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Abstract  

This paper presents two high-resolution pollen records dating to ~AD 1000-1400 that reveal 

the impacts of Norse colonists on vegetation and landscape around a remote farmstead in the 
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Western Settlement of Greenland. The study is centred upon a ‘centralised farm’ (ruin group 

V53d) in Austmannadalen, near the margin of the Greenland Ice Sheet (64º13’ N, 49º49’W). 

The climate is low arctic and considered marginal in terms of its suitability for the type of 

pastoral agriculture that the Norse settlers introduced. The data reveal that at a short distance 

(~500 m) from the farm buildings, the palynological ‘footprint’ for settlement becomes 

extremely indistinct, the only clear palaeoenvironmental evidence for a human presence 

being elevated levels of microscopic charcoal. This contrasts with the Eastern Settlement, 

where a strong palynological signature for Norse landnám is evident, from the local 

(individual farm) through to the regional (landscape) scale. The palynological data from 

Austmannadalen, and the Western Settlement more generally, imply that farming occurred at 

very low intensity. This aligns with ideas that promote the importance of hunting, and trade 

in valuable Arctic commodities (e.g. walrus ivory), ahead of a search for new pasture as the 

dominant motivation driving the Norse settlement of this region. 

 

Keywords: Greenland, Norse, Western Settlement, pollen analysis, radiocarbon dating, 

microscopic charcoal. 

 

Introduction 

It is over a century since Daniel Bruun (1917) published the first systematic archaeological 

survey of Norse ruins in the former Western Settlement (Old Norse [ON] Vestribyggð) of 

Greenland (Fig. 1). This revealed the presence of approximately 60 ruin groups – a number 

since increased to over 90 (Madsen 2014) – representing former farms, shielings and store 

houses clustered around the interior of the fjords between the modern Greenlandic capital of 

Nuuk (~64º10’N, 51º44’W) and the margin of the Greenland Ice Sheet (GrIS). Many 

questions relating to the occupation, function and fate of the former colony remain 

unanswered largely as a consequence of the logistical difficulties of conducting field research 

in this remote region. 

 

Landnámabók relates that the first wave of Norse colonists to Greenland (arriving ~AD 985) 

included people who went on to found the Western Settlement (Ingstad 1966; Krogh 1967), 

yet details surrounding the timing of abandonment of the colony are more enigmatic. 

Following a visit sometime between AD 1341 and 1363 to an unspecified part of the Western 

Settlement – but speculated as likely to have been Sandnes (ruin group V51; Fig. 2) 

(Berglund 1986) – the Bishop of Greenland’s representative, Ivar Bardarson, reported the 
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area as deserted, having encountered only domesticated animals roaming wild (Roussell 

1936; Mathers 2009; Seaver 2010). Although Bardarson’s Description of Greenland must be 

treated with caution (Berglund 1986), radiocarbon dates on animal bone and structural turves 

from two of the more intensively studied Norse farms – V51 and GUS (Gården Under 

Sandet; ‘the farm beneath the sand’) – support the idea that the end of settlement can be 

traced to the mid- to late 14th century (Buckland et al. 1996; McGovern et al. 1996; Arneborg 

and Gullov 1998). Precise details surrounding the societal ‘collapse’ (Diamond 2005) remain 

unclear, yet only in one instance – at Nipaatsoq (V54) – is there clear evidence that points 

towards the end having been particularly traumatic for the residents (Panagiotakopulu et al. 

2007). 

 

The topography of the Western Settlement contrasts with that of its more southerly 

counterpart, the Eastern Settlement (ON Eystribyggð), in that the former is generally more 

rugged, steep and mountainous, with fewer flat areas that appear immediately suitable for 

farming. At ~450 km further north, the Western Settlement is beyond the treeline and much 

closer to the viable (climatic) limits for the type of pastoral agriculture that the Norse people 

typically practised during their westward expansion across the islands of the North Atlantic 

(Dugmore et al. 2005). Simulation models of pasture productivity demonstrate that Western 

Settlement farms would have been more vulnerable to changes in summer temperature 

relative to their Eastern neighbour, especially in situations where a number of cold years were 

experienced in close succession (Barlow et al. 1997). There were locational advantages, 

however, in that the Western Settlement is approachable by sea throughout the year. This 

differs from the Eastern Settlement, where shipping may be disrupted in spring and early 

summer by the mass of broken Arctic sea ice (storis; ‘great ice’) that is driven down the east 

coast of Greenland and around Cape Farewell by the East Greenland Current (Thomsen 1948; 

Cappelen et al. 2001). The Western Settlement is also much closer to the Arctic northern 

hunting grounds (Norðrseta; Krogh 1967) centred around Disko Bay (Fig. 1) where the 

annual summer hunt for walrus (Odobenus rosmarus L.) took place (Frei et al. 2015). 

 

This raises questions surrounding the reasons why the Western Settlement was founded. 

Dugmore et al. (2007) have presented the possibility that it was established primarily to 

facilitate hunting, and that farming was only a secondary concern for the settlers. This forms 

part of the wider debate surrounding the purpose of the Norse colonisation of Greenland and 

Iceland. Opinion has gradually been turning away from the view that this was motivated 
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primarily by a search for new lands and pasture (Jones 1984) towards ideas that highlight the 

potential of remote Arctic regions to provide valuable trade goods for Medieval European 

markets (Keller 2010), although these notions perhaps now need to be counter-balanced by 

our knowledge that very little of the walrus ivory found in Europe can be genetically-traced 

to Greenland during the first (11th) century of settlement (Star et al. 2018). Studies of 

vegetation history can continue to play a role in debates surrounding the Greenlandic 

landnám (ON: ‘land-taking’) as they generate empirical evidence regarding the character and 

intensity of farming (and land use more generally) within the landscapes in which the settlers 

operated.    

 

Pollen analysis has proven to be a valuable tool in revealing the impacts of pastoral 

agriculture in the Eastern Settlement (Fig. 1), particularly in the immediate vicinity of the 

farms. A widely repeated ‘footprint’ for Norse settlement can be seen in the suite of 

microfossils (primarily pollen, spores, and charcoal) preserved in sedimentary records from 

peat bogs and lakes across that region (e.g. Fredskild 1988; Edwards et al. 2008, 2011; 

Gauthier et al. 2010; Schofield et al. 2013; Ledger et al. 2014). Whilst similar lines of 

evidence are also apparent in some Western Settlement pollen records (e.g. Iversen 1934, 

1952-53; Fredskild 1972, 1973; Fredskild and Humle 1991), the numbers of studies are fewer 

and the absolute chronologies supporting these are either missing or imprecise. Furthermore, 

much of the data available for the Norse period is of low resolution because many studies 

were designed to reconstruct vegetation changes over much longer (Holocene) timescales 

(e.g. Fredskild 1983), with events around the time of the Norse landnám only featuring in 

part.  

 

This paper attempts to address these issues through an analysis of new high-resolution 

palynological and chronological (14C) data from the vicinity of a ‘centralised farm’ (Roussell 

1941) in the Western Settlement located very close to the margin of the Greenland Ice Sheet. 

We present two Norse-age pollen records from contrasting infield/homefield (‘on-site’) and 

outfield/rangeland (‘off-site’) contexts with the aim being to investigate vegetation changes 

arising from the Norse landnám in different, but adjacent, landscape settings. In doing so, the 

paper will contribute information to debates regarding the timing and purpose of Norse 

settlement in the region. 

 

Background 
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The location featured in this investigation is the area around ruin group V53d (64º13’35” N, 

49º49’11” W; ~220 m a.s.l.). This is in the upper reaches of Austmannadalen (Figs 2 and 

3A), a narrow east-west orientated valley running from the watershed west of Kangiata 

Nunaata Sermia (KNS – a tidewater-terminating outlet of the GrIS) to Nansens teltplads 

(Nansen’s tent site) at the head of the Ameralla branch of Ameralik fjord, in the southeast of 

the former Western Settlement of Greenland. The ruins of V53d (Fig. 3B) are not located 

immediately adjacent to Kuussuaq – the river running the length of Austmannadalen. Rather, 

the remains of the farm are found beside a tributary ~1 km north of the main branch of the 

valley. This stream would have provided the Norse settlers with ample fresh water. The ruins 

represent the remains of a ‘centralized farm’ in which most of the buildings – the living 

quarters, byres, barn, storerooms, and a postulated bath-house – were all drawn together into 

a single unit (Fig. 4; Roussell 1941).  

 

The site was excavated in 1937. The dig unearthed ~150 objects including a carved wooden 

crucifix and an iron hunting spear (ibid.). Animal bones (655 fragments) were recovered from 

the main building and its midden (Degerbøl 1941). Domestic animals account for ~22% of 

the total collection, with most of these bones identified as being either from sheep or goat 

(Ovis/Capra; 84 fragments [~13% of the total assemblage]), or from cattle (Bos taurus; 56 

[~9%]). These are heavily outweighed by the number of bones of seals (Phocidae; 378 

[~58%]) and reindeer (Rangifer tarandus; 120 [~18%]) (McGovern 1985), indicating that 

wild animals were a very important component of diet. These proportions are similar to those 

observed for archaeofaunal collections recovered from neighbouring medium-status farms at 

GUS and Nipaatsoq (V54; Enghoff 2003), and other farms within Austmannadalen (V53a 

and c; McGovern 1985). By contrast, the large high-status site with its church at Sandnes 

(V51) shows greater percentages of reindeer (~29%) and cattle (16%) bone, with similar 

frequencies of caprines (~11%) and fewer seals (34%) (McGovern 1985). These figures need 

to be viewed with the caveat that domestic animals may have been kept mainly for the 

secondary products these can supply (i.e. milk and wool), rather than simply raised for their 

meat (cf. McGovern and Jordan 1982).   

 

The climate in this region of Greenland is low arctic. Contemporary mean statistics for 

temperature and precipitation are difficult to provide as there are very few meteorological 

stations close to the field site that possess a long series of observations. Nuuk has 

instrumental records for monthly/annual air temperature that extend back to AD 1784 
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(Cappelen 2019), but strong gradients in temperature and precipitation between the coast and 

ice sheet mean that this dataset cannot be used to describe conditions inland without 

extrapolation (e.g. Taurisano et al. 2004). Short and broken meteorological records are 

available for Qoornoq and Kapisillit. The station nearest to V53d – at Kapisillit (Fig. 2) – 

records mean summer temperatures (June to August) of 9.7 °C and annual precipitation of 

255 mm, although these figures should be treated cautiously as they reflect the average 

conditions from AD 1939-1956 (Fredskild 1996).  

 

The local geology is mainly gneisses with some interspersed amphibolites (Escher and Watt 

1976). The dominant soil types are brown soils – often slightly podzolised – and lithosols 

(Fredskild 1996). The vegetation in Austmannadalen is characteristically dwarf-shrub heath 

composed predominantly of Betula nana (dwarf birch), Salix glauca (northern willow), and 

Empetrum nigrum (crowberry), with occasional Juniperus communis ssp. alpina (alpine 

juniper); plant nomenclature follows Böcher et al. (1968). Dense stands of S. glauca scrub up 

to ~2 m tall – often containing Alnus crispa (green alder) – are found in damp, sheltered areas 

beside the river and on the lower valley slopes. Grasses and herbs including Artemisia 

borealis (northern wormwood), Potentilla tridentata (three-toothed cinquefoil) and Thymus 

praecox (wild thyme) are found on drier slopes. Fen communities characterised by 

Eriophorum angustifolium (common cottongrass) and Carex spp. (sedges) are encountered 

over wet ground (Fredskild 1996; Rune 2011). 

 

Methodology 

 

Fieldwork and sampling 

Prospecting with an Eijkelkamp gouge auger in the area around V53d revealed two places 

with organic deposits suitable for pollen analysis. Samples were collected by digging pits and 

inserting monolith tins into cleaned section faces. The first monolith was taken from a soil 

profile – regarded as likely to be an anthrosol (cf. Golding et al. 2011; Ledger et al. 2015) – 

within willow scrub approximately 50 m west of the dwelling (64º13’37’’N, 49º49’16’’W, 

~220 m a.s.l. [Fig. 3B]). The second monolith contains peat from a mire situated within a 

relatively large basin (~300 x 800 m) around 500 m northeast of the ruins of V53d. The basin 

is enclosed by steep slopes and elevated relative to V53d (64º13’46” N, 49º48’37” W, ~320 

m a.s.l. [Fig. 3C]).  
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Laboratory analyses 

Pollen samples were prepared using standard procedures (Moore et al. 1991) with tablets of 

Lycopodium clavatum spores added to enable the calculation of microfossil concentrations and 

influx (Stockmarr 1971). Pollen and spore identifications were confirmed using reference 

material held at the University of Aberdeen, and the keys and photographs in Moore et al. 

(1991) and van Geel et al. (2003). Palynomorph percentages were calculated on a total land 

pollen sum (TLP; trees, shrubs and heaths, and herbs) exceeding 300 grains. Pollen diagrams 

were constructed using the software TILIA (TiliaIT 2019) and were divided into local pollen 

assemblage zones (LPAZs) with the assistance of CONISS (Grimm 1987). Microscopic 

charcoal particles present in pollen sample residues were quantified. Charcoal data are 

presented as both ratios of charcoal to pollen concentration (C:P) and influx (Patterson et al. 

1987). Rarefaction analysis (Birks and Line 1992) – a measure of species richness – was 

performed using the software RStudio. The organic content of samples was established through 

loss-on-ignition (LOI) following combustion at 550˚C. 

 

Plant macrofossils (byrophytes and seeds) and fragments of charcoal were extracted from the 

monolith tins for AMS radiocarbon (14C) measurement. In most instances, these have proven 

to be reliable materials for 14C dating from Norse sites in Greenland (cf. Edwards et al. 2008; 

Blockley et al. 2015). The charcoal appears to be derived from woody plants, although 

taxonomic identification (Schweingruber 1990) was not attempted due to the small size of the 

particles (longest axis <2 mm). The humic acid fraction of small (1 cm3) peat samples was 

dated where suitable macrofossils for AMS could not be found. 

 

To assist macrofossil extraction, samples were soaked in weak 10% NaOH for 24h to 

disaggregate the sediment prior to sieving (500 μm mesh). Macrofossil samples were stored 

in glass vials with distilled water prior to measurement at the 14CHRONO Centre, Queen’s 

University Belfast. The calibration of radiocarbon age-estimates was performed using the 

online version of Calib v.7.1 software (Stuiver and Reimer 1993) and the IntCal13 calibration 

curve (Reimer et al. 2013). The Bayesian modelling software Bacon (Blaauw and Christen 

2011) was used to construct an age-depth model for the mire profile. The calendar ages used 

to ascribe timing to the events in the pollen diagram are the ‘best’ (mean) age-estimates for 

each depth taken from the model, unless otherwise stated. Age-depth modelling of the soil 

profile was not undertaken because of the limited availability of 14C dates. 
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Pollen source areas and other taphonomic considerations 

The characteristics of the two sites and deposits selected for this research are very different, 

and this will influence the vegetation reconstruction at each sampling location. The relevant 

source area of pollen, or RSAP, is an important consideration here. The RSAP is defined as, 

‘the spatial scale appropriate for detecting variations in local vegetation from pollen records’ 

(Sugita et al. 1999: 410), and is the distance beyond which the relationship between pollen 

assemblages and the vegetation does not improve. RSAP is largely a function of the 

vegetation mosaic and the size/radius of the basin being sampled – whether this be a hollow, 

mire, or lake (Sugita 1994; Bunting et al. 2004; Hellmann et al. 2009) – making the pollen 

source area difficult to define with any precision for fossil records. RSAP has been estimated 

using various landscape and vegetation scenarios/simulations, yet very few of these apply 

directly to completely open (treeless) situations such as those one expects to encounter in the 

low Arctic. Perhaps the most instructive studies in this context come from Scandinavia. 

Sugita et al. (1999) have estimated the RSAP to be ~800-1000 m for small lakes and hollows 

(100 m radius) in open and semi-open cultural landscapes in lowland Sweden, and von 

Stedingk et al. (2008) predict a RSAP of ~500 m for moss polsters at the forest-tundra 

ecotone (a semi-open landscape) in upland west-central Sweden. The mire in 

Austmannadalen might be anticipated to have a RSAP at or just beyond the upper end of this 

range of values as the site is quite large (up to ~300 m diameter) but the contemporary 

vegetation mosaic (described above) is relatively simple. 

 

The soil profile (anthrosol) presents a different set of palynological challenges given that this 

contains a cultural horizon that has (presumably) been largely generated through repeated 

additions of farm waste containing secondary (redeposited) microfossils, as well as receiving 

the airborne pollen rain from the surrounding vegetation (cf. Buckland et al. 2009). A range 

of other taphonomic issues can also influence the interpretation of pollen diagrams from soils. 

These include the differential preservation of pollen types, faunal mixing, and the slow 

downwash of grains through the soil profile (Dimbleby 1985). At Norse sites in Greenland, 

anthrosols appear to retain a high degree of biostratigraphic integrity; although the 

homefields were manured, they were not ploughed (Ingstad 1966). These contexts are thus 

considered to be reliable palynological archives that strongly reflect events at, and 

immediately around, the individual farms at which they are found (Ledger et al. 2015).  

 

Results and interpretation 
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The anthrosol (‘on-site’) 

The stratigraphy at this location (Fig. 5) comprises a base of fine yellowish-grey sand. Above 

this, beginning at a depth of ~35 cm, is a medium brown organic-rich layer of variable 

minerogenic content (LOI ~20-60%) displaying occasional narrow sandy stripes. Laboratory 

inspection revealed small charcoal fragments throughout the unit and abundant seeds of 

Montia fontana (blinks). These features are typical of anthrosols (Ap horizons) reported from 

the hay-producing homefields of Norse farms throughout Greenland (Fredskild 1978; 

Buckland et al. 2009; Golding et al. 2011, 2015; Ledger et al. 2015). The contact between the 

basal sand and the anthrosol is very sharp. This indicates that turf is likely to have been 

stripped from this immediate area to provide building materials (Krogh 1967) prior to it being 

turned over to farming. The anthrosol is capped by a root mat (~0-7 cm). 

 

Two radiocarbon dates are available for the profile (Table 1); one date is positioned very 

close to the base of the anthrosol (33-31 cm; UBA-31333; 1101±49 BP; cal AD 777-1022 

[95.4%]), and the other is towards the top of the same unit (15-14 cm; UBA-31334; 645±46 

BP; cal AD 1278-1401 [95.4%]). Probability distributions for the calibrated dates (Fig. 6) 

indicate a high likelihood that the lower sample is late 10th or early 11th century AD in age, 

whilst the upper sample most probably dates to the 14th century. These provide corroboratory 

evidence that the anthrosol is of Norse age, and that this accumulated over a ~400 cal yr 

interval coincident with the conventionally-accepted period of occupation for the Western 

Settlement.  

 

The pollen diagram constructed for this profile (Fig. 7) is divisible into three local pollen 

assemblage zones (LPAZs prefixed AUS-, signifying Austmannadalen). Zonation closely 

matches the tripartite stratigraphic sequence for the soil profile described above. LPAZ AUS-

1 (38.0-34.5 cm) corresponds with the pre-settlement basal sands. Assemblages contain high 

frequencies of pollen from Betula (birch; ~35-60 % TLP), Salix (willow; ~10-20 %), 

Cyperaceae (sedges; ~10-20 %), and pteridophyte spores, particularly Lycopodium 

annotinum (interrupted clubmoss; ~10-20 %). It is possible that the high incidence of 

pteridophytes is a function of differential palynomorph survival in the highly minerogenic 

matrix (cf. Ledger et al. 2015). If accepted at face value, the data indicate relatively dense 

local coverage of dwarf shrub (birch-willow) heath, possibly with some damp open areas 

supporting graminoid communities. Species richness – as indicated by rarefaction – is low.  
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Pollen assemblages within LPAZ AUS-2 – which is broadly coincident with the Ap horizon – 

are dominated by Poaceae (grass) pollen. Frequencies rise to ~80 % in some samples. Similar 

Poaceae values were observed in the plaggen soil at the Bishop’s farm (Igaliku/Garðar) in 

the Eastern Settlement (Buckland et al. 2009) and must largely be derived from the in situ 

vegetation within the homefield. Shrub pollen values are heavily reduced relative to AUS-1, 

and a wider variety of herbaceous pollen types are recorded leading to an increase in species 

richness (rarefaction rises to ~20 taxa per sample). The herbs include a range of plants 

regarded as apophytic and often encountered as components of a settlement ‘footprint’ 

around Norse farms in Greenland (Fredskild 1988; Edwards et al. 2011; Schofield et al. 

2013). Examples include Artemisia-type (approaching 5 % in some samples), 

Caryophyllaceae (pinks; ~2-5 %), Rumex acetosella (sheep’s sorrel; rising to 2 %), and 

Lactuceae (dandelion tribe; exceeding 10 % in one case). Post-depositional biasing of pollen 

assemblages can sometimes be a problem where samples have been taken from 

archaeological contexts, and high frequencies of ‘resistant’ taxa – such as Lactuceae – have 

been identified as one of a number of potential indicators for this (Bunting and Tipping 

2000). Yet in AUS-2 there are no obvious signs that assemblages suffer in this manner. For 

example, the frequencies of Pteridophyte spores and indeterminate pollen grains are under the 

recommended ‘failure’ thresholds set for problematic samples (ibid.). Although species 

richness/diversity is relatively low, this is probably to be expected given the limited range of 

vascular plants that are recorded for this region (Böcher et al. 1968; Fredskild 1996).  

 

In the first palynological study to be conducted at a Norse farm in Greenland – at Anavik 

(V7), approximately 50 km north of Austmannadalen (Fig. 2) – Iversen (1934) reported an 

‘on-site’ soil profile containing a thin (~2 cm) but distinct charcoal layer that immediately 

preceded a palynological signature for Norse landnám. This was interpreted as evidence for 

the use of fire in clearing birch-willow scrub at the onset of settlement. In the soil profile at 

V53d there are no clear macroscopic charcoal horizons within the stratigraphy to indicate the 

in situ burning of vegetation, either to clear/prepare the area for settlement or farming 

(although the process of stripping turf, described above, might have led to evidence for this 

being removed), or to suggest the regular burning of grass stubble. The elevated microscopic 

charcoal values witnessed in AUS-2 – particularly towards the top of the zone – and the 

macroscopic fragments of charcoal encountered throughout the sediment unit seem most 

likely to reflect the addition of ash to the soil from domestic hearths in order to promote hay 
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growth. Traces of spores from coprophilous fungi (HdV-55a Sordaria-type; van Geel et al. 

2003) are recorded in AUS-2 indicating the probable addition of animal dung to the anthrosol 

as fertilizer, yet spore frequencies are notably lower than in similar deposits in the Eastern 

Settlement (Buckland et al. 2009; Golding et al. 2011; Ledger et al. 2015), and certain key 

coprophilous spore types are conspicuous by their absence. Most notably, spores of the dung 

fungus HdV-113 Sporormiella-type (Raper and Bush 2009) – which is typically an 

identifying feature of the Greenlandic Norse ‘footprint’ (Gauthier et al. 2010; Edwards et al. 

2011) – are absent from this zone. This may point towards a less-intensive fertilization 

regime for the V53d homefield relative to Eastern Settlement farms. 

 

The uppermost LPAZ (AUS-3) contains just two samples and must be interpreted cautiously. 

Assemblages appear to show the beginning of a decline in Poaceae pollen and a recovery in 

shrubs. This seemingly reflects the post-14th century (abandonment phase) regeneration of 

dwarf shrub heath. Salix displays peak frequencies (~35 %) at the top of the zone, and for the 

first time rises to dominance ahead of Betula. The expansion of willow scrub is a common 

feature of the cooler ‘Little Ice Age’ post-Norse vegetation histories of many Eastern 

Settlement landscapes (e.g. Schofield et al. 2008; Buckland et al. 2009; Ledger et al. 2014). 

 

The mire (‘off-site’) 

The mire stratigraphy comprises peat to a depth of at least 40 cm. This contains a significant 

and fluctuating inorganic component. LOI ranges from ~5-60 % and the peat contains narrow 

sandy horizontal bands that are most frequent at 28-20 cm. These patterns must reflect high 

but variable rates of soil erosion and the regular delivery of minerogenic sediment to the 

wetland surface via slopewash. Radiocarbon dates for this profile form a coherent series 

(Table 1; Figs 6 and 8) and demonstrate that the pollen diagram (Fig. 9) spans the period 

~AD 450-1820.  

 

Four LPAZs prefixed BAu – signifying the basin of Austmannadalen – have been defined for 

this location. LPAZ BAu-1 (32-28 cm; ~AD 450-700) pre-dates the Norse landnám and is 

very similar in composition to AUS-1. Collectively, pollen from shrubs and heaths – Alnus, 

Betula, Ericaceae, Juniperus and Salix – approaches 60 % in most samples indicating 

substantial local coverage of scrub vegetation and dwarf shrub heath. Significant quantities of 

Cyperaceae pollen (~20-50 %) and Sphagnum spores (up to 40 % in one sample) are likely to 

reflect the mire surface (wetland) communities. 
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LPAZ BAu-2 is divided into two subzones (a and b). BAu-2a (28-25 cm) covers the period 

~AD 700-870. The most significant change across the BAS-1/2a boundary is a sustained fall 

(to <5 %) in Alnus pollen. Pollen records from western Greenland show that Alnus pollen 

frequencies were in decline over an extended period through the course of the first 

millennium AD, a pattern that Fredskild (1983) has interpreted as reflecting a change towards 

generally cooler conditions relative to the mid-Holocene. The minerogenic content of the peat 

rises steadily through this LPAZ. Soil erosion has often been observed to increase sharply 

following the AD 985 landnám in the Eastern Settlement (e.g. Edwards et al. 2008; Massa et 

al. 2012), although in Austmannadalen the factor(s) driving sediment delivery to the mire 

surface during BAu-2a seem unlikely to be anthropogenic, given the estimated timing of 

events (i.e. beginning ~AD 700).    

 

LPAZ BAu-2b (25-21 cm; ~AD 870-1250) appears to contain a signature for anthropogenic 

impact on the environment. The palynological ‘footprint’ left by the settlers is, however, 

much weaker than that typically recorded in most of the other North Atlantic island 

landscapes that these people colonised (cf. Edwards et al. 2011). The age-depth model (Fig. 

8) provides a ‘best’ estimate of ~AD 870 for the BAu-2a/b boundary, but when the model 

output is viewed more elastically using the 95% confidence limits, it is possible that this 

biostratigraphic boundary dates to the late 10th to early 11th centuries AD – the period when 

the first Norse settlers arrived in Greenland. 

 

The opening of BAu-2b witnesses a temporary decline in Betula pollen (from ~30 % to <15 

%) and the first appearance of traces (<1 %) of coprophilous fungal spores (Sordaria- and 

Sporormiella-type). This could indicate a reduction in dwarf birch heath through grazing 

pressure, although pollen from other shrubs (Salix and Juniperus) increases such that the 

overall coverage of scrub vegetation probably remained largely unchanged. A range of 

herbaceous pollen types is recorded at trace values, but species richness shows little change 

relative to previous zones, and many of the taxa that are recorded can be regularly 

encountered as components of low Arctic heaths (Fredskild 1996). These include, for 

example, Artemisia-type, Campanula gieseckiana (common harebell), and Thalictrum 

alpinum (alpine meadow-rue), each of which appear consistently at <1 %.  
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Rumex acetosella pollen occurs in most samples in BAu-2b. The appearance and increase of 

this pollen type in Eastern Settlement pollen diagrams is regarded as a biostratigraphic 

marker for Norse landnám (Schofield et al. 2013), but Western Settlement records for this 

plant need to be treated more cautiously. R. acetosella is native to the Western Settlement, 

appearing as early as ~7400 cal BP (~5500 cal BC) in some pollen diagrams from the region 

(Fredskild 1983), and pollen from this plant appears at trace levels (<1%) in two pre-landnám 

(BAu-2a) assemblages from Austmannadalen. Nevertheless, the low frequency of occurrence 

of this pollen type at V53d – both in the mire and the anthrosol – is a little unexpected given 

that a sharp rise in R. acetosella pollen was identified as a defining feature of landnám in the 

‘on-site’ pollen record from Anavik (Iversen 1934; Fredskild 1972).   

 

The microscopic charcoal record presents stronger evidence of an anthropogenic signature. 

C:P rises in the uppermost sample within BAu-2a and remains above the baseline 

(established in BAu-1) throughout BAu-2b, a pattern also clearly reflected in the charcoal 

influx data (Fig. 10). Fragments of macroscopic charcoal – which would be produced by local 

fires – were not observed in the peat. This indicates that the charcoal seen in pollen samples 

was generated off-site, possibly as part of a regional signal for burning at landnám. In a 

sediment core taken from a lake (Johannes Iversen Sø) near Kapisillit, ~30 km northwest of 

Austmannadalen (Fig. 2), Fredskild (1983: 10) recorded a ‘sudden and pronounced’ 

maximum in microscopic charcoal in the late first millennium AD. He attributed this to the 

onset of Norse settlement, yet landnám appears largely unremarkable in that site’s pollen 

record, with contemporary changes noted in a small decrease in Juniperus pollen (the 

opposite is seen in BAu-2b) and a minor rise in R. acetosella. 

 

Peak influx of microscopic charcoal (~250 x 10-6 cm2 cm-2 yr-1) is recorded in the middle of 

BAu-3 (21-17 cm; ~AD 1250-1490). Charcoal input then falls to, and remains around, the 

levels recorded in BAu-1 (prior to landnám). The decline in charcoal seems likely to mark the 

abandonment of the region by the Norse. Otherwise, BAu-3 presents little, if any, indication 

for the presence of people or their domesticated animals in this landscape. The main 

palynological event defining this biostratigraphic zone is a temporary peak (~40 %) in pollen 

from Ericaceae, and a decline in Cyperaceae (falling from ~50 % to <20 %). This may 

indicate the local expansion of ericaceous shrubs across the mire surface at the expense of 

sedge communities. These vegetation changes could be climatically-controlled given that 

they coincide with a phase of low pollen influx to the peat (Fig. 10), the most likely 
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explanation for which is a reduction in plant flowering in response to lowered summer 

temperatures. Cyperaceae pollen frequencies recover in BAu-4 (17-10 cm; ~AD 1490-1820), 

rising to ~40-70 %, whilst Betula pollen values decline, often registering under 10 %. This 

could indicate the replacement of dwarf birch heath by steppe communities in more exposed 

places with thin snow cover during what was generally a period of cool conditions within the 

‘Little Ice Age’. 

 

Discussion 
 
As one would anticipate, the two pollen profiles from V53d provide contrasting signals for 

Norse impacts on the environment. This outcome is in accord with results obtained through 

the analysis of multiple pollen profiles in the Eastern Settlement (Ledger et al. 2014), where a 

more subdued ‘footprint’ for landnám (cf. Edwards et al. 2011) has been demonstrated for 

rangeland environments. What is surprising for Austmanndalen is the extent to which the 

‘off-site’ signature for Norse settlement becomes diluted at relatively short distance (~500 m) 

from the farm buildings. The sampling location is inside the likely pollen source area for the 

farm/structures (see the earlier discussion of RSAP for this site), yet other than elevated 

levels of microscopic charcoal, there is only equivocal palynological evidence for human 

activity recorded within the peat profile collected from the mire. The data hint towards the 

possibility of a decline in dwarf birch heath at landnám, but pollen values for Betula soon 

recover to match their earlier (pre-landnám) frequencies. Coincident with this, a very small 

number of coprophilous fungal spores are registered but, similarly, this signal fades quickly. 

 

The data from the mire at V53d are in broad agreement with palynological results from 

similar (rangeland) landscape settings across the region. Two Holocene lake sediment records 

from Kapisillit show limited evidence for vegetation change during the Norse settlement 

period other than a dramatic rise in microscopic charcoal (Iversen 1952-52; Fredskild 1973, 

1983). The situation is much the same at Karra (Fig. 2), another lake in the northern (inner 

Godthåbsfjord) area of the Western Settlement (Fredskild 1983). For the Western Settlement 

in particular, it has been argued that there was burning of scrub vegetation at landnám to 

clear areas for settlement (Fredskild 1988), although this idea is largely based upon evidence 

from Iversen’s (1934) study at Anavik (discussed above). The observation that microscopic 

charcoal levels are elevated in all lake and mire records throughout the period of settlement 

suggests that burning of vegetation was sustained, and/or that many of the particles were 
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being generated from fires in domestic settings (cf. Edwards et al. 2008).  In a mire around 1 

km north of Sandnes (V51), a 3 mm thick charcoal horizon possibly marks burning of the 

local vegetation coincident with landnám, but the associated palynological record exhibits 

little immediate response other than a small rise in Rumex acetosella (Fredskild and Humle 

1991). 

 

The emerging picture from the Western Settlement pollen record is therefore one of use of 

the wider landscape by people and animals at a very low intensity. This contrasts with the 

situation in the Eastern Settlement where lake deposits with regional pollen source areas (e.g. 

Lake Igaliku [Gauthier et al. 2010]), and smaller basins that are close to the farms but 

somewhat removed from the archaeology (cf. Galium Kær [Fredskild 1973] and Lake 

Vatnahverfi [Ledger et al. 2014]), each contain clear signals for pastoral farming. These 

patterns appear to resonate with the zooarchaeological data from Greenland. Table 2 

compares assemblages of animal bone collected from Norse farms in Vatnahverfi – a region 

of the Eastern Settlement generally regarded as having provided the Norse with high-quality 

pasture (Væbek 1992; Ledger et al. 2014) – with Austmannadalen. Whilst the information in 

Table 2 is selective (and also partially constrained by the available datasets), it does serve to 

highlight the widely-reported pattern that lower proportions of domestic animal bone are 

found on farms in the Western Settlement relative to its Eastern counterpart (McGovern 

1985). 

 

Within the context of an analysis of the importance of domestic grazers on the wider 

landscape beyond the farms, the numbers of caprine (sheep and goat) bones are most 

instructive, for these might be very loosely equated with the potential level of grazing 

pressure. The frequencies of caprine bones found on sites in Austmannadalen is low and 

generally one-third of that seen in Vatnahverfi. The exception is GUS, where the proportion 

of sheep and goat bones (~30 %) is over double that (~12-14 %) reported at Sandnes, V53c 

and V53d. There are currently no palynological data available for GUS – the only 

palaeovegetational analyses are macrobotanical remains collected ‘on-site’ (Ross 1998) – but, 

if such data were to become available, it would be interesting to see if a stronger signal 

emerges for human/animal impact on the vegetation surrounding that farm. In contrast to 

stocking patterns in both the Eastern Settlement and Iceland, goats appear to have equalled, 

and in some cases, outnumbered sheep on many Western Settlement farms (McGovern et al. 

2014). Goats are more effective at metabolising woody browse than either sheep or cattle, 
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and this has led to a belief that there was a lack of good pasture in the Western Settlement 

(Amorosi et al. 1998). The low grass pollen frequencies (typically under 10%) seen within 

the ‘off-site’ assemblages from V53d do nothing to dispel this idea.   

 

If the farms in Austmannadalen invested little effort into pastoral agriculture, this implies that 

the inhabitants concentrated more of their time on other activities, the most obvious being the 

exploitation of wild resources. Sandnes has the greatest concentration of walrus bone 

fragments from any Norse site in Greenland, indicating that the processing of ivory was 

particularly intensive here (McGovern et al. 1996). The export of walrus ivory was an 

extremely profitable business; a single shipment of Greenlandic ivory sold in Bergen in AD 

1327 was worth more than the annual tax from nearly 4,000 Icelandic farmers (Keller 2010; 

Frei et al. 2015). It would be surprising if the settlers on farms near Sandnes were not also 

heavily invested in this process, even if only in terms of providing tenant labour for the 

walrus hunt. 

 

The other resource that was seemingly plentiful in the Austmannadalen region was reindeer. 

This is indicated by the high concentration of Rangifer tarandus bones in the middens (Table 

2; McGovern 1985; McGovern et al. 1996). Norse ruins groups in the Western Settlement are 

generally located on the fjords allowing immediate access in and out by boat, but in the 

southeast of the region several of the farms – including V53d – are found many kilometres 

inland. This may have presented locational advantages when it came to hunting reindeer. In 

the Nuuk region, the pastures at the margin of the GrIS were, historically, places where 

reindeer congregated in large numbers during the summer (Meldgaard 1986). At least three 

Norse reindeer hunting stations – with blinds and/or rock fences – have been reported, whilst 

several other farms appear strategically well-placed (near passes or river fords) to intercept 

migrating animals (McGovern and Jordan 1982; McGovern et al. 1996). If reindeer were 

plentiful, this perhaps negated the need to keep large numbers of domesticated animals, 

perhaps other than to satisfy subsistence requirements for products other than meat, such as 

milk, butter, cheese and skyr (ibid.). This would still have required an amount of hay to be 

produced on the farm for the over-wintering of these animals, but possibly not on a large 

scale. Indeed, in his initial observations on the physical setting for the farm at V53d, Roussell 

(1941: 68) felt that there, ‘would scarcely have [been] any home-field proper’. Whilst the 

present study has established evidence for a homefield in the form of an anthrosol, time and 

logistics did not allow its full extent to be ascertained. This would certainly be useful 
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information to gather (e.g. through stratigraphic survey; cf. Buckland et al. 2009) if this site 

were ever to be revisited for further study.  

 

Conclusions 

 

The westward expansion of Norse colonists across the North Atlantic region resulted in the 

settlement of landscapes that were increasingly Arctic in character. This must have pushed 

traditional European agricultural systems very close to their physical limits (Barlow et al. 

1997; Dugmore et al. 2005). Nevertheless, the settlers were not deterred. In the Western 

Settlement of Greenland, several farmsteads were established in incredibly remote locations, 

sometimes even at the fringes of the ice sheet, giving, ‘a strong impression that dwellings 

were built in almost every place where it was possible to survive’ (Ingstad 1966: 22). This 

has led to the opinion that the subsistence and economy of this part of the Greenland colony 

was strongly orientated towards hunting (e.g. Dugmore et al. 2007), a theory which finds 

support in the high concentrations of non-domestic animal bone (seal and reindeer) reported 

in Norse middens from this area (e.g. McGovern 1985). 

 

New palynological data presented in this paper from a remote inland farm (V53d) in 

Austmannadalen appear to add weight to this idea. Beyond the immediate vicinity of the farm 

buildings and its homefield, there is little definitive evidence within the palynological record 

to indicate any significant or lasting impact or pressure from Norse settlement and agriculture 

on the vegetation. Were it not for records of microscopic charcoal contained in mire and lake 

sediments, the former presence of the Norse people within the wider landscape might pass 

largely unnoticed in the palynological record. This contrasts with evidence from the Eastern 

Settlement where a palynological ‘footprint’ for pastoral farming is clearly apparent, not only 

immediately around the farm buildings (e.g. Edwards et al. 2008; 2011) but also at some 

distance from these (e.g. Fredskild 1973; Gauthier et al. 2010; Ledger et al. 2014). 

 

The conclusions drawn for Austmannadalen should be considered as tentative when applied 

more widely to the Western Settlement, given that only a small number of detailed 

palynological studies are currently available across this region. This highlights the need for 

further investigations to verify the ideas being presented here. These should target 

polleniferous deposits not only in locations immediately adjacent to the ruins of the farms, 
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but also in the areas beyond these which formed part of the wider landscape in which the 

Norse settlers – and their animals – operated.  
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List of figures  

 

Figure 1: The former Norse Settlements of Greenland occupied three areas of land (boxed) 

between the western coastline and the Greenland Ice Sheet. W = Western; M = Middle; E = 

Eastern.  

 

Figure 2: The inner (eastern) area of the Western Settlement of Greenland showing the 

locations of sites and places mentioned in the text. 

 

Figure 3: (A) Ruin group V53d in Austmannadalen. Other places and landscape features of 

interest are labelled. Isvand is depicted as this appears on the Nuuk Tourism 1:100 000 

Hiking Map of West Greenland (Nuuk – Kapisillit, Qooqqut and Austmannadalen sheet), 

prior to drainage of the lake beginning in 2004 (Weidick and Citterio 2011). The shading in 

Ameralla reflects the outwash plain at the head of the fjord that is no longer navigable by 

boat. Dark green shading indicates land below 200 m a.s.l. (contours in metres). Norse ruin 

groups are shown as red filled circles. Their locations are taken from maps provided to the 

authors by the Greenland National Museum and Archives; (B) View southwest overlooking 

ruin group V53d. The dwelling is circled (much of what remains is now obscured by willow 

scrub). A star marks the sampling location for the anthrosol; (C) View southwest across the 

basin mire near V53d. The sampling location for the peat profile is indicated by the star. 

Photographs were taken in September 2015 by JE Schofield.  

 

Figure 4: Plan of the dwelling – the centralised house – at V53d comprising 21 rooms 

(redrawn from Roussell [1941]). Key to selected rooms and their likely functions: 1. Barn; 2. 

Byre; 3. Bath-house; 4a-f. Living quarters.     

 

Figure 5: Profile through the anthrosol at V53d displaying the sharp contact between the Ap 

horizon and underlying sands. Photograph by JE Schofield. 

 

Figure 6: OxCal multiplot showing the probability distributions of the calibrated 14C dates 

from the anthrosol (panel A) and the mire (B).   

 

Figure 7: Percentage pollen diagram for the anthrosol (‘on-site’) at V53d showing selected 

taxa. Values for loss-on-ignition, rarefaction and microscopic charcoal (depicted as charcoal 
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to pollen ratio) are also shown. + indicates values <1%. A diagram containing the full suite of 

taxa (Fig. S1) can be found in the supplementary information that accompanies this paper.   

 

Figure 8: Age-depth model for the mire profile produced using Bacon software (Blaauw and 

Christen 2011). Darker shading indicates more likely calendar ages. Dashed lines show the 

95% confidence limits on the model, whilst the central (solid) line shows the single ‘best’ 

model based on the mean age for each depth. The model adopts the default software settings 

with the exception of the following: section thickness (thick function) was reduced from 5 to 

2 cm; deposition time (acc.mean) was increased from 20 to 75 yr cm-1; and a lower range of 

posterior memory values was adopted (memory mean was reduced from 0.7 to 0.5). The 

model extrapolates between the deepest 14C date (29-30 cm) and the base of the pollen-

analysed sequence (32 cm).  

 

Figure 9: Percentage pollen diagram from the mire (‘off-site’) near V53d showing selected 

taxa. Values for loss-on-ignition, rarefaction and microscopic charcoal (depicted as charcoal 

to pollen ratio) are also shown. + indicates values <1%. A diagram containing the full suite of 

taxa (Fig. S2) can be found in the supplementary information that accompanies this paper.    

 

Figure 10: Influx of selected pollen types and microscopic charcoal particles to the mire. 

TLP = total land pollen. Note the differences in the scaling of the x-axes. 
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Table 1: Radiocarbon dates. The calibration procedure is explained in the Methods. 

 
Lab code Depth and material   14C age  cal AD range Median 
       (yr BP)  (95.4%)  (cal AD) 
 
‘On-site’ anthrosol 
 
UBA-31333 14-15 cm    645±46  1278-1401 1344 
  Charcoal and Montia fontana seeds 
UBA-31334 31-33 cm    1101±49  777-1022 935 
  Charcoal and Carex seeds 
 
‘Off-site’ mire 
 
UBA-31335 10-11 cm    183±34  1650-1950 1771 
  Sphagnum sect. Acutifolia 
UBA-34313 14-15 cm    325±29  1482-1684 1562 
  Peat (humic acid fraction) 
UBA-34314 18-19 cm    454±28  1416-1468 1439 
  Peat (humic acid fraction) 
UBA-34315 22-23 cm    1011±25  981-1145 1016 
  Peat (humic acid fraction) 
UBA-34316 26-27 cm    1235±24  688-877  768 
  Peat (humic acid fraction)  
UBA-31336 29-30 cm    1443±30  566-653  615 
  Sphagnum sect. Acutifolia   
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Table 2: Selected zooarchaeological data from Greenlandic Norse collections. The sites 

represent two contrasting regions within the colony; Austmannadalen in the Western 

Settlement (sites prefixed V), and Vatnahverfi in the Eastern Settlement (Ø). The source is 

McGovern (1985: Table 6), with the exception of data for GUS which were calculated using 

numbers appearing in Enghoff et al. (2003). The data reflect the relative percentages of the 

four major taxa, which normally comprise over 80% of Norse faunal collections.  

 

   % Cattle % Caprine % Reindeer % Seals 

Vatnahverfi  

Ø71 (N)  15.48  37.47  0.25  46.81   

Ø71 (S)  11.48  44.08  1.67  42.78 

Ø167   22.96  38.98  1.72  36.34 

Austmannadalen 

V51 (Sandnes)  17.57  12.44  32.08  37.92 

V52a   10.75  18.02  27.28  43.94    

V53c   7.82  14.21  10.79  67.18  

V53d       8.78  13.17  18.81  59.25 

GUS   9.28  30.36  16.79  43.57 


