (Figure 1.2), with numerous motor 

units residing within (Light and Champion, 1984; McComas et al., 1971).  
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Figure 1.2: Gross anatomy of a skeletal muscle belly. A specialized cell membrane termed the 
sarcolemma wraps the individual skeletal muscle fibres. The fibres are bound together with a fine 
coating of connective tissue called the endomysium, which also functions to deliver nerve axons, 
nutrients, and oxygen via blood and lymphatic vessels. Bound muscle fibres are packed together with 
perimysium, this thin fibrous layer of connective tissue separates a muscle belly into fascicles. The 
muscle fascicles are then enveloped by the dense fibrous epimysium, constructing the complete 
skeletal muscle. Image “1007_Muscle_Fibes_(large).jpg” available for free public reuse at OpenStax 
CNX (https://cnx.org/contents/FPtK1zmh@12.8:bfiqsxdB@6/Skeletal-Muscle), licenced under 
Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/).  
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1.1.1 Skeletal Muscle Fibres 

 

Mature myofibres are comprised of sequences of myofibrils, which include the thick filaments protein 

myosin and thin filaments protein actin (Rayment et al., 1993), supported by the protein titin. The 

repeated arrangement of these proteins in the myofibrils are known as sarcomeres, which are the 

single contractile units within myofibres (Figure 1.3), manifesting as striations on the myofibres. Actin 

molecules at the ends of a sarcomere are anchored to a position called the Z-discs, which are the 

defined boarders between each sarcomere. Actin bound to a Z-disc at one end of the sarcomere 

projects towards the M-line at the centre. Myosin filaments, which interact with the fixed actin 

filaments, are located centred over the M-line, with the myosin filament ends delicately attached to 

the Z-discs by titin. When prompted by nervous input, a cross-bridge is formed and the actin filaments 

are drawn and slide along the myosin filaments, shortening the sarcomere to induce contraction of the 

myofibre (Denoth et al., 2002).  
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Figure 1.3: Structures of a myofibril. A muscle fibre is full of myofibrils, which are composed of 
individual sarcomeres joined in series.  A single sarcomere is located between a set of Z-discs, making 
a distinct contractile unit, composed of a thin (actin) filament and thick (myosin) filament. The I-band 
of the sarcomere is the region where the myosin does not overlap the actin, giving a lightened 
appearance on the muscle fibre. The A-band appears visually darker on the muscle fibre as it contains 
the anisotropic myosin protein. This alternate banding gives muscle fibres the appearance of striations. 
The H-zone is located within the A-band where actin is absent. The M-line appears centrally in the 
sarcomere within the H-zone to provide structural stability. Image “1022_Muscle_Fibers_(small).jpg” 
available for free public reuse at OpenStax CNX 
(https://cnx.org/contents/FPtK1zmh@12.8:bfiqsxdB@6/Skeletal-Muscle), licenced under Attribution 
4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/). 
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1.1.2 Skeletal Muscle Fibre Types 

 

Muscle fibres are commonly categorised as a type 1 (slow twitch) or type 2 (fast twitch) phenotype, 

according to their function, which is determined by the specific myosin heavy chain (a constituent of 

the myosin filament) isoforms that they express (Pette and Staron, 2000). Type 2 muscle fibres are 

further sub-classified as types 2a, 2x, and 2b. Type 1 fibres operate via aerobic metabolism attributed 

to a large concentration of mitochondria and myoglobin within the cells. This cellular composition 

means type 1 fibres produce low force contractions in a slow sustained manner with a high resistance 

to fatigue. Conversely, type 2x and 2b fibres generate fast, short, and high force contractions, which 

are quick to fatigue, due to the mainly glycolytic metabolism of these fibre types. In type 2a fibres, a 

combination of aerobic and anaerobic metabolism is observed. Therefore, this particular fibre type is 

able to generate force greater then type 1 fibres and fatigue more slowly than type 2x/b fibres 

(Schiaffino and Reggiani, 2011). Interestingly, it has been determined that only small mammals retain 

the type 2b fibres, which contract and fatigue at the fastest rate when compared to the other type 2 

fibres. Thus, the hierarchy of type 2 fibre contraction speed begins with 2a, followed by 2x, and 2b 

being the fastest. However, this also means the demand for ATP is significantly higher in type 2b fibres, 

which in turn increases tension cost (Rundell et al., 2004). It is thought that humans as well as other 

large mammals have evolved to lack the type 2b fibre to moderate energy expenditure. Thus, human 

SkM fibres are a combination of type 1, 2a, and 2x. Although these general classifications of fibre types 

provide valuable fundamental information, fibre types have the ability to adapt to environmental or in 

vivo stimuli and can switch between fibre types or exhibit hybridized characteristic of several fibre types 

(Stephenson, 2001). In general, a SkM is composed of a combination of fibre types, which have varying 

degrees of particular characteristics (Table 1.0) and are determined by the function of the particular 

muscle. For example, postural muscles of the neck and spine contain higher concentrations of type 1 

fibres as they mostly produce low force contractions and require a greater endurance for sustained 

activity. The high capacity for endurance of type 1 fibres means this fibre type is also observed in higher 

overall concentration in the muscles of athletes performing long distance events such as marathons. 

Conversely, the composition of fibres found in the muscles of the upper arms, shoulders, and chest are 

predominantly that of the type 2a/x fibres. This is apparent in athletes performing tasks that involve 

quick surges of explosive activity (Rockl et al., 2007).    
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Table 1.0: Characteristics of type 1, 2a, and 2x/b skeletal muscle fibres. 

 

Feature Type 1 Type 2a Type 2x/b 

Force production + ++ +++ 
Contraction speed + +++ +++ 
Fatigue resistance +++ ++ + 
Glycolytic capacity + +++ +++ 
Oxidative capacity +++ ++ + 
Capillary density +++ ++ + 
Mitochondrial density +++ ++ + 
Endurance capacity +++ ++ + 

Note: + = low; ++ = moderate; +++ = high 

 
 

1.1.3 Muscle Contraction 

 

Excitation–contraction coupling is the well-established molecular interaction and exchange involved 

with SkM contraction. Nervous input causes depolarisation of the muscle fibre membrane called the 

sarcolemma (Figure 1.4), the cascading action potential (AP) travels down the invaginated transverse 

tubule (T-tubule) of the sarcolemma into the cell. As the AP travels down the T-tubule into the 

sarcoplasm of the muscle fibre, it stimulates the opening of voltage-gated L-type calcium channels, 

subsequently depolarising the interior of the muscle fibre. The inner depolarisation of the muscle cell 

results in the opening of calcium channels in the terminal cisternae of the sarcoplasmic reticulum (SR).  

Since calcium ions (Ca2+) are higher in concentration in the SR than the cell sarcoplasm, they rapidly 

diffuse into the sarcoplasm.  The Ca2+ then bind with the protein troponin, which is located on the actin 

filaments. The Ca2+ bound troponin causes the troponin-tropomyosin-complex to undergo a 

conformational change, which exposes active binding sites for the myosin filament heads along the 

length of the actin filament, to allow for cross-bridge formation and cycling (Figure 1.5).    
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Figure 1.4: Arrangement and assembly of skeletal muscle triads.  A triad is formed when a transverse 
tubule originating from the sarcolemma is sandwiched between two terminal cisternae of the 
sarcoplasmic reticulum.  This tight configuration allows for efficient nerve signal transmission, 
depolarisation, and opening of gated ion channels. Image “1023_T-tubule.jpg” available for free public 
reuse at OpenStax CNX (https://cnx.org/contents/FPtK1zmh@12.8:bfiqsxdB@6/Skeletal-Muscle), 
licenced under Attribution 4.0 International (CC BY 4.0) 
(https://creativecommons.org/licenses/by/4.0/). 
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Figure 1.5: Cross-bridge formation. Depolarisation triggers the influx of calcium ions into the cytosol 
of the muscle fibre. The calcium binds with troponin and shifts the position of tropomyosin to expose 
binding site for myosin to form the cross-bridge needed for muscle contraction. Image 
“1010a_Contraction_new.jpg” available for free public reuse at OpenStax CNX 
(https://cnx.org/contents/FPtK1zmh@12.8:EtWWcJM-@10/Muscle-Fiber-Contraction-and-
Relaxation), licenced under Attribution 4.0 International (CC BY 4.0) 
(https://creativecommons.org/licenses/by/4.0/). 
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A cross-bridge cycle can only occur after the myosin head has been activated. An ATP molecule binding 

with the myosin head, which is hydrolysed to adenosine diphosphate (ADP) and inorganic phosphate 

(IP), triggers activation through the energy liberating action of ATP hydrolysis, which fixes the myosin 

head into a ‘cocked’ configuration. A cross-bridge is formed between the activated myosin head and 

actin; the IP is then freed increasing the binding capacity of the myosin head and actin filament. The 

ADP is then liberated causing the myosin head to pivot. The actin filament then slides towards the 

centre of the sarcomere, this action is called the ‘power stroke’. Another ATP then binds with the 

myosin head, the cross-bridge is weakened and the myosin head detaches from the binding site, before 

being activated again for another cross-bridge formation (Figure 1.6). Cross-bridge cycling will continue 

to re-engage while the binding sites on the actin filament remain available. Repeated cycling pulls the 

actin filaments together and the sarcomere shortens, inducing muscle contraction. Termination of 

Cross-bridge cycling occurs when Ca2+ are actively returned to the SR. The troponin-tropomyosin-

complex returns to its primary formation, blocking the myosin binding sites on the actin filaments, 

initiating muscle relaxation.  (ter Keurs et al., 2003).   
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Figure 1.6: Molecular mechanisms of muscle contraction. a) Calcium ions bind with troponin to prompt 
a change in the structural position of tropomyosin, revealing the actin binding sites. b) Cross-bridge 
formation occurs between the bindings sites on the myosin heads and actin filaments. c) The power 
stroke is executed through the release of inorganic phosphate (IP) then adenosine diphosphate (ADP). 
d) The attachment of adenosine triphosphate (ATP) uncouples the binding of myosin and actin. e) The 
conversion of ATP to ADP and IP configures the myosin head for cross-bridge formation and cycling. 
Image “1008_Skeletal_Muscle_Contraction.jpg” available for free public reuse at OpenStax CNX 
(https://cnx.org/contents/FPtK1zmh@12.8:EtWWcJM-@10/Muscle-Fiber-Contraction-and-
Relaxation), licenced under Attribution 4.0 International (CC BY 4.0) 
(https://creativecommons.org/licenses/by/4.0/). 
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1.2 Motor Neurons  

 

Motor neurons (MNs) are neuronal cells that originate in the central nervous system (CNS) and project 

axons into the periphery to form synapses with their target tissues. Vital for life in all vertebrates, 

effective and accurate MN activity and signal transmission with target tissues in the periphery, such as 

SkM, is required for fundamental behaviours such as breathing and locomotion. Although typically 

described as a distinct cell type, MNs have vast diversity with varied expression of genes, molecular 

profiles, and target muscles. This diverse nature of MNs allows for separate innervation of the 

numerous individual SkM groups in the vertebrate body (Kanning et al., 2010). For example, in humans 

there are over 600 SkM throughout the body with most muscles making up one part of a bilateral pair 

(Frontera and Ochala, 2015). Thus, strict regulation of CNS signal transmission to MN and MN outputs 

to the target SkM is vital for the refined, organised motor control observed in sophisticated motor 

behaviours. Some research has suggested that MN subtype identity regulates the MNs innervation 

sequence and connection with the target SkM (Milner and Landmesser, 1999; Landmesser, 2001). 

Therefore, MN subtype diversity needs to be explored to appreciate the function of MNs and their 

motor units.  

 

1.2.0 Motor Neuron Subtype Diversity 

 

Divided into three distinct classifications, MNs can be labelled as branchial, visceral and somatic (Stifani, 

2014). The MNs that reside in the brainstem and innervate muscles of the head and neck through the 

cranial nerves are known as the branchial MNs (Chandrasekhar, 2004). Visceral MNs are an element of 

the autonomic nervous system, which is comprised of the sympathetic division and parasympathetic 

division. Found in the preganglionic column (PGC) of the spinal cord, the sympathetic MNs innervate 

the adrenal medulla and sympathetic chain ganglia. Whereas parasympathetic MNs are found in the 

sacral division of the spinal cord, as well as the brainstem, innervating peripheral ganglia located close 

to vital organs of the body (Purves et al., 2001). Located in the hindbrain nuclei and spinal cord ventral 

horn, the axons of the somatic MNs extend from the CNS alongside the spinal nerves and into the 

periphery. Here the somatic MNs make contact with SkM and form the highly specialised synapses 

called neuromuscular junctions (NMJs) (Wu et al., 2010). By identifying their location within the spinal 

cord, the somatic MNs are separated into groups called motor columns, such as the PGC mentioned 

above, with each motor column innervating a specific collection of muscles. One of the five motor 

columns groups, called the medial motor column (MMC), tracks the entirety of the spinal cord and 
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contains the MNs that innervate the dorsal back muscles and axial thoracic muscles (Fetcho, 1987; 

Agalliu et al., 2009). Located exclusively at the limb regions of the spinal cord, the MNs of the lateral 

motor columns (LMCs) innervate the forelimbs via the LMC MNs in the brachial segment of the spinal 

cord, while innervation of the hindlimbs occurs via the LMC MNs of the lumbar segment (Landmesser, 

1978). Innervating the muscles of the ventral trunk, such as the anterior abdominal wall and intercostal 

muscles, the hypaxial motor columns (HMCs) are located at cervical and thoracic segments of the spinal 

cord (Gutman et al., 1993). Positioned at the thoracic segment of the spinal cord, MNs from the forth 

group of motor columns called the PGC innervates the peripheral nervous system sympathetic chain 

ganglia (Prasad and Hollyday, 1991). Finally, the fifth group is called the phrenic motor column (PMC) 

which is a MN group that provides the sole source of diaphragm innervation, thus responsible for 

respiration in mammals (Philippidou et al., 2012) (Figure 1.7). The most comprehensively researched 

motor column is the LMC, which is additionally partitioned into a medial subdivision (LMCm), 

responsible for ventral innervation of the limb muscles (e.g. flexors) and a lateral subdivision (LMCl), in 

control of the dorsal innervation of limb muscles (e.g. extensor) (Tosney and Landmesser, 1985; Kania 

and Jessell, 2003).   
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Figure 1.7: Spinal motor column organisation. The motor neuron (MN) columnar pools dictate the 
location of MN cell bodies along the spinal cord in relation to the body and regulates MNs to their 
target muscles. The MNs from the phrenic motor column (PMC) innervate the diaphragm. The 
preganglionic column (PGC) MNs innervate the sympathetic ganglia. The MNs originating from the 
medial motor column (MMC) innervate the dorsal axial muscles and the hypaxial motor columns (HMC) 
MNs innervate the muscles of the body wall. The medial lateral motor columns (LMCm) and its lateral 
counterpart the LMCl innervate the ventral and dorsal limb respectively. Adapted from (Davis-
Dusenbery et al., 2014) 
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Depending on morphology, function, and the intended SkM target, MNs from a columnar pool can be 

further separated into three distinct classifications. Specifically, alpha motor neurons (αMNs), beta 

motor neurons (βMNs), and gamma motor neurons (γMNs) (Kanning et al., 2010). The αMNs are the 

biggest most abundant subtype of MNs and are responsible for innervating extrafusal SkM fibres, which 

are the muscle fibres that produce physical movements upon contraction. The αMNs send the 

communication through their axons to the intended target where they synapse with muscles directly 

to induce muscle contraction (Dalla Torre di Sanguinetto et al., 2008). The smaller γMNs are responsible 

for innervating the proprioceptive intrafusal SkM spindle and are involved with modulation of sensory 

neuron sensitivity to stretch forces on the SkM spindle (Jessell, 2000; Proske and Gandevia, 2009). 

Interestingly, the functions of βMNs requires further exploration before their functional role is 

accurately elucidated, despite βMNs axon collaterals innervating extrafusal SkM fibres and intrafusal 

SkM fibres (Manuel and Zytnicki, 2011; Kanning et al., 2010). Finally, further MN subtype diversification 

of αMNs is implemented based on their functional properties. These properties are defined by the 

metabolic and molecular attributes of the motor unit formed with the type of SkM fibre being 

innervated. The αMN subtype innervating type 1 SkM fibres are known as slow-twitch fatigue resistant 

(αS), type 2a SkM fibres are innervated by fast-twitch fatigue-resistant (αFR) MNs, and innervating the 

2x/b fibres are the fast-twitch fatigable (αFF) MNs (Figure 1.8). Containing an assortment of the MN 

subtypes, the motor pool regulates the ultimate contractile function of SkM depending on the ratio of 

MN subtypes within the pool.  However, hormones, physical requirements, and neuronal activity 

permits conversion of SkM fibre types, as observed in vivo (Staron, 1997; Pette and Staron, 2000; Friese 

et al., 2009). 
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Figure 1.8: Functional classification of alpha motor neuron subtypes. Fast-twitch fatigable (αFF), fast-
twitch fatigue-resistant (αFR), and slow-twitch fatigue resistant (αS) motor neurons (MNs) innervate 
their corresponding type 2x/b, type 2a, and type 1 extrafusal muscle fibres. The smaller gamma motor 
neurons (γMNs) innervate the intrafusal muscle fibres. Adapted from (Davis-Dusenbery et al., 2014) 
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1.3 The Neuromuscular Junction  

 

In order to appreciate the vital function of neuromuscular junctions (NMJs) and the cellular 

specialisation they exhibit, the complex regulation of NMJ formation, development, and maturation 

need to be understood in relation to fundamental molecular and cellular mechanisms. 

 

1.3.0 Agrin 

 

In the initial stages of NMJ formation, clusters of acetylcholine receptors (AChRs) emerge centrally on 

myofibers in advance of nervous input in a process known as intrinsic pre-patterning of muscle (Lin et 

al., 2001; Yang et al., 2001). While this preliminary pre-patterning occurs without a nervous component, 

the differentiation of postsynaptic structures can only occur after synapse formation and presynaptic 

input. One of the fundamental components that regulates postsynaptic differentiation is agrin. 

Produced and secreted by motor neuron terminals (MNTs), agrin is a mandatory heparan sulphate 

proteoglycan needed for NMJ formation (Bezakova and Ruegg, 2003). The obligate nature of agrin has 

been shown in agrin-deficient mice, which present with failed NMJ formation and death (Gautam et 

al., 1996). Agrin deficient mice also fail to undergo presynaptic differentiation and have persistent MN 

growth. It is suggested that a lack of regressive termination signalling from postsynaptic structures and 

the lack of intrinsic agrin discontinuation signals cause the failure of presynaptic differentiation and 

excessive axon sprouting (Campagna et al., 1995; Campagna et al., 1997). However, when agrin 

deficient mice express a miniaturized form of agrin from their developing SkMCs, which have muscle-

specific tyrosine kinase activating domains essential for AChR clustering, a restoration of NMJ 

formation is witnessed (Lin et al., 2008).  Equally, the forced over expression of agrin in non-synaptic 

regions of SkMCs leads to the formation of postsynaptic structures usually only observed at the NMJ, 

such as developed junctional folds (Bezakova et al., 2001). There is also genetic expression of AChR 

genes usually only found at the synapse (Jones et al., 1997). These studies present evidence that the 

secretion of agrin from MNs to agrin-receptive SkMCs instigates the preliminary formation of NMJs. 

Formation and maturation of the NMJ is also facilitated by agrin through the binding of the dystrophin-

glycoprotein complex, which is dystrophin-associated transmembrane glycoproteins, namely 

dystroglycan (Bowe et al., 1994; Gee et al., 1994). Some research also implies that the downregulation 

of agrin, facilitated by proteolytic cleavage, regulates maturation of the NMJ by manipulating AChR 

clusters and the topology of junctional fold (Bolliger et al., 2010).  
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1.3.1 Muscle-Specific Tyrosine Kinase 

 

Agrin regulates the formation and development of the NMJ via a single transmembrane receptor 

tyrosine kinase, known as the muscle-specific tyrosine kinase (MuSK) receptors at the motor end plate 

(MEP) (Wu et al., 2010). MuSK signalling activation occurs after binding to the low-density lipoprotein 

receptor-related protein 4 (LRP4), which is a MuSK co-receptor (Zhang et al., 2008; Kim et al., 2008), 

prompting differentiation of postsynaptic structures after binding to neural agrin. Structurally, the 

activation of MuSK occurs when two heterodimers of agrin and LRP4 form a tetrameric complex. 

Communication with the cytoplasmic adaptor docking protein 7 aka downstream of tyrosine kinase 7.  

(Dok7) and the 43 kDa receptor-associated protein of the synapse (rapsyn) is also essential for MuSK 

activation and formation of the NMJ (Okada et al., 2006). As already mentioned, during preliminary 

NMJ formation intrinsic pre-patterning of muscle occurs on myofibers through the emergence of AChR 

clusters, along with supplementary postsynaptic proteins. Although pre-patterning of muscle occurs in 

advance of nervous input, the establishment of the MuSK–LRP4–Dok7–rapsyn complex (Figure 1.9) is 

required. During myogenesis, MuSK induces clustering of AChRs on aneural myotubes and facilities the 

assembly of postsynaptic structures needed to secure AChRs in mature developed MEPs (DeChiara et 

al., 1996; Lin et al., 2001). Furthermore, transcriptional specialisation of myonuclei at the synapse 

occurs after MuSK-mediated recruitment of the vital myonuclei. A lesser retrograde signalling from 

MuSK to MNs also occurs to induce presynaptic differentiation 

Expression of MuSK is first observed at the premature myotome and is expressed throughout SkM 

development and thereafter. Following innervation of SkMCs, a down regulation of MuSK expression 

occurs in the myonuclei adjacent to the NMJ. However, recruited myonuclei at the synapse have 

sustained expression of elevated MuSK. Upon denervation, the NMJ-adjacent myonuclei begin to 

upregulate MuSK expression once again (Bowen et al., 1998). Accordingly, expression of MuSK mRNA 

occurs during myocyte to myotube fusion following the same expression pattern as AChR subunit genes 

(Kim and Burden, 2008). Research with MuSK knockout mice has provided valuable insight into the 

functions of MuSK during NMJ formation. Mice devoid of MuSK exhibit the same failed NMJ formation 

and death after birth due to respiratory failure as observed in the agrin-deficient models (DeChiara et 

al., 1996). Noteworthy, mice lacking LRP4, Dok7 or rapsyn suffer the same fate (Okada et al., 2006; 

Weatherbee et al., 2006; Gautam et al., 1995). MuSK devoid mice also have persistent MN growth 

engulfing the myotube as witnessed in agrin deficient mice (Lin et al., 2001). Additionally, MuSK-

deficient in vitro cultured myotubes lack AChR cluster prepatterning and are unresponsive to the 

application of exogenous agrin (Glass et al., 1996). Interestingly, marginally defective regulation of 
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MuSK signalling during development may have minor effects on the primary formation of the NMJ. 

However, subsequent development and maturation of the NMJ can be disturbed by MuSK signalling 

dysfunction, only manifesting after birth or develop at delayed postnatal stages as congenital 

myasthenic syndromes (CMS) (Engel et al., 2010). Research conducted using loxP/Cre recombination 

to inactivate MuSK expression in mice during postnatal development results in the advance of 

symptoms consistent with myasthenic syndromes, leading to death from severe muscle weakness. A 

diffusion of AChR clusters, errors in postsynaptic configuration, and withdrawal of innervating MNs 

were also observed in conditionally inactivated MuSK mice (Hesser et al., 2006). When examining 

humans with CMS, distinct abnormalities of the postsynaptic apparatus are observed. The junctional 

folds lack the characteristics of MEP maturation and a significant decline in clustering of AChRs is 

displayed. These dysfunctions are a consequence of MuSK mutations that restrict MuSK expression and 

hinder communication with Dok7 (Maselli et al., 2010). Similar observations are made in CMS mouse 

models with MuSK mutations. Postnatal development of the CMS mouse reveals underdeveloped 

junctional folds, a decreased clustering of AChRs with obvious fragmentation, improper plaque-to-

pretzel formation of AChRs, and faulty MN transmission (Chevessier et al., 2008). Along with being 

compulsory for the launch of postsynaptic NMJ differentiation, the initiation of postsynaptic assembly 

can be activated by MuSK alone. This has been confirmed via MuSK dimerization and subsequent 

overexpression of MuSK through self-activation (Punga et al., 2011; Sander et al., 2001), crosslinking 

via antibody mediation (Hopf and Hoch, 1998) or through transmembrane domain mutant dimerization 

(Jones et al., 1999). Applying any of the mentioned MuSK activation techniques to aneurally-cultured 

myotubes induces AChR cluster formation.  The formation of postsynaptic features are also detected 

in innervated SkMCs on non-synaptic locations of the myofibres. MuSK activation also includes the 

aggregation of synaptic myonuclei, important for upregulation of AChR and MuSK gene expression 

(Jones et al., 1999; Moore et al., 2001). Minor presynaptic differentiation of MNs in Agrin deficient mice 

is possible when MuSK is overexpressed in SkM via self-activation. However, the mice have a short 

lifespan and only a few weeks of stunted growth (Kim and Burden, 2008). MuSK expression can act on 

MNs via indirect methods as well, to assist their presynaptic differentiation. MuSK-induced secreted 

factors from SkM such as the laminin isoform laminin-β2 has been shown to regulate the formation of 

MNT active zones during MNT differentiation (Jones et al., 1999; Nixon et al., 2008). Possibly regulated 

in a similar way by MuSK, collagen IV and fibroblast growth factor (FGF) proteins  are increased in the 

synaptic basal lamina and can influence MNT differentiation (Fox et al., 2007).   
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Figure 1.9: The Agrin-MuSK–LRP4–Dok7–rapsyn-AChR complex. Agrin and acetylcholine (ACh) are 
released by the motor neuron terminal. Muscle-specific tyrosine kinase (MuSK) phosphorylation occurs 
following the binding of Agrin and low-density lipoprotein receptor-related protein 4 (LRP4), which 
stimulates the organisation of Musk-LRP4. The recruitment of docking protein 7 (Dok7) stabilizes MuSK 
through dimerization. Subsequently, activated MuSK sites anchor AChRs with 43 kDa receptor-
associated protein of the synapse (rapsyn) after the tyrosine phosphorylation of Dok7. Adapted from 
(Amato, 2018).  
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1.3.2 43 kDa Receptor-Associated Protein of the Synapse 

 

Expressed in SkMCs throughout the early development of NMJs and in mature SkM, rapsyn is a 

cytoplasmic support protein underlying the postsynaptic cytoskeleton, with expression principally 

limited to the synapse. A high-density protein construct is formed by the rigid binding of rapsyn with 

AChRs and dystroglycan (Unwin, 2013; Bartoli et al., 2001). This complex is believed to maintain 

cytoskeletal-anchoring of AChRs. However, the AChR-rapsyn clustering initiated by MuSK activation is 

poorly understood from the perspective of molecular signalling pathways. Both in vivo and in vitro 

studies have confirmed rapsyn as an essential protein in the formation of AChR clusters. Thus, evident 

failure of postsynaptic specialization of the NMJ in rapsyn deficient mice is witnessed (Gautam et al., 

1995). Unlike the stark phenotypes reflected in MuSK, Lrp4, and Dok7-null mice, rapsyn deficient mice 

have some respiratory function and laboured breathing allows them to live a few hours. Inspection of 

the failed MEP exposed a lack of cytoskeletal specializations and unsuitable AChR clusterisation. 

Nevertheless, aggregations of synaptic basal lamina constituents such as laminin-β2 and 

acetylcholinesterase are still supplied in abundance. Surprisingly, an accumulation of MuSK below the 

MNT and elevated expression of AChR genes by the synaptic myonuclei are exhibited (Apel et al., 1995; 

Gautam et al., 1995). These findings established that rapsyn is not involved with synaptic gene 

transcription but is vital for affixing of AChRs at the MEP apparatus. It is also implied that miniature 

muscle contraction are possible at premature NMJs before proper anchoring of AChRs by rapsyn is 

complete. 

 

1.3.3 Acetylcholine Receptors 

 

In addition to the vital functions AChRs perform during signal transmission, they are also involved with 

MEP formation during NMJ development. Rapsyn has been shown to form clusters in non-myogenic 

cells when forced overexpression is induced. However, SkMCs require AChRs to initiate clusterisation. 

For instance, a loss of associated rapsyn clusters occurs when AChRs are removed from in vitro myotube 

cell membranes using lasers or antibodies to induce the AChR depletion (Bruneau et al., 2008; Marangi 

et al., 2001). Research has also revealed that AChRs are joined with and escorted by rapsyn early in the 

exocytic pathway (Marchand et al., 2002; Moransard et al., 2003). Further findings support the notion 

that AChRs are fundamental for formation of the MEP, since deletion of the AChR γ-subunit gene, which 

is needed for fabrication of physiological AChRs during embryogenesis, results in unbridled MN growth 

(Liu et al., 2008). Noteworthy, mice in these experiments still conveyed clustering of MuSK at the 
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diaphragm, whereas rapsyn clustering was imperceptible. Ultimately, AChRs are perceived to 

participate in MEP differentiation, as well as assisting in distribution of rapsyn to the MEP apparatus.  

 

1.3.4 Neuromuscular Junction Function 

 

Contractions of SkM are governed by the CNS. MNs transmit communications from the CNS via nerve 

impulses to SkM fibres to induce contractile activity in muscle. The fusion of a MNT with the MEP of a 

SkM fibre forms a highly specialised chemical synapse where signal transmission takes place (Figure 

1.10). 
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Figure 1.10: Neuromuscular junction signal transmission. 1) The action potential (AP) propagates 
down the motor neuron (MN) to the axon terminal. 2) Calcium channels are opened once the AP 
reaches the axon terminal, inducing influx of calcium ions (Ca2+) into the presynaptic terminal. 3) 
Increased intracellular calcium concentration at the axon terminal prompts synaptic vesicle fusion with 
the membrane of the axon terminal. 4) Upon fusion, the vesicle releases acetylcholine (ACh) into the 
synaptic cleft. 5) ACh crosses the synaptic cleft to bind with acetylcholine receptors (AChRs), opening 
voltage-gated sodium ion (Na+) channels on the motor end plate (MEP). 6) An AP generating muscle 
contraction is produced. 7) Termination of synaptic transmission occurs upon ACh degradation via 
acetylcholinesterase and presynaptic reuptake. Adapted from (Song, 2014) 
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This synapse is one of the first to be formed during embryonic development and is called the 

neuromuscular junction (NMJ). Although initial NMJ formation occurs early, full maturation requires 

several weeks of structural and molecular configuration (Sanes and Lichtman, 2001). The NMJ 

maturation process is significantly longer than observed in the formation of CNS synapses, which take 

just hours to mature in comparison and have a rapid turnover rate. Following NMJ maturation the 

synapse is maintained throughout life for appropriate signal transmission (Sanes and Lichtman, 1999). 

Consequently, erroneous formation, development, or impaired maintenance through aging could 

instigate muscle weakness, paralysis, or manifest as various neuromuscular (NM) or neurodegenerative 

(ND) diseases. Disorders that directly target the NMJs function are characteristically genetic (e.g. 

congenital myasthenia), autoimmune (e.g.  Myasthenia gravis, Lambert-Eaton myasthenic syndrome), 

or neurotoxic (e.g. botulism). Additionally, particular disorders of the NM system target MNs directly, 

causing presynaptic signal transmission deficiency, such as amyotrophic lateral sclerosis (ALS) or spinal 

muscular atrophy (SMA). There are also nine major forms of muscular dystrophy (i.e. myotonic, 

Duchenne, Becker, limb-girdle, facioscapulohumeral, congenital, oculopharyngeal, distal, Emery-

Dreifuss) that attack the postsynaptic SkM MEP. The peripheral nerve is also venerable to MN disorders 

that impair myelination, for instance, Charcot-Marie-Tooth disease.  

The NMJ shares many fundamental similarities with chemical synapses located throughout the central 

and peripheral nervous system. The presynaptic MNT of the NMJ is occupied by vesicles containing the 

neurotransmitter acetylcholine (ACh). The synaptic cleft, which has a width of ~50-80 nm, separates 

the presynaptic terminal from the postsynaptic SkMC sarcolemma. The MEP has deep indentations 

called junctional folds that are saturated with AChRs; the binding of ACh with AChRs opens voltage-

gated sodium channels. The diffusion of sodium ions (Na+) into the sarcoplasm depolarises the MEP at 

the junctional folds, triggering an AP on the flanking sarcolemma, which spreads outward from the NMJ 

(Flucher and Daniels, 1989).   

The basal lamina and ECM coating SkM fibres has a unique muscle specific composition, comprised of 

molecules derived from the SkMCs. Correspondingly, the ECM components at the synaptic cleft have 

their own unique molecular constituents, as secreted molecules at the cleft are derived from the SkMCs 

and MNs (Patton et al., 1997). Along with SkMCs and MNs, the anatomy of a NMJ in vivo consists of 

two other essential cell types, the terminal Schwann cells and kranocytes. Schwann cells at the NMJ 

are specialised non-myelinating neuroglia that cover the MNT, generating their own distinctive basal 

lamina, which interacts with the ECM of SkMCs in close proximity to the NMJ. Finally, the insufficiently 

understood kranocytes cover the Schwann cells, encasing the entire NMJ (Figure 1.11). Both the 

terminal Schwann cells and kranocytes help to maintain NMJ stability and regenerative response to 

injury (Son et al., 1996; Court et al., 2008). For successful transmission of nervous input at the NMJ, an 
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AP induces Ca2+ influx in the MNT. The incoming Ca2+ stimulates synaptic vesicles to fuse with the 

membrane of the MNT at specific locations known as the ‘active zones’. The ACh released into the 

synaptic cleft by the membrane-bound vesicles quickly diffuses across and binds with AChRs on the 

SkMC. As mentioned, AChRs open voltage-gated sodium channels, but are also permeable to potassium 

ions (K+), as well as Ca2+ to a degree. The fusion and release of ACh from a single presynaptic vesicle, 

called quantal release, produces a depolarising current in the SkMC of ~3-4 nA. This small depolarizing 

quantal release of ACh is known as a miniature endplate current, which is the minimum stimulation 

that can be sent between neurons. The fusion and release of ACh from a group of membrane-bound 

vesicles simultaneously produces what is known as the endplate potential (EPP). The EPP is generated 

when a presynaptic AP causes vesicle release to generate a current that is hundreds of nanoamperes 

and depolarizes SkMCs by ~30–40 mV. The EPP produced is considerably larger than needed to 

generate an AP in SkMCs. This greater than that required EPP is called the ‘safety factor’ and allows NM 

transmission to remain operative through varying physiological conditions and stressors (Wood and 

Slater, 2001).  

The magnitude of the safety factor is determined by NMJ physiology and morphology. Firstly, the 

quantity of active zones at the MNT and the density of voltage-gated calcium channels, determined by 

the size of the MNT. The density of synaptic vesicle fusion upon stimulation of an AP and the amount 

of ACh released also influence safety factor. The concentration of AChRs found on the postsynaptic 

SkMC also controls the quantal current amplitude, though in a non-sequential manner, as the 

concentration of AChRs is usually greater than required for effective commandeering of ACh from the 

synaptic cleft. Additionally, voltage-gated sodium channels and AChRs on the junctional folds of MEPs 

orient in a specific manner, with AChRs located at the peak of the fold and sodium channels in the 

trenches (Flucher and Daniels, 1989).  This orientation ensures effective transmission and reliable 

initiation of the AP in the sarcolemma (Slater, 2008). 
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Figure 1.11: Cells comprising the neuromuscular Junction. The anatomy of the in vivo NMJs is 
comprised of the four main cell types. Motor neurons, muscle fibres, terminal Schwann cells and 
kranocytes.  Adapted from (Court et al., 2008)  
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1.4 Aims and Objectives 

 

In this introduction, many studies were used to detail the in vivo formation and development of NMJs, 

as well as SkM and the contribution of MNs toward synapse formation.  By examining the current 

literature, it is clear that the existing methods to study how degenerated NMJs contribute to NM 

diseases are limited. Accordingly, most in vivo NMJ animal models do not properly reflect disease in 

humans. Thus, in vitro models of NMJs have the potential to elucidate NM disease pathogenesis and 

provide a platform for testing novel therapies. Previously established in vitro NMJ models suffer from 

a variety of limitations, due to the complex nature of the systems, resulting in inadequate experimental 

reproducibility. The limitations of the existing in vitro NMJ models will be explored in detail in the 

forthcoming chapters.   

 

Thus, the primary aim of this project is to establish viable in vitro nerve-muscle co-cultures that 

generate functional NMJs, providing a practical system for the examination of NMJ formation, 

development, maturation, and functionality.   

 

The main objectives are: 

 

1. Develop and optimise cell culture conditions to compare young (25 years old) and old (83 

years old) immortalised human SkMC lines. 

 

2. Generate and optimise methods for a co-culture of human SkMCs innervated by nerve cells 

obtained from wild-type rat embryos at embryonic development day (ED) 13-14. 

 

3. Use immunofluorescence and confocal microscopy to confirm SkMC innervation and NMJ 

formation via staining of pre- and post-synaptic proteins.  

 

4. Use the application of known agonist and antagonists treatments to determine NMJ 

functionality via regulation of innervated SkMC contractions. 

 

5. Use microarray analysis to identify the concentrations of endogenously generated growth 

and neurotrophic factors during NMJ formation and development. 
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Chapter 2: Materials and Methods 

 

2.0 Materials  

 

2.0.0 Cell Lines 

 

The two immortalised human skeletal muscle cell (SkMC) lines used for this project were generated at 

the Institute of Myology (Paris, France) and provided to our research group. Both young and old SkMC 

lines were established using primary human myoblasts obtained anonymously from Myobank, a tissue 

bank affiliate of Eurobiobank, authorised by the French Ministry of Research (authorisation # AC-2013-

1868). The primary myoblasts originated from biopsies of the semitendinosus muscle of a young 25-

year-old male and an old 83-year-old man, both free of genetic defects and disease. Myoblast 

immortalisation was achieved through cyclin-dependent and telomerase-expressing kinase 4-

expressing vector transduction (Mamchaoui et al., 2011). This project was the first use of these cells by 

our research group, meaning these cell lines were previously unestablished in our laboratory. 

Accordingly, training of cell culture techniques for the two cell lines used in this project was completed 

at the Institute of Myology.  

 

2.0.1 Animals 

 

Ethical approval for the animal work was obtained from the animal facility under a general S1 Home 

Office licence at the University of Manchester. Animal welfare was in accordance with the guidelines 

detailed in the Animals Scientific Procedures Act 1986, which regulates the use of living vertebrates 

and cephalopods in scientific procedures within the UK. Time-mated female Sprague Dawley rats 

obtained from Charles River Laboratories (Oxford, UK) were sacrificed with CO2 when embryos were 

approximately embryonic development day (ED) 13.5.  
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2.0.2 Laboratory Equipment  

 

Equipment  Company Catalogue # 

3-16KL refrigerated benchtop centrifuge Sigma Laborzentrifugen 10360 
appJET pipette controller Appleton AEL540 
Axiovert 40 C inverted phase contrast microscope Zeiss MIC-990-130D 
Axon Instruments GenePix 4000B microarray scanner Molecular Devices GENEPIX 4000B-U 
BVC control, fluid aspiration system with  VacuuHandControl VHCpro Vacuubrand 727202 
Hausser Bright-Line 3100 haemocytometer Hausser Scientific 3110 
JB Nova unstirred water bath Grant JBN12 
LabGard NU-437 class II, type A2 biosafety cabinet Nuaire NU-437-400E 
Leica DMI6000 B inverted fluorescence microscope Leica Microsystems DMI6000B 
Leica TCS SP5 confocal microscope Leica Microsystems TCSSP5 
M3B stereomicroscope Wild Heerbrugg 1171 
MTS 2/4 digital microtiter shaker IKA 0003208002 
NU-5100E air-jacketed automatic CO2 incubator Nuaire NU5100E 
Omni tissue homogenizer (TH) package Omni International THP220 
Synergy HT microplate reader BioTek 7091000 

 

2.0.3 Laboratory Plasticware 

 

Plasticware  Company Catalogue # 

µ-Dish 35 mm, high glass bottom, D 263® M Schott glass Ibidi 81158 
CRYO.S™ 1 mL, conical bottom internal thread, polypropylene (Cryovial)  Greiner Bio-One  123278 
EasYFlask™ 175 cm2, polystyrene  (T175) Nunc 159910 
Microlance™ 3 hypodermic needles 21G x 1.5” (0,8 x 40 mm) Becton Dickinson 304432 
Nalgene® Mr. Frosty™ freezing container Thermo Scientific 5100-0001 
Nunclon™ 6-well x 3mL MultiDish cell culture dish, polystyrene   Nunc 140675 
Nunclon™ Delta Surface, petri dish with lid, 150 x 20mm, polystyrene   Nunc 168381 
Sterilin™ Sterile sample container – 100 mL, polystyrene  Thermo Scientific 185BM 
Tube 15 mL, 120x17mm, polypropylene Sarstedt 62.554.001 
Tube 50 mL, 115x28mm, polypropylene Sarstedt 62.559 
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2.0.4 Reagents 
 

Reagent Company  Catalogue #  

(+)-Tubocurarine chloride pentahydrate Sigma-Aldrich 93750 
1(S),9(R)-(−)-Bicuculline methiodide (Bicuculline)  Sigma-Aldrich 14343 
4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI) Sigma-Aldrich 10236276001 
Anti-calcium channel L type DHPR alpha 2 subunit antibody [20A] (DHPR) Abcam ab2864 
Anti-choline acetyltransferase (ChAT) Sigma-Aldrich AB144 
Anti-glial fibrillary acidic protein (GFAP) Sigma-Aldrich G3893 
Anti-MUSK antibody (MuSK) Abcam ab92950 
Anti-neurofilament H antibody (NFH) Sigma-Aldrich AB5539 
Anti-rapsyn antibody [1234] (rapsyn) Abcam ab11423 
Anti-ryanodine receptor 1 antibody (RyR) Sigma-Aldrich AB9078 
Anti-synaptotagmin antibody [ASV30] (Syt1)  Abcam ab13259 
Anti-vesicular acetylcholine transporter (VAChT) Sigma-Aldrich ABN100 
Beta-3 tubulin monoclonal antibody (2G10-TB3), Alexa Fluor® 488  eBioscience 53-4510-82 
Dexamethasone Sigma-Aldrich D4902 
Dimethyl sulfoxide (DMSO) Fisher BioReagents 10103483 
Donkey anti-goat IgG (H+L) cross-adsorbed secondary antibody, Alexa 
Fluor® 568 

Invitrogen A-11057 

Donkey serum (DS) Sigma-Aldrich D9663 
Dulbecco’s modified eagle medium (DMEM) Lonza 12-914F 
Dulbecco’s phosphate buffered saline 1X (DPBS)  Lonza 17-512F 
Fetuin from fetal bovine serum Sigma-Aldrich F3004 
Gelatin from porcine skin, type A Sigma-Aldrich G2500 
Gentamicin  Gibco 15710-049 
Goat anti-chicken IgY (H+L) cross-adsorbed secondary antibody, DyLight® 
488 

Invitrogen SA5-10070 

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa 
Fluor® 555 

Invitrogen A-21422 

Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor® 
568 

Invitrogen A-11011 

Goat serum (GS) Sigma-Aldrich G9023 
Hanks' balanced salt solution w/ calcium, magnesium (HBSS) Gibco 24020117 
Heat-inactivated fetal bovine serum (FBS) Gibco 10500-064 
Horse serum (HS) Sigma-Aldrich H0146 
Human recombinant basic fibroblast growth factor (FGFb) Gibco PHG0026 
Human recombinant epidermal growth factor (EGF) Gibco PHG0311 
Human recombinant hepatocyte growth factor (HGF) Sino Biological Inc. 10463-HNAS 
Human recombinant insulin Sigma-Aldrich 91077C 
L-Glutamic acid (L-Glut) Sigma-Aldrich G1251 
L-glutamine Lonza 17-605E 
Matrigel® growth factor reduced basement membrane matrix, *LDEV-free Corning 354230 
Medium 199 with Earle’s balanced salt solution Lonza 12-119F 
Myosin 4 monoclonal antibody (MF20), Alexa Fluor® 488 (anti-MHC) eBioscience 53-6503-82 
Paraformaldehyde Sigma-Aldrich P6148 
Penicillin-streptomycin mixture (Pen/Strep) Lonza 17-602E 
Perm/Wash™ buffer (PWB) BD Biosciences 554723 
Plasmocin™ - mycoplasma elimination reagent InvivoGen ant-mpp 
Quantibody® human growth factor array 1 RayBiotech QAH-GF-1 
Rabbit monoclonal anti-Ki67 antibody [SP6] (Anti-Ki67) Abcam ab16667 
Rat Agrn / Agrin ELISA kit Sigma-Aldrich RAB0881-1KT 
Skeletal muscle differentiation medium PromoCell C-23061 
Texas Red®-X phalloidin Invitrogen T7471 
Triton™ X-100 (TX100) Sigma-Aldrich T8787 
Trypan Blue, 0.4% solution Lonza 17-942E 
TrypLE™ express enzyme 1X (TrypLE) Gibco 12605-028 
TWEEN® 20  Sigma-Aldrich P1379 
α-Bungarotoxin, Alexa Fluor™ 647 conjugate (α-BTX) Invitrogen B35450 
γ-Aminobutyric acid (GABA) Sigma-Aldrich A2129 
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2.1 Methods  

 

2.1.0 Human Skeletal Muscle Cell Culture  

 

All cell culture work was carried out in a class II, type A2 biosafety cabinet, with strict adherence to 

aseptic techniques and practices. Two cryovials were retrieved from liquid nitrogen storage, each 

containing ~1x106 25-year-old immortalised human myoblasts (C25) or 83-year-old immortalised 

human myoblasts (C83). The cells were cryopreserved in a 1 mL suspension of 90% fetal bovine serum 

(FBS) and 10% Dimethyl sulfoxide (DMSO). The frozen vials were placed into a water bath set to 37°C 

and rapidly thawed within 2 minutes. Subsequently, the thawed myoblasts were transferred into 

separate 15 mL tubes. Next, 9 mL of pre-prepared complete growth media (GM) (Table 2.0) was added 

to each tube to initiate myoblast proliferation. 

 

Table 2.0: Complete growth media for skeletal muscle cell proliferation. 

 

Media components Concentration 

Dulbecco’s modified eagle medium (DMEM) 59% (v/v) 
Medium 199 with Earle’s balanced salt solution 19% (v/v) 
Fetal bovine serum (FBS) 20% (v/v) 
L-glutamine 1% (v/v) 
Penicillin-streptomycin mixture (Pen/Strep) 1% (v/v) 
Fetuin from fetal bovine serum 25 μg/mL 
Basic fibroblast growth factor (FGFb) 0.5 ng/mL 
Epidermal growth factor (EGF) 5 ng/mL 
Hepatocyte growth factor (HGF) 2.5 ng/mL 
insulin 5 μg/mL 
Dexamethasone 0.2 μg/mL 
Gentamicin 10 μg/mL 
Plasmocin 25 μg/mL 

 

The separate 10 mL suspensions of C25 and C83 were transferred into separate T175 flasks. The flasks 

were positioned onto a levelling plate and incubated at 37°C with a 5% CO2 atmosphere (ATM), until 

the density of cell growth was 80% confluent, which was determined by the percentage of area covered 

by cells in any random microscopic field of view. Phase contrast microscopy analysis with the Axiovert 

40 C and DMI6000B inverted microscopes were used to assess and compare any difference in the 

percentage of confluence between the two cell lines at 24, 48, 72, and 96 hours. ImageJ, a Java-based 

image processing application developed at the National Institutes of Health and the Laboratory for 

Optical and Computational Instrumentation (Madison, WI, USA) (Collins, 2007; Schneider et al., 2012) 
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was used to quantify confluence at the stated time points by calculating the total myoblast area. 

Calculated by using the formula < [(total area of myoblasts in a field)/(total area of the field)](100) >  

(Ren et al., 2008; Ricotti et al., 2011). Ten fields chosen at random were visualized on a DMI6000B 

inverted microscope with the N Plan 10x/0.25na Ph1 objective.  

 

2.1.1 Cell Count 

 

When the flasks reached 80% confluence, the GM was aspirated and the cells were washed twice with 

10 mL of Dulbecco’s phosphate buffered saline 1X (DPBS) to remove any GM components that may 

inhibit the function of disassociation enzymes. The monolayers of cells were then disassociated from 

the flasks using 2 mL of the highly purified, recombinant cell-dissociation TrypLE express enzyme 1X 

and incubating at ATM for 5 minutes. The 2 mL of disassociated cell suspensions were pipetted from 

the flasks into separate 15 mL tubes. The flasks were then separately washed with 8 mL of GM to 

capture any residual cells that may have remained adherent to the flask after disassociation. The 8 mL 

of GM was collected from each flask and added to the corresponding 15 mL tube of C25 or C83, which 

contained the 2 mL of already collect cells. The 8 mL GM, 2 mL TrypPLE cell suspensions of both C25 

and C83 were separately mixed by pipetting the cell suspension up and down in the 15 mL tube 5-10 

times before aliquoting a sample for cell count. Comparison of total viable cells between C25 and C83 

was quantified using established cell count protocols (Phelan and Lawler, 2001). The cells were counted 

by mixing a 1:1 dilution of cell suspension (50 µL) with Trypan Blue, which labels non-viable cells by 

penetrating the membrane and dyeing the cell blue, whereas viable cells remained transparent with a 

white halo around the membrane. The viable cells were counted using established techniques with a 

haemocytometer (Phelan and Lawler, 2001) viewed with an A-Plan 10x / .25 Ph1 objective on the 

Axiovert 40C inverted microscope . The number viable cells/mL of cell suspension was determined using 

the formula: [(Average number of live cells in eight large corner square) (dilution factor) (104)]. For 

example, (50)(2)(10000) = 1x106 cell/mL of suspension, thus a hypothetical 10 mL suspension of 

harvested cells would yield 1x107 cells . Dependant on experimental demands the counted cell 

suspension was either sub-cultured, cryopreserved, or seeded on tissue culture surfaces as required.   
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2.1.2 Subculture 

 

Following cell count, aliquots of cell suspensions containing 1x106 cell were transferred from the tubes 

of counted cells to new 15 mL tubes. A volume of GM needed to bring the total volume of the 

suspensions to 10 mL was added to the new 15 mL tubes of cells. Thus, the new cell suspensions of 

both C25 and C83 would have a concentration of 1x105 cells/mL. The cell suspensions were 

homogenised with the GM in their respective tubes then pipetted into separate T175 flasks and 

incubated at ATM until 80% confluent.  

 

2.1.3 Cryopreservation  

 

Large stocks of cells were generated for storage and retrieval for experimental use when required. Both 

C25 and C83 were continually expanded and sub-cultured as described above to generate cells. Thus, 

the myoblasts retained a low number of passages to ensure fidelity throughout this project. Following 

disassociation and cell count (described in 2.1.1), the 10 mL cell suspensions of C25 and C83 were 

transferred to separate new 50 mL tubes. An equal volume of DPBS was added to the 50 mL tubes, 

diluting and washing the cells within the suspension. The 50 mL tubes was then centrifuged at 300 x g 

for 10 minutes at 23°C. After centrifuging the cells, the supernatants were aspirated from the tubes, 

ensuring the pelleted cells remained undisturbed. The required volume of FBS was added to the 50 mL 

tube to bring the concentration of cells to 1x106 cell/mL, dependant on the cell count before 

centrifugation. The cell pellet was then thoroughly dispersed and homogenised in the FBS via pipetting 

the solution up and down in the tube 10-20X. A volume of 900 µL of the FBS cell suspension was 

pipetted into individual cryovials and 100 µL of DMSO was added to each vial thereafter. Thus, each 

vial contained ~1x106 cells suspended in 90% FBS and 10% DMSO. The vials were then placed into a Mr. 

Frosty freezing container and stored at -80°C for 24 hours. Subsequently, the vials were transferred 

from the -80°C storage freezer to liquid nitrogen tank for long-term storage at -200°C.  
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2.1.4 Differentiation Parameters 

 

Following cell count, a quantity of cells was transferred from the 15 mL tubes of counted cells to new 

50 mL tubes. The number of cells allocated to the 50 mL tubes was dependent on experimental needs. 

The volume of GM necessary to dilute the cells to a concentration of 1.5x105 cells/mL was added to the 

50 mL tubes in preparation for seeding in tissue culture plates. Before plating the cells, 6-well plates 

were pre-coated and dried with 1% gelatin solution for 1 hour. Subsequently, 2 mL of the GM cell 

suspension of both C25 and C83 were separately pipetted into the 6-well plates. Thus, the 

concentration of cells in each well of a 6-well plate was equal to 3x105 cells or expressed as a density 

of 315 cells/mm2. After seeding the cells, the 6-well plates were placed on a levelling plate and 

incubated for 24 hours at ATM, at which point the cells reached ~90-100% confluence. Following 

incubation the GM was aspirated from the wells and the cells were washed twice with 1 mL of DPBS. A 

volume of 2 mL of a simplified complete differentiation media (DM) (Table 2.1) was added to each well 

and the cells were incubated for 96 hours at ATM. 

 

Table 2.1: Complete differentiation media for immortalised human skeletal muscle cell.   

 

Media components Concentration 

Dulbecco’s modified eagle medium (DMEM) 98% (v/v) 
L-glutamine 1% (v/v) 
Penicillin-streptomycin mixture (Pen/Strep) 1% (v/v) 
Insulin 10 μg/mL 
Gentamicin 10 μg/mL 
Plasmocin 25 μg/mL 

 

Immunofluorescence microscopy were used to determine any difference in the proportional decline of 

proliferating cells and to assess the phenotypic differentiation (alignment, elongation and fusion) of 

both the young and old cell lines as they differentiated over 96 hours. The expression of the 

proliferative marker Ki67 (Schonk et al., 1989; Bullwinkel et al., 2006) and the comparison of 

differentiation parameters were measured at 24, 48, 72, and 96 hours. At each time-point, the DM was 

aspirated from the wells and cells were washed twice with 1 mL of DPBS. Cell fixation was then 

performed by incubating the cells in a 500 µL 4% paraformaldehyde solution for 10 minutes at 23°C. 

The paraformaldehyde was then aspirated away and the cells were washed thrice with DPBS, followed 

by cell permeabilisation with a 1X concentration of Prem/Wash buffer (PWB). A volume of 1 mL of PWB 

was added to each well and then incubated for 30 minutes at 23°C. Once permeabilised the PWB was 

removed and the cells were washed once with 1 mL of DPBS. Subsequently, 1 mL of pre-prepared 
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blocking solution consisting of DPBS with 0.2% Triton X-100 (TX100) and 10% goat serum (GS) was 

added to each well and the cells incubated for 1 hour at 23°C. The blocking solution was then removed 

in preparation for primary antibody labelling. A 250-µL antibody diluent solution consisting of DPBS, 

3% GS, 0.05% TWEEN 20, and anti-Ki67 at a dilution of 1:100 was applied to the cells and incubated for 

18-24 hours at 4°C. Next, the primary antibody solution was removed from the wells and the cells were 

washed thrice with DPBS before the addition of fluorescent-labelled secondary antibody conjugates. 

The secondary antibody diluent had a volume of 250 µL and consisting of DPBS, 4′,6-Diamidine-2′-

phenylindole dihydrochloride (DAPI) at a dilution of 1:10000, anti-rabbit Alexa Fluor 568 at a dilution 

1:500, anti-myosin heavy chain (MHC) Alexa Fluor 488 at a dilution 1:500, and phalloidin at a dilution 

1:500 was applied to the cells and incubated for 30 minutes at 23°C. The stained cells were then washed 

a final two times with DPBS and maintained in DPBS thereafter for analysis. Visualisation of stained 

cells was achieved with fluorescence microscopy. ImageJ was used to measure and compare the 

differentiation parameters (Table 2.2) and quantify the percentage of Ki67 expression between both 

the young and old cell lines. Ten random fields of view were assessed for each experiment (n = 5) with 

a HCX PL FLUOTAR L 20X/0.40na CORR objective on the DMI6000B inverted microscope. The data was 

presented as mean with a ± SD of all the counted fields of view in the total number of experiments 

conducted. 

 

Table 2.2: Differentiation parameters (Ren et al., 2008; Ricotti et al., 2011; Grubisic et al., 2014) 

 

Differentiation 
parameters 

Formula 

Myotube area (MA) [(total area of myotubes in a field)/(total area of the field)](100) 
Fusion index (FI) (total number of nuclei per myotube)/(total number of nuclei in the 

field)](100) 
Aspect ratio (AR) (myotube length)/(myotube width) 
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2.1.5 Co-culture 

 

In vitro studies of muscular dysfunction utilising aneurally cultured SkMCs are limited by the lack of a 

nerve component, resulting in limited differentiation and non-contractile myotubes (Delaporte et al., 

1986). For a valid reflection of physiological conditions found in vivo, SkMCs require MN stimulation. 

Accordingly, to overcome the limitations of aneurally cultured SkMCs a novel co-culture model was 

successfully established where functional innervation of myotubes was achieved using spinal cord 

explants (SCEs) from rat embryos (Figure 2.0). 
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Figure 2.0: Timeline of human immortalised myoblasts co-cultured with rat embryo spinal cord 
explants. The time course of co-cultured cells is expressed in days, respective to plating of spinal cord 
explants with differentiating myoblasts. The first spontaneous myotube contractions were observed 
~72 hours post co-culture. The co-cultures were characterised and functionally assessed on Day 14 post 
co-culture. Dorsal root ganglions (DRGs); embryonic development day (ED 13.5). 
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2.1.6 Isolation of Rat Embryo Spinal Cord 

 

The uterine horn was dissected and removed from the sacrificed pregnant rat and transferred to a 

sterile sample collection container, containing Hanks' balanced salt solution (HBSS) with 10% FBS. 

Embryo dissection was carried out under sterile conditions in a biosafety cabinet using a 

stereomicroscope. The uterine horn was transferred to a 150 mm dish and saturated with HBSS plus 

10% FBS. The embryos were individually cleaved from the uterine horn and transferred to a new 150 

mm dish where they were dissected under a stereoscopic microscope using two sterile 40 mm 21-gauge 

hypodermic needles. The embryos were first decapitated, and then the spinal cord was dissected away 

from the main body as one piece. The surrounding connective tissue was removed from the spinal cord, 

ensuring the dorsal root ganglions (DRGs) remain attached. Following removal of connective tissue, the 

isolated spinal cord was transversally sliced into ~1-2 mm3 explants and transferred to a 15 mL tube 

containing HBSS until ready for plating with SkMCs.  

 

2.1.7 Preparation of Skeletal Muscle Cells for Co-culture 

 

Preceding co-culture, 25-year-old immortalised human myoblasts (C25) were disassociated from a pre-

incubated T175 flask and counted (as described in 2.1.1). The cells were then diluted to the desired 

concentration of 1.5x105 cells/mL in GM. The cells were seeded at a density of 315 cells/mm2 by adding 

2 mL of GM cell suspension onto 35 mm glass bottom dishes, which were pre-coated for 1 hour with a 

1 mL solution of DPBS supplemented with 100 µL of growth factor reduced Matrigel. The dishes were 

then incubated for 24 hours at ATM, at which time they reached 90-100% confluence. Following 

incubation, the GM was aspirated and the dishes washed twice with 1 mL of DPBS before the addition 

of 2 mL of DM to each dish. The dishes were then incubated for 24 hours at ATM before adding rat 

embryo SCEs.  

 

2.1.8 Innervation of Skeletal Muscle with Embryonic Rat Motor Neurons 

 

Following 24 hours of incubation with DM, the SkMCs were primed for innervation as they were in the 

initial phases of differentiation, transitioning from myoblast to myocyte, before substantial cell fusion 

and myotube formation occurred. The DM was removed from the dishes and the cells were washed 

twice with 1 mL of DPBS. Then, 750 µL of DM was added to each dish, thinly coating the cells on the 

glass bottom. Between three and six evenly spaced embryonic rat SCEs were placed into each dish then 
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incubated for 6 hour at ATM to allow the explants time to adhere with the SkMCs. Following incubation, 

the SCEs become slightly affixed to the SkMCs, at which time an additional 250 µL of DM was added 

dropwise to each dish to prevent dehydration of the SkMCs and the SCEs. However, adding too much 

DM too quickly or forcefully would not allow the SCEs to remain adherent to the SkMCs, causing SCEs 

to float. The dishes were then incubated for an additional 24 hours at ATM to reinforce unification of 

SCEs with the SkMCs before adding a further 1 ml of DM to each dish, bringing the total volume of DM 

in the dishes to 2 mL. Notably, the SCEs must be plated on the SkMCs after the SkMCs have been 

exposed to DM for 24 hours. As myoblasts fuse into immature myotube between 24 and 48 hours, 

sprouting neurites from the SCEs innervate the fusing myotubes at this stage of development. The co-

cultures were maintained by changing half the DM every 72 hours and incubating at ATM. Live cell 

visualisation and real-time myotube contractions were video-captured at 24 frames per second with 

HCX PL FLUOTAR L 20X/0.40na CORR objective on a DMI6000 B inverted microscope.  

 

2.1.9 Differentiation Parameters: Co-culture 

 

In parallel experiments were conducted to compare the differentiation parameters (Table 2.2) of both 

aneurally cultured and co-cultured myotubes. Preceding assessment of phenotypic differentiation, 

aneurally cultured myoblasts were seeded and differentiated as described in 2.1.4, while co-cultured 

myoblasts were prepared for analysis as described in 2.1.7. The differentiation parameters were 

assessed at 72 hours, when spontaneous myotube contractions were first observed in the co-cultured 

myotubes. Phase contrast microscopy with a Leica DMI6000 B inverted microscope and the ImageJ 

image processing software package were used to quantify the differentiation parameters. Ten random 

fields of view were assessed with the N Plan 10x/0.25na Ph1 objective for each experiment (n = 3). The 

data was presented as a mean ± SD of the total number of fields observed in all experiments conducted. 

 

2.1.10 Disassociation of Rat Embryo Spinal Cord 

 

The efficacy of SCEs to induce myotube contractions and modulate contraction frequency (CF) was 

compared against myoblasts co-cultured with a disassociated rat embryonic spinal cord cell suspension. 

The spinal cord cell suspension was prepared by isolating spinal cords from ED 13.5 rat embryos as 

described in 2.1.6. Individually isolated intact spinal cords were transferred into 15 mL tubes containing 

2 mL of DM. The spinal cord was then mechanically disassociated with a tissue homogenizer to generate 

a 2 mL cell solution of rat embryonic spinal cord cells suspended in DM. Young human immortalised 
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myoblasts were prepared for co-culture as described in 2.1.7. Following 24 of incubation with DM, the 

pre-plated myoblasts were co-cultured with SCEs as described in 2.1.8 or they were co-cultured with 

the 2 mL spinal cord cell suspension. The co-cultured myotubes were observed every 24 hours for 7 

days to compare the initiation and frequency of contractions among the two culture conditions. The 

co-cultured cell dishes were positioned onto an inverted microscope stage, which was enclosed by an 

incubation chamber to maintain atmospheric conditions of 37°C with 5% CO2. Worth mentioning, 

maintaining these conditions during assessment was vital to ensure persistent spontaneous myotube 

contractions, as fluctuations in temperature and atmospheric composition significantly influence 

spontaneous myotube contractions frequency. Following 5 minutes of live observation of 

uninterrupted spontaneous myotube contractile activity, live video analysis was conducted at 24 

frames per second with phase contrast microscopy using the DMI6000 B inverted microscope with an 

N Plan 10x/0.25na Ph1 objective. Myotube CF was expressed as a mean ± SD. 

 

2.1.11 Rat agrin ELISA 

 

In parallel experiments were conducted to compare the concentration of agrin in aneural myotube 

cultures, co-cultured myotubes, and SCE only cultures. Both aneural and co-cultured myoblasts were 

prepared, seeded, and differentiated for 72 hours as described in 2.1.4 and 2.1.7. Similar to co-cultures, 

SCEs only were prepared and plated in 6-well plates pre-coated with a 1% gelatin solution and cultured 

in 2 mL of SkMC DM for 72 hours. Supernatant samples were collected from the three culture 

conditions for assessment using a rat agrin ELISA kit at 72 hour, when spontaneous myotube 

contractions were first observed in the co-cultured myotubes. Preparation of standards and reagents 

in the ELISA kit were completed using manufacturer guidelines. Subsequently 100 μl of standards, 

controls and supernatant samples were added to individually assigned wells of the agrin antibody-

coated ELISA plate. The plate was then sealed to protect from light and incubated for 24 hours at 4°C 

on microplate shaker fixed to 500 rpm. After incubation, the wells were aspirated and the ELISA plate 

was washed four times with 300 µl of wash buffer, followed by inverting the plate and blotting it against 

clean paper towels to remove all residual wash buffer. Next, 100 µl of 1X biotinylated rat agrin detection 

antibody was added to all wells and the plate sealed. The detection antibody was incubated with the 

samples at 23°C for 1 hour on a plate shaker set to 500 rpm. Following incubation, the wells were 

washed four times with 300 µl of wash buffer then 100 µl of 1X HRP-Streptavidin solution was added 

to each well. The plate was sealed and incubated once more at 23°C for 45 minutes on a plate shaker 

set to 500 rpm. Following incubation, the plate was washed again four times with 300 µl of wash buffer. 

A volume of 100 µl of ELISA colorimetric TMB reagent was then added to each well before a final 
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darkened incubation for 30 minutes on the plate shaker set to 500 rpm at 23°C. Subsequently, 50 µl of 

stop solution was added to the wells and absorbance read immediately at 450 nm on the Synergy HT 

microplate reader.  

 

2.1.12 Co-culture Fixation 

 

The co-cultured cells were fixed in their dishes for analysis and characterisation on Day 14 post co-

culture, which was 11 days after persistent spontaneous myotube contractions, though it was possible 

to maintain co-cultures beyond 30 days with regular media changes as described in 2.1.8. The DM was 

aspirated from the dishes and the cells washed thrice with 500 µL of DPBS. The cells were then 

incubated with a 4% paraformaldehyde solution for 12 minutes at 23°C. The paraformaldehyde was 

then removed from the dishes and the cells washed thrice with 500 µL of DPBS. The fixed cells were 

then stored in a DPBS solution for up to 7 days at 4°C. Alternatively, immunocytochemistry (ICC) was 

immediately performed for the evaluation and characterisation of pre- and post-synaptic components 

of neuromuscular junction (NMJ) formation in the co-culture model.  

 

2.1.13 Co-culture Immunocytochemistry  

 

After fixation of co-cultured cells, the cells were incubated with 500 µL of a 1X concentration of PWB 

for 30 minutes at 23°C to permeabilise the cells. Once permeabilised, the PWB was removed from the 

dishes and the cells washed twice with 500 µL of DPBS. A 500-µL volume of blocking solution consisting 

of 0.2% TX100 with 10% GS or donkey serum (DS) was applied to the cells and then incubated for 1 

hour at 23°C, to block unspecific binding of antibodies. The blocking solution was removed after 

incubation and the cells washed once with 500 µL DPBS. A volume of 250 µL of primary antibody diluent 

consisting DPBS, 3% GS or DS, 0.05% TWEEN 20, and the primary antibodies (Table 2.3) was added to 

the cells and incubated for 18-24 hours at 4°C. 
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Table 2.3: Primary antibodies for co-culture. 

 

Antibody Concentration 

Anti-calcium channel L type DHPR alpha 2 subunit (DHPR) 1:100 
Anti-choline acetyltransferase (ChAT) 1:100 
Anti-glial fibrillary acidic protein (GFAP) 1:100 
Anti-muscle-specific kinase (MuSK) 1:100 
Anti-neurofilament H (NFH) 1:100 
Anti-receptor associated protein of the synapse (rapsyn) 1:100 
Anti-ryanodine receptor 1 (RyR) 1:100 
Anti-synaptotagmin (Syt1) 1:100 
Anti-vesicular acetylcholine transporter (VAChT) 1:100 

 

Following primary antibody incubation, the diluent was aspirated from the dishes and the cells were 

washed thrice with 500 µL of DPBS prior to adding the fluorescent-labelled secondary antibodies. A 

secondary antibody diluent consisting of 250 µL DPBS supplemented with DAPI at a dilution of 1:10000 

and the corresponding secondary antibodies (Table 2.4) was added to each dish and incubated in 

darkness for 30 minutes at 23°C. The secondary antibodies were aspirated from the dishes and the 

stained cells were washed a final two times with 500 µL of DPBS and maintained in 1 mL of DPBS during 

analysis. Confirmation of myotube innervation and characterisation of NMJ formation was conducted 

with confocal and immunofluorescence microscopy using a Leica DMI6000 B inverted microscope with 

HCX PL FLUOTAR L 20X/0.40na CORR and N Plan 10x/0.25na Ph1 objectives; and a Leica TCS SP5 

confocal microscope with HCX PL APO 40x 1.25-0.75 Oil CS ∞ and HCX PL APO 63x 1.40-0.60 oil CS ∞ 

objectives. 
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Table 2.4: Secondary antibodies for co-culture. 

 

Antibody Concentration 

Anti-β-3-tubulin Alexa Fluor® 488 conjugate 1:400 
Anti-chicken IgY DyLight® 488 1:400 
Anti-goat IgG Alexa Fluor® 568 1:400 
Anti-MHC Alexa Fluor® 488 conjugate 1:400 
Anti-mouse IgG Alexa Fluor® 555 1:400 
Anti-rabbit IgG Alexa Fluor® 488 1:400 
Anti-rabbit IgG Alexa Fluor® 568 1:400 
α-BTX Alexa Fluor® 647 conjugate 1:400 

 

2.1.14 Quantification of Neuromuscular Junction Morphologies  

 

In parallel experiments were conducted to compare the development of NMJ morphologies in co-

cultured cells in contrast to aneurally cultured myotubes. Innervated and aneural cultures were 

differentiated, fixed, and stained on Day 14 post co-culture with α-bungarotoxin (α-BTX) and DAPI using 

the methods and concentrations detailed above. Distinctive NMJ morphologies were quantified into 

five previously established NMJ morphology development classifications (Valdez et al., 2010; Lee et al., 

2013; Kummer et al., 2004; Sahashi et al., 2012). Specifically, NMJ morphology was classified as mature, 

fragmented, faint, premature or denervated. For each experiment (n = 4), individual wells were 

observed to assess twenty random fields of view for each morphological classification using the Leica 

TCS SP5 confocal microscope with a HCX PL APO 40x 1.25-0.75 Oil CS ∞ objective. For example, twenty 

fields from twenty different wells where assessed to determine the percentage of mature NMJs only, 

a different twenty fields from an alternative twenty wells where assessed to determine the percentage 

of fragmented NMJs only, until all classification were counted. The data was presented as a mean ± SD 

of the total number of all fields observed in all experiments conducted. A minimum of 100 NMJs was 

counted for each morphological classification over all experiments.  

 

2.1.15 Quantification of Transversal Triad Formation 

 

In parallel experiments were conducted to compare the development of transversal triads between co-

cultured and anural myotubes. Innervated and aneural cultures were differentiated, fixed, and stained 

on Day 14 post co-culture for dihydropyridine receptors (DHPR), ryanodine receptors (RyR) and DAPI 

using the methods and concentrations detailed in 2.1.13. Myotubes were considered to have 

appropriate transversal triad formation, which is an indicator of advanced differentiation, when DHPR 
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and RyR staining was organised in an alternating sequence on a minimum of 50% of the myotubes 

length. In each experiment (n = 3), twenty random fields of view from five different plates were 

assessed using a Leica TCS SP5 confocal microscope with a HCX PL APO 63x 1.40-0.60 oil CS ∞ objective, 

to determine the percentage of myotubes displaying transversal triads. The data from all experiments 

was totalled and used to calculate the mean percentage ± SD.  

 

2.1.16 Quantification of Peripheral Myonuclei  

 

In parallel experiments were conducted to compare the positon of myonuclei in co-cultured myotubes 

as opposed to aneurally cultured myotubes, as peripherally located myonuclei are indicators of 

advanced differentiation. Innervated and aneural cultures were differentiated, fixed, and stained on 

Day 14 post co-culture for anti-MHC and DAPI using the methods and concentrations detailed in 2.1.13. 

Myonuclei were considered as peripherally situated if they were observed protruding the myotube 

membrane. In each experiment (n = 3), twenty random fields of view from five different plates were 

assessed using a Leica TCS SP5 confocal microscope with a HCX PL APO 40x 1.25-0.75 oil CS ∞ objective, 

to determine the percentage of myotubes displaying peripherally located myonuclei. The data from all 

experiments was totalled and used to calculate the mean percentage ± SD.  

 

2.1.17 Quantification of Striation Formation  

 

In parallel experiments were conducted to compare the striated myotubes in co-culture against 

aneurally cultured myotubes, as striations are indicators of advanced differentiation. Innervated and 

aneural cultures were differentiated, fixed, and stained on Day 14 post co-culture for anti-MHC and 

DAPI using the methods and concentrations detailed in 2.1.13. Myotubes were considered as striated 

if MHC expression was arranged as alternating banding on a minimum of 50% of the myotubes length. 

In each experiment (n = 3), twenty random fields of view from five different plates were assessed using 

a Leica TCS SP5 confocal microscope with a HCX PL APO 40x 1.25-0.75 oil CS ∞ objective, to determine 

the percentage of myotubes with striation formation. The data from all experiments was totalled and 

used to calculate the mean percentage ± SD. 
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2.1.18 Quantification of Myotube Thickness 

 

In parallel experiments were conducted to compare the thickness of myotubes in co-culture to 

aneurally cultured myotubes. Innervated and aneural cultures were differentiated, fixed, and stained 

on Day 14 post co-culture for anti-MHC and DAPI using the methods and concentrations detailed in 

2.1.13. Phase contrast microscopy with a Leica DMI6000 B inverted microscope and the ImageJ image 

processing software package were used to quantify the myotube thickness. In each experiment (n = 3), 

twenty random fields of view from five different plates were assessed using the HCX PL FLUOTAR L 

20X/0.40na CORR objective, to measure and compare the thickness of innervated and aneural 

myotubes. The data from all experiments was totalled and used to calculate the mean myotube 

thickness ± SD. 

 

2.1.19 NMJ Functionality Assessed via Measuring Spontaneous Contractions 

 

Co-cultures were functionally evaluated to validate the formation NMJs via live phase contrast video 

analysis of myotube CF in response to agonist/antagonist treatments (Table 2.5). On Day 14, the co-

cultured cell dishes were positioned onto an inverted microscope stage, which was enclosed by an 

incubation chamber to maintain atmospheric conditions of 37°C with 5% CO2. Following 5 minutes of 

live observation of uninterrupted spontaneous myotube contractile activity, the co-cultures were 

treated with cholinergic antagonists to block AChRs at the NMJ.  

 

Table 2.5: Treatments to inhibit or augment myotube contraction frequency via NMJ signal 
transmission. 

 

Drug Concentration 

1(S),9(R)-(−)-Bicuculline methiodide 10 µM 
γ-Aminobutyric acid (GABA) 1 mM 
L-Glutamic acid (L-Glut) 400 µM 
(+)-Tubocurarine chloride pentahydrate 8 µM 
α-Bungarotoxin (α-BTX) 1:400 

 

The co-cultures were also treated with the glutamatergic and γ-aminobutyric acid (GABA) receptor 

agonists to stimulate glutamate and GABA receptors on the motor neurons (MNs). The specified 

concentrations where selected based on previously established studies (Das et al., 2007; Guo et al., 

2011; Morimoto et al., 2013; Borodinsky and Spitzer, 2007). The myotube CF was measured 30 seconds 

before the application of the treatments to the cells, to establish a baseline spontaneous CF. 
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Subsequently, agonist or antagonist treatments were added to the dishes at the centre of the field of 

view. Modulation of CF was measured immediately upon application of the treatment to the cells. Live 

measurement of CF in response to treatment were also conducted again after 1 minute, 2 minutes, 5 

minutes, 10 minutes, 30 minutes and 1 hour. Following 1 hour after treatment, the cells were washed 

thrice with 500 µL of DPBS then fresh untreated DM was added to the cells. The dishes were placed 

back onto the microscope stage in the incubation chamber and CF was immediately measured again 

following the washout and resupply of DM. The CF was measured once again at 1 hour 30 minutes and 

24 hours after the initial treatments. In each experiment (n = 5), live video analysis of twenty random 

fields from one 6-well plate was conducted at 24 frames per second with phase contrast microscopy 

using the DMI6000 B inverted microscope with an N Plan 10x/0.25na Ph1 objective. The data from all 

experiments was totalled and used to calculate the myotube CF, which was expressed as a mean of all 

experiments ± SD. 

 

2.1.20 Human Growth Factor Array 

 

In parallel experiments were conducted to compare the concentration of 40 human growth factors 

(Table 2.6) in aneural myotube cultures and co-cultured myotubes. Both aneural and co-cultured 

myoblasts were prepared, seeded, and differentiated for 7 days as described above. Supernatant 

samples were collected from both conditions for assessment using a human growth factor array kit on 

day 7, when spontaneous myotube contractions were first observed contracting in unison as a motor 

unit. Preparation of standards and reagents in the array kit were completed using manufacturer 

guidelines. Subsequently, 100 μl of sample diluent from the array kit was added to each well and 

incubated at 23°C for 30 minutes to block slides. The wells were then decanted and 100 μl of standards, 

controls and supernatant samples were added to the individually assigned wells. The slides were sealed 

and incubated for 24 hours at 4°C on microplate shaker fixed to 500 rpm. Following incubation, the 

samples were decanted from the wells and the slides were washed 5 times for 5 minutes each time 

with 150 μl of 1X wash buffer 1, then washed 2 times for 5 minutes each time with 150 μl of 1X wash 

buffer 2. Next, 80 μl of detection antibody cocktail was added to each well and the slides incubated for 

1.5 hours at 23°C. The detection antibody cocktail was aspirated from the wells and the wash steps 

with wash buffer 1 and wash buffer 2 were repeated once again. After washing slides, 80 μl of Cy3 

equivalent dye-conjugated streptavidin was added to each well then sealed and incubated in darkness 

for 1 hour at 23°C. Following incubation, the wash steps were repeated once again. The slides were 

then separated from the well gaskets and placed into the provided slide washer/dryer tube. The tube 

was then filled with 30 mL of 1X wash buffer 1 to completely cover the slides and shaken gently for 15 
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minutes. The 1X wash buffer 1 was removed from the tube and 30 mL of 1X wash buffer 2 was added 

to completely cover the slides and gently shaken for 5 minutes. The slides were removed from the 

washer/dryer tube and dried with compressed air to remove residual buffer solution. Subsequently, 

the array was visualised with a GenePix 4000B laser scanner at 532nm wavelength. Raw data from the 

visualised array images was generated and processed with the GenePix Pro 4.1 Microarray Acquisition 

& Analysis Software, further statistical analysis of the data was performed with the RayBiotech Q-

Analyzer® tool Software for QAH-GF-1. 
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Table 2.6: Descriptions of the human growth factors and neurotrophins quantified in aneural myotube 

cultures and co-cultured myotube supernatant. 

 

 
 

2.1.21 Statistical Analysis 

 

The results presented from the experimental outcomes of this work are representative of a minimum 

of three independent experiments. Results were analysed using GraphPad Prism v6.05 statistical 

analysis software. Data was expressed as mean plus/minus standard deviation (± SD). Statistical 

differences were analysed with unpaired t test or one-way ANOVA with Tukey correction for multiple 

comparison test as appropriate. Statistical significance was accepted if P < 0.05.  

 

 

Amphiregulin (AR) (Colorectum cell-derived growth factor) (CRDGF)

Brain-derived neurotrophic factor (BDNF) (Abrineurin)

Fibroblast growth factor 2 (FGF-2) (Basic fibroblast growth factor) (bFGF) (Heparin-binding growth factor 2) (HBGF-2)

Bone morphogenetic protein 4 (BMP-4) (Bone morphogenetic protein 2B) (BMP-2B)

Bone morphogenetic protein 5 (BMP-5)

Bone morphogenetic protein 7 (BMP-7) (Osteogenic protein 1) (OP-1) (Eptotermin alfa)

Beta-nerve growth factor (Beta-NGF)

Pro-epidermal growth factor (EGF) [Cleaved into: Epidermal growth factor (Urogastrone)]

Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1)

Prokineticin-1 (Endocrine-gland-derived vascular endothelial growth factor) (EG-VEGF) (Mambakine)

Fibroblast growth factor 4 (FGF-4) (Heparin secretory-transforming protein 1) (HST) (HST-1) (HSTF-1) (Heparin-binding growth factor 4) (HBGF-4) (Transforming protein KS3)

Fibroblast growth factor 7 (FGF-7) (Heparin-binding growth factor 7) (HBGF-7) (Keratinocyte growth factor)

Growth/differentiation factor 15 (GDF-15) (Macrophage inhibitory cytokine 1) (MIC-1) (NSAID-activated gene 1 protein) (NAG-1) (NSAID-regulated gene 1 protein) (NRG-1) 

Glial cell line-derived neurotrophic factor (hGDNF) (Astrocyte-derived trophic factor) (ATF)

Somatotropin (Growth hormone) (GH) (GH-N) (Growth hormone 1) (Pituitary growth hormone)

Proheparin-binding EGF-like growth factor [Cleaved into: Heparin-binding EGF-like growth factor (HB-EGF) (HBEGF) (Diphtheria toxin receptor) (DT-R)]

Hepatocyte growth factor (Hepatopoietin-A) (Scatter factor) (SF) [Cleaved into: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain]

Insulin-like growth factor-binding protein 1 (IBP-1) (IGF-binding protein 1) (IGFBP-1) (Placental protein 12) (PP12)

Insulin-like growth factor-binding protein 2 (IBP-2) (IGF-binding protein 2) (IGFBP-2)

Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3)

Insulin-like growth factor-binding protein 4 (IBP-4) (IGF-binding protein 4) (IGFBP-4)

Insulin-like growth factor-binding protein 6 (IBP-6) (IGF-binding protein 6) (IGFBP-6)

Insulin-like growth factor I (IGF-I) (Mechano growth factor) (MGF) (Somatomedin-C)

Insulin [Cleaved into: Insulin B chain; Insulin A chain]

Macrophage colony-stimulating factor 1 receptor (CSF-1 receptor) (CSF-1-R) (CSF-1R) (M-CSF-R) (EC 2.7.10.1) (Proto-oncogene c-Fms) (CD antigen CD115)

Tumor necrosis factor receptor superfamily member 16 (Gp80-LNGFR) (Low affinity neurotrophin receptor p75NTR) (Low-affinity nerve growth factor receptor) (NGF receptor) (p75 ICD) 

Neurotrophin-3 (NT-3) (HDNF) (Nerve growth factor 2) (NGF-2) (Neurotrophic factor)

Neurotrophin-4 (NT-4) (Neurotrophin-5) (NT-5) (Neutrophic factor 4)

Tumor necrosis factor receptor superfamily member 11B (Osteoclastogenesis inhibitory factor) (Osteoprotegerin)

Platelet-derived growth factor subunit A (PDGF subunit A) (PDGF-1) (Platelet-derived growth factor A chain) (Platelet-derived growth factor alpha polypeptide)

Placenta growth factor (PlGF)

Kit ligand (Mast cell growth factor) (MGF) (Stem cell factor) (SCF) (c-Kit ligand) [Cleaved into: Soluble KIT ligand (sKITLG)]

Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) 

Protransforming growth factor alpha [Cleaved into: Transforming growth factor alpha (TGF-alpha) (EGF-like TGF) (ETGF) (TGF type 1)]

Transforming growth factor beta-1 (TGF-beta-1) [Cleaved into: Latency-associated peptide (LAP)]

Transforming growth factor beta-3 (TGF-beta-3) [Cleaved into: Latency-associated peptide (LAP)]

Vascular endothelial growth factor A (VEGF-A) (Vascular permeability factor) (VPF)

Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) 

Vascular endothelial growth factor receptor 3 (VEGFR-3) (EC 2.7.10.1) (Fms-like tyrosine kinase 4) (FLT-4) (Tyrosine-protein kinase receptor FLT4)

Vascular endothelial growth factor D (VEGF-D) (c-Fos-induced growth factor) (FIGF)
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Chapter 3: Proliferation and Differentiation of Young and Old 

Immortalised Human Myoblasts. 

 

3.0 Background 

 

3.0.0 Introduction  

 

The persistent mechanical forces produced by skeletal muscle (SkM) and its corresponding cellular and 

metabolic functions place it at a relatively high risk for injury or damage. This risk is further exacerbated 

by disuse-associated deconditioning, muscle disease, and aging. Although SkM has a remarkable 

capacity for repair and self-renewal, a reduction in functional capacity along with the progressive loss 

of SkM mass manifest in a range of conditions. From simple disuse-induced physiological atrophy, to 

muscular dystrophies (e.g. Duchenne muscular dystrophy), MN conditions (e.g. amyotrophic lateral 

sclerosis), metabolic muscle disorders (e.g. acid maltase deficiency), conditions of the peripheral nerve 

(e.g. Friedreich’s ataxia) NMJ diseases (e.g. myasthenia gravis), neuromuscular myopathies (e.g. 

myotonia congenita), as well as the pathophysiological effects of aging, diabetic neuropathy and 

myopathy, cancer cachexia and heart failure.   

Muscle loss and compromised muscle function are traits universally witnessed in aging mammals. As 

aging occurs, considerable reductions in the regenerative capability of SkM is witnessed. A 1–2% annual 

muscle loss after the age of 50 years old is considered normal human ageing  (Kim and Choi, 2013; 

Kaasik et al., 2012), with those over the age of 80 years old losing upwards of 40% of their SkM mass. 

(McPhee et al., 2013). This progressive age-linked decline of SkM mass, quality, and function is termed 

sarcopenia (Dodds et al., 2015). The advancing loss of SkM also results in remodelling of the muscle 

with increasing connective and adipose tissue (Crane et al., 2010). The underlying mechanisms 

responsible for sarcopenia remain unclear. However, dysregulation of metabolic and hormonal factors, 

along with alterations to the immune system and inflammatory responses, as well as reduced SkM 

protein synthesis in response to nutrient and physical activity stimulus are all considered candidates 

contributing to the development of sarcopenia (Degens, 2010). It has also been indicated that age-

linked reduction in satellite cell (SC) concentration and activation attenuates self-repair of muscle after 

damage induced through physical activity, possibly promoting sarcopenia (Brooks and Faulkner, 1990). 

Typical disuse-induced atrophy of SkM is entirely a consequence of decreased myofibre size, whereas 

SkM loss observed in elderly individuals presenting with sarcopenia have reduced myofibre size along 
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with a reduction in the number of myofibres (Machida and Booth, 2004). Alterations to myofibre 

phenotype are also apparent, predominantly a decrease in fast-twitch (type II) myofibre size and 

number is witnessed (Nilwik et al., 2013), resulting in a muscle composition with greater quantities of 

slow-twitch (type I) myofibres (Gannon et al., 2009). Along with a transitioning fast-to-slow twitch 

myofibre phenotype, dysregulation of motor neuron (MN) denervation and reinnervation leads to an 

increasing net deficit of MN units (Drey et al., 2014). Moreover, aging produces deviations in the 

microenvironment of regenerating SkM, potentially contributing to further reductions in regenerative 

potential of ageing SCs (Dhawan and Rando, 2005). The maintenance and self-reparative capability of 

SkM is implemented through the actions of SCs (Lepper et al., 2011). Thus, the fundamental issue of 

whether SCs from old or young individuals diverge in their intrinsic myogenic function requires 

elucidation.  

To resolve the problem, experiments in this study were conducted by utilising SCs originating from 

young or old SkM to compare the in vitro responses of activated SCs (i.e. myoblasts) when examined 

under standardised conditions. The origin of the immortalised human skeletal muscle cell (SkMC) lines 

used in this study were generated from young myoblasts obtained from a healthy 25-year-old male and 

old myoblasts from a healthy 83-year-old male. Thus, the myoblasts used in this study differ in age by 

roughly six decades. The proliferative capacity, progression of myotube differentiation, and expression 

of proteins indicative of proliferation and differentiation were examined and compared to establish 

any differences in intrinsic myogenic behaviour among young and old myoblasts.  

 

3.0.1 Aims 

 

The hypothesis is immortalised myoblasts originating from young muscle differ in their intrinsic 

myogenic behaviour compared to immortalised myoblasts derived from old muscle. Thus, the aims are: 

 

1. Characterise and compare young and old immortalised human myoblast proliferation. 

 

2. Generate culture conditions for functional differentiation studies of young and old 

immortalised myoblasts. 

 

3. Assess old and young myoblast-to-myotube differentiation in culture.  
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3.1 Results 

 

3.1.0 Myoblast Revival  

 

Two new human SkM cell lines were used for this project, which were not previously employed or 

established in our laboratory (as described in 2.0.0). Therefore, optimisation of culture conditions, such 

as seeding conditions, seeding density, and differentiation conditions were required before further 

studies could be conducted. Individual vials of 25-year-old immortalised human myoblasts (C25) and 

83-year-old immortalised human myoblasts (C83) containing ~1x106 cryogenically preserved cells were 

retrieved from liquid nitrogen storage to compare cellular revival rates between old and young 

myoblasts following cellular passaging by quantifying the differences in adherent cells. Prior to seeding 

the revived cells (as described in 2.1.0), a cell count was performed (as described in 2.1.1) to establish 

a baseline seeding concentration. Following 24 hours incubation with growth media (GM) (Table 2.0), 

both C25 and C83 cells were collected from their respective flasks and counted to determine the 

percentage of adherent cells after seeding. The results showed that there was no significant difference 

(p = 0.31) in the number of baseline seeded cells between C25 (1.08x106 ± 6.1x105 cells) and C83 

(1.11x106 ± 7.5x105 cells) (Figure 3.0). There was also no significant difference (p = 0.97) between the 

number adherent C25 (7.7x105 ± 8x104) and C83 (7.8 ± 9x104) following 24 hours of being seeded in 

GM. However, a significant reduction (P <  0.0001) in the number of adherent cells 24 hours after being 

seeded in GM was observed in both cell lines. There was a 28.4% decrease in the number of adherent 

C25 compared to the number of cells seeded. Similarly, a 30% reduction in the number of adherent C83 

compared to the number of cells seeded was also observed. Thus, indicating a non-significant 1.6% 

difference in revival rate of C25 and C83 following cryogenic passaging of cells.  
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Figure 3.0: Myoblast revival after cryogenic passage. Comparison of the number adherent young and 
old myoblasts to the number seeded following 24 hours of incubation in growth media. Data quantified 
by counting cells in 10 random fields of view from 3 separate wells on each cell culture plate. Data 
presented as a mean, error bars signify ± SD.  n = 4 independent experiments. **** denotes P < 0.0001. 
25-year-old immortalised human myoblasts (C25); 83-year-old immortalised human myoblasts (C83). 
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3.1.1 Myoblast Proliferation 

 

Upon determining no differences between the revival of old and young immortalised myoblasts 

following cryogenic passaging of the cells, the ensuing experiment set out to ascertain any differences 

in  the rate of proliferation between the two cell lines. The cells were seeded in T175 flask as described 

in 2.1.1 and confluence was quantified by calculating the myoblast area of both C25 and C83 (Figure 

3.1). At 24 hours there was no significant difference (P = 0.058), as the myoblast area was 9.1% ± 1.4 

for the young cell line, where as the old cells had a myoblast area of 10.2% ± 1. After 48 hours the 

myoblast area of young proliferating myoblasts was 19% ± 1.5, while old myoblasts had a non-

significantly (P = 0.067) different myoblast area of 20.3% ± 1.4. At 72 hours, the myoblast area of young 

cells had expanded to 50.8% ± 2.3 and the old myoblasts increased to 49.1% ± 1.2, though the 

difference was insignificant as P = 0.063. Similarly, at 96 hours there was no significant difference (P = 

0.066). The proliferating young myoblasts had grown to cover an area of 88.5% ± 1.7, with old 

myoblasts covering a comparable area of 90% ± 1.6.  
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Figure 3.1: Young and old myoblast proliferation. a) The top row of panels are phase contrast images 
representative of young myoblast proliferation. The bottom row of panels are phase contrast images 
representative of old myoblast proliferation. b) A line graph showing the difference in proliferation 
rates between the two cells lines at 24, 48, 72, and 96 hours, quantified as myoblast area. Data 
presented as a mean, error bars signify ± SD.  n = 5 independent experiments. 25-year-old immortalised 
human myoblasts (C25); 83-year-old immortalised human myoblasts (C83). Bar = 100 μm. 
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3.1.2 Myoblast Viability 

 

Both young and old myoblasts were cultured for 96 hrs in T175 flasks at a seeding concentration of 

~1x106 cell in GM, at which point confluence of both C25 and C83 reached ~80-90%. The cells were 

collected and counted to determine any discrepancy in the total number of viable cells after 96 hours 

of proliferation. The results revealed there was no significant difference (P = 0.112) in total number of 

young viable myoblasts (C25 = 7.91x106 ± 6.2x105) compared to the total number of old viable 

myoblasts (C83 = 7.46x106 ± 3.3x105) after 96 hours of proliferation (Figure 3.2).   
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Figure 3.2: Total viable myoblasts. Comparison of the total number of young viable myoblasts to the 
number of old viable myoblasts following 96 hours of incubation in growth media. Data presented as a 
mean, error bars signify ± SD.  n = 3 independent experiments. 25-year-old immortalised human 
myoblasts (C25); 83-year-old immortalised human myoblasts (C83). 
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3.1.3 Optimisation of Myoblast Seeding Density 

 

Before functional studies of myoblast differentiation and development could be conducted, the density 

of myoblasts must be adequately concentrated to allow for cell-to-cell contact. Thus, to achieve an 

optimal cell density of ~90-100% confluence after 24 hours of being seeded in GM, four concentrations 

of C25 and C83 were concurrently cultured in 6-well plates pre-coated with a 1% gelatin solution (as 

described in 2.1.1). The myoblasts were seeded at 5x104 (C1), 1x105 (C2), 1.5x105 (C3), or 2x105 (C4) 

cells/mL. Phase contrast microscopy was used to assess 20 random fields of view at 10X magnification 

and ImageJ software was used to process the images and quantify confluence after 24 hrs by calculating 

the total myoblast area. The myoblast area was calculated for each seeding density to determine the 

percentage of confluence. For C25 the results showed C1 = 50.2% ± 4.3, C2 = 74.9% ± 2.4, C3 = 92.9% ± 

2.5, and C4 = >100%. Similarly, for C83 the results were C1 = 49.9% ± 4.1, C2 = 75.4% ± 2.1, C3 = 95.1% 

± 3.5, and C4 = >100% (Figure 3.3). A concentration of 1.5x105 cell/mL was established as the optimal 

seeding cell density for functional studies in both cell lines. Although the concentration of 2x105 cell/mL 

presented as 100% confluent after 24 hours, the cells were over confluent resulting in abnormal 

morphology and excessive cell detachment from the culture surface and death in both cell lines. 
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Figure 3.3: Optimal cell density for differentiation. a) The left panel is representative of young 
myoblast after 24 hours of being seeded at a density of 1.5x105 cell/mL. The right panel is 
representative of old myoblasts after 24 hours of being seeded at a density of 1.5x105 cell/mL. b) A 
graph showing the difference in confluence between the two cells lines 24 hours after being seeded at 
a density of 5x104, 1x105, 1.5x105, or 2x105 cells/mL, quantified as myoblast area. Data presented as a 
mean, error bars signify ± SD.  n = 3 independent experiments. 25-year-old immortalised human 
myoblasts (C25); 83-year-old immortalised human myoblasts (C83). Bar = 100 μm. 
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3.1.4 Optimisation of Differentiation Media 

 

To achieve optimal differentiation of myoblasts to myotubes in both C25 and C83 cell lines, the 

efficiency of the in-house DM formulation (DM1) (Table 2.1) was compared to the commercially 

available ‘low-serum cell culture medium for differentiation of skeletal muscle cells’ manufactured by 

PromoCell (DM2). The DM1 was also compared with the previously established in-house differentiation 

media for mouse myoblast (C2C12 cell line) differentiation in our laboratory. The C2C12 differentiation 

media (DM3) consisted of 96% Dulbecco’s modified eagle medium (DMEM), 2% horse serum (HS), 1% 

penicillin-streptomycin (Pen/Strep), and 1% L-glutamine. Optimal differentiation was quantified by 

using phase contrast and immunofluorescence microscopy to assess 20 random fields of view at 10X 

magnification and ImageJ was utilised to calculate the fusion index (FI) (Table 2.2).After 24 hours of 

exposure to DM1, DM2, or DM3, cellular fusion was imperceptible in both C25 and C83. After 48 hours, 

the first instances of multinucleated cells (cells with > 2 nuclei) were discernible in both young and old 

cell lines. Thus, FI was quantified 48 hours after the application of the DM formulations to C25 and C83. 

The DM formulation exhibiting the highest percentage of FI in both young and old SkMC lines after 48 

hours was established as optimal for functional studies. The DM1 formulation exhibited the largest 

percentage of FI in C25 with 69.7% ± 2.8 (Figure 3.4). The DM2 displayed a slightly lower, though 

insignificantly different FI percentage of 68% ± 6.3. The C25 cells exposed to DM3 had a FI percentage 

of 55.9% ± 5.8, which was significantly less (P < 0.0001) than both DM1 and DM2. Similarly, DM1 

prompted a FI of 71.75% ± 3.5 in C83 after 48 hours (Figure 3.5). The C83 cells exposed to DM2 also 

had a slightly reduced yet insignificantly different FI of 69.3% ± 3. There was also a significant reduction 

(P < 0.0001) in the FI percentage (56.8% ± 6.7) of C83 after 48 hours of incubation with DM3 compared 

to both DM1 and DM2. 
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Figure 3.4: Optimal differentiation of young myoblasts. a) Image panels are representative of young 
immortalised human myoblasts treated with in-house differentiation media formulation (DM1), 
commercial differentiation media formulation by PromoCell (DM2), or in-house C2C12 differentiation 
media (DM3). The cells were stained for actin with phalloidin (red), differentiated cells with anti-myosin 
heavy chain (green), and nuclei with DAPI (blue). b) Comparison of the percentage of cellular fusion in 
young myoblast when incubated with DM1, DM2, or DM3 after 48 hours. Data presented as a mean, 
error bars signify ± SD.  n = 3 independent experiments. **** denotes P < 0.0001. Bar = 75 µm. 25-year-
old immortalised human myoblasts (C25). 
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Figure 3.5: Optimal differentiation of old myoblasts. a) Image panels are representative of old 
immortalised human myoblasts treated with in-house differentiation media formulation (DM1), 
commercial differentiation media formulation by PromoCell (DM2), or in-house C2C12 differentiation 
media (DM3). The cells were stained for actin with phalloidin (red), differentiated cells with anti-myosin 
heavy chain (green), and nuclei with DAPI (blue). b) Comparison of the percentage of cellular fusion in 
old myoblast when incubated with DM1, DM2, or DM3 after 48 hours. Data presented as a mean, error 
bars signify ± SD.  n = 3 independent experiments. **** denotes P < 0.0001. Bar = 75 µm. 83-year-old 
immortalised human myoblasts (C83). 
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3.1.5 Differentiation Parameters 

 

To determine if there were any significant differences in the differentiation of young myoblasts to 

myocytes and ultimately myotubes compared to the differentiation of old myoblast, the differentiation 

parameters were calculated using the methods described in 2.1.4 (Table 2.2). Quantification was 

conducted using phase contrast and immunofluorescence microscopy to assess 20 random fields of 

view at 20X magnification and ImageJ was utilised to process the myotube area (MA), FI, and aspect 

ratio (AR) of both cell lines. There was no measurable difference in the differentiation parameters 

between C25 and C83 at 24 hours. Both young and old cell lines exhibited morphology consistent with 

mononucleated myoblasts and myocytes. Thus, the criteria for FI (>2 nuclei per cell), MA, and AR were 

not met, since there was no measurable myotube formation at 24 hours. After 48 hours, there was no 

significant difference (P = 0.09) in the FI of C25 (69.7% ± 3.2) and C83 (67.9% ± 3.3). After 72 hours the 

FI of C25 was 70.1% ± 5.1 with C83 being non-significantly (P = 0.07) higher at 72.8% ± 4.1. Similarly, 

there was no difference (P = 0.16) after 96 hours as the FI of C25 was 83% ± 4.1 and C83 at 84.7% ± 3.3 

(Figure 3.6b). The results of MA comparison at 48 hours between C25 (49.5% ± 4.2) and C83 (50.2% ± 

4.9) revealed no significant difference (P = 0.63). When measured at 72 hours, the MA of C25 was 58.5% 

± 4.2 while the MA of C83 was insignificantly (P = 0.38) higher at 60% ± 4.3. After 96 hours, the MA of 

C25 was measured at 72.4% ± 4.1 and C83 was 70.3% ± 4.4, though the difference was insignificant (P 

= 0.12) (Figure 3.6c). Finally, the AR was compared amongst the cell lines. At 48 hours, the AR was not 

significantly different (P = 0.34) between C25 (20.1 ± 8) and C83 (17.8 ± 7.4). After 72 hours, the AR of 

C25 was 15.4 ± 5.8 and C83 measured at an insignificantly different (P = 0.57) 16.7 ± 8.3. Similarly, there 

was no difference (P = 0.14) after 96 hours as the AR of C25 was 18.5 ± 7.4 and C83 was 14.8 ± 7.8 

(Figure 3.6d).  
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Figure 3.6: Differentiation parameters of young and old myoblasts. a) The upper row of images are 
representative of young myotube morphology during differentiation at 48, 72, and 96 hours. The lower 
row of images are representative of old myotube morphology during differentiation at 48, 72, and 96 
hours. The cells were stained for actin with phalloidin (red), differentiated cells with anti-myosin heavy 
chain (green), and nuclei with DAPI (blue). b) Comparison of the percentage of cellular fusion in old and 
young myoblasts incubated with differentiation media at 48, 72, and 96 hours. c) Comparison of 
myotube area between old and young differentiated myotubes at 48, 72, and 96 hours. d) Comparison 
of aspect ratio at 48, 72, and 96 hours amongst young and old myotubes. Data presented as a mean, 
error bars signify ± SD. n = 5 independent experiments. Bar = 25 µm. 25-year-old immortalised human 
myoblasts (C25); 83-year-old immortalised human myoblasts (C83).  
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3.1.6 Proliferation & Differentiation Marker Expression 

 

Protein expression was assessed to identify the differences in the proportional decline of proliferative 

myoblasts and the upregulation of differentiating myotubes during the preliminary stages of young and 

old myoblasts differentiation. The expression of the proliferative antigen Ki67 (Scholzen and Gerdes, 

2000), which is strictly associated with cell proliferation and is only present during the active phases of 

the cell cycle (i.e. G1, S, G2 and M), and absent in resting cells (G0) (Hooghe et al., 2008; Shirendeb et 

al., 2009), was used as a the marker of proliferation in the skeletal muscle cells (SkMCs).  Declines in 

Ki67 levels occur in later phases of mitosis (during anaphase and telophase) (Modlin et al., 2008). Thus, 

Ki67 expression is associated with the proliferative activity of intrinsic cell populations. Using the 

methods detailed in 2.1.4, the expression of Ki67 and the expression of myosin heavy chain (MHC), a 

marker of terminal differentiation in SkMCs (Schiaffino et al., 1986), were quantified and compared at 

24, 48, 72, and 96 hours after cultured C25 and C83 were switched from GM to DM. 

Immunofluorescence microscopy was used to assess 20 random fields of view at 20X magnification. 

ImageJ was used to calculate the percentage of Ki67 expression and the percentage of MHC expression 

in both cell lines. Following 24 hours exposure to DM, 69.5% ± 6.6 of young myoblasts were positive 

for Ki67 (Figure 3.7) and devoid of any MHC expression. Expression of Ki67 in old myoblasts was similar 

(P = 0.65) at 70.4% ± 6.2 with no MHC expression as seen in the young myoblasts. After 48 hours, C25 

expression of Ki67 decreased to 29.7% ± 6.6. A similar decrease (P = 0.57) was observed in C83, which 

decreased Ki67 expression to 31% ± 6.1. The expression of MHC had increased to 49.3% ± 3.6 in young 

cells and 51.2% ± 4.3 in old cell (Figure 3.8), though this difference was insignificant (P = 0.15). Following 

72 hours of incubation with DM, expression of Ki67 in young cells decreased further to 2.6% ± 1.2. 

Expression of Ki67 also decreased in old cells to 2.8% ± 1.1, though this difference was insignificant (P 

= 0.58). An insignificant difference (P = 0.08) in MHC expression was also observed between the cell 

lines after 72 hours. Young cells increased MHC expression to 61% ± 4.3, while old cells expressed MHC 

at a similar 63.6% ± 4.8. Following 96 hours of DM exposure, the expression of Ki67 was measured at 

0.5% ± 0.3 in the young cells and a similar (P =0.6) 0.41% ± 0.3 in old cells. There was also no significant 

difference (P = 0.31) in the expression of MHC between the cell lines. As C25 expressed MHC at 79% ± 

5 and C83 expression of MHC was 77.3% ± 5.7.  
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Figure 3.7: Expression of proliferation marker Ki67. a) The upper image panels are representative of 
Ki67 expression in young myoblasts as they differentiate to myotubes at 24, 48, 72, and 96 hours after 
exposure to differentiation media. The lower row of images are representative of Ki67 expression in 
old myoblasts as they differentiate to myotubes at 24, 48, 72, and 96 hours after exposure to 
differentiation media. The cells were stained for Ki67 (red). b) A line graph showing the percentage of 
cells positive for Ki67 between both cell lines at 24, 48, 72, and 96 hours. Data presented as a mean, 
error bars signify ± SD. n = 4 independent experiments. Bar = 50 µm. 25-year-old immortalised human 
myoblasts (C25); 83-year-old immortalised human myoblasts (C83). 
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Figure 3.8: Expression of differentiation marker myosin heavy chain. a) The upper image panels are 
representative of myosin heavy chain (MHC) expression in young myoblasts as they differentiate to 
myotubes at 24, 48, 72, and 96 hours after exposure to differentiation media. The lower row of images 
are representative of MHC expression in old myoblasts as they differentiate to myotubes at 24, 48, 72, 
and 96 hours after exposure to differentiation media. The differentiated cells with anti-myosin heavy 
chain (green), and nuclei with DAPI (blue). b) A line graph showing the percentage of cells positive for 
MHC between both cell lines at 24, 48, 72, and 96 hours. Data presented as a mean, error bars signify 
± SD. n = 4 independent experiments. Bar = 50 µm. 25-year-old immortalised human myoblasts (C25); 
83-year-old immortalised human myoblasts (C83). 
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3.2 Discussion  

 

The primary findings of this research demonstrated that immortalised human myoblasts originating 

from old or young muscle did not influence their in vitro function when cultured in matching 

microenvironments. This was determined through the analysis of various experiments including cellular 

passage of myoblasts, myoblast proliferation and differentiation, as well as the expression of markers 

demonstrating proliferative and differentiation capacity in young and old myoblasts. The passaging and 

revival of both young and old myoblasts from cryogenic suspension resulted in a net loss of viable cells 

that were able to adhere to the tissue culture surface and begin the process of proliferation. Although 

there was a significant loss of cells from the quantity seeded to the number that adhered when 

passaging cells, the numbers of myoblasts that were able to adhere and begin proliferating did not 

differ between the old and young cell lines. As serial passaging is unavoidably necessary for in vitro 

investigations of SkM formation and development, experiments moving forward were conducted with 

old and young myoblasts passaged an equal number of times to nullify any passage-induced variability 

among the cell lines. Various studies and subsequent cell line handling and utilisation guidelines have 

shown that serial passaging of cell lines can induce alterations in cell morphology and function 

(Geraghty et al., 2014). The C2C12 mouse myoblast cell line, which is one of the most commonly used 

cell line for in vitro investigations of SkM, has been shown to have dysfunctional apoptotic response 

when excessively serial passaged (Pronsato et al., 2013). This phenotypic drift may lead to the same 

cell line differing significantly between researchers and laboratories, making it difficult to distinguish 

between experimental treatments and intrinsic cellular mechanisms. Thus, to mitigate any unintended 

comparable morphological and functional changes in the two human immortalised SkMC lines used 

throughout this project, all forthcoming experiments were conducted with matched low number (< 4) 

passaged young and old myoblasts. To ascertain differences in the proliferative capacity of young and 

old myoblasts both the SkMC lines were first expanded following revival from cryogenic suspension. 

The proliferation of C25 and C83 were comparable over a period of 96 hours, with no statistical 

difference in the number of viable cells upon elimination of proliferative conditions. The expansion of 

both cell lines yielded a comparable ~10-fold increase of viable cells after 96 hours, indicating the 

intrinsic capacity for proliferation of early passaged immortalised human myoblast is not determined 

by the age of the donors muscle tissue. Research conducted with primary human myoblasts have 

similarly found that the mean population doubling of cells was not influenced by the age of the 

myoblast donor, as the replicative lifespan of both young and elderly primary myoblasts was found to 

be similar before replicative senescence occurs (Pietrangelo et al., 2009; Decary et al., 1997). However, 

the proliferative capacity of myoblasts in vitro is regulated by complex biochemical interactions, which 
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require significant elucidation before being fully understood. Next, both young and old cell lines were 

differentiated using three variations of DM. The standard in-house DM formulation (DM1) (Table 2.1) 

was tested for efficacy against a commercial serum free media formulated for primary myoblast 

differentiation (DM2) and a serum containing media used to differentiate C2C12 myoblasts (DM3). It 

was discovered that both the serum free formulations, DM1 and DM2, performed equally to induce 

cellular fusion after 48 hours of the myoblasts being incubated with the media. Various low serum 

containing DM formulations have been used to induce the differentiation of C2C12 myoblasts, with 

some studies using up to 5% FBS (Katagiri et al., 1994) and other experiments using as low as 1% FBS 

(Yoshiko et al., 2002). Thus, the standard low serum (2% horse serum) DM media formulation formerly 

used in our laboratory to induce differentiation in C2C12 myoblasts (DM3) (Al-Dabbagh et al., 2015) 

was tested for its ability to differentiate human myoblast. Although DM3 was able to induce an 

objective degree of differentiation in C25 and C83 (Figure 3.4, 3.5), myotube formation was 

morphologically abnormal and underdeveloped. Manifesting as smaller myotubes with a lower 

concentration of myonuclei. Interestingly, it has been demonstrated that that C2C12 differentiation is 

dependent on endogenous insulin-like growth factor expression and not on serum concentration 

(Yoshiko et al., 2002). These data demonstrated that DM1 was the most suitable for functional 

experiments of human myoblast-to-myotube differentiation. Once optimal DM conditions were 

determined, C25 and C83 were incubated with DM (Table 2.1) and the differentiation parameters along 

with proliferation/differentiation marker expression were evaluated every 24 hours over a 4-day 

period. The data in Figure 3.6 show no difference in myotube size when myoblasts from young or old 

muscle were differentiated. Additionally, regardless of myoblasts being young or old they displayed 

strikingly similar morphological behaviour in culture. This was also exhibited by C25 and C83 having a 

comparable ability to undergo cellular fusion, indicated by MHC expressing cells having similar 

concentrations of myonuclei between the cell lines throughout the process of differentiation. The Ki67 

protein is a cellular marker strictly associated with cell proliferation. (Scholzen and Gerdes, 2000). Thus, 

Ki67 is exclusively detected within the cell nucleus during interphase with most of the protein relocated 

to the surface of the chromosomes during mitosis (Cuylen et al., 2016). Furthermore, Ki67 is observed 

during all active phases of the cell cycle (G1, S, G2, and mitosis) and absent in non-proliferating cells 

(G0) (Bruno and Darzynkiewicz, 1992). The content of Ki67 in cells is also markedly increases during cell 

progression through S phase of the cell cycle (Darzynkiewicz et al., 2015) The data in Figure 3.7 showed 

the relative decline in the expression of Ki67 in young and old myoblasts incubated with DM was 

unaffected by the age of the donor myoblasts. The inverse increase of MHC expression also revealed 

young and old myoblasts express the differentiation marker in equal proportion when differentiated. 

The findings of this study suggest no intrinsic age-associated deficits in myogenic function between 
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young and old immortalised human myoblasts when cultured in identical microenvironments in vitro. 

This data is largely consistent with established in vitro SkM research. Experimentation with satellite 

cells (SCs) harvested from 3-month-old (young) and 32-month-old (old) rats were cultured in vitro and 

found to have comparable rates of proliferation and differentiation (Dumke and Lees, 2011). Similarly, 

in vivo single fibre engraftment assays reveal that SCs from old myofibres possess a regenerative and 

self-renewal capacity comparable to young myofibre-linked SCs (Collins et al., 2007). Interestingly, 

studies have shown that muscle from aged mice was estimated to contain around 65% fewer 

functioning SCs than muscle from young mice (Cosgrove et al., 2014) and the overall number of SCs 

was also lower in aged mouse muscle (Chakkalakal et al., 2012). However, this was not the main cause 

of age-linked muscle loss, at least not in mice, where induced depletion of SCs in young adults had little 

impact on the rate of muscle ageing (Fry et al., 2015). There is strong evidence implicating the aged 

microenvironment with reduced SC responses (Barberi et al., 2013; Chakkalakal et al., 2012). 

Transplanted muscle from young into old mice fails to regenerate, but transplanted muscle from old 

mice into a young mouse did regenerate (Carlson and Faulkner, 1989) but might have a delayed 

regenerative response (Smythe et al., 2008). Moreover, ‘rejuvenating’ the microenvironment in older 

mice enhanced activation of SCs through increased Notch signalling, as shown in heterochronic 

parabiosis models (Conboy et al., 2003; Conboy et al., 2005; Carlson et al., 2008). Furthermore, lower 

SC function with ageing was linked to increased activity of the transforming growth factor beta (TGFβ) 

family of molecules within SCs that are negative regulators of growth and restrict the proliferative 

responses (Carlson et al., 2009; Sousa-Victor et al., 2014; Yousef et al., 2015). Circulating soluble factors, 

such as hormones, or other molecules released locally into the microenvironment may influence the 

intracellular SC signalling to regulate proliferative and differentiation responses. For example, elevating 

the circulating oxytocin had rejuvenating effects for SCs (Elabd et al., 2014); increasing circulating levels 

of growth differentiation factor 11 (GDF-11) also rejuvenated SCs (Sinha et al., 2014). However, 

alternative research investigating the effect of GDF-11 on myogenesis observed a significant inhibition 

of SkM regeneration (Brun and Rudnicki, 2015). Additionally, elevated levels of osteopontin in aged 

mice was associated with impaired SC responses to damage and this was overcome by reducing 

osteopontin in vitro and in vivo (Paliwal et al., 2012). Thus, a key detail, which has not yet been fully 

understood, is how the SCs respond to the rapidly changing microenvironment occurring soon after 

muscle damage, which is heavily influenced by the infiltrating immune cells (reviewed by the author of 

this thesis in (Saini et al., 2016)). Furthermore, some studies have also shown that geriatric mice were 

able to regenerate muscle autographs similar to whole muscle grafts transplanted between 27-29 

month-old (geriatric) and 3-month-old (young) mice irrespective of the observed preliminary delay in 

myogenesis activation (Shavlakadze et al., 2010). Research with human SCs from old donors (> 76-
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years-old) transplanted into young mice has also revealed that aged human SCs can appropriately 

supply their myonuclei to facilitate regeneration of in vivo mouse muscle (Schafer et al., 2006). 

Furthermore, it has been suggested that the reduction of SC migratory function observed in old mice is 

not the underlying factor for the diminished in vivo regeneration of muscle (Collins-Hooper et al., 2012). 

Investigations of human SCs in old muscle being activated via physiological stimuli have found the 

activation to be adequate for muscle regeneration (George et al., 2010). These findings indicate 

signalling pathways required for SC activation function correctly, however, significant investigation of 

SC activity in vivo is still required to explain SC behaviour completely. In opposition to the findings of 

this study, alternative research has indicated age-linked alterations in the proliferation and 

differentiation of primary human myoblasts, though it is important to note some studies provide 

limited data as only a single young and old donor were compared (Lorenzon et al., 2004; Fulle et al., 

2005; Jacquemin et al., 2004). Additionally, some studies compare young and old SC populations that 

have varying desmin expression. This variable desmin expression may influence myogenic potential 

thus altering differentiation capacity of young and old myoblasts regardless of age (Pietrangelo et al., 

2009; Beccafico et al., 2007). Ultimately, several reports attribute the loss of in vivo myoblast 

regenerative capacity in SkM to changes in the local microenvironment and not the SCs themselves. 

Meaning young and old myoblasts are intrinsically similar, but what makes them ‘old’ or ‘young’ is their 

microenvironment.   

 

3.3 Conclusions 

 

In conclusion, in vitro cell culture conditions were successfully generated and optimised to assess the 

proliferation and differentiation of young and old immortalised human myoblast. It was discovered 

proliferative capacity, decline of proliferative markers, differentiation progression and marker 

expression were indistinguishable between myoblasts that have a ~60-year age difference when 

cultured in duplicate culture microenvironments.  
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Chapter 4: A Novel System of Immortalised Human Myoblasts Co-

cultured with Rat Embryonic Spinal Cord Explants  

 

4.0 Background 

 

4.0.0 Introduction  

 

The previous chapter examined the differences between young and old immortalised human myoblasts 

and established immortalised human myoblasts maintain their myogenic potential in vitro, regardless 

of age. These findings were consistent with similar research with primary myoblasts obtained from 

young and old donors (Alsharidah et al., 2013). Therefore, the decision was made for the impending 

research to be conducted with the 25-year-old immortalised human myoblasts (C25) only, as there was 

no distinguishable difference between the old and young myoblast cell lines. However, the capability 

of aneurally-cultured myoblasts to provide insight into neuromuscular (NM) disorders is limited due to 

the lack nervous input, which does not accurately reflect the physiological conditions observed in vivo. 

Classic research has demonstrated that monocultures of primary human myoblasts almost never 

spontaneously contract and the lack of motor neuron (MN) stimulation inhibits advanced 

differentiation of myotubes (Delaporte et al., 1986), which puts limitations on in vitro investigations of 

NM disease in cultured skeletal muscle cells (SkMCs). To overcome these limitations a novel in vitro 

nerve-muscle co-culture model could provide a system for investigating NM disorders. The essential 

requirement of such a system would be the formation of de novo neuromuscular junctions (NMJs) on 

cultured human myotubes, due to the NMJ being the crucial synapse regulating motor unit function 

and dysfunction. The importance of the NMJ in relation to NM disease has been shown in amyotrophic 

lateral sclerosis (ALS) studies where destabilisation of the NMJ is one of the early detectable signs of 

the disease. Similar observations have been made in other NM diseases, which suggest insults to the 

NMJ are more closely linked to disease progression than the death and loss of MNs (Murray et al., 2008; 

Fischer et al., 2004; Gould et al., 2006). While degeneration of the NMJ plays a fundamental role in the 

pathology of NM disease, as well as diseases not traditionally thought of as NM disorders such as 

diabetes, which leads to diverse forms of peripheral neuropathy as the major NM complication (Bril, 

2014). The existing methods to investigate the specific contribution of degenerated NMJs to the 

aetiology of NM diseases are limited. The majority of in vivo models established to explore NM disease 

are animal models that do not adequately replicate disease in humans (van der Worp et al., 2010). 
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Furthermore, typical in vitro models of NM disease are generally established using animal derived cells 

(Haase, 2006; Prather et al., 2013). As mentioned previously, in vitro models of NM disease with human 

SkMC monolayers lack the functional innervation required for NMJ formation and advanced muscle 

differentiation (Suuronen et al., 2004; Ashby et al., 1993; Wilson and Harris, 1993). Given the 

importance of SkMC innervation and formation of NMJs in the differentiation, maturation and function 

of SkM, systems and techniques that enable the analysis and manipulation of NMJs have the potential 

to enrich our understanding of NM disease pathogenesis. Furthermore, such a system may provide a 

platform to test new therapies. Some nerve-muscle co-culture models generated with mouse, rat, 

primary human myoblasts, human embryonic stem cells (hESCs) and human induced pluripotent stem 

cells (hiPSCs)-derived cells, as well as cross species systems have been established to address this 

problem (Umbach et al., 2012; Arnold et al., 2012; Demestre et al., 2015; Guo et al., 2014; Harper et 

al., 2004). However, such co-culture models suffer from inadequate experimental reproducibility, 

attributable to the intricate nature of the culture system requiring an array of growth and neurotrophic 

factors. Furthermore, serum utilised in classically established nerve-muscle co-culture systems (Giller 

et al., 1973; Nelson et al., 1993; Li et al., 2001; Daniels et al., 2000; Dutton et al., 1995) introduces 

indeterminate variables due to differences in serum composition that diminishes experimental 

reproducibility and may even disturb the influence of experimental treatments on the system. 

Therefore, the addition of serum into a co-culture system makes describing the minimum factors 

required for the generation of in vitro NMJs impractical. In fact, there is some evidence that retarded 

MN myelination in vitro may well be the consequence of serum in the culture system (Rumsey et al., 

2009). Co-culture models employing primary human SkM SCs (i.e. primary myoblasts) acquired from 

muscle biopsy have their own limitations, as they have a limited proliferative capacity, poor cell purity 

and exhibit cellular senescence due to cell expansion (Mouly et al., 2005; Webster and Blau, 1990). 

Advances in the application of cells derived from hESCs and hiPSCs to generate myoblasts (Tanaka et 

al., 2013) and MNs (Stockmann et al., 2013) may overcome part of these limitations. Nevertheless, 

besides the ethical issues of using hESCs, monocultures of stem cell-derived MNs are notoriously fragile 

in culture and require multifarious culture media formulations with mandatory neurotrophic and 

growth factors. Consequently, when co-cultured with myoblasts these trophic factors negatively affect 

SkMC differentiation. Furthermore, co-cultures of myoblasts with stem cell-derived MNs produce poor 

NMJs that are not viable for long-term studies of NMJ maturation and maintenance (Li et al., 2005). 

Thus, the use of immortalised human myoblasts in a co-culture model offers several advantages, such 

as reduced cost, ease of use, and provide an unlimited supply of material and minimise ethical concerns 

associated with the use of human tissue. Cell lines also provide a pure population of cells, which is 

valuable since it provides a consistent sample and reproducible results (Kaur and Dufour, 2012).  
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4.0.1 Aim 

 

The objective of the present study was to establish a novel simplified and easily reproducible nerve-

muscle co-culture system generating contractile myotubes and formation of NMJs. Thus, the aim was:  

 

1. Generate co-culture conditions free from serum and growth/neurotrophic factors for ED 

13.5 rat embryo spinal cord explants to innervate young immortalised human myoblasts 

during differentiation of myoblasts to myotubes.  
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4.1 Results 

 

4.1.0 Isolation of Embryonic Rat Spinal Cord  

 

Spinal cords from embryonic rats were selected and isolated as the source tissue of MNs using the 

methods described in 2.1.6 to innervate C25 in the co-culture system. Rats were chosen over mice as 

they are genetically, physiologically morphologically closer to humans than mice and provide 

substantially more material for high throughput tissue culture experimentation than mice (Zhao et al., 

2004). Additionally, microdissection of rat embryos is less technically challenging than mouse embryo 

dissection, streamlining the co-culture system for ease of reproducibility. Harvesting embryos from a 

pregnant rat when the embryos were ED 13.5 results in a yield of 13 ± 3 embryos. Each embryo was 

observable as individually compartmentalised protrusions along the uterine horn (Figure 4.0).  
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Figure 4.0: Isolation of embryos from rat. The upper left panel shows a sacrificed pregnant rat before 
extraction of the uterus, the white arrow indicates the incision site. The lower left panel indicates an 
exposed segment of the uterine horn after dissection of the sacrificed rat, highlighted by the white 
arrow. The right panel displays individual compartmentalised sections of the uterine horn during 
extraction of the uterus, each containing a single embryo; four examples are highlighted with white 
arrows.    
 
 
 
 
 
 
 
 
 
 



81 
 

Upon retrieval of the uterus, the segmented embryo compartments were individually cleaved from the 

uterine horn. A transverse incision made along the outer membrane of the embryo compartment 

resulted in the release of internal pressure and expelling of the amniotic fluid along with the embryo. 

The utilisation of 21 gauge hypodermic needles as dissection tools resulted in precision isolation of the 

spinal cord from the other tissues of the body, while allowing dorsal root ganglions (DRGs) to remain 

attached to the ventral horn. Transversely slicing the intact spinal cord into segments of 1-2 mm2 

explants provided 5 ± 1.5 spinal cord explants (SCEs) per embryo (Figure 4.1). Therefore, one pregnant 

rat yielded 65 ± 35 SCEs for each experiment.  
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Figure 4.1: Isolation of spinal cord from ED 13.5 rat embryo. The upper left image panel displays an 
individually cleaved compartmentalised section of the uterine horn, which contains a single rat embryo. 
The upper middle panel shows the embryo (white arrow) being released from the uterine 
compartment, highlighted with the black arrow. The image panel on the upper right is representative 
of an isolated ED 13.5 rat embryo. The head of the intact embryo is highlighted with the white arrow 
and the spinal cord is shown between the two red lines. The lower left panel shows a dissected intact 
spinal cord. The dorsal root ganglions are located between the red lines as they flank both side of the 
ventral horn, shown between the blue lines. The lower right panel is representative of 1-2 mm2 spinal 
cord explants cut from the intact spinal cord. The white arrows show four individual explants. 
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4.1.1 Viability of Spinal Cord Explants  

 

Before functional studies of nerve-muscle co-cultures could be conducted, the viability of SCEs cultured 

in SkMC DM (Table 2.1) were evaluated. The SCEs were plated and cultured for 24 hours in 6-well plates 

pre-coated with a 0.5% gelatin solution using the methods for SkMC culture detailed 2.1.1. Viability 

was confirmed if SCEs were able to adhere with the culture surface and sprout neurites within 24 hours 

of being plated (Figure 4.2). Phase contrast microscopy at 10X magnification was used to assess the 

percentage of adherent and sprouting SCEs. Following 24 hours of incubation, the results showed that 

92% ± 8 of the plated explants were able to adhere with the culture surface. However, only 85% ± 9 of 

the explants attached and sprouted spinal outgrowths within 24 hours.  
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Figure 4.2: Viability of spinal cord explants in differentiation media. The upper left panel shows freshly 
isolated spinal cord explants in a 150 mm dish before being plated in 6-well plates, explants are 
encircled in white. The upper right image shows explants, circled in white, being plated onto the tissue 
culture surface immediately following isolation. The panel on the lower left exemplifies spinal cord 
explant adherence with the tissue culture surface after 24 hours of incubation. The lower right panel is 
a magnified image of a single spinal cord explant sprouting neurites after 24 hours. Examples of 
substantial sprouting are highlighted in the white boxes.  
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4.1.2 Validation of Neuron Proliferation 

 

To verify the sprouting projections emerging from the SCEs were indeed neurons suitable for in vitro 

innervation of SkM myotubes, the methods detailed in 2.1.12 and 2.1.13 for immunocytochemistry 

(ICC) were applied to the cultured SCEs 72 hours after plating on the culture surface to detect protein 

expression indicating neuronal growth. The microtubule cytoskeletal element Class III β-tubulin (β-III-

tubulin) is concentrated almost entirely in neurons (Sullivan and Cleveland, 1986; Caccamo et al., 1989) 

and prominently expressed during embryonic and postnatal development (Katsetos, Legido, et al., 

2003). Making it an ideal target protein to identify neuronal growth, which has also been used to 

identify neurons in previous in vitro studies (Katsetos, Herman, et al., 2003). The use of 

immunofluorescence microscopy at 10X magnification resulted in the observation that neurite 

projections emerging from the SCEs do in fact express β-III-tubulin, verifying the proliferation of 

neurons emerging from the SCEs (Figure 4.3). 
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Figure 4.3: Neuronal outgrowth originating from ED 13.5 rat embryo spinal cord explant. A 
representative image of a cultured spinal cord explant (SCE) 72 hours after plating. The SCE is visible at 
the bottom of the image highlighted with a red star. Neurites were observed sprouting outward from 
the SCE. Stained for β-III-tubulin (green). Scale bar = 100 µm. 
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4.1.3 Characterisation of Co-culture Morphology 

 

Upon confirmation of SCE viability in culture and their ability to generate β-III-tubulin+ neurons suitable 

for the innervation of SkMCs, the preliminary requirements for nerve-muscle co-culture were attained. 

Therefore, C25 were co-cultured with SCEs from ED 13.5 rat embryos using the methods described in 

2.1.7 and 2.1.8 to induce functional innervation of differentiated myotubes and establish NMJ 

formation. A morphological assessment of the co-cultures was performed at 24, 48 and 72 hours after 

plating the explant with the myoblasts (Figure 4.4). At 24 hours, myoblasts fusion was absent and the 

cells displayed typical characteristics of mononucleated myocytes, indicating the cells were still in the 

initial stage of differentiation (Figure 4.4a). Successfully adhered explants sprouted neurites and 

expanded over the myocytes, exhibiting growth of 420 µm ± 36 emanating from the explant after 24 

hours. If explants did not adhere to the myoblasts and initiate neurite sprouting by 24 hours, they were 

removed from the culture. At 48 hours, obvious myocyte-to-myotube differentiation had commenced 

and neurite length expanded further to 962 µm ± 57 (Figure 4.4b). After 72 hours, neurite growth 

expanded to 1503 µm ± 148, with progressive myotube maturation (Figure 4.4c). Importantly, 

connections of neuronal axon terminals with myotubes were visible (Figure 4.4d) and the first 

spontaneous contractions of individual myotubes were observed. This provides initial confirmation that 

the immortalised human myoblasts were innervated by neurons from rat embryo SCEs after as little as 

3 days of co-culture. 
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Figure 4.4: Young immortalised human skeletal muscle cells co-cultured with ED 13.5 rat embryo 
spinal cord explants. a) Phase contrast image of a spinal cord explant (SCE), highlighted with the orange 
star, sprouting neurites (shown in enlarged inset) after 24 hours over undifferentiated myocytes. Scale 
bar = 100 µm. b) Multinucleated myotube formation (indicated with yellow lines) after 48 hours with 
continued expansion of neural projections (shown in enlarged inset) emanating from the spinal cord 
explant (orange star). Scale bar = 100 µm. c) Maintained neurite growth (shown in inset) and continued 
myotube formation (yellow lines) at 72 hours. Scale bar = 100 µm. d) Neuronal axons (pink arrows) 
form a visible link (circled in red) with a myotube (green arrow) at 72 hours. Scale bar = 25 µm. 
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To determine if the first observable occurrences of myotube contractions (at 72 hours) in the co-culture 

system were due to neuron-induced morphological changes to myotubes, the myotube differentiation 

parameters were measured (Table 2.2). Phase contrast microscopy was utilised to quantify any 

significant differences in the differentiation of aneurally cultured and co-cultured myoblasts after 72 

hours of incubation. Co-localisation of neuron axon terminals with differentiated myotubes were 

observed in the co-cultures (Figure 4.5a). Whereas aneurally cultured SkMCs (Figure 4.5b) display 

visually similar myotube differentiation without neurons. The fusion index (FI) did not significantly 

differ between the co-cultured and aneural cells (86.2% ± 4.6 vs. 86.8% ± 5.1, P = 0.846, Figure 4.4c). 

Additionally, no difference was detected between the myotube area (MA) of both culture 

environments (66.3% ± 3.9 in co-culture vs. 69.2% ± 7.3 for aneural culture. P = 0.458, Figure 4.4d). 

Indicating differentiation of myotubes at this time point of development occurs autonomously from 

neural input. Finally, myotube hypertrophy was determined by evaluating the aspect ratio (AR). Both 

culture conditions exhibited no difference in the AR of co-cultured cells (10.8 ± 8.3) vs. aneural cultures 

(9.9 ± 8.9, P = 0.881, Figure 4.4e). 
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Figure 4.5: Differentiation parameters of aneural and co-cultured skeletal muscle cells at 72 hours. a) 
A representative image of co-culture morphology; neuronal axons (pink arrows) making contact (circled 
in red) with myotubes (green arrows). b) The image panel displays morphology of aneurally-cultured 
myotubes at 72 hours. c) Comparison of the percentage of cellular fusion in co-cultured and aneurally-
cultured myotubes at 72 hours. d) Comparison of the myotube area in co-cultured and aneurally-
cultured myotubes at 72 hours. e) Comparison of the aspect ratio in co-cultured and aneurally-cultured 
myotubes at 72 hours. Data presented as a mean, error bars signify ± SD.  n = 3 independent 
experiments. Bar = 75 µm. 
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4.1.4 Spontaneous Myotube Contractions 

 

The earliest contractions free of any external stimuli were observed in myotubes approximately 72 

hours after co-culturing ED 13.5 rat embryo SCEs with C25. The co-cultures that had robust explant 

adherence with the myoblasts produced myotubes with contractile functionality, as long as 

atmospheric conditions were maintained at 37°C with a 5% CO2. Even though co-cultures generated 

contracting myotubes observable within the first 72 hours, only individual arrhythmically contracting 

myotubes were perceived at this time point, with myotubes closest to the explant having the most 

frequent and forceful contractions. The co-cultures were monitored every 24 hours after witnessing 

the first contractions and maintained with regular media changes to promote further innervation, and 

continued maturation of myotubes. The co-cultures exhibited increasing myotube contraction 

frequency (CF), which was defined by the number of myotube contractions per minute, and an increase 

in the number of contracting myotubes. By co-culture Day 7, the myotubes were contracting 

continuously in a systematic pattern as large networks (Video 1). Suggesting myotube contractions 

functioned as a single motor unit receiving bursts of stimulation from MNs. However, multiple points 

of innervation were still visible on individual myotubes at this stage. Interestingly, contracting 

myotubes also took on the morphological characteristics of three-dimensional tubes whereas aneural 

myotubes maintained a flat two-dimensional morphology, firmly fixed to the culture plate surface. 

 

 
 

Video 1: Phase contrast video micrograph of young immortalised human myotube contractions at 
Day 7. Illustrative video of co-cultured myotubes spontaneously contracting as a network, devoid of 
serum, growth/neurotrophic factors, and external stimulus. Video captured at 24 frames per second. 
Bar = 100 µm. https://www.youtube.com/watch?v=Wg2is-SDdkE (Saini et al., 2019). 

https://www.youtube.com/watch?v=Wg2is-SDdkE
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4.1.5 Spinal Cord Explant Co-culture vs Disassociated Spinal Cord Co-culture  

 

To ensure optimal innervation of co-cultured myotubes, the efficiency of SCEs to induce contractions 

in the co-culture system was compared to myotubes co-cultured with disassociated spinal cord (DSC) 

cell suspensions, generated using the methods described in 2.1.10. The co-culture of myoblasts with 

DSC cell suspension was compared against SCEs due to disassociated cell suspension co-cultures being 

an established alternative to explant co-cultures (E Thomson et al., 2006). Optimal innervation of 

myotubes was quantified by analysing CF every 24 hours post co-culture for 7 days, using live phase 

contrast microscopy to assess 20 random fields of view at 10X magnification. The results revealed no 

observable myotube contractions in either SCEs or DSCs co-cultured with myoblast after the first 48 

hours. Following 3 days of co-culture, initiation of myotube contractions were observable in the SCE 

co-cultures, contracting at a frequency of 0.18 Hz ± 0.09, no contractions were witnessed in the DSC 

co-cultures. On day 4, the myotubes in the SCE co-cultures increased CF to 0.43 Hz ± 0.24; no 

contractions were witnessed in the DSC co-cultures. The first measurable contractions in the DSC co-

cultures were seen on day 5, contracting at a frequency of 0.13 Hz ± 0.08. However, this was 

significantly less (P < 0.0001) than the myotubes contracting in the SCE co-cultures, which increased CF 

further to 0.87 Hz ± 0.38. On day 6, SCE co-cultures were contracting at 1.04 Hz ± 0.36 and DSC co-

cultures were contracting a significantly reduced (P < 0.0001) rate of 0.22 Hz ± 0.15. The myotubes in 

the SCE co-cultures has increased CF further on day 7 to 1.15 Hz ± 0.35. Whereas myotubes in the DSC 

co-cultures were contracting at a significantly reduced (P < 0.0001) rate of 0.38 Hz ± 0.14 (Figure 4.6). 

After confirming co-cultured SCEs are more efficient than DSC cell suspension at inducing myotube 

contractions, subsequent co-culture experiments where conducted with SCEs.  
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Figure 4.6: Contraction frequency in myotubes co-cultured with spinal cord explants or disassociated 
spinal cord cell suspension over 7 days. A line graph comparing the onset of myotube contractions and 
contraction frequency in young immortalised human myoblasts co-cultured with spinal cord explants 
(SCEs) or disassociated spinal cord (DSC) cell suspension, generated from ED 13.5 rat embryos. Data 
presented as a mean, error bars signify ± SD.  n = 6 independent experiments. **** denotes P < 0.0001. 
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4.1.6 Expression of Rat Agrin 

 

Neural agrin is a large (∼400–600 kDa) heparan sulphate proteoglycan and is a prerequisite for NMJ 

formation. The release of agrin by motor neuron terminals (MNT) at the developing NMJ signals the 

transcription of select genes in the synaptic myonuclei to aggregate and stabilise postsynaptic 

acetylcholine receptors (AChRs) during synapse formation (Sanes and Lichtman, 2001). Accordingly, 

the methods described in 2.1.11 were applied and quantitative analysis was performed to verify the 

presence and concentration of agrin secreted in the SCE/myoblast co-cultures compared to SCE only 

cultures and myoblast only cultures. The concentration of agrin was measured at 72 hours with a rat 

agrin enzyme-linked immunosorbent assay. The results showed agrin expression in the co-cultured 

conditions was 1126 pg/mL ± 225, which was significantly higher (P = 0.04) than the agrin 

concentration in SCE only cultures (901 pg/mL ± 377) and the myoblast only cultures, which did not 

exhibit any measurable concentration of rat agrin.  
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Figure 4.7: Concentration of rat agrin after 72 hours. A bar graph showing the concentration of rat 
agrin expressed in co-cultures of 25-year-old immortalised human myoblasts (C25) with spinal cord 
explants (SCEs) from ED 13.5 rat embryos compared with SCE only cultures and aneural C25 cultures. 
Data presented as a mean, error bars signify ± SD.  * denotes P < 0.05; **** denotes P < 0.0001. 
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4.1.7 Preliminary Neuromuscular Junction Formation 

 

The finding that agrin was indeed secreted by SCEs in the co-culture system and when cultured alone 

suggested that the co-culture system possessed the obligatory agrin needed for AChR clustering and 

NMJ formation (Wu et al., 2010; Tintignac et al., 2015). Thus, the subsequent experiment set out to 

determine if myotube contractions observed in the co-culture system were truly driven via MN 

stimulation due to NMJ formation. Using the methods detailed in 2.1.12 and 2.1.13, verification of 

preliminary NMJ formation was achieved with ICC of the co-cultures on day 7, when myotubes were 

observed to be contracting as a single motor unit. The co-cultures were stained with β-III-tubulin to 

show MN growth and with α-bungarotoxin (α-BTX), which binds as a competitive antagonist to nicotinic 

AChRs, to show AChR clustering on myotubes. Phase contrast and immunofluorescence microscopy 

were used to confirm the co-localisation of MNs emerging from the SCEs with AChRs on the myotubes. 

The results revealed multiple AChR clusters on differentiated myotubes integrated with MN axons and 

MNTs (Figure 4.8). Instances of multiple MN and AChR co-localisation (i.e. multiple points of 

innervation) were observed in 83.4% ± 12.6 of myotubes, indicating the early formation of NMJs in the 

co-culture system.  
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Figure 4.8: Co-localisation of embryonic rat neuron axons with acetylcholine receptor clusters on 
myotubes at day 7. The panel on the lower left is a phase contrast image of neuronal cells in the co-
culture stained for β-III-tubulin (green). The lower right panel is phase contrast image of differentiated 
myotubes in the co-culture stained for α-bungarotoxin (α-BTX) (red). The panel on top is a combined 
immunofluorescence image showing the overlap of neuronal cells emanating from the spinal cord 
explant (indicated by the purple star) with acetylcholine receptor (AChR) clusters on the myotubes. The 
enlarged inset shows a cluster of AChRs (red) interacting with neuron axons (green). Bar = 50 µm. 
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4.2 Discussion 

 

The findings from this study detail the successful establishment of a novel minimalist in vitro nerve-

muscle co-culture system free from serum and growth/neurotrophic factors. The system enabled the 

survival of SCEs in simplified DM, promoted the proliferation of neuronal axons, generated contractile 

myotubes, and exhibited numerous instances of co-localisation between neuronal axons with AChRs, 

indicative of NMJ formation. The co-culture model was created by innervating C25 with neuronal 

outgrowths from ED 13.5 rat SCEs. This co-culture model delivers benefits beyond traditional myoblast 

monocultures as a research tool for investigating NM and muscle wasting disorders. For example, 

aneurally cultured human myotubes did not spontaneously contract in culture. However, as similarly 

witnessed in vivo, innervated myotubes in this co-culture system exhibited endogenously stimulated 

contractile functionality (Feher, 2017). Studies have been conducted using secreted proteins from rat-

nerve/human-muscle co-cultures to treat aneurally cultured human myotubes, which resulted in some 

increased AChR clustering, mostly due to agrin exposure (Arnold et al., 2004; Bandi et al., 2008). 

However, treating anural myotubes with secreted proteins harvested from co-cultures failed to 

generate contractile function. This finding suggests that factors secreted by neuronal cells, such as 

agrin, are not independently adequate to induce contractions in myotubes in vitro, signifying the 

requirement of nerve-muscle contact via NMJs for physiological development of contractile myotubes, 

which are more representative of in vivo conditions. Interestingly, the co-culture model detailed in this 

current study displayed myotube contractions as early as 72 hours post co-culture, which may possibly 

be the first time contractile functionality has been observed at this time point of development in any 

nerve-muscle co-culture system. This finding suggests the initial emergence of NMJ formation, due to 

myotubes requiring nervous input from the MNs to induce contraction (Hong and Etherington, 2011). 

In addition to the benefit of this co-culture model being more physiologically similar to in vivo 

conditions of SkM development then aneurally-cultured myotubes, the system was also optimised for 

easy reproducibility. The co-culture model was established using the minimalist culture media listed in 

Table 2.1, which was devoid of serum, neurotrophic factors, and growth factors. This model is the first 

to generate contractile innervated myotubes using this simplified culture media composition, allowing 

for a drastic reduction in experimental variability. Contrastingly, previously established nerve-muscle 

culture systems require the use of serum or trophic factors to induce myotube innervation, NMJ 

formation, and spontaneous myotube contractions (Das et al., 2010; Guo et al., 2011; Rumsey et al., 

2010; Demestre et al., 2015). Importantly, the potential reduction in experimental variability and ease 

of reproducibility this simplified co-culture model offers is evident when comparing the culture media 

formulation (Table 2.1) used to develop the co-culture model with some of the most contemporary 
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alternative nerve-muscle co-culture systems, which still require a complex of trophic factors to 

generate their systems successfully (Figure 4.9) (Guo et al., 2017).  

 

 
 

Figure 4.9: Culture media components required for successful generation of a recently established 
nerve-muscle co-culture system. Adapted from (Guo et al., 2017) 
 
 
 
Therefore, this co-culture model offers ideal conditions for high-throughput research of the 

mechanisms responsible for the formation and development of NMJs and the advanced differentiation 

of contractile myotubes. The methods applied throughout this study were designed to minimise the 

time required to induce observable spontaneous myotube contractions and produce an abundance of 

functional NMJs. Through the efficient application of embryonic material harvested from a single 

pregnant rat, a potential yield of 100 SCEs were available for each experiment, allowing for a wide 

variation of experimental conditions and time points. In this co-culture model, individual myotubes 

begin to contract by Day 3. The contracting cells continued to increase CF and synchronous unified 

contractions were apparent by Day 7 (Video 1). Previously established nerve-muscle co-culture models 

involve intricate methods requiring various culture media formulations for separate myotube or MN 

differentiation for at least 10 days before co-culturing (Guo et al., 2011). While other studies have 
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presented NMJ formation at 21 days (Demestre et al., 2015). These lengthy protocols lead to avoidable 

delays and possible unintended variation to experimental procedures. 

Neurons generated in this co-culture model were derived from ~1-2 mm2 transversally sliced SCEs with 

intact DRGs (Kobayashi et al., 1987; Arnold et al., 2012). Experiments were conducted with embryo 

spinal cords mechanically disassociated to create a neuronal cell suspension before culturing with 

myoblasts; these conditions resulted in delayed initiation of spontaneous myotube contractions, 

increased arrhythmic contractions and reduced CF. This suggests motor and sensory neurons 

originating from both the ventral horn and dorsal root function mutually to correctly innervate 

myotubes and form NMJs, representative of an in vivo environment (Mears and Frank, 1997). 

Additionally, SCEs with intact DRGs contain a range of progenitor and supporting cells types, such as 

Glial cells. For example, Schwann cells perform vital functions in MN development, differentiation, and 

maintaining NMJ integrity (Riethmacher et al., 1997).  Thus, indicating the presence of supporting cells 

may possibly encourage NMJ robustness and improved function of MNs in vitro.  

 

4.3 Conclusion 

 

In summary, a novel co-culture system was engineered using neurons from rat embryo spinal cords to 

innervate C25 for the first time, resulting in the contractile myotubes with an abundance of potentially 

functional NMJs. The similarity to in vivo contractility demonstrated by mature myotubes in this co-

culture system improves research capabilities into SkM physiology allowing for improved 

pathophysiological elucidation, diagnosis, and treatment. The simplified serum and trophic factor free 

culture media implemented in this co-culture model allows for precise manipulations in the systems 

variability, which could lead to greater insight into NMJ formation and development. This co-culture 

model offers a relevant means for high-throughput investigations of human muscle physiology, NM 

pathology, and NMJ-linked disease and disorder. 
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Chapter 5: Characterisation of in vitro Neuromuscular Junctions 

between Embryonic Rat Motor Neurons and Immortalised Human 

Myoblasts 

 

5.0 Background 

 

5.0.0 Introduction  

 

The previous chapter outlined the establishment of a novel nerve-muscle co-culture system free from 

serum and trophic factors, which was able to induce spontaneous contractile activity in differentiated 

myotubes and displayed co-localisation between neuronal axons and acetylcholine receptor (AChR) 

clusters, suggesting the formation of neuromuscular junctions (NMJs). The NMJ is highly specialised 

peripheral synapse that regulates skeletal muscle (SkM) contraction by functionally joining lower 

motor neurons with skeletal muscle cells (SkMCs). Formed during pre-natal development in vivo, the 

NMJ consist of a presynaptic motor neuron terminal (MNT), synaptic cleft, and postsynaptic motor 

end plate (MEP) (Bloch-Gallego, 2015). The pathology of a variety of neuromuscular (NM) and 

neurodegenerative (ND) diseases target either the presynaptic or the postsynaptic integrity of the 

NMJ, consequently leading to SkM loss and weakness (Punga and Ruegg, 2012). Additionally, one 

effect of old age is the degradation of AChRs on MEPs, which can induce denervation and subsequent 

age-linked muscle loss and dysfunction (Gonzalez-Freire et al., 2014). Thus, innervation of SkMCs is 

essential for the appropriate development and function of SkM. Research has shown degeneration of 

myotubes during embryonic development when SkMCs lack innervation (Ashby et al., 1993). A 

reduction in myotube size and severe deficiency in secondary myotube development (Wilson and 

Harris, 1993; Condon et al., 1990) are also evident in the absence of innervation. The findings from 

these studies provide evidence for the crucial role motor neurons (MNs) and NMJs play in regulating 

SkM fibre development, size, and maturation. In order to investigate the physiological development 

of innervated myotubes and the formation of NMJs, a small number of in vitro models have cultured 

MNs with SkMCs attempting to replicate NMJ formation (Das et al., 2010; Das et al., 2007). In more 

recent times, co-culture systems have made use of MNs derived from stem cells as well as MN cell 

lines, (Morimoto et al., 2013; Umbach et al., 2012). While other models have made use of primary or 

stem cell derived myoblasts (Demestre et al., 2015; Steinbeck et al., 2016; Chipman et al., 2014; 

Puttonen et al., 2015). Furthermore, the development of newer human induced pluripotent stem cell 
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(hiPSC) NMJ models have potential for specialised drug screening or patient-specific MN disease 

modelling (Inoue et al., 2014; Lenzi et al., 2016; Abujarour and Valamehr, 2015; Faravelli et al., 2014). 

While hiPSCs have potential for creating a fully human NMJ model there are points of contention in 

regards to maturation of the NMJ, as well as development and differentiation of MNs and SkMCs in 

such models (Siller et al., 2013). Furthermore, many of these previously established systems provide 

evidence of NMJ formation by simply demonstrating the co-localisation of neuronal axons and AChR 

clusters without analysing or confirming vital elements in MNs needed for transmission at the NMJ. 

For example, choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) are 

essential for the synthesis and transport of ACh in MNs, making the neurotransmitter available for 

secretion into the synaptic cleft (Brandon et al., 2003; Maeda et al., 2004). Additionally, activity at the 

presynaptic MNT is observable through analysis of synaptic vesicle proteins such as Synaptotagmin 1 

(Syt1), which is a Ca2+ sensor that triggers fusion of acetylcholine (ACh) containing vesicles with the 

MNT membrane (Brose et al., 1992; Yu et al., 2013). Furthermore, co-culture systems need to be 

examined for alternative neuronal cell populations such as Glial cells, which are known to be involved 

with the formation and maintenance of the NMJs (Feng and Ko, 2008). Previously established in vitro 

NMJ models also commonly disregard the characterisation of innervated myotubes for markers of 

advanced differentiation, such markers include the formation of striated myotubes, transversal triads, 

and peripherally located nuclei. Furthermore, structures of the postsynaptic apparatus beyond AChRs 

have rarely been characterised in detail. For example, the agrin-induced formation of postsynaptic 

elements such as muscle-specific tyrosine kinase (MuSK) and the 43 kDa receptor-associated protein 

of the synapse (Rapsyn) are vital for the formation of AChRs. Therefore, experiments in this study 

were conducted with co-cultures of ED 13.5 embryonic rat spinal cord explants (SCEs) innervating 25-

year-old immortalised human myoblasts (C25) to explore the formation of NMJs and examine the 

advanced differentiation of innervated myotubes.  
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5.0.1 Aims 

 

The objective of the present study was to characterise the novel co-culture system of ED 13.5 rat SCEs 

innervating young immortalised human myoblasts established in the previous study. Thus, the aims 

were: 

 

1. Establish the optimal time for co-culture characterisation. 

 

2. Characterise pre- and post-synaptic elements of NMJs formed in the co-culture system. 

 

3. Investigate the maturation of innervated myotubes for markers of advanced 

differentiation.  
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5.1 Results 

 

5.1.0 Optimisation of Co-cultures for Characterisation 

 

To ensure optimal innervation, NMJ formation, and advanced differentiation of myotubes had occurred 

before characterisation of the co-cultured cells was conducted, the peak contraction frequency (CF) of 

co-cultured myotubes was used as an indicator of the co-culture vitality. Optimal conditions for co-

culture characterisation were determined by quantifying CF every 24 hours post co-culture for 30 days, 

using live phase contrast microscopy to assess 20 random fields of view at 10X magnification. The 

methods used to determine CF were detailed in 2.1.19. The results revealed no observable myotube 

contractions in the co-cultured myotubes after the first 48 hours. Following 3 days of co-culture, 

initiation of myotube contractions were observable, contracting at a frequency of 0.19 Hz ± 0.1. The 

co-cultured myotubes were observed gradually increasing synchronous CF over the next eleven day. 

On day 14, myotube contractions peaked at a frequency of 1.33 Hz ± 0.39 (Figure 5.0). The co-cultured 

myotubes roughly maintained peak CF until day 17, followed by a gradual decrease of contractile 

activity in the innervated myotubes. Although myotube contractions were still detectable until the 

termination of the experiment on day 30, the frequency of contractions had reduced to 0.69 Hz ± 0.33, 

with contractile activity becoming increasing asynchronous. Thus, the determination was made to 

conduct characterisation of the co-cultures on day 14.  
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Figure 5.0: Contraction frequency in co-cultured myotubes over 30 days. A line graph showing the 
onset, increase, and decline of myotube contractions frequency in 25-year-old immortalised human 
myoblasts co-cultured with ED 13.5 rat embryo spinal cord explants. Data presented as a mean, error 
bars signify ± SD.  n = 3 independent experiments. 
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5.1.1 Characterisation of Cholinergic Motor Neurons 

 

By exploiting immunocytochemistry (ICC) techniques in the previous chapter, the preliminary 

observation was made that SCEs did indeed sprout neurites that positively expressed β-III-tubulin 

(Figure 4.3, 4.8), indicating the proliferation of neuronal cells in the co-culture system. The appropriate 

formation and development of NMJs is characterised by the convergence of cholinergic MNTs with 

MEPs on the SkMCs. Therefore, the following experiments were performed to confirm that sprouting 

neuronal cells from the SCEs did in fact include cholinergic MNs and to confirm the co-localisation of 

cholinergic MNs with SkM myotubes in culture. Confirmation of co-localisation was achieved via 

antibody staining visualised with confocal microscopy, detailed in methods sections 2.1.12 and 2.1.13. 

A cytoplasmic transferase enzyme found in elevated concentration in cholinergic neurons called ChAT 

(Oda, 1999) was stained to reveal cholinergic MNs in the co-cultures (Figure 5.1). To validate the 

presence of cholinergic MNs, supplementary staining was performed using VaChT, a functional 

mediator of ACh storage and transport by synaptic vesicles (Arvidsson et al., 1997) (Figure 5.2). Staining 

myotubes for myosin heavy chain (MHC) was used to show myotube differentiation. Staining of the co-

cultured cells revealed ChAT+ and VaChT+ cholinergic MNs, with axons terminating on differentiated 

myotubes. Axon terminals were also observed establishing multiple points of contact with individual 

myotubes, comparable to similar observations of SkM innervation during embryonic myogenesis. In 

vivo, preliminary myotube innervation occurs via numerous branching axons, which originate from 

different MNs. Maturation of the innervation process causes axon pruning to occur, leaving individual 

MNs to innervate hundreds of mature muscle fibres, generating a functional motor unit (Low and 

Cheng, 2006). Notably, myotubes in this co-culture model also exhibited multiple innervations (e.g. 2 

or more NMJs per myotube; Figure 5.6) similar to what is observed in vivo before axon pruning occurs.  
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Figure 5.1: Co-localisation of cholinergic motor neurons with myotubes on Day 14. a) A representative 
image showing a single cholinergic motor neuron axon terminating on top of a single differentiated 
myotube. The co-culture stained for choline acetyltransferase (ChAT) (red), myosin heavy chain (MHC) 
(green), and DAPI (blue). Bar = 7.5 µm. Adapted from (Saini et al., 2019) 
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Figure 5.2: Confirmation of cholinergic motor neurons co-localising with myotubes on Day 14. A 
representative image showing cholinergic motor neuron axons co-localising with differentiated 
myotube. The co-cultures were stained for vesicular acetylcholine transporter (VaChT) (red), myosin 
heavy chain (MHC) (green), and DAPI (blue). Bar = 7.5 µm. 
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5.1.2 Characterisation of Neuroglia 

 

The characterisation of many established in vitro NMJ models focus predominantly on describing 

aspects of the neurons and/or the myotube formation with marginal consideration for associated cells 

involved with NMJ generation, regulation, and development. The synapse-associated glial cells known 

as non-myelinating terminal Schwann cells cap motor nerve terminals in vivo, these cells are an 

essential component in NM synaptic maintenance and repair (Balice-Gordon, 1996). Thus, revealing 

Schwann cells in the co-culture system and the subsequent detection of interactions between MNs, 

Schwann cells, and myotubes may explain the formation of NMJs generated in this co-culture system. 

Using the methods described in 2.1.12 and 2.1.13, glial fibrillary acidic protein (GFAP), an intermediate 

filament cytoskeletal component involved in the structure and function of the neuroglia cytoskeleton 

(Jessen et al., 1990) was used as a marker to reveal the existence of non-myelinating Schwann cells. 

Neuronal cells were shown by staining the microtubule cytoskeletal component for β-III-tubulin (Figure 

5.3). Myotubes were visualised by staining for MHC (Figure 5.4). The results showed co-localisation of 

neurons and Schwann cells was evident throughout the co-cultures. The enlarged inset image in Figure 

5.3 illustrates the interaction between these cells, which may be indicative of Schwann cells capping 

axons, as observed in vivo. Furthermore, the results displayed co-localisation of Schwann cells and 

differentiated myotubes apparently throughout the co-cultures. The discovery of co-localisation and 

cellular interaction between myotubes, motor neurons, and Schwann cells within the co-culture system 

supports the concept that this co-culture model provides functional and robust innervation of 

myotubes via precisely coordinated NMJ formation, comparable to in vivo conditions. 
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Figure 5.3: Interaction between neuronal axons and non-myelinating Schwann cells on Day 14. Image 
is representative of neuronal cells in the co-culture stained for β-III-Tubulin (green), Schwann cells 
stained for glial fibrillary acidic protein (GFAP) (red), and DAPI (blue). Enlarged Inset shows cellular 
interaction. Bar = 10 µm. 
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Figure 5.4: Co-localisation of non-myelinating Schwann cells and myotubes on Day 14. Image is 
representative of the interaction between myotube in the co-culture stained for myosin heavy chain 
(MHC) (green) and Schwann cells stained for glial fibrillary acidic protein (GFAP) (red), DAPI (blue). Bar 
= 5 µm. 
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5.1.3 Characterisation of NMJ formation  

 

Following characterisation and validation of the co-localisation between cholinergic MN axon terminals 

and myotubes in the co-culture system, experiments were conducted to verify and characterise the 

formation of NMJs. The formation of NMJs is characterised by the substantial aggregation of AChRs on 

the myotube membrane in apposition of MN axon terminals. Using the methods described in 2.1.12 

and 2.1.13, ICC was performed on the co-cultures, and axon terminals were identified by staining MNs 

for β-III-tubulin (Figure 5.5). To further validate NMJ formation, supplementary staining for MNs was 

also performed using neurofilament heavy (NFH) (Figure 5.6), an intermediate filament found in the 

cytoplasm of neurons (Lees et al., 1988). The accumulation of AChRs on the myotubes was 

characterised with fluorescently labelled α-bungarotoxin (α-BTX), known to bind specifically with 

AChRs on the myotube membrane (Young et al., 2003). The results revealed MN axons and terminals 

overlaying AChR clusters accumulated on the myotubes surface. Similar to in vivo observations, the 

AChR clusters in the co-cultures exhibited the greatest concentrations where MN axons and terminals 

overlapped the clusters, signifying the successful formation of NMJs. Experiments were also conducted 

to compare the development of NMJ morphologies in co-cultured myotubes in contrast to aneurally-

cultured myotubes. Distinctive NMJ morphologies were quantified into five established NMJ 

morphological classifications (Valdez et al., 2010; Lee et al., 2013; Kummer et al., 2004; Sahashi et al., 

2012), detailed in the methods section 2.1.14. Specifically, NMJ morphology was classified as mature, 

fragmented, faint, premature or denervated. The results showed no mature NMJs in the aneurally 

cultured myotubes. However, 43.5% ± 12.7 of the NMJs observed in the co-cultures were classified as 

exhibiting a mature morphology (Figure 5.7). When examining NMJs with a fragmented morphology, 

6% ± 2.6 of the NMJs in the co-cultured cells were considered fragmented, no fragmented NMJs were 

observed in the aneural myotubes. The co-cultures displayed 4% ± 2.7 of NMJs classified as faint, no 

faint NMJs were seen in the aneural myotube cultures. The NMJ morphologies of mature, fragmented, 

and faint were all significantly higher (P < 0.0001) in the co-cultured myotubes when compared to the 

aneural myotube cultures. However, when comparing premature NMJ morphology, the aneurally-

cultured myotube displayed 14.7% ± 5 as having premature NMJs, which was significantly higher (P < 

0.0001) then the percentage of premature NMJs in the co-cultured cells (1.6% ± 1.6). Comparing the 

percentage of denervated myotubes resulted in 90.5% ± 6.2 of aneural cultures showing denervation, 

which was significantly higher than the 8.5% ± 5 of denervated myotubes in the co-cultured conditions.     

 



113 
 

 
 
Figure 5.5: Characterisation of neuromuscular junction formation on Day 14. A Representative image 
showing an individual motor neuron axon terminal interacting with an acetylcholine receptor cluster in 
culture. The co-cultures were stained for β-III-tubulin (green), alpha-bungarotoxin (α-BTX) (red), and 
DAPI (blue). Scale bar = 5 µm. Adapted from (Saini et al., 2019) 
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Figure 5.6: Confirmation of neuromuscular junction formation on Day 14. A Representative image 
showing motor neuron axons interacting with multiple acetylcholine receptor clusters on a 
differentiated myotube in culture. The co-cultures were stained for neurofilament heavy (NFH) (green), 
myosin heavy chain (MHC) (purple) alpha-bungarotoxin (α-BTX) (red), and DAPI (blue). Scale bar = 25 
µm. 
 



115 
 

 
 
Figure 5.7: Neuromuscular Junction Morphologies on Day 14. A bar graph comparing the percentages 
of distinct neuromuscular junction (NMJ) morphologies in myotubes co-cultured with ED 13.5 rat 
embryo spinal cord explants against myotubes cultured aneurally. Each bar presents a mean of all wells 
with error bars signify ± SD from at least 100 NMJs. n = 4 independent experiments. **** denotes P < 
0.0001. Adapted from (Saini et al., 2019) 
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5.1.4 Characterisation of Presynaptic Activity 

 

Following confirmation of NMJ formation, subsequent experiments were conducted to assess NMJ 

functionality through the examination and characterisation of the presynaptic apparatus. When an 

action potential (AP) arrives at a presynaptic terminal, the local increase in the Ca2+ concentration 

triggers the release of ACh. This calcium-dependent exocytosis involves the precise docking of synaptic 

vesicles to the presynaptic membrane, which is regulated in part by the calcium sensor Syt1 (Brose et 

al., 1992). The methods described in 2.1.12 and 2.1.13 were used to confirm presynaptic NMJ activity, 

staining for NFH was used to visualise MN axons while activity at the terminal was shown by staining 

MN for Syt1 (Figure 5.8). The results revealed an elevated expression of Syt1 aggregated at the MNT, 

signifying presynaptic activity at the NMJ. 
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Figure 5.8: Characterisation of presynaptic neuromuscular junction activity on Day 14. A 
representative image of an individual neuronal axon expressing activity at the axon terminal. The co-
cultures were stained for neurofilament heavy (NFH) (green), synaptotagmin 1 (Syt1) (red), and DAPI 
(blue). Bar = 7.5 µm. 
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5.1.5 Characterisation of Postsynaptic Elements 

 

Upon determining MNT activity in the co-cultured cells, the next experiments were conducted to 

identify postsynaptic proteins known to co-localise with AChRs at the MEP. Agrin is crucial for AChR 

clustering in the MEP and is vital for precise NMJ formation. Presynaptic secretion of agrin by MNs 

induces activation and development of MuSK, which forms an initial scaffold for Rapsyn to advance 

recruitment of other postsynaptic MEP elements (Apel et al., 1995; Apel et al., 1997). The methods 

described in 2.1.12 and 2.1.13 were used to verify maturation and appropriate development of the 

MEP. The co-culture was stained with α-BTX to visualise AChRs along with antibodies for MuSK and 

Rapsyn. The results showed that both Rapsyn and MuSK were precisely overlaid the structure of the 

AChR clusters on the postsynaptic membrane (Figure 5.9). 
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Figure 5.9: Characterisation of postsynaptic neuromuscular junction formation at Day 14. a) Image is 
representative of co-culture stained for alpha-bungarotoxin (α-BTX) (red), MuSK (magenta) and DAPI 
(blue). b) Image is representative of co-culture stained for alpha-bungarotoxin (α-BTX) (red), Rapsyn 
(green), and DAPI (blue). c) Image reveals interaction and detailed conformation of postsynaptic 
proteins MuSK (magenta) and Rapsyn (green) at the AChR stained with α-BTX (red), DAPI (blue). Scale 
bar = 25 µm 
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5.1.6 Characterisation of Innervated Myotubes 

 

Mature myotubes in vivo display several features indicative of advanced differentiation. For instance, 

appropriately developed myotubes feature triads, which are arranged in a transversal manner. The 

structural composition of triads detected in myotubes having undergone advanced differentiation is 

formed by a transverse tubule (T tubule) with a sarcoplasmic reticulum (SR) known as the terminal 

cisterna on each side (Marty et al., 1994). The methods described in 2.1.12, 2.1.13, and 2.1.15 were 

used to determine if the co-culture system endorsed innervated myotubes to undergo advanced 

differentiation similar to developing myotubes observed in vivo, characterisation of both co-cultured 

and aneurally cultured myotubes was performed via antibody staining. T-tubules were identified by 

staining for dihydropyridine receptor (DHPR) a voltage-dependent calcium channel located in the T-

tubule membrane (Rios and Brum, 1987). Antibody marking was also used to identify the ryanodine 

receptor (RyR), which is responsible for the release of Ca2+ from intracellular stores during excitation-

contraction coupling in skeletal muscle and is located on the membrane of the SR (Coronado et al., 

1994). Differentiated myotubes in the co-cultures were compared to aneurally-cultured myotubes to 

ascertain any differences in the percentage of myotubes exhibiting indicators of advanced 

differentiation. In each experiment (n = 3), twenty random fields of view from five different plates were 

assessed to determine percentage of myotubes displaying advanced differentiation. The data from all 

experiments was totalled and used to calculate the mean percentage ± SD from all observed fields of 

view. The results showed 32.4% ± 9.6 of innervated myotubes in the co-cultures had well developed 

and appropriately organised transversal triads (Figure 5.10), whereas aneural myotubes did not exhibit 

any triad formation. Along with the formation of transversal triads being an indicator of progressing 

advanced differentiation in innervated myotubes, peripherally located nuclei were also used to reveal 

features of advanced differentiation. The methods detailed in 2.1.12, 2.1.13, and 2.1.16 were used to 

perform characterisation of both co-cultured and aneurally cultured myotubes via antibody staining 

with MHC and DAPI to determine any differences in the percentage of myotubes having peripheral 

nuclei. The results showed 59.3% ± 17.1 of innervated myotubes in the co-cultures had peripherally 

located nuclei (Figure 5.11), contrastingly, no myotubes in the aneural cultures presented peripheral 

nuclei. Another feature of advanced differentiation in myotubes is the development of striations. Thus, 

myotube staining was performed with MHC and DAPI to determine any differences in the percentage 

of myotubes displaying striations in co-cultured and aneural conditions, using the methods detailed in 

2.1.12, 2.1.13, and 2.1.17. The results show 46.2% ± 9.7 of the myotubes in the co-cultures presented 

with striations on their membranes. There was a significant reduction (P < 0.0001) in the percentage of 

striated myotubes (14.1% ± 3.5) when examining the aneural cultures (Figure 5.12). The methods 
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detailed in 2.1.18 were used to do a comparison of myotube thickness between co-cultured myotubes 

displaying features of advanced differentiation and aneurally-cultured myotubes. The results revealed 

that innervation and subsequent advanced differentiation endorsed the formation of thicker 

myotubes. The thickness of myotubes with characteristics of advanced differentiation was 20.3 µm ± 

7.1, whereas aneurally cultured myotubes were measured at a significantly less (P < 0.0001) 11.2 µm ± 

4.3 (Figure 5.13).  
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Figure 5.10: Formation of transversal triads on Day 14. a) The upper image panel is representative of 
an innervated myotube co-cultured with ED 13.5 rat embryo spinal cord explant displaying appropriate 
arrangement of transverse tubules and terminal cisterna. The lower image panel is representative of 
aneurally-cultured myotubes lacking formation of transversal triads. Myotubes were stained for 
ryanodine receptor (RyR) (green) and dihydropyridine receptor (DHPR) (red). b) A bar graph comparing 
percentage of myotubes with triad formation in the co-cultured conditions against aneural myotube 
conditions. Data presented as a mean, error bars signify ± SD.  n = 3 independent experiments. **** 
denotes P < 0.0001. Bar = 7.5 µm. Adapted from (Saini et al., 2019) 
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Figure 5.11: Generation of peripheral nuclei at Day 14. a) The upper image panel is representative of 
an innervated myotube co-cultured with ED 13.5 rat embryo spinal cord explant displaying peripherally 
located nuclei protruding from the myotube. The lower image panel is representative of aneurally-
cultured myotubes with centrally located nuclei. Myotubes were stained for myosin heavy chain (MHC) 
(green) and DAPI (blue). b) A bar graph comparing percentage of myotubes with peripheral nuclei in 
the co-cultured conditions against aneural myotube conditions. Data presented as a mean, error bars 
signify ± SD.  n = 3 independent experiments. **** denotes P < 0.0001. Bar = 10 µm.  
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Figure 5.12: Myotube striations on Day 14. a) The upper image panel is representative of an innervated 
myotube co-cultured with ED 13.5 rat embryo spinal cord explant displaying striations on the myotube 
membrane. The lower image panel is representative of aneurally-cultured myotubes lacking striations. 
Myotubes were stained for myosin heavy chain (MHC) (green) and DAPI (blue). b) A bar graph 
comparing percentage of striated myotubes in the co-cultured conditions against aneural myotube 
conditions. Data presented as a mean, error bars signify ± SD.  n = 3 independent experiments. **** 
denotes P < 0.0001. Bar = 2 µm. 
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Figure 5.13: Myotube thickness on Day 14. A bar graph comparing the thickness of myotubes 
displaying features of advanced differentiation in the co-cultured conditions against aneurally cultured 
myotubes. Data presented as a mean, error bars signify ± SD.  n = 3 independent experiments. *** 
denotes P < 0.0001.  
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5.2 Discussion 

 

The primary outcome of this study presented characterisation of the in vitro NMJ model established in 

the previous chapter. The co-cultures of rat embryo SCEs with C25 demonstrated the co-localisation of 

cholinergic MNs with differentiated myotubes and promoted the interaction between neurons, 

myotubes, and neuroglia. Furthermore, co-cultures generated the formation and development of 

mature NMJs with presynaptic activity and postsynaptic structural organisation. Innervated myotubes 

in the co-cultures were also found to exhibit structural characteristics indicating the development of 

advanced differentiation. When preliminary experiments were conducted with the co-cultures to 

determine the optimal time for characterisation of the system, CF was used as the benchmark for NMJ 

formation and maturation. The observation that innervated myotubes were contracting at peak 

frequency after 14 days in the co-culture system provided evidence of effective mature NMJ 

development, which was reflected after characterisation was completed and revealed suitably 

differentiated MNs, NMJs, and myotubes. In comparison, some previously established co-culture 

systems require more than 20 days before NMJ formation occurs and involve extensive prior MN or 

myotube differentiation, further increasing the timeline of experimentation (Southam et al., 2013; Das 

et al., 2010). Moreover, contrasting the co-culture system presented in this current study, these 

previous co-culture models exhibited premature development of NMJs and myotubes lacked advanced 

differentiation. Although co-cultures were characterised on Day 14, the preliminary experiments used 

to determine the optimal date for characterisation also revealed long-term co-culture studies were 

possible with this novel simplified system, considering that myotube contractions persisted until 

experimental termination on Day 30, which could have been maintained further if desired. The 

characterisation of cholinergic MNs with ChAT and VaChT in the co-cultures resulted in the observation 

that interactions between MNs, ACh, and myotubes occurred in the system. Studies conducted with 

ChAT-/- mice have shown that embryos lacking ChAT have deficits in postsynaptic nerve potentials, 

resulting in embryo death at birth. The ChAT-/- mice display hyper-innervation due to excessive 

presynaptic nerve branching, smaller MNTs, and increased quantity of AChR agregations with fewer 

presynaptic contacts (Brandon et al., 2003; Misgeld et al., 2002). Although structural synaptic elements 

were present in the ChAT-/- mice, an assortment of both pre- and post-synaptic irregularities were 

evident at the NMJ. The findings from these in vivo ChAT deficient mice studies showed that 

neurotransmission is not the only function of ACh and synaptogenesis requires ACh and its biosynthetic 

enzyme ChAT. Research conducted with VAChT-/- mice similarly find severe abnormalities in NMJ 

development (de Castro et al., 2009). As seen in ChAT-/- mice, the studies with VAChT-/- mice have 

enlarged MEPs, excessive MN growth and necrotic SkM tissue, indicating VAChT is essential for the 
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release of ACh at the synapse and normal NMJ development. Thus, characterisation of ChAT and VaChT 

in the co-cultures provided data showing the in vitro NMJs generated in the system were an accurate 

physiological representation of NMJ development seen in vivo. Appropriate formation of NMJs requires 

interaction between the axon terminals of neurons, MEPs of myotubes and terminal Schwann cells. In 

vivo studies conducted with mutant mice lacking Schwann cells show MN axons are able to grow and 

extend towards developing SkM; however, significant axonal defasciculation is observed. This finding 

suggested Schwann cells are not required for axonal projection towards target myotubes but are 

necessary for nerve fasciculation. Additionally, Schwann cell deficient mice were able to establish 

preliminary NMJ formation but unable to maintain further development of the synapse (Lin et al., 2000; 

Morris et al., 1999; Riethmacher et al., 1997; Woldeyesus et al., 1999; Wolpowitz et al., 2000). These 

studies demonstrate that Schwann cells are not required for the initiation of contact between neurons 

and axons in vivo, but are vital for the subsequent advancement and maintenance of the developing 

synapse. Therefore, confirmation of Schwann cells in the co-culture system and the subsequent 

interaction observed between MNs and Schwann cells suggests the in vitro NMJ formation observed in 

the co-cultures were matured and maintained through Schwann cell/MN communication. Crucially, 

characterisation of the presynaptic nerve terminals with antibodies for Syt1 resulted in the discovery 

of presynaptic NMJ activity occurring in the co-cultured cells. Research investigating Syt1 revealed its 

function as a calcium sensor, facilitating the release of neurotransmitters from Ca2+-dependent vesicles, 

which is mandatory for calcium-dependent vesicle exocytosis in invertebrates (Geppert et al., 1994; 

Littleton et al., 1993). However, investigations with Syt1-/- mice uncovered Syt1 was only required for 

fast synchronous release of neurotransmitters from Ca2+-dependent vesicles, as synaptotagmin 2 can 

compensate for the lack of asynchronous exocytosis in Syt1-/- mice (Geppert et al., 1994). Studies 

conducted with spinal muscular atrophy (SMA) mouse models to explore the causes of impaired 

neurotransmitter release also discovered Syt1 was downregulated during development in the MNTs of 

the severely affected muscles, but not in MNT of less susceptible muscle (Lopez-Manzaneda et al., 

2016). Therefore, identification of Syt1 in the co-cultures showed evidence that presynaptic activity at 

NMJs was illustrative of NMJ functionality, as would be similarly expected in appropriate in vivo NMJ 

formation and development. The formation of NMJs in the present co-culture system were 

characterised on the MEP with α-BTX to show the structure of postsynaptic aggregation of AChRs. 

Previously established nerve-muscle co-culture systems have demonstrated NMJ formation as diffused 

or speckled AChR clusters co-localising with MNs, primarily in the categories of faint or premature 

formation (Southam et al., 2013; Das et al., 2007). However, it is acknowledged that co-localisation 

alone does not represent in vivo NMJ formation (Thomson et al., 2012). Classic study of NMJs show 

that MN axons terminate at the MEP and overlap the AChR clusters precisely (Sanes and Lichtman, 
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1999; Englander and Rubin, 1987). Importantly, the NMJ formation observed in the co-culture system 

presented in this current study displayed MNs terminating on clusters of AChRs in the typical twisting 

knotted configuration. This finding signified in vitro NMJ formation, comparably observed in vivo. 

Confirming the co-cultures were able to generate NMJs with characteristics of maturely developed 

AChR clusters prompted the investigation of other postsynaptic NMJ elements. Essential for formation 

and maintenance of the NMJ, the observation of MuSK and Rapsyn at the MEP indicated activation of 

the MuSK signalling pathways triggered by agrin secretion from the MNT (Wu et al., 2010; Luo et al., 

2003; Zhang et al., 2008; Kim and Burden, 2008). This finding was vital as it provided evidence toward 

successful postsynaptic differentiation at the NMJ via pre- and post-synaptic communication. 

Furthermore, the association of Rapsyn with AChRs is required for in vivo AChR clustering (Apel et al., 

1997). Thus, the detection of co-localisation between Rapsyn, MuSK, and AChRs indicated that the 

postsynaptic development observed in the co-cultures were able to reach a level of maturation that 

would allow investigations of postsynaptic NMJ manipulation in the system. Co-cultured myotubes also 

displayed the morphological characteristics of advanced differentiation. Besides transversal triads 

being apparent in innervated myotubes, the co-cultured myotubes also contained peripherally located 

nuclei and the conventional actin-myosin striations expressed in mature differentiation, all 

characteristics which are similarly observed in vivo (Bruusgaard et al., 2003; Shadrin et al., 2016). This 

vital characterisation of mature innervated myotube development further exemplifies the advantage 

of this co-culture system over typical aneural in vitro myoblast cultures and previously established 

nerve-muscle co-culture models, which fail to achieve advanced stages of development. Thus, making 

this co-culture system a preferential alternative as a research tool for the accurate elucidation of 

skeletal muscle wasting and improve exploration of NM disorders. 

 

5.3 Conclusion 

 

In conclusion, this report characterised a novel in vitro NMJ system generated from ED 13.5 rat SCEs 

co-cultured with C25. The de novo formation of NMJs was verified by identifying pre- and post-synaptic 

structures of the junctional apparatus. Interactions with MN, myotubes and supporting neuroglia were 

shown to endorse the advanced differentiation of innervated myotubes. Thus, the SkMC line used in 

the generation of the system is a key aspect of this new system. The SkMC line allows for de novo 

formation of NMJs with easy reproducibility, while retaining the ability to differentiate regardless of 

the genetic programing performed on the cell line to achieve immortalisation. 
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Chapter 6: Functional Assessment of in vitro Neuromuscular 

Junctions between Embryonic Rat Motor Neurons and Immortalised 

Human Myoblasts 

 

6.0 Background 

 

6.0.0 Introduction  

 

Experiments in the previous chapter detailed characterisation of NMJs and innervated myotubes in the 

ED 13.5 rat embryo SCE / C25 co-culture system. Successful NMJ formation with presynaptic cholinergic 

MN activity, maturation of postsynaptic MEP components, as well as cellular interaction between MNs, 

SkMCs, and supporting neuroglia were confirmed throughout the co-cultures. The formation of NMJs 

and development of innervated myotubes enabled the advanced differentiation of myotubes in the co-

culture system, distinguished via characterisation of transversal triads, peripheral nuclei, and cross-

striations on the myotubes. Furthermore, characterisation of the system verified the practicality of this 

heterologous co-culture model for NMJ disease modelling, as antibodies specific for rat or human can 

be used to study disorders that affect presynaptic and/or postsynaptic regions of the NMJ. The direct 

deterioration of NMJs is featured in a variety of disorders, such as congenital myasthenic syndromes 

(CMS), Lambert-Eaton myasthenic syndrome (LEMS) and myasthenia gravis (MG) (Engel and Sine, 2005; 

Vincent et al., 1989; Gilhus, 2016). These diseases and other NM disorders that affect MNs, such as 

amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) (Rosen et al., 1993; Lefebvre et 

al., 1995), can be initiated by autoimmunity, genetic mutations, and specific drugs or toxins. All of which 

can modify the function or quantity of synaptic proteins essential for regulating communication 

between MNTs and MEPs. Furthermore, disorders such as diabetic neuropathy and myopathy are 

associated with functional and morphological changes of the NMJ associated with muscle weakness 

(Garcia et al., 2012; Monaco et al., 2017). The degeneration of NMJs is also observed in several 

conditions including age-linked sarcopenia, cancer cachexia, heart failure, and NM transmission 

disorders, all of which lead to profound muscle wasting and weakness (Rudolf et al., 2016). The 

elucidation of mechanisms involved with deterioration of NMJs due to disease progression may allow 

for the development of therapies that can improve NMJ function and halt disease development. Animal 

models have been the traditional method to investigate the pathophysiology of NM disease, but are 

limited in the data they provide that translates to disease in humans. For example, the human survival 
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motor neuron 1 (SMN1) gene is mutated in SMA patients, but presence of the survival motor neuron 2 

(SMN2) gene can mitigate some deleterious influences of the SMN1 gene mutation (Lefebvre et al., 

1995). Contrastingly, deletion of the SMN1 gene in mice results in embryonic death as the mouse 

genome does not contain the SMN2 gene (Schrank et al., 1997). Therefore, the development of the 

SMA mouse model required insertion of the human SMN2 gene into the mouse genome of SMN1-/- 

mice to prevent embryo death (Monani et al., 2000; Hsieh-Li et al., 2000). Consequently, the resulting 

mouse exhibits an atrophied SkM phenotype due to a gene that the mouse genome does not naturally 

contain, yet this in vivo animal model and other similarly developed animal models are still the closest 

genetic representation of disease pathology in humans (Sleigh et al., 2011). Similarly, The superoxide 

dismutase 1 (SOD1) mouse model of ALS is the most commonly used animal model in ALS research, but 

has been unable to provide any significant insights into the mechanism of disease or possible therapies 

(Schnabel, 2008; Benatar, 2007). Thus, for effective interpretation of disease mechanisms and the 

screening of therapies designed to rectify NMJ function in NM disorders, a structurally robust and 

stable in vitro NMJ system that accurately reflects typical in vivo functionality is required. Data obtained 

through characterisation of the co-culture model presented in this project has already shown the 

system was able to emulate appropriate in vivo structural development of NMJs and exhibited long-

term stability in culture. However, for the co-culture model to be considered a functional system the 

SkMCs contractile activity should respond physiologically to pre- or post-synaptic manipulation of the 

NMJ through pharmacological interventions. Importantly, unlike numerous SkMCs originating from 

animals, classic studies concluded that aneurally cultured human SkMCs, the most extensively utilised 

in vitro model to study human SkM (Aas et al., 2013), do not usually spontaneously contract or form 

differentiated postsynaptic components of NMJs under standard conditions (Delaporte et al., 1986; 

Kobayashi and Askanas, 1985). Thus, it is typically regarded that aneurally cultured human myotubes 

do not exhibit spontaneous contractile activity and any contraction has been considered to originate 

via innervation (Mis et al., 2017). Notably the first spontaneous aneural myotube contractions 

witnessed in differentiated human SkMCs was published in 2014 (Dixon et al., 2018), at which time the 

authors claimed that no spontaneous contraction had been reported from aneural human SkMCs in 

vitro (Guo et al., 2014). However, myotubes differentiated from the C2C12 mouse myoblast cell line 

have shown a capacity for spontaneous contractile activity when cultured aneurally (Manabe et al., 

2012), indicating the possibility exists that aneurally cultured human myotubes could contract 

spontaneously, though unlikely. To demonstrate the formation of functional NMJs, some previously 

established nerve-muscle co-culture models have used the application of excitatory neurotransmitters 

such as glutamate to stimulate MNs, resulting in increased myotube contractions. In contrast, the 

cessation of myotube contractions has also been demonstrated through the application of reversible 
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and irreversible AChR inhibitors such as tubocurarine or bungarotoxin (Guo et al., 2011; Miles et al., 

2004; Umbach et al., 2012; Bowman, 2006). Interestingly, recent research detected glutamate 

decarboxylase, which is an enzyme involved with γ-aminobutyric acid (GABA) synthesis, along with 

GABA, and a protein responsible for transmembrane transport of GABA called GAT-2, in the vertebrate 

NMJ (Nurullin et al., 2018). Though no previous compelling evidence existed that GABAminergic 

signalling occurred in the vertebrate NMJ. Furthermore, these new findings have yet to be explored in 

the context of NMJ functionality in heterologous nerve-muscle co-culture systems. Indicating that 

stimulation of in vitro NMJs with exogenous GABA is unknown, as well as the effects of GABA receptor 

antagonist such as bicuculline being insufficiently explored. Therefore, experiments in this study were 

conducted with co-cultures of ED 13.5 embryonic rat SCEs innervating C25 to explore the functional 

responses of NMJs to biochemical intervention.  

 

6.0.1 Aims 

 

The first aims of the present study was to verify spontaneous myotube contractions in the co-culture 

system were in fact driven via MN stimulation, as the unlikely possibility exists that spontaneous 

contractions may have been induced aneurally. The second aim was to ensure NMJs generated in the 

co-culture system respond to drug treatments in a physiological manner representative of in vivo NMJs. 

Thus, the objectives were: 

 

1. Establish the co-culture model exhibiting spontaneous myotube contractions. 

 

2. Treat the co-cultures with agonist and antagonist drugs (i.e. α-bungarotoxin, tubocurarine, 

bicuculline, L-glutamic acid, γ-aminobutyric acid). 

 

3. Determine the functionality of NMJs generated in the co-culture system by assessing the 

myotube contraction frequency in response to pre- and post-synaptic NMJ manipulation 

via drug treatments.  
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6.1 Results 

 

6.1.0 Functional Assessment of NMJs with α-Bungarotoxin 

 

It is well known that α-BTX is a naturally occurring neurotoxic peptide found in the venom of the 

Bungarus multicinctus snake. When in vivo NMJs are exposed to α-BTX, an irreversible competitive 

antagonistic binding occurs between the neurotoxin and the AChRs on the postsynaptic MEP of the 

NMJ, leading to SkM paralysis, respiratory failure, and death (Lavoie et al., 1976). The methods 

described in 2.1.19 were used to determine if in vitro NMJs generated in the co-culture system reflect 

the SkM paralysis observed in vivo, the co-cultures were treated with a 1:400 concentration of α-BTX 

to induce permanent blockade of the postsynaptic AChRs. Experiments were conducted on day 14, 

when peak spontaneous contraction frequency (CF) was observed, which was determined in the 

previous chapter (Figure 5.0). Before exposing the co-cultures to α-BTX treatment, the culture dishes 

were placed on the microscope stage enclosed by an incubation chamber to maintain ideal atmospheric 

conditions for spontaneous myotube contractile activity. Continuous spontaneous myotube 

contractions were observed for no less than 5 minutes before baseline measurements were taken. This 

step was included to ensure any changes in myotube CF due to fluctuations in temperature or 

environmental conditions were mitigated, thereby removing false positive results, as the co-cultures 

were extremely sensitive to these fluctuations. Importantly, changing temperature and handling the 

culture plates can potentially reduce the possibility of locally triggered action potentials. This could 

potentially be tested by probing for local action potentials or by loading neurons with a calcium probe 

that would allow for the detection of waves of depolarisation. Baseline CF was measured 30 seconds 

before the application of α-BTX (Figure 6.0). There were no differences (P = 0.64) in baseline CF 

between the negative control (1.25 Hz ± 0.27) and the positive controls before treatment (1.18 Hz ± 

0.33). All myotube contractions in the controls and α-BTX treated co-cultures stopped immediately 

upon addition of the treated and untreated diluent to the cultured cells. After 1 minute, myotube CF in 

the controls were measured at 0.08 Hz ± 0.08, while no myotube contractions were seen in the α-BTX 

treated cultures. Myotube contractions increased in the controls after 2 minutes to 0.27 Hz ± 0.08, no 

contractions were seen in the α-BTX treated cells. After 5 minutes, control myotubes were contracting 

at 0.96 Hz ± 0.19, no contractions were seen in the α-BTX treated cells. Following 10 minutes after 

treatment, CF in the controls returned to comparable baseline levels of 1.17 Hz ± 0.39. Controls 

continued to exhibit CF similar to baseline after 30mins (1.38 Hz ± 0.13) and 1 hour (1.23 Hz ± 0.2), 

though no contractions where observed in the α-BTX treated cells at these time points. The control and 
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α-BTX treated cells were washed out and fresh untreated DM was added to the cells after the 1 hour 

measurement, which resulted in the stoppage of contractions in both treated and control conditions. 

When measured again 30 minutes after washout (1 hour and 30 minutes after initial application of 

treatment), the controls were again contracting at a comparable baseline frequency of 1.18 Hz ± 0.26. 

This observation was also made 24 hours after treatment, where CF in the controls was 1.13 Hz ± 0.21. 

However, no observable contractile activity was witnessed in the α-BTX treated co-cultures at either of 

these final two time points.  
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Figure 6.0: Assessment of the functional effects of a 1:400 concentration of α-bungarotoxin on co-
cultured myotubes. A line graph comparing the contraction frequency of myotubes treated with α-
Bungarotoxin (α-BTX) and untreated controls. Data presented as a mean, error bars signify ± SD.  n = 5 
independent experiments. ** denotes P < 0.01, **** denotes P < 0.0001. Time point 1.1* indicates 
washout.  
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6.1.1 Functional Assessment of NMJs with Tubocurarine  

 

Tubocurarine is a toxic mono-quaternary alkaloid naturally occurring in the bark of the Chondrodendron 

tomentosum plant. The function of this toxin occurs by a reversible competitive binding of AChRs at the 

postsynaptic NMJ (Cooke and Grinnell, 1964). Similar to the effects of α-BTX, a sufficient dose of 

tubocurarine causes SkM paralysis and death from asphyxiation due to paralysis of the diaphragm. To 

determine if the innervated myotubes generated in the co-culture system parallels SkM paralysis 

observed in vivo, the co-cultures were treated with 8 µM tubocurarine to inhibit AChRs (Figure 6.1), as 

described in the methods section 2.1.19. There was no difference in baseline CF between treated and 

control co-cultured myotubes (1.18 Hz ± 0.25 vs 1.21 Hz ± 0.26, P = 0.75), recorded 30 seconds before 

addition of the treatment solution to the cells. Upon addition of tubocurarine to the treated cells and 

untreated diluent to the control cells, there was a halt in all observable contractions in both conditions. 

After 1 minute, CF of control myotubes was 0.12 Hz ± 0.06, no contractions were observed in the 

treated myotubes. After 2 minutes, CF of control myotubes was 0.22 Hz ± 0.06, no contractions were 

observed in the treated myotubes. After 5 minutes, myotube CF in the controls was 1.23 Hz ± 0.21, 

which was comparable to baseline CF, though no contractions were seen in the tubocurarine treated 

cultures. Controls continued to contract at a similar frequency of 1.25 Hz ± 0.31 after 10 minutes, no 

contractions were seen in the treated cells. Following 30 minutes after treatment, the tubocurarine 

treated cells were observed contracting at 0.13 Hz ± 0.09, which was significantly less (P < 0.0001) than 

the controls CF of 1.18 Hz ± 0.23. A slight increase in CF up to 0.51 Hz ± 0.16 was observed in the treated 

cells 1 hour after treatment, though this was still significantly less (P < 0.0001) than the controls, which 

were contracting at 1.03 Hz ± 0.22. Both control and treated conditions were washed out and fresh DM 

was added to the cells. The result was a complete stop of myotube contractions immediately following 

washout in both treated and control conditions.  There was no difference (P = 0.66) in CF when 

measured 30 minutes after washout, controls were contracting at 1.15 Hz ± 0.28 and treated cells at 

1.20 Hz ± 0.23. Similarly, when measuring CF 24 hours after initial treatment, the treated cells were 

contracting at 1.19 Hz ± 0.23 and the controls contracting at 1.1 Hz ± 0.17, indicating no significant 

difference (P = 0.27).    
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Figure 6.1: Assessment of the functional effects of 8 µM tubocurarine on co-cultured myotubes. A 
line graph comparing the contraction frequency of myotubes treated with tubocurarine and untreated 
controls. Data presented as a mean, error bars signify ± SD.  n = 5 independent experiments. **** 
denotes P < 0.0001. Time point 1.1* indicates washout.  
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6.1.2 Functional Assessment of NMJs with Bicuculline  

 

The phthalideisoquinoline alkaloid bicuculline is a competitive GABA receptor antagonist found in many 

plant species of the Fumarioideae subfamily (Manske, 1932). Previous studies have shown CF is 

modulated by the application of bicuculline in a homologous rat co-culture model (Mis et al., 2017). 

Thus, using the methods detailed in 2.1.19, 10 µM bicuculline was applied to the current in vitro NMJ 

system to determine its effects on myotube CF in this heterologous co-culture system (Figure 6.2). 

Baseline measurements of CF determined no difference between controls and treated cells 30 seconds 

before the addition of bicuculline treatment or untreated diluent to the co-cultures (1.26 Hz ± 0.27 vs 

1.37 Hz ± 0.18, P = 0.26). All contractions stopped immediately upon addition of bicuculline or DM in 

both treated and untreated cells. After 1 minute, controls were observed contracting at 0.08 Hz ± 0.06, 

yet no contractions were seen in the treated cells. Measuring CF after 2 minutes showed an increase in 

the controls to 0.19 Hz ± 0.04, no contractions were observed in the bicuculline treated cells. 

Measurements of CF at 5 minutes found the bicuculline treated cells to be contracting at a rate of 0.05 

Hz ± 0.04, which was significantly less (P < 0.0001) than the CF of controls, which were contracting at 

1.1 Hz ± 0.19. After 10 minutes, a slight increase in CF was observed in the treated cells to 0.67 Hz ± 

0.07, whereas CF in the controls was significantly higher (P < 0.0001) at 1.11 Hz ± 0.11. The CF measured 

30 minutes after treatment in the controls was significantly higher than the treated cells (1.06 Hz ± 0.14 

vs 0.6 Hz ± 0.13, P < 0.0001). Following 1 hour after treatment, the treated cells increased CF to 0.87 

Hz ± 0.13, yet was still significantly less (P = 0.003) than the controls, which were measured at 1.06 Hz 

± 0.12. All contraction stopped when the co-cultures were observed immediately following washout 

and replacement of DM in both conditions. When measured again 30 minutes after washout, there was 

no difference between the treated and control conditions (1.2 Hz ± 0.19 vs 1.1 Hz ± 0.15, P = 0.2). 

Similarly, after 24 hours no differences were seen between the treated and control conditions (1.27 Hz 

± 0.23 vs 1.2 Hz ± 0.25, P = 0.51). 
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Figure 6.2: Assessment of the functional effects of 10 µM bicuculline on co-cultured myotubes. A line 
graph comparing the contraction frequency of myotubes treated with bicuculline and untreated 
controls. Data presented as a mean, error bars signify ± SD.  n = 5 independent experiments. ** denotes 
P < 0.01, *** denotes P < 0.001, **** denotes P < 0.0001. Time point 1.1* indicates washout.  
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6.1.3 Functional Assessment of NMJs with L-Glutamic Acid 

 

Upon determining contractile activity of myotubes in the co-culture system could be stopped or 

attenuated by the application of antagonist drugs that act on AChRs at the NMJ MEP, the next 

experiment set out to determine the impact of presynaptic agonist stimulation of the NMJ at the MNs. 

Thus, using the methods in 2.1.19, the excitatory neurotransmitter glutamate, in the form of 400 µM 

L-glutamic acid (L-Glut), was applied to the co-cultures to assess the influence of L-Glut on the CF of co-

cultured myotubes (Figure 6.3). Baseline measurements of CF were recorded 30 seconds before the 

application of L-Glut to the positive controls and untreated diluent to the negative controls, which 

determined no significant differences (1.1 Hz ± 0.2 vs 1.2 Hz ± 0.3, P  = 0.3). All contractions stopped 

immediately following the addition of the treatment solutions to the cultures. When CF was measured 

again 1 minute after the application of the treatment, the myotubes in the L-Glut treated cultures were 

contracting at a frequency of 0.18 Hz ± 0.05, which was significantly higher (P = 0.003) than the controls 

(0.1 Hz ± 0.05). After 2 minutes, the L-Glut treated cultures significantly increased (P < 0.0001) myotube 

CF to 1.7 Hz ± 0.18, while controls were measured at 0.23 Hz ± 0.06. After 5 minutes, myotube CF was 

measured at 1.3 Hz ± 0.22 in the controls, indicating CF had returned to levels comparable to baseline 

activity. However, myotubes in the L-Glut treated cultures were contracting at a frequency of 3.7 Hz ± 

0.15, which was 2.5 Hz greater than the controls at this time point. When measuring contractile activity 

10 minutes after application of the treatment, the myotubes in the L-Glut treated co-cultures exhibited 

a CF of 1.06 Hz ± 0.15, which was comparable to controls (P = 0.28), having a CF of 1.17 Hz ± 0.27. A 

Similar comparison was observed after 30 minutes (1.2 Hz ± 0.13 vs 1.3 Hz ± 0.14, P = 0.12) and 1 hour 

(1.26 Hz ± 0.19 vs 1.34 Hz ± 0.26, P = 0.44) between the control and L-Glut treated cultures respectively. 

Washing out and replacing the DM in both culture conditions 1 hour after the initial treatment resulted 

in stoppage of all contractions in the cultures. When measuring again 30 minutes after washout, both 

control and treated cultures where contracting at similar rates (1.1 Hz ± 0.21 vs 1.21 Hz ± 0.28, P = 0.3), 

comparable to baseline. At 24 hours following the initial treatment, both controls and L-Glut treated 

cultures showed no difference in CF (1.18 Hz ± 0.22 vs 1.23 Hz ± 0.17, P = 0.63), exhibiting spontaneous 

activity similar to baseline measurements.  
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Figure 6.3: Assessment of the functional effects of 400 µM L-glutamic acid on co-cultured myotubes. 
A line graph comparing the contraction frequency of myotubes treated with L-glutamic acid and 
untreated controls. Data presented as a mean, error bars signify ± SD.  n = 5 independent experiments. 
** denotes P < 0.01, **** denotes P < 0.0001. Time point 1.1* indicates washout.  
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6.1.4 Functional Assessment of NMJs with γ-Aminobutyric Acid 

 

Mainly found in the synapses of the CNS the inhibitory neurotransmitter GABA performs vital functions 

in the brain (Obata, 2013). Some studies have shown GABA signalling may occur in the periphery, with 

GABA transporters and receptors involved with GABA signalling being detected in a small number of 

endocrine and exocrine glands (Watanabe et al., 2002). Molecular studies have also found the GABAA 

receptor subunits α4 and β2/3 are present in cholinergic neurons (Elinos et al., 2016; Park et al., 2006). 

Although GABA functions to reduce neuronal activity in the CNS, the effects of increased GABA 

concentration in the in vitro NMJ environment requires clarification. Thus, using the methods described 

in 2.1.19 the co-cultures were treated with 1 mM GABA and CF was compared against control 

conditions (Figure 6.4). Baseline measurements of CF 30 seconds before treatment determined no 

difference between positive and negative conditions (1.32 Hz ± 0.18 vs 1.26 Hz ± 0.27, P = 0.6). There 

were no differences in myotube CF between the GABA treated and control co-cultures after 1 minute 

(0.11 Hz ± 0.05 vs 0.13 Hz ± 0.11, P = 0.65), or 2 minutes (0.19 Hz ± 0.06 vs 0.24 Hz ± 0.06, P = 0.09) 

following the addition of the treatment to the co-cultures. The CF of myotubes in the GABA treated co-

cultures was significantly higher than the controls when observed 5 minutes after the treatment (1.7 

Hz ± 0.33 vs 1.01 Hz ± 0.2, P < 0.0001). However, there were no differences in myotube CF between 

GABA and non-treated controls after 10 minutes (1.19 Hz ± 0.16 vs 1.22 Hz ± 0.23, P = 0.78), 30 minutes 

(1.08 Hz ± 0.2 vs 1.15 Hz ± 0.16, P = 0.39), 1 hour (1.11 Hz ± 0.14 vs 1.09 Hz ± 0.2, P = 0.79), 1 hour and 

30 minutes (1.09 Hz ± 0.14 vs 1.2 Hz ± 0.2, P = 0.21), and 24 hours (1.36 Hz ± 0.22 vs 1.15 Hz ± 0.25, P = 

0.07) after treatment.  
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Figure 6.4: Assessment of the functional effects of 1 mM γ-aminobutyric acid on co-cultured 
myotubes. A line graph comparing the contraction frequency of myotubes treated with γ-aminobutyric 
acid (GABA) and untreated controls. Data presented as a mean, error bars signify ± SD.  n = 5 
independent experiments. **** denotes P < 0.0001. Time point 1.1* indicates washout.  
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6.2 Discussion  

 

The main results from this chapter demonstrated the functional capacity of NMJs generated in the 

nerve-muscle co-culture system established in this project. The experiments conducted were designed 

to show spontaneous myotube contractile activity was indeed driven by MN signalling through the 

NMJ. Thus, functionality of NMJs was assessed through the analysis of myotube CF modulation, using 

agonist and antagonist pharmacological interventions that act on presynaptic MNs or postsynaptically 

on AChRs at the NMJ. The introduction of α-BTX to the co-cultures resulted in an immediate and 

permanent stoppage of spontaneous myotube contractions. This finding indicated binding of AChRs at 

the NMJ MEP with α-BTX, preventing ACh from binding with the postsynaptic receptors and 

consequently inducing paralysis in the co-cultured innervated myotubes. Although the co-cultures 

exposed to the α-BTX were washed out and reverted to normal culture conditions with fresh DM, 

spontaneous myotube contractile activity was indefinitely immobilised. Demonstrating the NMJs 

generated in this in vitro co-culture system responded physiologically to an irreversible competitive 

antagonist at the AChRs, as observed at the in vivo mammalian NMJ (Domet et al., 1995). Furthermore, 

the addition of tubocurarine to the co-cultures led to an immediate yet temporary halt in endogenously 

generated myotube contractions. Unlike the α-BTX treated cultures, which were unable to re-establish 

contractile activity, the myotubes in the tubocurarine treated co-cultures re-initiated spontaneous 

activity, beginning with low frequency irregular spasms rather than the typical synchronised 

contractions observed in control conditions. Although, the re-establishment of contractile activity was 

observed (30 minutes) after the application of tubocurarine, the spontaneous myotube contractions 

did not return to a typical synchronous frequency until the co-cultures were restored to pre-

intervention conditions. Studies have shown the effects of ACh are not abolished in the presence of 

tubocurarine, but the ability of ACh to open the receptor channels is reduced, the result of which 

resembling a reduced concentration of ACh (Bowman, 2006). Dissimilar to the irreversible receptor 

antagonist α-BTX, which functionally inactivates the AChRs, tubocurarine acts by reducing the 

probability of ACh activating the receptor instead of inactivating it completely. Tubocurarine functions 

by repetitively associating and dissociating with its binding sites, as would be expected of a reversible 

competitive receptor antagonist, rather than remaining in constant contact with the AChR like α-BTX. 

The ability of myotube contractile activity in the co-cultures to recover from tubocurarine validates the 

accurate physiological nature of the neurotransmission witnessed in this in vitro NMJ system. The 

results from examining the application of bicuculline to the co-cultures revealed a preliminary cessation 

of myotube activity. Although spontaneous contractile function did partially recover, the frequency of 

myotube contractions were significantly attenuated prior to the removal of bicuculline from the 
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cultured cells. Previous research investigating the effects of the classic GABA type A receptor antagonist 

bicuculline on AChRs has demonstrated that bicuculline dose-dependently blocks the amplitude of the 

whole-cell current in cultured embryonic rat skeletal muscle (Liu et al., 1994). This study also showed 

the ability of bicuculline to reduce the maximum inducible ACh current without altering Kd value, this 

finding indicated that bicuculline non-competitively blocked the binding of ACh to AChRs. Ultimately, 

the study concluded that bicuculline was a blocker of embryonic nicotinic AChR channels (Liu et al., 

1994). Furthermore, experiments conducted to investigate the effects of bicuculline on heteromeric 

mouse muscle αβγδ nicotinic AChRs demonstrated bicuculline diminished ACh-induced currents in a 

quick yet reversible manner, indicating the receptor is inhibited by bicuculline. Further investigation 

examining the effect of bicuculline at different membrane potentials revealed receptor inhibition was 

voltage-dependent, indicating bicuculline blocks nicotinic AChRs in a non-competitive way (Demuro et 

al., 2001). These studies provide evidence for the notion that the bicuculline-induced modulation of 

myotube contractions observed in the current co-culture system resulted from the prevention of ACh 

to bind with receptors on the MEP, further indicating that signalling at the NMJ was regulating 

contractile activity of myotubes in this in vitro NMJ model. Glutamic acid is a neuron-specific excitatory 

neurotransmitter that induces APs in MNs (Jiang et al., 1990). Despite the detection of glutamate 

receptors in mammalian NMJs, some research suggests these receptors are involved with regulation of 

muscle fibre membrane potentials via the nitric oxide synthase system (Urazaev et al., 1995), rather 

than  signalling at the NMJ. When investigating the stimulation of associated neurons in the co-cultures 

via implementation of the neuron-specific excitatory neurotransmitter L-Glut, the frequency of 

myotube contractions in the system were significantly elevated. The impact of MN stimulation with L-

Glut on myotube CF was immediately observable, causing myotubes activity to increase 1.5 Hz over the 

controls in 2 minutes and increase to 2.5 Hz greater than the controls in 5 minutes. However, myotube 

CF returned to levels comparable to spontaneous activity within 10 minutes following MN stimulation 

with L-Glut. In mammals, it is accepted that SkMC membranes are stimulated exclusively through 

AChRs, indicating that these findings show the successful enhancement of myotube contractions in the 

co-cultures via introduction of L-glut into the system was most probably achieved via the increased 

release of ACh from the cultured MNs into the synaptic cleft of the NMJs. Generally recognised as an 

inhibitory neurotransmitter in CNS synapses, GABA performs important tasks in neuronal function and 

development via activation of ionotropic and metabotropic receptors (i.e. GABAA and GABAB 

respectively) (Obata, 2013; Bowery et al., 2002; Olsen and Sieghart, 2008). Intriguingly, studies have 

shown that GABAB receptor 1 & 2 were detectable at the MNT in the synapses of rat extensor digitorum 

longus muscles and the soleus muscles (Malomouzh, Nurullin, et al., 2015). Further research 

investigating the effects of GABA on quantal and non-quantal ACh release from MNT suggests GABA 
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could reduce ACh release via activation of the GABAB receptors found in mammalian NMJs, mediated 

by phospholipase C (Malomouzh, Petrov, et al., 2015). Although recent studies have shown 

components of GABA synthesis and transport at the AChRs in mammalian NMJs, a determination could 

not be made on whether GABA plays the role of a co-mediator of ACh or as a gliotransmitter at the 

NMJ (Nurullin et al., 2018). However, the researchers maintain that activation of GABAB receptors 

influences the intensity of ACh release. Interestingly, when GABA was introduced into the co-culture 

system, the contractile activity of myotubes was increased. A transient but significant elevation in 

myotube CF was observed in the GABA treated cultures in the first 5 minutes following treatment. This 

finding suggests ACh release and binding at the NMJ was enhanced in the co-culture system, 

contrasting the findings in the above-mentioned studies. However, some research has shown that 

GABAA receptors are found at the embryonic vertebrate SkMCs and the expression of several 

transmitter receptor classes exist in early embryonic muscle and neuron development, including 

glutamate, glycine, ACh, as well as GABA (Borodinsky and Spitzer, 2007). Thus, further examination into 

the role and dynamic functions of GABA at the embryonic and mature mammalian NMJ is required, 

before the mechanisms of GABA action at the NMJ can be fully elucidated. Ultimately, the results in 

this chapter provided evidence that this nerve-muscle co-culture system permits assessment of NMJ 

functionality in real time. Offering a high-content platform for the evaluation of innovative therapies 

and in vitro disease modelling, as well as a system for refining the comprehension of NMJ formation 

and function in both healthy and disordered conditions. 

 

6.3 Conclusion 

 

In summary, a simplified in vitro nerve-muscle co-culture system was evaluated for NMJ functionality. 

Firstly, it was discovered that spontaneous myotube contractions in the co-cultures were indeed driven 

by MN signalling through NMJs. Additionally, it was verified the co-culture model responded in a 

physiologically appropriate manner to the drugs used in this study. Confirmed by reversible and 

irreversible paralysis of myotube contractile activity with AChRs antagonists, as well as augmenting 

myotube contractions with MN agonists.  

 

 

 
 
 



146 
 

Chapter 7: Investigation of Growth and Neurotrophic Factor 

Concentrations in Co-Cultures of Human Myoblasts Innervated by Rat 

Embryonic Spinal Cord Explants Compared with Human Myoblast 

Monocultures. 

 

7.0 Background 

 

7.0.0 Introduction 

 

In the previous chapter, experiments were performed to validate the functionality of NMJs in the in 

vitro NMJ co-culture model comprised of human myoblasts co-cultured with embryonic rat nerves. 

Successful modulation of myotube contractile activity via manipulation of NMJs with postsynaptic AChR 

antagonists and presynaptic MN agonists was confirmed throughout the co-cultures. Indicating this in 

vitro NMJ system physiologically reflects in vivo mammalian NMJ function in response to known drugs 

and toxins. Thus, this novel co-culture system free from serum, growth, and neurotrophic factors would 

be an ideal in vitro NMJ model for screening potential drugs and molecules of interest in research 

concerning NM and ND disorders such as CMS, LEMS, MG, ALS, SMA, diabetic neuropathy and 

myopathy, sarcopenia, cancer cachexia and heart failure. The simplified nature of the co-culture system 

(i.e. serum, growth/neurotrophic factor free) also assures reliability in drug screening protocols. As the 

introduction of exogenous complex neural growth factors, as seen in alternative nerve-muscle co-

culture models (Das et al., 2007; Guo et al., 2011; Guo et al., 2014; Rumsey et al., 2010; Puttonen et al., 

2015), has the potential to influence and alter drug screening and development (Dugger et al., 2018). 

However, endogenously occurring growth factors and neurotrophins are vital for survival, 

development, plasticity, function and death of neurons in vivo (Oppenheim, 1991; Reichardt, 2006), as 

well as the maturation of  myoblasts (Syverud et al., 2016). Accordingly, significant research has been 

conducted on the role of growth/neurotrophic factors in nervous system development and function. 

However, evidence from further research studies indicate that these factors have important functions 

in various cell populations across many tissues. One cell population of particular interest is that of 

SkMCs, which express receptors for several growth factors, cytokines, and neurotrophins, suggesting 

neurotrophic signalling occurs within SkMCs during formation, development and innervation 

(Griesbeck et al., 1995; Chevrel et al., 2006; Gonzalez et al., 1999). To our knowledge, the co-culture 

system established in this project is the first co-culture model engineered without exogenous neural 
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growth factors, suggesting all the factors required for the formation and maturation of NMJ, advanced 

differentiation of SkMCs, and maturation MNs were secreted endogenously. Studies with 

neurotrophin-4 (NT-4) and neurotrophin-5 (NT-5) null mice display clear defects in muscle development 

and function, indicating NT-4/5 are involved with SkM fibre differentiation (Carrasco and English, 2003). 

Additionally, neurotrophin-3 (NT-3) has been implicated in the formation of muscle spindles (Ernfors 

et al., 1994) and some dystrophic muscle pathologies have been linked with altered nerve growth factor 

(NGF) (Capsoni et al., 2000). Brain-derived neurotrophic factor (BDNF) expression studies have also 

shown various physiological and pathological conditions can influence the SkMC expression of BDNF 

(Chevrel et al., 2006). For example, research with healthy humans as well as people with multiple 

sclerosis has shown circulating BDNF can be increased with physical exercise (Ferris et al., 2007; Rojas 

Vega et al., 2006; Gold et al., 2003). Studies have also demonstrated that exercise with an ergometer 

bicycle for 2 hours was able to induce BDNF mRNA production in SkM (Matthews et al., 2009). 

Furthermore, the concentrations of SkM neurotrophins is altered in denervated SkMCs and studies 

with diabetic mice reveal reductions in the expression of NT-3 and NGF mRNA and increased expression 

of BDNF mRNA in the muscle (Fernyhough, Diemel, Brewster, et al., 1995; Fernyhough, Diemel, Hardy, 

et al., 1995; Ihara et al., 1996; Fernyhough et al., 1998; Fernyhough et al., 1996). The glial-cell-line-

derived neurotrophic factor (GDNF) is known for its role in the support of CNS dopaminergic neurons 

and was first discovered in glial cells (Lin et al., 1993). Research has shown that overexpression of GDNF 

in SkM incudes hyper innervation of NMJs through increased MN sprouting (Nguyen et al., 1998). It has 

been suggested that GDNF can function to maintain cholinergic MNs throughout aging (Ulfhake et al., 

2000) and a significant yet transient expression of GDNF at NMJs during embryonic myogenesis is also 

witnessed in vivo. Interestingly, GDNF expression has also been shown to be increased in denervated 

human SkM (Lie and Weis, 1998). The results from characterisation and functional assessment of the 

co-culture system communicated in the previous chapters of this project provided evidence that the 

NMJs generated in system physiologically mirror in vivo functionality and structural development. As 

mentioned in prior chapters of this project, alternative established nerve-muscle co-culture models 

typically require a complex neural growth media that contain serum and/or a cocktail of neural growth 

factors (some of which may derived from animals). This further complicates drug discovery and 

toxicology studies due to possible cross-communication of the novel compounds being studied with 

factors contained within culture media formulation, possibly explaining why many promising therapies 

do not translate to clinics. Even the most recent systems requiring up to 18 different trophic factors to 

establish their model successfully (Table 4.0). Furthermore, many systems induce myotube 

contractions via the application of electrical or chemical stimulation, which does not replicate the 

native physiological stimulation required for muscle contractions. Thus, the question remains how the 
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current co-culture model engineered during this project generated robust functional NMJs without 

serum and trophic factors, suggesting MNs and SkMCs in the system release all of the necessary factors 

needed to stimulate sprouting of MN axons and formation of NMJs with myotubes. Thus, to aid in 

clarifying this simplified co-culture system’s ability to generate robust NMJs without the inclusion of 

exogenous serum, growth and neurotrophic, as is required by previously established nerve-muscle co-

culture system, ELISA-based microarray experiments were conducted in the following study to examine 

the concentration of endogenously secreted growth factors and neurotrophins in this in vitro NMJ 

system.  

 

7.0.1 Aims 

 

The objective of the present study was to determine the concentration of growth and neurotrophic 

factors endogenously occurring in the co-cultures. Thus, the aim was: 

 

1. Establish the co-culture model. 

 

2. Culture myoblasts aneurally.  

 

3. Collect, analyse, and compare the supernatant of C25 co-cultured with ED 13.5 rat embryo 

SCEs against aneurally cultured human myoblasts using an ELISA-based human growth 

factor microarray.   
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7.1 Results 

 

7.1.0 Quantification of Growth and Neurotrophic Factors 

 

To determine if there were any significant differences in the secretion of growth/neurotrophic factors 

in the supernatant of co-cultured and aneurally cultured human myoblasts, an ELISA-based microarray 

analysis of growth/neurotrophic factor concentrations was performed and compared between the two 

conditions. The methods used to perform the microarray analysis were described in section 2.1.20. The 

concentration of 40 growth/neurotrophic factors were quantified on day 7, shown in Table 7.0. The 

results revealed that twelve of the factors analysed were significantly different (P < 0.05) between co-

cultures and aneural myotube cultures. Specifically, the concentrations of brain-derived neurotrophic 

factor (BDNF), fibroblast growth factor 7 (FGF-7), glial cell-derived neurotrophic factor (GDNF), insulin-

like growth factor-binding protein (IGFBP) -1, -3, -4, -6, insulin-like growth factor 1 (IGF-1), 

neurotrophin (NT) -3, -4, placental growth factor (PIGF), and vascular endothelial growth factor (VEGF) 

were significantly higher in the supernatant collected from the co-cultures compared to the 

supernatant from aneurally-cultured myotubes.  
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Table 7.0: ELISA-based microarray analysis of growth and neurotrophic factor in supernatant collected 
from co-cultured and aneurally-cultured myotubes on Day 7. 
 

Growth 
factors 

Co-culture 
(pg/mL) 

Aneural 
(pg/mL) 

Fold 
change 

P - value Log-Log 
regression 

standard 
curve R2 

AR 4.03 ± 5.27 1.61 ± 1.87 2.5 0.26 0.987 
BDNF 52.33 ± 39.14 4.88 ± 1.73 10.72 0.005 ** 0.976 
bFGF 2.55 ± 5.1 0.65 ± 1.06 3.91 0.31 0.943 
BMP-4 10.55 ± 13.6 1.44 ± 3.25 7.33 0.09 0.961 
BMP-5 215.8 ± 431.6 94.38 ± 109.3 2.29 0.45 0.996 
BMP-7 3.67 ± 6.76 0.83 ± 1.55 4.42 0.26 0.994 
b-NGF 0.4 ± 0.5 0.24 ± 0.29 1.6 0.48 0.991 
EGF 0 0.01 ± 0.01 0 0.51 0.984 
EGF R 179.2 ± 89.26 111.5 ± 32.68 1.61 0.08 0.995 
EG-VEGF 0.43 ± 0.78 0.18 ± 0.36 2.39 0.45 0.986 
FGF-4 16.65 ± 33.3 3 ± 8.49 5.55 0.28 0.997 
FGF-7 11.13 ± 7.19 2.91 ± 3.09 3.8 0.02 * 0.996 
GDF-15 410.3 ± 99.25 345.5 ± 71.91 1.18 0.22 0.999 
GDNF 7.37 ± 6.72 1.51 ± 1.43 6.41 0.05 * 0.996 
GH 0.83 ± 1.65 0.61 ± 1.11 1.39 0.79 0.994 
HB-EGF 0.38 ± 0.45 0.48 ± 0.67 0.79 0.77 0.971 
HGF 10.25 ± 11.84 13.85 ± 6.36 1.35 0.49 0.991 
IGFBP-1 50.43 ± 34.91 10.98 ± 2.98 4.59 0.008 ** 0.997 
IGFBP-2 965.2 ± 1251 231 ± 74.01 4.18 0.11 0.999 
IGFBP-3 46859 ± 17230 14678 ± 2508 3.19 0.0003 *** 0.988 
IGFBP-4 30130 ± 14177 8351 ± 2221 3.61 0.001 ** 0.999 
IGFBP-6 877.6 ± 265.6 520.9 ± 149.9 1.68 0.01 * 0.987 
IGF-1 86.73 ± 53.36 19.89 ± 46.82 4.36 0.05 * 0.975 
Insulin 3809 ± 3821 3796 ± 2547 1 0.99 0.989 
MCSF R 1.33 ± 2.58 1.21 ± 1.82 1.1 0.93 0.991 
NGF R 129.1 ± 81.12 161.8 ± 44.51 1.25 0.38 0.987 
NT-3 35.1 ± 10.32 10.08 ± 3.77 3.48 0.0002 *** 0.997 
NT-4 4 ± 4.1 0.64 ± 0.72 6.25 0.03 * 0.999 
OPG 1117 ± 194.7 875.7 ± 247.1 1.28 0.12 0.996 
PDGF-AA 2378 ± 812.7 1828 ± 613.4 1.3 0.22 0.996 
PlGF 221.3 ± 36.89 171.8 ± 29.89 1.3 0.03 * 0.987 
SCF 0.73 ± 1.2 0.28 ± 0.4 2.61 0.34 0.996 
SCF R 1.23 ± 1.46 0.66 ± 1.12 1.86 0.47 0.998 
TGFa 0 0.01 ± 0.04 0 0.51 0.889 
TGFb1 98.63 ± 197.3 15.71 ± 44.44 6.28 0.26 0.984 
TGFb3 0.3 ± 0.6 0.21 ± 0.46 1.43 0.78 0.979 
VEGF 1060 ± 154.7 609.1 ± 105.9 1.74 0.0001 *** 0.963 
VEGF R2 4.78 ± 6.74 1.96 ± 3.51 2.44 0.35 0.999 
VEGF R3 4 ± 4.67 1.66 ± 1.92 2.41 0.23 0.991 
VEGF-D 0.15 ± 0.24 0.13 ± 0.24 1.15 0.87 0.991 

Note: * denotes P < 0.05; ** denotes P < 0.01; *** denotes P < 0.001 
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7.2 Discussion 

 

Motor neurons and SkM are co-dependent tissues, each relying on the other for trophic stimulation. 

Indicating the bidirectional communications between these cells is vital for NMJ formation and 

maintenance. To understand how this co-culture model was established in the absence of exogenous 

neural growth factors, ELISA-based arrays were employed. The results from this study presented a 

quantitative measurement of 40 human growth factors and neurotrophins endogenously produced in 

the in vitro NMJ co-culture system, compared with endogenously produced factors in aneurally-

cultured myotubes. Microarray experiments to quantify the concentration of growth factors were 

performed to show the formation and development of in vitro NMJs generated in the co-culture system 

were indeed supported by the endogenous regulation of specific growth or neurotrophic factors. When 

examining the results from Table 7.0, the concentration of a number of factors involved with NMJ 

formation, MN maintenance, and myotube development were discovered to be elevated in the co-

culture system compared with aneural myotube cultures. Studies investigating the role BDNF in the 

development of NMJs suggest SkM innervation and MN survival are enhanced by SkM-derived BDNF, 

as well as transmission at the NMJ being potentiated by BDNF (Zhang and Poo, 2002; Yan et al., 1993). 

It has also been shown that myoblasts express high levels of BDNF during embryonic development in 

vivo, which is gradually down regulated as NMJ and SkM fibre maturation occurs (Griesbeck et al., 

1995). Interestingly, research investigating chronic exposure to upregulated BDNF resulted in the 

inhibition of synaptogenesis in developing in vitro NMJs (Peng et al., 2003). Collectively, these results 

can be used as evidence to suggest that the endogenously regulated concentration of BDNF secreted 

in the present co-culture system allowed for the physiological formation and development of NMJs, 

which were representative of in vivo NMJ formation. Contrastingly, previously established nerve-

muscle co-culture systems that require the inclusion of exogenous BDNF (Das et al., 2010; Rumsey et 

al., 2010; Das et al., 2007; Guo et al., 2017; Guo et al., 2011; Guo et al., 2014; Puttonen et al., 2015; 

Vilmont et al., 2016; Smith et al., 2016) may not generate the robust NMJ formation observed in the in 

vitro NMJ system generated during this project, due to unsuitable concentrations of exogenous BDNF 

inhibiting NMJ maturation (Song and Jin, 2015).  

In addition to the significant BDNF upregulation measured in the co-cultures, FGF-7 was also 

significantly elevated. Studies have shown that organising molecules derived from SkM, such as 

members of the FGF family, have vital functions in regulating presynaptic specialisation at the NMJ 

(Umemori et al., 2004; Fox et al., 2007). An Investigation to determine if agrin can induced retrograde 

signalling of these muscle-derived organising molecules was conducted using real-time quantitative 

PCR analysis of RNA isolated from C2C12 myotubes treated with agrin. The researchers found that FGF-
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7 was significantly elevated in agrin treated myotubes. Furthermore, it was shown that FGF-7 mRNA 

was inhibited in the diaphragm of agrin deficient mutant mice. The determination was made that agrin 

does in fact regulate FGF expression in SkM for the purpose of supporting presynaptic differentiation 

at the NMJ by opposing the deleterious impact of non-postsynaptic ACh signalling (An et al., 2010). 

Thus, the elevated FGF-7 observed in the co-culture system suggests interactions between agrin 

secreted by the ED 13.5 rat embryo SCE and the innervated myotubes during NMJ formation and 

development, as would be expected in vivo.  

Results from the microarray also revealed elevated GDNF in the co-cultures in comparison to myotube 

monocultures. A key factor shown to be highly effective for MN survival in vitro is GDNF (Oppenheim 

et al., 1995). Intriguingly, GDNF is another example of a target-derived factor that is expressed by SkM 

with its receptor RET tyrosine kinase expressed in the MNs (Baudet et al., 2008). When conditionally 

ablating RET tyrosine kinase in the cranial MNs of mice, the outcomes were obvious disruptions to MNT 

maturation and reduced MEP size at NMJs (Baudet et al., 2008). Experiments with frogs to create a 

nerve-muscle co-culture system found that spontaneous synaptic current frequency and amplitude 

were increased when the co-cultures were treated with GDNF, indicating its possible role as a 

retrograde signalling factor (Wang et al., 2002). Furthermore, studies with transgenic mice that 

overexpress SkM-derived GDNF results in hyperinnervation of NMJs (Nguyen et al., 1998). Another 

study similarly found motor unit enlargement, hyperinnervation of NMJs, and slowed synapse 

elimination when GDNF was injected into mice during postnatal life (Keller-Peck et al., 2001). These 

findings suggest SkM derived GDNF plays a role in the regulation of MNT maturation at the NMJ. Thus, 

elevated GDNF observed in the co-culture system described in this project indicates interaction 

between pre- and post-synaptic components of NMJs in the system.  

The growth factor IGF-1 is a potent anabolic hormone involved with growth throughout the body, 

shown to induce hypertrophic effects on SkM, which has been extensively documented in animal 

models and muscle cell culture systems (Velloso, 2008). The muscle specific expression of IGF-1 also 

functions to stabilise NMJs and enhanced motor neuronal survival (Dobrowolny et al., 2005). When 

injected directly into SkM, IGF-1 inhibits degeneration of MNs and NMJs, thus preventing age-related 

force decline in mice (Payne et al., 2006). Interestingly, the concentration of four (IGFBP -1, -3, -4, -6) 

of the five insulin-like growth factor binding proteins examined during the microarray experiments, 

along with IGF-1, were significantly elevated in the co-cultures. The primary function of the IGFBPs is 

to serve as membrane transporter proteins for IGF-1, with almost all IGF-1 being bound to at least one 

of the seven members of the IGFBP superfamily (Hwa et al., 1999). Binding to IGF-1 with a 1:1 ratio, 

IGFBP-3 is the most common protein of the superfamily and binds ~80% of circulating IGF-1 (Adachi et 

al., 2017). Noteworthy, the presence of IGFBP-3 was also the most abundant IGFBP observed in the co-
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cultures and monocultures when compared to the other IGFBP measured during the array experiment. 

Studies examining the impact of IGFBPs on circulating IGFs found IGF-1 bioavailability is enhanced 

through the activity of the IGFBPs (Stewart et al., 1993). Thus, the observed upregulation of the IGFBPs 

and IGF-1 in the co-culture system supports the notion that interaction between SCEs and SkMCs in the 

system generates the necessary factors for MN maturation, advanced differentiation of myofibres, and 

the formation of robust NMJ, representative of in vivo formation.    

Both NT-3 and NT-4 were also significantly elevated in the co-cultures when compared to aneural 

myotube cultures. Studies have demonstrated that NT-3 and NT-4 are important modulators of 

synaptic function and development and are required for maintenance of presynaptic and postsynaptic 

apparatus at the NMJ (Gonzalez et al., 1999; Belluardo et al., 2001). Studies exploring early postnatal 

development of NMJs and the NM system in NT-3 deficient mice found reductions in somal size, yet 

the number of αMNs developed normally (Woolley et al., 1999). Further research discovered decreased 

innervation of MEPs by MNTs and decreased number of SkM fibres in NT-3 deficient mice at birth, 

followed by a catastrophic postnatal loss of MNTs by postnatal development day 7 and complete 

denervation of hindlimb muscles with no observable NMJ remaining in the entire SkM endplate zones 

(Woolley et al., 2005). Additionally, mice with haploinsufficiency-induced reductions in NT-3 availability 

exhibit impaired MNT maturation, reduced recycling of synaptic vesicles, and a reduction in SkM fibre 

diameter (Sheard et al., 2010). Studies investigating NM transmission using a phrenic nerve / adult rat 

diaphragm-muscle system exposed that NT-4 treatment can improve synaptic transmission when 

transmission failure was induced in the system via repetitive nerve stimulation (Mantilla et al., 2004). 

The expression of NT-4 is also shown to be dependent on synapse activity at the NMJ, demonstrated 

via blockade of AChRs on the NMJ MEP with α-BTX causing reduced NT-4 expression, while electrical 

stimulation of MNs enhances SkM-derived NT-4 expression (Funakoshi et al., 1995). Considering these 

studies, it can be appreciated that the significantly elevated NT-3 and 4 expression observed in the co-

culture system was due to NMJ formation, development and synaptic activity. 

Intriguingly, the concentration of VEGF and PlGF, which is a member of the VEGF sub-family, were also 

significantly elevated in the co-cultures when compared to the anural myotube cultures. Originally 

described for their regulatory role in vascular growth and development (Ferrara, 2004), the VEGF family 

of factors have also demonstrated important functions in MN growth, guidance, migration, and survival 

(Rosenstein et al., 2010; Ruiz de Almodovar et al., 2009). Research with ALS transgenic mice found 

systemic administration of VEGF was able to increase the number of NMJs in the diseased mice (Zheng 

et al., 2007). Furthermore, Amelioration of SkM innervation is observed following administration of 

VEGF in mice with ischemic injury, promoting both regrowth and maintenance of damaged MN axons 

in the mice (Shvartsman et al., 2014). The researchers in that study also found VEGF was able to induce 
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the upregulation of GDNF and NGF to aid in MN axon regeneration (Shvartsman et al., 2014), pointing 

to the  synergistic effects of growth factors during NMJ formation.  

Finally, the results from the experiments conducted in this chapter provided important insights into the 

cellular signalling of this simplified co-culture system. Furthermore, the results demonstrated the 

capacity of the co-culture system to endogenously regulate formation and development of NMJ, as well 

as provide the conditions to allow the advanced differentiation of immortalised human myotubes in 

vitro, through the precise expression of essential growth factors and neurotrophins.  

 

7.3 Conclusion 

 

In conclusion, this report analysed the concentration of 40 human growth factors and neurotrophins in 

the in vitro NMJ system generated from ED 13.5 rat SCEs co-cultured with C25. Elevated concentrations 

of 12 factors involved with MN, SkM, and NMJ development were measured in the co-cultures system, 

providing evidence the in vitro NMJ generated in this project were representative of in vivo conditions.  
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Chapter 8: General Discussion & Conclusions 

 

8.0 Discussion 

 

The overarching aim of this project was to establish and validate a novel and simplified nerve-muscle 

co-culture system capable of generating functional in vitro NMJs, without the use of serum, growth, 

and/or neurotrophic factors. Thus providing a defined platform to investigate disease and disorders of 

the NM system via examination of NMJ formation and functionality. The fulfilment of this aim was first 

addressed through the optimisation of cell culture conditions for the two immortalised human SkMC 

lines newly acquired for this project. Optimisation of culture conditions for the two cell lines, one young 

(25 years old) and one old (83 years old), was completed before any co-culture studies were conducted, 

as both these cell lines had not been previously established  or used in our laboratory. Upon successfully 

optimising culture conditions for the two cell lines, the myogenic potential of both C25 and C83 cells 

was compared to determine any differences in the in vitro proliferation and differentiation of 

immortalised human myoblasts originating from old or young muscle. Through the analysis of cellular 

passaging, examination of proliferative capacity and differentiation parameters, as well as investigating 

the expression of the proliferation marker Ki67 and differentiation marker MHC, the determination was 

made that in vitro function of immortalised human myoblasts was not influenced by the intrinsic age 

of the donor SkM. Preliminary cellular passaging experiments of both cell lines found that myoblasts 

from young or old origins had similar proliferative capacity and responses to cryogenic revival.  

Importantly, to eliminate any variability between the cell lines, possibly induced through serial 

passaging, experiments were conducted with myoblasts having been passaged an equal number of 

times. Studies have shown that serial passaging of cell lines can lead to phenotypic drift in the cell line 

(Geraghty et al., 2014). Thus, to diminish possible passage-induced phenotypic changes among the 

young and old cell lines, experiments were conducted with cells cryogenically passaged no more than 

four times. Subsequent investigations comparing the proliferative capacity of myoblasts between the 

young and old cell lines determined similar rates of cellular expansion when the cells were cultured, 

which was reflective of the published literature (Pietrangelo et al., 2009; Decary et al., 1997). Similarly, 

comparing the capacity of young and old myoblasts to differentiate using three different DM 

formulations revealed cellular fusion occurred at equal rates among the two cell lines in each of the 

three culture conditions. Further experimentation examining the differences between young and old 

myoblasts detailed the prominent similarities in the differentiation parameters and the expression of 

the proliferation and differentiation markers. Ultimately, the cell culture conditions generated in this 
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project revealed that immortalised human myoblasts maintained their myogenic potential and function 

when cultured in vitro, despite an almost 6-decade difference in the age of the donor SkM.  Importantly, 

these finding coincide with studies utilising primary human myoblasts, which also showed persevered 

in vitro myogenic functionality regardless of the age of the donor SkM (Alsharidah et al., 2013). 

Indicating that age-linked changes to the SkM microenvironment rather than then intrinsic age of 

myoblasts induces the faulty SkM regeneration observed in aged SkM (Conboy et al., 2005; Carlson and 

Faulkner, 1989). 

Upon determining no morphological differences between the young and old cell lines, the subsequent 

objectives of this project were executed utilising only the C25 cell line, as both cell lines performed 

equally when cultured under identical conditions. The next objective achieved in the fulfilment of the 

primary aim of this project was the generation of a novel simplified in vitro nerve-muscle co-culture 

system, free from serum, growth factors, and neurotrophins. Importantly, one of the biggest challenges 

in translating data from in vitro research to human trials is the inclusion of serum in the in vitro system. 

The role of serum in cell culture is extremely complex due to the occurrence of both growth factors and 

inhibitors. Thus, the use of serum in cell culture has many substantial drawback that can lead to 

misinterpretations of experimental results (Barnes and Sato, 1980; Ulreich and Chvapil, 1982; 

Sandstrom et al., 1994). For example, serum composition lacks uniformity, quality testing is required 

of each batch before use, growth-inhibiting factors may be present, an increased risk of contamination 

is possible, and the existence of serum in media can impede the isolation and purification of cells in 

culture. The experimental procedures conducted in the creation of the co-culture system permitted 

the proliferation of MN axons from ED 13.5 rat SCEs while simultaneously promoting  innervation 

during myoblast-to-myotube differentiation of C25. Motor axons and their terminals were observed 

overlapping AChRs on contractile myotubes within the system, suggesting the formation of preliminary 

in vitro NMJs in the co-cultures. Importantly, myotubes in the co-culture system displayed contractile 

activity. This finding demonstrated the preliminary benefits of the co-culture system as a platform for 

studying SkM disorders in comparison to monocultures of SkMCs, which are less representative of in 

vivo conditions, as they do not exhibit contractile activity. In studies of SkMC monocultures treated 

with MN-derived growth factors involved with NMJ formation, such as agrin, no contractile activity is 

observed (Arnold et al., 2004; Bandi et al., 2008). Indicating that secreted factors alone did not promote 

the contractile activity observed in the co-culture system and cellular signalling via NMJ formation was 

most probably responsible for the contractile activity observed in the system. Myotube contractions in 

the system were observed as early as 72 hours after the co-culture of the SCEs with the C25. To the 

author’s knowledge, this is the first nerve-muscle co-culture system to exhibit spontaneous myotube 

contractions at this stage of development without supplementing the co-culture environment with 



157 
 

serum, growth and/or neurotrophic factors. Thus, the simplified composition of the co-culture system 

allowed for easy reproducibility, along with being a more accurate reflection of in vivo SkM 

development compared to SkMC monocultures. Furthermore, previous co-culture systems attempting 

to induce in vitro innervation of myotubes have all required the inclusion of at least one growth factor 

in their systems in order to generate spontaneous contractile activity in myotubes via NMJ formation 

(Das et al., 2010; Das et al., 2007; Rumsey et al., 2010; Rumsey et al., 2009; Guo et al., 2017; Guo et al., 

2011; Guo et al., 2014; Chipman et al., 2014; Demestre et al., 2015; Umbach et al., 2012; Vilmont et al., 

2016; Puttonen et al., 2015; Morimoto et al., 2013; Larkin et al., 2006). The simplified methods and 

efficient use of resources used to generate the co-culture model were able to induce myotube 

contractions in as little as three days post co-culture and by seven days post co-culture myotube 

contractions were exhibiting synchronicity, implying an abundance NMJ formation generated in a time 

efficient manner. This observation suggested the co-culture model offers ideal conditions for high-

throughput research of the mechanisms responsible for the formation of NMJs. Contrastingly, most of 

the previously established models cited above require weeks of separately cultured MNs and SkMCs 

before co-culturing the cells and several more weeks before NMJ formation and myotube contraction 

are observed. Thus, providing further evidence that the co-culture model generated in this project 

offers many advantages over the established systems. Additionally, other advantages of this system 

being free of serum and growth/neurotrophic factors include it being cost-effective as well as saving 

on labour. The co-culture model was also designed with the neural component originating from SCEs 

as opposed to a cell suspension created from intact embryo spinal cords. This was due to experiments 

revealing SCEs induced synchronous and high frequency myotube contractions in the shortest 

timeframe, suggesting ventral horn and dorsal root neurons as well as supporting cells types at the 

DRGs, such as glial cells function mutually to correctly innervate myotubes and form NMJs in the 

system.  

After establishing the co-culture model, the next objective in this project was to characterise the system 

to verify the occurrence of physiological NMJ formation. Before characterisation of the co-cultures was 

performed, experiments were conducted to determine the optimal time point indicative of mature NMJ 

formation. Peak contraction frequency was used to determine mature NMJ formation, which was 

observed 14 days after co-culture. Additionally, these preliminary experiments also revealed the long-

term viability of the co-cultured cells, as the experiments were not terminated until 30 days after co-

culture and could have been maintained longer if required. Cholinergic MNs were identified and 

characterised in the system using antibodies for ChAT and VaChT, which revealed the interaction 

among cholinergic MNs and myotubes in the system. This important finding reflects NMJ development 

seen in vivo, as both ChAT and VaChT are required for correct MN development and function (Brandon 
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et al., 2003; Misgeld et al., 2002). Along with MN and SkMC interactions during in vivo NMJ formation, 

the presence of terminal Schwann cells is also required. Studies with mice have shown that preliminary 

NMJ formation is possible without Schwann cells, but for appropriate synapse development to occur in 

vivo Schwann cells must be involved (Lin et al., 2000; Morris et al., 1999; Riethmacher et al., 1997; 

Woldeyesus et al., 1999; Wolpowitz et al., 2000). Thus, characterisation of Schwann cells in the co-

culture system with antibodies for GFAP suggests the interaction between MNs, myotubes, and 

Schwann cells in the system promoted the maintenance and maturation of the in vitro NMJs generated 

in the system. The co-cultures were then stained for Syt1, a presynaptic calcium sensor that can be 

used to expose presynaptic MNT activity and is known to be crucial for facilitating the release of 

neurotransmitters from Ca2+ dependent vesicles (Geppert et al., 1994; Littleton et al., 1993). Identifying 

Syt1 at MNTs in the co-culture system provided further evidence of successful structural formation of 

NMJs in the system as would be expected during in vivo signal transmission at the NMJ. Subsequently, 

NMJ characterisation was performed to show postsynaptic AChRs at the NMJ MEP co-localising with 

MNs and their terminals. Accordingly, evidence of physiological in vitro NMJ formation, comparably 

observed in vivo was attained by the identification of AChRs on the MEP in the typical twisting knotted 

configuration overlapped by MNs, which endorsed the notion that the co-cultures were generating 

NMJs and exhibiting attributes of successful maturation. Postsynaptic characterisation of the co-

cultures was also conducted to determine if NMJs in the system exhibited appropriate postsynaptic 

development and structural organisation. Observations of MuSK and Rapsyn at the MEP suggested 

agrin secretion from the MNT was able to trigger the MuSK signalling pathways. This finding 

demonstrated synaptic communication at the NMJ allowed for successful postsynaptic differentiation, 

as was shown by the co-localisation between Rapsyn, MuSK, and AChRs. Co-cultured myotubes also 

displayed the morphological characteristics of advanced differentiation. Specifically, transversal triads, 

which are the precisely developed excitation-contraction coupling apparatus characterised by the tight 

apposition of RYRs on the SR membranes and DHPRs on the T-tubules, physiological sarcomeric 

development as demonstrated by the presence of striations on the myotube membrane, and 

peripherally nuclei were all observed in the co-culture system. All of which are observed in vivo during 

advanced differentiation of SkMCs (Bruusgaard et al., 2003; Shadrin et al., 2016). Thus, the advantage 

of this co-culture system over typical aneural in vitro myoblast cultures and previously established 

nerve-muscle co-culture models is apparent, as they do no exhibit the level of advanced myotube 

differentiation seen in this co-culture system. Thus, this co-culture system is a superior tool for 

researching SkM wasting associated with ageing (e.g. sarcopenia) and disease (e.g. cancer cachexia) 

and investigating NM disorders. Through characterisation of the co-culture system, evidence was 

provided showing the interaction between neurons, myotubes, and neuroglia, as well as confirmation 
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of mature NMJs with presynaptic activity and postsynaptic structural organisation, and advanced 

differentiation of myotubes.  

Once characterised, the next objective was to ensure NMJs function physiologically and confirm 

spontaneous myotube contractions in the co-culture system were MN-driven via signalling at the NMJ. 

This was accomplished with agonist and antagonist drug-response experiments, designed to act 

presynaptically on MNs and postsynaptically on AChRs at the NMJ, consequently influencing myotube 

CF. When exposed to α-BTX a permanent stoppage of spontaneous contractions occurred. 

Demonstrating that NMJs in the co-cultures reacted correctly to an irreversible competitive antagonist 

at the AChRs, as observed at the in vivo NMJ (Domet et al., 1995). Co-cultures treated with tubocurarine 

similarly demonstrated a stop in myotube contractions. However, unlike the α-BTX treated cultures, 

contractile activity was able to restart in the tubocurarine treated co-cultures, which would also be 

expected of a reversible competitive receptor antagonist acting on NMJs to modulate the contractile 

activity of SkM in vivo. Therefore, the re-initiation of contractile activity in the co-cultures verified 

recovery from tubocurarine exposure and validated the accurate neurotransmission observed in this in 

vitro NMJ system. Interestingly, co-cultures treated with bicuculline resulted in a preliminary cessation 

of myotube contractions before the reestablishment spontaneous activity. Research with mice has 

shown that bicuculline can non-competitively block ACh from binding with AChRs (Liu et al., 1994; 

Demuro et al., 2001). Accordingly, results from these studies can be used to suggest that bicuculline 

was able to modulate NMJ activity, which was reflected in myotube contractions being diminished in 

the co-culture system by preventing ACh from binding with receptors at the postsynaptic NMJ, further 

indicating that signalling at the NMJ was regulating contractile activity of myotubes in the co-culture 

system. The co-cultures were also treated with L-Glut to determine if MNs in the system were receptive 

to the excitatory neurotransmitter. A marked but short-lived increase in myotube CF was observed 

within the co-cultures when exposed to L-Glut. As it is known that SkMC membranes are stimulated 

through AChRs, the increased CF witnessed after the application L-Glut indicated that MNs were 

stimulated by the neurotransmitter to increase the release of ACh into the synaptic cleft of the NMJ in 

the co-culture system, thus inducing the increased myotube activity. The final treatment applied to the 

co-cultures was with the inhibitory CNS neurotransmitter GABA, to determine if GABA signalling was 

occurring at the in vitro NMJs in this system. Interestingly, a brief increase in myotube activity was 

observed following GABA exposure. Contrasting this result, studies have shown GABAB receptors exist 

in vivo at MNTs and their modulation via GABA binding could reduce ACh release at the MNT 

(Malomouzh, Nurullin, et al., 2015; Malomouzh, Petrov, et al., 2015). However, the full function of 

GABA and its role in modulating ACh via GABAB receptors at the presynaptic NMJ is yet to be clarified 

(Nurullin et al., 2018). Alternately, Research has shown several transmitter receptor classes exist in 
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early embryonic muscle, with GABAA receptors expressed on embryonic SkMCs (Borodinsky and 

Spitzer, 2007). Thus, the role of GABA at the embryonic and mature NMJ requires additional exploration 

before GABA functions at the NMJ can be fully understood. Ultimately, through real time functional 

assessment of NMJs in the co-culture system, evidence was provided to show this system has the 

potential for use as a high-content platform for the evaluation of innovative therapies and in vitro 

disease modelling, as well as improve the understanding of NMJ formation, development, and function.  

Although establishing this model without exogenous growth factors and neurotrophins is a significant 

breakthrough in in vitro NMJ modelling, it was not surprising as MNs and SkM are co-dependent tissues 

that rely on each other for trophic support and synaptic transmission/stimulation. Additionally, the 

crosstalk between SkM and MNs is essential for the formation and development of SkM, MNs, and 

NMJs. Following the functional assessment of NMJs engineered in the absence of growth factors and 

neurotrophins, indicating cells in the system secreted all required factors to establish this functional 

system. The final objective was to quantify the concentration of growth and neurotrophic factors in the 

co-culture system in comparison to aneurally-cultured myotubes, to determine if the endogenous 

upregulation of specific trophic factors supported the formation and development of NMJs generated 

in the co-culture system. This was accomplished via ELISA-based microarray experiments, which 

revealed elevated expression of twelve growth factors. Studies have shown that BDNF, which is 

commonly used in in vitro NMJ systems, is involved with SkM innervation and MN survival in vivo, along 

with potentiation of signal transmission at the NMJ (Zhang and Poo, 2002; Yan et al., 1993). Thus, the 

upregulation of BDNF in the co-cultures provided evidence that the system permitted physiological 

formation and development of NMJs via endogenously regulated BDNF, which was representative of 

in vivo NMJ formation. The upregulation of FGF-7 was also observed in the co-cultures. Importantly, 

this organising molecule can function in regulating presynaptic specialisation at the NMJ (Umemori et 

al., 2004; Fox et al., 2007). Studies have also shown agrin can regulate FGF expression in SkM to support 

presynaptic NMJ differentiation (An et al., 2010). Thus, elevated FGF-7 in the co-culture system 

indicated interaction between MN-secreted agrin and innervated myotubes during NMJ formation and 

development, as would be expected in vivo. Another factor upregulated in the co-cultures was GDNF, 

which is known to be important for in vitro MN survival (Oppenheim et al., 1995). Studies have also 

argued GDNF may act as a retrograde signalling factor (Wang et al., 2002). Additionally, GDNF over 

expression experiments in mouse models result in abnormal MN overgrowth (Keller-Peck et al., 2001; 

Nguyen et al., 1998). Findings from these studies suggest GDNF is involved with MNT maturation. Thus, 

elevated GDNF observed in the co-culture system indicated interaction between pre- and post-synaptic 

NMJs elements in the system. When quantifying IGF-1 and the IGFBPs 1, 2, 3, 4, and 6 in the co-cultures, 

all were significantly elevated in the system except IGFBP-2. It is known that IGF-1 has important 
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functions in SkM, MN, and NMJ formation, development, and maintenance (Velloso, 2008; Dobrowolny 

et al., 2005) and 80% of IGF-1 is bound to at least one IGFBP (Adachi et al., 2017). Importantly, the 

elevation of the IGFBPs, which serve as membrane transporter proteins for IGF-1, have also been shown 

to enhance IGF-1 bioavailability (Stewart et al., 1993). Therefore, the observed elevated expression of 

IGF-1 and its binding proteins in the co-culture system suggests SCE and SkMC interaction in the system 

induced the upregulation of these factors to support MN maturation, advanced differentiation of 

myofibres, and the formation of robust NMJ, representative of in vivo formation. Both NT-3 and NT-4, 

which are essential for in vitro NMJ modelling, were also elevated in the co-cultures, which are involved 

with the modulation of synaptic function and required for maintenance of NMJs (Gonzalez et al., 1999; 

Belluardo et al., 2001). Animal studies have demonstrated lack of NT-3 causes disruptions in NMJ 

development and maintenance, as well as reductions in the size of SkM fibres (Woolley et al., 1999; 

Woolley et al., 2005). Studies investigating NT-4 expression reveal NT-4 is expressed dependent on 

synapse activity and functions to regulate NM transmission. Thus, it can be asserted that the elevated 

NT-3 and NT-4 observed in the co-cultures was most probably caused by NMJ formation, development 

and synaptic activity. The final two growth factors that were significantly elevated in the co-cultures 

were VEGF and PlGF. Both of which belong to the VEGF family of growth factors and prominently known 

for their functions in vascular growth and development (Ferrara, 2004), Importantly, these factors have 

demonstrated functions in MN growth, guidance, migration, and survival (Rosenstein et al., 2010; Ruiz 

de Almodovar et al., 2009). These factors have also been linked with improved reinnervation of SkM 

after injury, as well as VEGF having the ability to upregulate GDNF and NGF to support MN axon 

regeneration (Shvartsman et al., 2014), indicating the synergy of growth factors during NMJ formation. 

Thus, the observed upregulation of VEGF and PlGF in the co-cultures suggests these factors were 

needed for appropriate MN develop and NMJ formation the system.  

Having examined the results from the microarray experiments valuable insights were gained 

concerning the cellular signalling of this simplified co-culture system. Additionally, the determination 

was made that the co-culture system had the capacity to self-regulate NMJ formation and promoted 

advanced differentiation of SkMCs via the specific expression of essential growth and neurotrophic 

factors.  
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8.1 Conclusion & Future Directions 

 

In conclusion, this project detailed the establishment of a novel and simplified in vitro NMJ co-culture 

system, engineered for the first time with immortalised human skeletal muscle myoblasts innervated 

with neurons from rat embryo spinal cords. This unique breakthrough co-culture system free from 

serum, growth and neurotrophic factors generated contractile myotubes with indicators of advanced 

differentiation and the formation of structurally appropriate and functional NMJs, representative of in 

vivo conditions. Therefore, this in vitro co-culture system provides a platform for expanding research 

into skeletal muscle physiology, as well as NMJ formation and development. Furthermore, the nature 

of this co-culture system offers a relevant means for high-throughput investigations of neurological 

and/or muscular disease modelling, drug discovery, and regenerative medicine, through precise 

manipulation of components in the system.  

For example, new potential drugs and molecules of interest that are being developed for the treatment 

of NM and ND disorders such as CMS, LEMS, MG, ALS, SMA, diabetic neuropathy/myopathy, and 

sarcopenia can be tested on this NMJ model as single or multiple doses over a protracted time interval, 

mimicking real drug evaluation conditions, which can be used to quantify how the NM system responds 

to the intervention. The model provides an accurate replica of live NMJs in vivo, permitting for fast, 

realistic, and non-invasive drug testing. Regardless of the ethical concerns of using live animal subjects 

to test drugs, animal testing is known to be extremely inaccurate. Studies have shown that only one 

out of 50 drugs that are tested on animals in vivo are suitable for human use, as well as the approval 

process for drug use in humans based on animal testing being a complex and largely unsuccessful 

endeavour. In contrast, the functional data generated by this in vitro NMJ model can be directly 

compared to what clinicians may be observing in clinical human trials. Thus, this model may influence 

the design of future clinical trials, and reduce the time required for drug development. Furthermore, 

the sensitivity of this model provides a highly accurate screening tool for new drugs due to the model 

having the capability to quantify the degree of loss-of-function caused by neuromuscular blocking 

agents with various modes of action. This model can also allow for future research into the behaviour 

of disease progression in the NM system, resulting in more informed treatment decisions for clinical 

patients. There is also the potential for future versions of this NMJ model being developed with 

diseased MNs or SkMCs, which could also be used to develop innovative therapies to treat 

neuromuscular diseases.  
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Appendix 

Appendix A 

 

An example of raw data generated from ELISA-based microarray analysis of supernatant from spinal 

cord explants co-cultured with 25-year-old immortalised human myoblasts vs. supernatant from 

aneurally-cultured 25-year-old immortalised human myoblasts. 
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Appendix B 

 

This appendix shows published papers that were produced using the research that was conducted 

throughout the duration of this thesis. The first publication details the NMJ model created during this 

project. The second publication is a review paper exploring how the immune system influences SkM 

repair and regeneration. The author of this thesis was also a contributing author for the final paper in 

this appendix. The final paper details a fully human NMJ model, which is an alternative system to the 

model detailed in this thesis.  
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