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ABSTRACT: Targeting the protein−protein interaction
between p53 and MDM2/MDMX (MDM4) represents an
attractive anticancer strategy for the treatment of p53-
competent tumors. Several selective and potent MDM2
inhibitors have been developed and entered the clinic;
however, the repertoire of MDMX antagonists is still limited.
The arylmethylidenepyrazolinone SJ-172550 has been re-
ported as a selective MDMX antagonist; yet, uncertainties
about its mechanism of action have raised doubts about its use
as a chemical probe. Here, we show that, in addition to its
unclear mode of action, SJ-172550 is unstable in aqueous
buffers, giving rise to side products of unknown biological
activity. Using an SJ-172550-derived affinity probe, we observed promiscuous binding to cellular proteins whereas cellular
thermal shift assays did not reveal a stabilizing effect on MDMX. Overall, our results raise further questions about the
interpretation of data using SJ-172550 and related compounds to investigate cellular phenotypes.

Dubbed “the guardian of the genome”,1 the tumor
suppressor p53 is a transcription factor that is activated

in response to genotoxic, hypoxic, or oncogenic signals.2 In
turn, it mediates cell cycle arrest,3 senescence, or apoptosis in
normal cells.4 In cancer, p53 is a critical barrier against
oncogenesis as an estimated 50% of all tumors harbor p53
mutations.5 Alternatively, p53 function is often suppressed
through undesirable activation of upstream regulators.6 Two
examples of such regulators include members of the murine
double-minute family MDM2 and MDMX (MDM4), which
bind to p53 preventing its transcriptional activity, as well as (in
the case of MDM2) targeting it for proteasomal degradation.7,8

Blocking the interaction between MDM2 and p53 is a viable
strategy for p53 activation,9,10 and several potent MDM2
inhibitors11−13 have been identified, with Nutlin-3a as a
prominent example.14 MDMX is postulated to play a
compensatory role when MDM2 is inhibited,15 which suggests
that a dual MDM2/MDMX or selective MDMX inhibitor
could help to more fully understand the interplay between
these proteins and p53, and may ultimately lead to novel
anticancer drugs.

SJ-172550 (1; see Figure 1A, left) was discovered using an in
vitro fluorescence polarization (FP)-based high-throughput
screen as a potent MDMX inhibitor with an EC50 value of
0.84 μM.16 Further data suggested that 1 could potentiate the
cytotoxic effects of Nutlin-3a in MDMX-overexpressing cell
lines and that the compound, despite the presence of an
electrophilic Michael acceptor moiety, acts in a noncovalent
manner.16 However, a subsequent follow-up study revealed
that SJ-172550 does bind MDMX covalently with the
benzylidene-5-pyrazolone scaffold undergoing a conjugate
addition with free thiols on cysteine residues.17 Binding of 1
to MDMX was also strongly attenuated under reducing
conditions, thereby raising the following question: is SJ-
172550 actually able to engage MDMX in cells? Despite only
limited data availability on the direct interaction of 1 and
MDMX in living cells, the compound finds frequent use as a
tool in numerous publications,18−20 because of its first-in-class
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status. As a result, we decided to further investigate the
compound’s cellular effects and target engagement.
We first examined the potential synergistic effect of SJ-

172550 with Nutlin-3a in p53-competent U2OS cells. Previous
results demonstrated that treatment with MDMX siRNA could
sensitize U2OS cells to Nutlin-3a;15 however, a combination of
Nutlin-3a with 1 did not seem to exhibit any synergy,
compared to Nutlin-3a-treated cells when tested in standard
72 h cell viability assays (Figure 1B). The approximate IC50
value for SJ-172550 alone was in the high μM range (47 μM;
see Figure S3 in the Supporting Information), consistent with
previously reported data for Weri1 cells.16 Previous reports
have also suggested limited solubility in aqueous buffers,17

which raises the possibility that the pharmacological effects
may be caused by compound aggregates.
To assess SJ-172550 binding to the p53 binding site on

MDMX, we expressed GST-tagged MDMX (1−120) in E. coli
and performed isothermal titration calorimetry (ITC) after
removal of the GST tag. In the absence of any reducing agents,
the data indicated only weak binding with a Kd value of
>13 μM (Figure 1C) with broad peaks suggestive of a covalent
interaction, consistent with previous results.17 Next, using
similar conditions to that of the initial study,17 we assessed the
binding of 1 to MDMX by mass spectrometry via incubation of

untagged recombinant MDMX (1−120) protein with a slight
excess (1:1.4) of SJ-172550 in HEPES-NaCl buffer (pH 7.5) at
room temperature (RT) for 1 h. Analysis of the MALDI-TOF
data indicated the presence of three covalent adducts,
suggesting that SJ-172550 likely binds all three cysteine
residues present in the MDMX construct (Figure 1D). Earlier
reports suggested that only one cysteine present within the
p53-binding domain was bound; however, the MDMX
constructs used in the previous study either lacked part of
the N-terminus, which contains two cysteines (residues 23−
111), or was still attached to GST (residues 1−185).17 The
covalent mechanism of action of 1 has been attributed to the
presence of the Michael acceptor moiety and a previously
reported reduced analogue of SJ-172550, herein further
referred to as “SJ-Reduced” (2; see Figure 1A, right), indeed
exhibited diminished affinity.17 We synthesized 2 and,
consistent with expectations, could not detect any significant
binding in an ITC assay (see Figure S2 in the Supporting
Information). As expected, 2 also did not form any covalent
adducts with MDMX, as indicated by mass spectrometry data
(Figure S1 in the Supporting Information).
To examine SJ-172550s cellular target engagement, we first

decided to perform a cellular thermal shift assay (CETSA)21 in
U2OS cells, using a method similar to previously established

Figure 1. Evaluation of SJ-172550 on cell viability and binding to recombinant MDMX. (A) The structure of SJ-172550 (left) and its reduced
analogue, SJ-Reduced (right). (B) In U2OS, 10 μΜ of SJ-172550 does not alter cancer cell sensitivity toward Nutlin-3a (data representative for two
independent experiments, n = 2). (C) Isothermal titration calorimetry data in HEPES-NaCl buffer indicate that SJ-172550 is a weak binder of
MDMX, with a Kd value of >13 μM. (D) MALDI-TOF data using a recombinant MDMX construct with a MW of 13.6 kDa in HEPES-NaCl buffer
shows that SJ-172550 (MW 428.87 Da) can bind covalently in up to three places, in accordance with three cysteines present within the construct.
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protocols for stapled peptide-based MDMX inhibitors.22

Following 1 h of incubation with 100 μM compound, we
failed to detect a stabilizing effect on MDMX for SJ-172550
(Figure 2A; see Figure S8 in the Supporting Information for
full blot).
Previous structure−activity relationship studies have sug-

gested that structural modifications at C4 of the benzylidene
moiety are tolerated.16 Using this information, we prepared a
structural analogue of 1 containing an alkyne moiety (“SJ-
Alkyne”, 3; see Figure 2B) enabling bioorthogonal copper-
catalyzed alkyne−azide cycloaddition (CuAAC) reactions.23

We first confirmed that 3 was capable of forming covalent
adducts with MDMX in vitro (Figure S1 in the Supporting
Information). Incubation of 3 with U2OS lysate, followed by
cyanine azide click reaction, and visualization on SDS-PAGE
revealed extensive labeling of proteins by the probe (Figure
2D). Competition experiments with 1 reduced the labeling of
the probe in a concentration-dependent manner (Figure 2E),
whereas preincubation with 2 (Figure S4 in the Supporting
Information) had no appreciable effect, suggesting that the
Michael acceptor moiety within 1 and 3 represents a key
determinant for the cellular effects of SJ-172550. Consistent
with previous data, we observed adduct formation when SJ-
172550 was incubated with equimolar amounts of glutathione

(Figure S5 in the Supporting Information). These results
strongly suggest that SJ-172550 interacts with cellular
nucleophiles in a nonspecific manner. Previous reports have
also suggested that the non-nucleophilic reducing agent TCEP
is unable to react with SJ-172550.17 However, while evaluating
the effects of different reducing agents, we noticed that the
addition of excess TCEP resulted in bleaching of the orange
solution (Figure S9 in the Supporting Information), thus
indicating a chemical reaction and prompting further analysis
of the mixture. Indeed, LC/MS analysis confirmed the
formation of a covalent adduct between the two molecules
(Figure S6 in the Supporting Information). It is plausible that
this adduct forms via a phospha-Michael addition reaction, as
previously demonstrated for TCEP and acrylate electro-
philes.24

Interestingly, further evaluation of the MALDI-TOF data for
SJ-172550 revealed an additional peak appearing over time in
the chromatogram. The mass of this peak suggested the
presence of a compound, which we suspected to arise from
unexpected reactivity of SJ-172550 in aqueous buffers (Figure
S5 in the Supporting Information). Indeed, reverse Knoeve-
nagel condensation of arylmethylidenepyrazolinones, followed
by addition of the conjugate base of the pyrazolone product
onto another molecule of arylmethylidenepyrazolinone (Figure

Figure 2. Target engagement, and promiscuity of SJ-172550. (A) Cellular thermal shift assay (CETSA) indicates that SJ-172550 cannot stabilize
MDMX in U2OS cells, following 1 h of incubation (data representative for three independent experiments, n = 3). (B) Structure of the affinity
probe SJ-Alkyne. (C) Scheme of the biorthogonal click chemistry assay with a fluorescent dye and an SJ-Alkyne. (D) SDS-PAGE fluorescent
readout indicates extensive promiscuity and nonspecific reactivity with proteins. (E) Competition with SJ-172550 reduces protein labeling of SJ-
Alkyne in a dose-dependent manner.
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3A), has been reported in the literature.25,26 Different
commercial batches of SJ-172550 and an original synthesized
sample were tested for aqueous stability, with data from all
batches indicating degradation. To confirm the identity of the
byproduct, we also synthesized an authentic sample of the
presumed degradation product (SJ-Bis, 4; see Figure 3B) and
found that it was unable to bind MDMX in vitro (see Figure S2
in the Supporting Information). We further assayed the rate of
SJ-172550 decomposition and concomitant formation of 4 by
LC/MS, with significant amounts of 4 present within hours of
incubation in a HEPES-NaCl buffer system (pH 7.5) system at
37 °C (Figure 3C). Surprisingly, upon further inspection, we
noticed that solutions of 4 which, when freshly prepared, gave
a clear DMSO solution, eventually adopted an orange hue that
was characteristic of SJ-172550 (Figure S9 in the Supporting
Information). Indeed, further LC-MS analysis strongly
suggested a dynamic equilibrium between SJ-172550 and 4
(Figure S7 in the Supporting Information). This might explain
why, at very high concentrations, there is minimal competition
of SJ-Alkyne with SJ-Bis in the cyanine azide click assay
(Figure S4 in the Supporting Information).
Early reports already questioned the use of SJ-172550 as a

chemical probe to investigate MDMX cellular function, with
luciferase complementation assay data indicating that the
compound is unable to disrupt the MDMX-p53 interaction in
a cellular context.27 However, because of the strong interest in

p53 biology and the compound’s first-in-class status, SJ-172550
is still prominently featured on vendor web sites and many
studies continue to use SJ-172550 as an orthogonal means to
validate the effects of MDMX inhibition. Given the ongoing
discussion on PAINS compounds28,29 and the desired qualities
of chemical probes,30 we hope our study will aid to further
increase the awareness of the potential pitfalls of reactive and
potentially unstable compounds. Requirements for PAINS
filtering of compounds presented in American Chemical
Society (ACS) journals have recently been introduced31 and
the use of various cheminformatics toolkits can help eliminate
problematic scaffolds. Analysis of the molecule with the cApp
algorithm32 for the presence of moieties that have the potential
to cause pan-assay interference33 assigns the arylmethylidene-
pyrazolinone scaffold of 1 to a broad category of five-
membered heterocyclic alkylidenes, which, similarly to
alkylidene rhodanines, can react with nucleophiles such as
cysteines.34 A recent review on pan-assay interference
compounds28 described this scaffold as a member of the
“most problematic” PAINS. Evaluation of the compound with
the BadApple algorithm for weeding out potentially promis-
cuous molecules35 assigns a promiscuity score of 497 to 4-
methylene-2-phenyl-2,4-dihydro-3H-pyrazol-3-ones, with
scores above 300 being generally accepted to be considered
a PAINS compound. Notably, the specificity of C646, an
inhibitor of p300 containing a related furanylmethylidenepyr-

Figure 3. Instability of arylmethylidenepyrazolinones. (A) The putative generalized mechanism for the formation of arylmethylidenebispyr-
azolinones from arylmethylidenepyrazolinones. The initial reverse Knoevenagel reaction is followed by a Michael reaction, with the nucleophilic
attack on the Michael acceptor by the enol π-electrons (favored under basic conditions, because of the deprotonation of the hydroxyl group). (B)
The degradation product of SJ-172550, named SJ-Bis. (C) The kinetics of SJ-172550 degradation in HEPES buffer at 37 °C and pH 7.5. Nearly
10% of SJ-172550 degrades within 1 h, with 50% of degradation occurring after 3−4 h.
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azolinone scaffold, was recently called into question following
an extensive proteomic analysis.36 Nevertheless, a short survey
of the recent literature revealed the arylmethylidenepyrazoli-
none scaffold as a regular hit in high-throughput screening
assays and virtual screens.37−39 Although we did not observe
any apparent precipitation in our experiments, previous reports
have also suggested that SJ-172550 may have only limited
solubility in aqueous buffers. Thus, in principle, any cellular
effects observed at these high concentrations could be due to
nonspecific and/or aggregative effects.40

In summary, we show that SJ-172550 is a highly
promiscuous compound with unclear effects on its putative
cognate target MDMX in cells. In contrast to CETSA results
reported for stapled peptide-based inhibitors,22 SJ-172550 did
not exhibit a stabilizing effect on MDMX in intact cells.
Importantly, we find that SJ-172550 rapidly decomposes in
aqueous buffers within a few hours and, as such, its exclusion
from screening libraries seems warranted, as recently
postulated for other classic PAINS compounds, such as
curcumin.41 This is not to say arylmethylidenepyrazolinones
such as SJ-172550 may not be able to exhibit interesting
phenotypes in living systems; however, their physicochemical
properties make the interpretation of results extremely
challenging and, therefore, argue against their use as tool
compounds.
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