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Abstract 

The occurrence and transmission of antimicrobial resistant (AMR) bacteria in the health-care 

and community settings is rising. With the lack of newer antibiotics in the pipeline and 

increasing resistance for the existing antibiotics and biocides that are available, it is estimated 

that the mortality rate due to non-treatable infections might rise to 10 million by 2050. This 

AMR related problem can be in part controlled by the discovery of novel antimicrobial sources.  

This study investigated the use of metal ions and graphene-based compounds (GBCs) 

singularly and in combination as potential antimicrobial agents against three medically related 

pathogens (Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus faecium). In 

order to determine the compounds efficacy in conditions that resembled those more found in 

vivo, the antimicrobials were also tested in the presence of 10 % bovine plasma conditioning 

films (CF). Moreover, the antimicrobial efficacies of the compounds were evaluated against 

two bacterial phenotypes, planktonic and biofilm.  

The preliminary antimicrobial efficacy screening was performed for fifteen metal ions and 

fourteen graphene based compounds (GBCs) using zone of inhibition, minimum inhibitory 

concentration and minimum bactericidal concentration assays in the absence and presence of 

10 % plasma CF. Five metal ions (Ag, Cu, Pt, Au and Pd) and four GBCs (GO, AgGO, AuGO 

and PdGO) were selected for physical, chemical and elemental analysis using scanning 

electron, Raman and electron dispersive X-ray microscopy respectively. The antimicrobial 

agents were combined to determine synergistic effects using fractional inhibitory and 

bactericidal concentration assays. A crystal violet biofilm assay was used to analyse the 

antibiofilm efficacies. A biotoxicity evaluation using skin fibroblast cell lines was tested using 

an MTT assay.  
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The results demonstrated that overall, the most active antimicrobial agents were Ag, Pt, Pd and 

Au ions amongst tested metal ions and AgGO amongst tested GBCs, but their antimicrobial 

activity was dependent on whether the form of the bacteria was planktonic or biofilm. In some 

cases, the presence of a CF had an adjuvant effect on the antimicrobial activity of the metal 

ions or GBCs. Palladium ions amongst the metal ions and PdGO amongst the GBCs 

demonstrated the least cell toxicity.  Enterococcus faecium was the most resistant bacteria in 

all the tests. These results suggest that metal ions, and metal ion combinations with GO, or 

other metal ions possess the potential to be used as biocides or in topical applications as 

antimicrobials, however the effect of tested samples on cell toxicity is a significant concern. 
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Chapter 1 

1. Introduction 

1.1. Antibiotics  

Antibiotics were believed to be used for the longest time before the beginning of modern 

medicine. For example, ancient Egyptians used filamentous fungi growth on bread to cure 

infected wounds and burns. In the Middle Ages, Chinese and Greek therapists, used mouldy 

surfaces to cure several illnesses (Davies and Davies, 2010; Sommer and Dantas, 2011). In the 

19th century, while studying the growth of Bacillus anthracis in a urine sample, Louis Pasteur 

with his colleague Jules François Joubert in 1877 noticed that a few bacteria could inhibit others 

(Chast, 2008). It was in 1928, when the first antibiotic was inadvertently discovered by 

Alexander Fleming in his elapsed Staphylococcus aureus colonies that a fungus (Penicillium 

notatum) was shown to prevent the growth of bacteria (Bennett and Chung, 2001; Demain, 

2006). However, it was in 1940 that the industrial manufacture of this antibiotic using 

Penicillium chrysogenum was performed by Howard Florey and colleagues (Ligon, 2004). 

Selman Waksman was the first to perform systematic research on soil samples and highlighted 

the antagonistic effects between different bacteria species (Ligon, 2004; Muniz et al, 2007; 

Kardos and Demain, 2011). This work by Selman Waksman discovered several antibiotics, 

such as actinomycin, streptomycin and neomycin as antibacterials and fumigacin and clavacin 

as antifungals (Kingston, 2004; Kresge et al., 2004). Waksman research encouraged the 

pharmaceutical companies for novel antibiotics investigations which directed most of the 

current antibiotic discovery. Between the 1940s and the 1970s is considered the golden era of 

antibiotics (Muniz et al., 2007; Kresge et al., 2004). 

The definition of an antibiotic, first proposed following the discovery of streptomycin by 

Selman Waksman, is any class of organic substance that prevents or kills micro-organisms by 

targeting bacteria through a specific interaction without consideration of the compound source 
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of origin. However, medically, antibiotics are now considered to be compounds produced or 

obtained from microorganisms that control or treat infections by either inhibiting or destroying 

the pathogens (Davies and Davies, 2010; Sommer and Dantas, 2011). Antibiotics discovery 

was a turning step in the history of medicine as countless lives have been saved. The ability of 

these compounds to selectively target the pathogen, without critically damaging human cellular 

processes further increased the popularity of antibiotics usage. For example, antibiotics such 

as tetracycline and chloramphenicol target and denature the bacterial ribosome. However, these 

antibiotics have no effect on the eukaryotic ribosome, thus showing selective toxicity against 

prokaryotic bacterial cells (Stefanović et al., 2012).   

Antibiotics not only saved life of people from life threatening infectious diseases, but also 

played a major part in healthcare and surgical areas (Mccord and Chowdhury, 2003). For 

example, antibiotics aided the treatment and prevention of infections that might occur during 

and post surgeries, particularly in immunocompromised patients. Moreover, the use of 

antibiotics extended life expectancy worldwide by decreasing morbidity and mortality (Sasso 

and Garrido, 2008; Khan et al., 2017).   

1.2. Increasing antibiotic resistance  

Several years before the therapeutic use of penicillin, bacterial penicillinase was identified 

(Davies and Davies, 2010). Sulphonamide resistance was first reported in the late 1930s and 

similar resistance mechanisms towards a range of antibiotics were also reported 70 years later 

(Livermore, 2012) (Figure 1.1). Thus, since the introduction of the first effective antibiotics, 

resistance has been observed because their therapeutic use. For instance, resistant strains of 

Mycobacterium tuberculosis were identified to therapeutic concentrations of streptomycin, 

during its application in 1940s to cure tuberculosis patients (Aminov, 2010; Davies and Davies, 

2010). As other antibiotics have been discovered and introduced into clinical practice, a similar 

course of events has ensued (Unemo and Shafer, 2014). Moreover, after the wide use of 
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antibiotics, resistant strains that can inactivate the efficacy of drugs increased eventually 

(Shahid et al., 2009; Davies and Davies, 2010; Frère et al., 2016).  
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Figure 1.1. Antibiotic discovery and resistance timeline (Aminov, 2010; Davis and Davies, 

2010; Ventola, 2015) 
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 1.2.1. General causes of antibiotic resistance 

Antibiotics are the therapeutic tools used to prevent and treat several infectious diseases. 

However, today a large number of antibiotics have become less effective and this resistance is 

found to increase gradually over a period of time (Kollef and Fraser, 2001). Direct or indirect 

factors that might influence the bacterial resistance are listed below (Ventola, 2015). 

1.2.1.1. Antibiotics overuse 

The misuse of antibiotics initiates the development of bacterial resistance. Epidemiological 

research has confirmed that there is a direct corelation between antibiotic overuse and the 

development and propagation of resistant pathogens (Zaman et al., 2017). For example, among 

the bloodstream of infectious patients in different countries, there was found to be a 0 to 82 % 

incidence of bacterial resistance to at least one of the most commonly used antibiotics (Ventola, 

2015; Zaman et al., 2017). Penicillin resistance has been shown to range between 0 to 51 % 

worldwide, which was common to treat pneumonia (Okeke et al., 2005; Prestinaci et al., 2015). 

Urinary tract infections caused by Gram-negative species such as Escherichia coli and 

Klebsiella pneumoniae showed up to 8 % to 65 % increased resistance for commonly used 

ciprofloxacin (Paterson, 2006; Kaye and Pogue, 2015). Thus, it has been proposed that over 

prescription of antibiotics world-wide might directly affect increased in bacterial resistance 

(Ventola, 2004).  

1.2.1.2. Inappropriate prescription 

Various studies demonstrated that the first line of treatment, selection and duration of antibiotic 

therapy was incorrect in nearly 30 – 50 % of cases (Bartlett et al., 2013). For instance, according 

to a US report on antibiotics resistance, pathogen identification was reported only in 7.6 % of 

17,435 hospitalised patients. Even in the intensive care units, nearly 30% to 60% of the 

prescribed antibiotics have been found to be needless, inappropriate, or suboptimal (Bartlett et 

al., 2013; Luyt et al., 2014). 
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1.2.1.3. Extensive agricultural use 

Antibiotics are widely used worldwide as supplements in livestock and as pesticides on plants. 

It is estimated that 80% of antibiotics sold in the US are used in animals to prevent infection 

and as growth promoters. This is alarming because it creates a vicious cycle of resistance 

transfer into the environment, animals and humans (Gross, 2013; Spellberg and Gilbert, 2014; 

Ventola, 2015).  

1.2.1.4. Availability of fewer antibiotics 

The number of new antibiotics in the market is reducing, for example, between 1983 and 1987, 

sixteen new antibiotics were approved, while only seven were permitted between 1998 – 2002 

(Bush et al., 2011). Recently, only new two classes of antibiotics namely daptomycin and 

oxazolidinone, have been reported to treat Gram-positive bacterial infections, whilst, novel 

antibiotics against Gram-negative infections are still proving to be a struggle (Miller et al., 

2014). Moreover, antibiotics with novel modes of action are also less in number. One of the 

major problems with the development of novel classes of drugs is that pharmaceutical 

companies no longer consider their production to be an economically wise investment due to 

the relatively short periods that antibiotics are used for. However, big companies are interested 

in development of drugs that can be used to treat long term chronic diseases such as asthma 

and diabetes, which can bring a greater financial reward (Bush et al., 2011; Whang et al., 2013; 

Miller et al., 2014).   

1.2.1.5. Regulatory bodies 

Regulatory bodies such as the Food and Drug Administration and European Medicines Agency 

are the regulatory bodies responsible for the approval of antibiotics (Gould and Bal, 2013).  

Bureaucracy, differences in clinical trial requirements among countries, absence of clarity, 

changes in regulatory and licensing rules, and ineffective channels of communication are 
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considered some of the difficulties in pursuing regulatory approval (Piddock, 2012; Michael et 

al., 2014). 

1.3. Antibiotics bacterial toxicity mechanisms  

Antibiotics are widely known to damage vital bacterial cellular processes without substantially 

hindering or affecting the host cells (Guilhelmelli et al., 2013). Different classes of antibiotics 

(Table 1.1) inhibit or destruct the bacterial cell in different ways. An understanding of the mode 

of action of the molecules on bacteria can enhance the development of novel approaches for 

antimicrobial development (Kaufmann and Hung, 2010; Kohanski et al., 2010).  
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Table 1.1. Summary of mechanistic action and bacterial target of different classes of antibiotics 

(adapted from Brötz-Oesterhelt and Brunner, 2008). 

Antibiotic classes Mode of action Target bacterial structure 

Beta-lactams (Penicillin, 

Carbepenems, 

Monobactam, 

Cephalosporins);  

Cyclic lipopeptides 

(Daptomycin); 

Glycopeptides 

Inhibition of cell wall 

synthesis 

Blocking the 

transpeptidation process by 

inhibiting penicillin binding 

proteins making 

peptidoglycan crosslink 

weak, terminating D-ananyl-

D-alanine amino acid in the 

peptidoglycan 

polysaccharide 

Aminoglycosides; 

 Tetracycline;  

Macrolides; 

Oxazolidonones 

(Linezolid); 

Chloramphenicol 

(lincosamides, 

streptogramin) 

Inhibition of protein 

synthesis 

Binding 30s and 50s 

subunits of ribosome, 

blockage of t-ribonucleic 

acid (tRNA) to 30s subunit 

of ribosome 

Fluoroquinolones 

(Ciprofoxacin) 

Inhibition of 

deoxyribonucleic acid 

(DNA) synthesis 

Act on DNA gyrase enzyme 

responsible for the 

replication of DNA 

Rifampin Inhibition of RNA synthesis Act on RNA polymerase 

responsible for the 

replication of RNA 

Sulphonamides Inhibition of folic acid 

pathway 

Competitively inhibit 

dihydropteroate synthetase 

responsible for folic acid 

synthesis 

Polymyxins (Polymyxin-B, 

Colistin) 

Cell membrane permeability  Increase permeability and 

leakage of cell membrane, 

target lipopolysaccharide 

(LPS) of the outer membrane 
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1.4. Bacterial resistance mechanisms to antibiotics 

Antibiotic resistance can be described in a biochemical term, as incapability of the chosen 

antibiotic to reach the targeted microbial site and inhibit the bacterial vital processes (Kashef 

and Hamblin, 2017). There are several mechanisms by which bacteria can demonstrate 

resistance to antibiotics (Figure 1.2). 
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Figure 1.2. Schematic representation of bacterial resistance (adapted from Cox and Wright, 

2013; Munita and Arias, 2016). 
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 1.4.1. Intrinsic antibiotic resistance 

This type of resistance is developed naturally in the absence of any selected antimicrobial 

pressure (D’Costa et al., 2011; Bhullar et al., 2012). The intrinsic mechanisms of resistance are 

the permeability of the bacterial cell wall, whereby the peptidoglycan and outer membrane are 

selective barriers against toxic substances and the ability of the bacteria to transport one or 

more toxic components from the bacterial cell (Van Bambeke et al., 2000; Pagès et al., 2005; 

Liu et al., 2010; Cox and Wright, 2013; Randall et al., 2013). Apart from the two main 

mechanisms described above, the genetics of the bacteria also plays a vital role in the intrinsic 

resistance mechanism (Shakil et al., 2008; Cox and Wright, 2013). 

 1.4.2. Acquired antibiotic resistance 

This type of resistance happens when any specific microbe possesses the capability to resist 

previously active antibiotics. Acquired resistance occurs through molecular or genetic means 

(Munita and Arias, 2016).  

i) Genetic basis  

Two main genetic stategies can be used by bacteria to resist the action of antibiotics and 

include; 

a) mutations in a gene or genes that result in bacterial resistance through a reduction 

in the affinity for the drug, drug uptake reduction and stimulation of efflux 

mechanisms to extrude the toxic substances (Manson et al., 2010; Gupta and Birdi, 

2017; Yilmaz and Özcengiz et al., 2017). 

b) foreign DNA acquisition that codes for resistance traits through horizontal or 

vertical gene transfer (Munita and Arias, 2016). In the vertical gene transfer, 

mutation of one gene trait can lead to alteration in the various amino acids of the 

bacterial DNA. This might result in the development of resistant cell structure or 

enzyme that can bypass toxic compounds (Nielsen et al., 2014; Munita and Arias, 
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2016). In horizontal gene transfer, the resistant genes that might be present on the 

plasmids, transposons or integrons may be transferred to bacteria of same or entirely 

different genus or species (Giedraitienė et al., 2011; Domingues et al., 2012; 

Gandon and Vale, 2014; Brown-Jaque et al., 2015; Sharma et al., 2016). This might 

occur through conjugation (direct bacterial cell contact), transformation (part of a 

died or lysed bacterial DNA is picked up from environment) or transduction 

(viruses transferring DNA between two closely connected bacteria) (Huddleston, 

2014; Sharma et al., 2016) 

ii) Molecular basis 

Complex mechanisms of antimicrobial resistance might be evolved by bacteria over years. 

Multiple biochemical pathways can normally lead to evolve a cadre of resistance mechanisms 

that aid in the survival from the attack of a drug. The following are the various categories of 

the biochemical development of resistance (Munita and Arias, 2016). 

a) chemical alteration of the antibiotic occurs through the production of bacterial 

enzymes at the ribosomal level in both Gram-negative and Gram-positive 

bacteria (Wilson, 2014). The modifications are mostly found to occur in enzyme 

production, for example acetyltransferase and adenyltransferase alter 

biochemical processes and induce biochemical changes to the antibiotic 

molecule (Ramirez and Tolmasky, 2010; Hollenbeck and Rice, 2012). The most 

frequent biochemical reactions catalysed by these enzymes include adenylation 

(aminoglycosides, lincosamides), acetylation (aminoglycosides, 

chloramphenicol, streptogramins) and phosphorylation (aminoglycosides, 

chloramphenicol) (Ramirez and Tolmasky, 2010).  

b) Destruction of the antibiotic molecule; for example, the principle mechanism of 

the beta-lactamase enzyme is the destruction of beta-lactam family of antibiotics 
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by damaging the amide bond of the beta-lactam ring making the drug ineffective 

(D’Costa et al, 2011, Malloy and Campos, 2011; Karen Bush, 2013). 

c) Decreased permeability can be induced since porins present in the outer 

membranes selectively prevent the influx of the antibiotics. For example, Gram 

negative Acinetobacter baumannii and Pseudomonas possess an innate lower 

susceptibility to β-lactams than Enterobacteriaceae owing to lowered porin 

expression (Hancock and Brinkman, 2002; Pagès et al., 2005; Pagès et al., 

2008). 

d) Efflux pumps result in bacterial resistance when the bacterial cell can pump out 

antimicrobial compounds.  Enterobacteriaceae and P. aeruginosa have shown 

tetracycline resistance as a part of multidrug resistant species by extruding the 

drug using efflux pumps using protons as a source of energy (McMurry et al., 

1980; Singh et al., 2002; Poole, 2005).  

e) Changes in the target site can be achieved by the bacteria not allowing 

antimicrobials to reach their binding site or by altering the target site that might 

reduce drug affinity. This can be achieved through various mechanisms such as 

changes / modifications / mutation in the target site and enzymatic alteration or 

complete replacement or bypassing of the target site (Campbell et al., 2001; 

Floss and Yu, 2005). 

1.5. Biocides and biocide resistance 

Owing to the increasing bacterial resistance mechanism properties, much focus has been made 

in utilising antimicrobials as biocides. According to the European Parliament and Council 

Directive 98/8/EC, biocidal are product that have one or more active substances, that are 

intended to damage, avoid the action, render harmless, or otherwise exert a regulatory effect 

on any harmful organism either biologically or chemically (Kogan, 2005). The global elevation 
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in bacterial antimicrobial resistance that has led to a greater mortality and morbidity rate 

underlines the importance of the development of biocides to reduce bacterial transmission and 

infection in medical systems (Chen and Cooper, 2002). Biocides are utilised as antisepsis in 

hand disinfection, thus, preventing pathogen transmission (Silver et al., 2006). Biocides are 

also used for the sterilization or disinfection of heat sensitive devices where vapour high 

pressure decontamination is not possible. Sterilization is an important step to reduce infection 

risks, for medical devices that are used for skin penetration, like surgical instruments, implants 

and urinary catheters (Russell, 2003). Biocides are also used as disinfectants of non-critical 

devices, for instance, stethoscopes. However, extensive biocides usage has led to concerns that 

of bacterial emergence with decreased biocidal susceptibility and potentially antimicrobial 

resistance development (Fraise, 2002). Further, the introduction of the Biocide Directive has 

reduced the number of substances that can be used. Thus, novel antimicrobial such as metal 

ions and graphene based compounds (GBCs) can be considered as biocides to decrease the 

bacterial transmission and infections risks. 

1.6. Antimicrobially resistant and multidrug resistant bacterial species and their burden  

One or combinations of the antimicrobial mechanisms mentioned in Figure 1.2 used by bacteria 

may result in the development of clinical susceptibility breakpoints of isolates (susceptible, 

intermediate and resistant). Emergence of resistance to one antibiotic (AMR) or multiple 

antibiotics (MDR) is a great concern for the treatment of infections in the healthcare system 

(Stefanović et al., 2012). Moreover, some bacteria are found to be extensively drug resistant 

(XDR) meaning resistant to all approved therapeutic drugs (Magiorakos et al., 2012). The 

development of resistance in pathogenic bacteria compromises the treatment of invasive 

procedures such as transplantations, that require antibiotics for both pre- and post operations. 

It is predicted that between 38.7% and 50.9% of surgical infections are resistant to the usual 

prophylactic antibiotics in the U.S (Santajit and Indrawattana, 2016). Since the antibiotic 
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resistance evolution, treatment of patients infected by MDR and XDR pathogens is becoming 

difficult thus increasing risks, reducing numbers of positive clinical outcomes and increasing 

the number of deaths. For example, around a two-fold elevation has been reported in patient 

mortality and treatment cost when infected with resistant Enterobacter species versus 

susceptible patient culture infections (Reddy et al., 2009). Another study stated that nearly a 

two-fold greater death risk was attributed to infections produced by carbapenem-resistant 

Klebsiella pneumoniae versus susceptible strains in adult patients with K. pneumoniae (Shorr 

et al., 2009). Antibiotic resistant bacterial infections are thought to cause approximately 2 

million infections and 23,000 deaths a year in the U.S. alone. In Europe, nearly 25,000 people 

die annually due to MDR bacterial infections (Santajit and Indrawattana, 2016). The AMR, 

MDR and XDR burden is not only limited to the healthcare sector but poses a significant 

pressure on the economy worldwide. Accordingly, an extra $10,000–40,000 is spent on average 

for the patient’s treatment when infected with resistant bacteria compared to susceptible strains 

(Santajit and Indrawattana, 2016). In Europe, it is estimated that the annual healthcare expenses 

associated with resistant infections are as high as €9 billion, which equates to £20,000 per 

patient episode in hospital (Oxford and Kozlov, 2013; Llor and Bjerrum, 2014).   

1.7. AMR, MDR and XDR infections in general 

Owing to the transmission and resistance risks, it is estimated that 9% of in-patients in England 

and Wales suffer from hospital-acquired infections, resulting around 5000 mortalities with an 

economic burden related to extra care of more than £1 billion per year (Vaidya et al., 2018). 

Mostly MDR bacterial infections are transmitted through direct or indirect contact through 

contaminated surfaces. Owing to bacterial persistence or resistance to prescribed antibiotics 

and transmission risks, there is an increased risk of acquiring AMR, MDR and XDR bacterial 

infections during the usage of such medical devices, as catheters, bone implants and biomedical 

material implants (Joyanes et al., 2000; Kreisler et al., 2003; Smith and Hunter, 2008). 
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According to the Infectious Disease Society of America, the three tested pathogens used in this 

research namely K. pneumoniae, A. baumannii and Enterococcus faecium are considered 

among the ESKAPE pathogens. ESKAPE pathogens possess not only tendency to escape the 

antimicrobial action of broad range of antibiotics but simultaneously represent new methods of 

pathogenesis (Pendleton et al., 2013).  

1.8. Bacterial species tested in this study 

 1.8.1. Klebsiella pneumoniae 

In 1882, Carl Friedlander first isolated Klebsiella pneumoniae from the lungs of patients that 

had died of pneumonia and describe them as an encapsulated Bacillus (Jondle et al., 2018). 

Klebsiella pneumoniae is a Gram-negative, non-motile and encapsulated bacterium, which 

belongs to the Enterobacteriaceae family. Klebsiella pneumoniae characteristically inhabits 

the surfaces of the human mucosal of the oropharynx and gastrointestinal tract. This bacterium 

can display high level of virulence and antibiotic resistance once it enters the body (Ashurst 

and Dawson, 2018).  

K. pneumoniae causes community-acquired, hospital associated and nosocomial infections. 

Moreover, several other miscellaneous infections such as septicaemia, meningitis purulent 

abscesses, and pneumonia are caused by this bacteria (Doorduijn et al., 2016). All these 

infections are responsible for the high mortality and morbidity rate that occurs with this 

infection (Vuotto et al., 2014; Kondratyeva et al., 2017). Over the years, resistance in K. 

pneumoniae has occurred against four major antibiotic classes: aminoglycosides, 

cephalosporins, carbapenems and fluoroquinolones, and this has been steadily increasing 

(Doorduijn et al., 2016). There is a prevalence of extended spectrum beta-lactamase (ESBL) 

producing strains of K. pneumoniae in the USA and in some European countries. Moreover, 

Mediterranean countries and Eastern and South-Western Europe are endemic to MDR K. 

pneumoniae because of ESBL production (Kondratyeva et al., 2017).  
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The acquisition of antibiotic genes and intrinsic resistance to various classes of antibiotics 

limits treatment options, further worsening the situation. The proposed resistance mechanisms 

against different classes of antibiotics of K. pneumoniae comprise of i) the alteration of 

metabolic pathways, ii) changes in membrane permeability, iii) activation of efflux pump 

systems, iv) modification of antibiotic target sites, and v) release of antibiotic-inactivating 

enzymes. Among these mechanisms, the enzymatic degradations have played a vital role in the 

development of MDR and extensive drug resistance in K. pneumoniae (Lee et al 2017a). 

Currently, K. pneumoniae species producing carbapenemases and ESBLs enzymes have spread 

worldwide (Shahid et al., 2009).  

Apart from showing resistance, bacteria have also developed several lines of evasion strategies 

and counter attacks to survive within the host (Kim et al., 2016). However, the genes that are 

responsible for the K. pneumoniae colonization and infections have not been completely 

elucidated (Martin et al., 2016). The bacterial capsule is considered as one of the most common 

defensive structures in K. pneumoniae, which protects it against antimicrobial agents, lysis and 

phagocytosis (Paczosa and Mecsas, 2016). The K. pneumoniae capsule is a thick, 

∼160 nanometer dense layer of polysaccharide that efficiently guards the bacterium from 

antagonistic surroundings by providing stability and protection to the organism (Schembri et 

al., 2005). Polysaccharides are high molecular weight structures formed of single or branched 

repeating components of two to seven monosaccharides (Cain et al., 2018). The outer 

membrane proteins of K. pneumoniae are also a major line of defence to protect the bacteria 

from toxic chemicals (Cain et al., 2018). The complex structure of the lipopolysaccharide and 

proteins controls the efflux and influx pumps that regulate the bacterial homeostatic mechanism 

(Zanzen et al., 2018).  

Pneumonia has been identified by the World Health Organization and the Centre for Disease 

Control as an urgent threat to human health which is only curable with a trickle of last-line 
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antibiotics, such as colistin (Nation et al., 2014). Colistin was discovered in 1947 and first 

used as an antimicrobial in the late 1950s for Gram-negative infection treatment. However, 

its usage decreased in the 1970s owing to nephrotoxicity and the use of colistin was largely 

replaced by aminoglycosides (Velkov et al., 2014). Lately, colistin was reintroduced into 

the clinical setting because it remains largely effective against MDR K. pneumoniae. 

However, worldwide colistin resistance rates are around 1.5% for K. pneumoniae, and in 

some high-use countries this is thought to have reached up to 40% (Cain et al., 2018).  

 1.8.2. Acinetobacter baumannii 

Acinetobacter baumannii was first isolated by the Dutch microbiologist Beijerinck in 1911 

from soil using minimal media enriched with calcium acetate. Acinetobacter baumannii is a 

Gram-negative coccobacillus that is aerobic, non-fermative and non-motile (Howard et al., 

2012). Acinetobacter baumannii is commonly found to occur within aquatic environments, on 

skin and in high numbers from the respiratory and oropharynx secretions of infected patients. 

It has been categorised as a “red alert” human pathogen, causing alarm among the medical 

association, owing to its broad antibiotic resistance spectrum (Gootz and Marra, 2008; Howard 

et al., 2012).  

It is considered as an opportunistic pathogen and has been found to cause a high incidence of 

nosocomial infections among immunocompromised individuals with a prolonged hospital stay 

in intensive care units worldwide (Gootz and Marra, 2008). The most common A. buamannii 

infections are pneumoniae, bacteraemia, wound and urinary tract infections. A mortality rate 

of nearly 26 % in the hospital setting and as high as 43 % in intensive care units are owing to 

A. baumanii infections (Manchanda et al., 2010). Among the inpatients of ventilator-associated 

pneumonia, nearly 15% of all hospital-acquired infections are caused by A. baumannii. This 

causes the maximum morbidity and mortality in healthcare units, with over 50 % reported cases 



19 
 

for resistant species to already effective and prescribed drugs (Perez et al., 2007; Manchanda 

et al., 2010).  

Acinetobacter baumannii infections were treated preferably during the early 1970s with 

ampicillin, nalidixic acid, minocycline, carbenicillin or gentamicin, singly or in a combination 

therapy (Montefour et al., 2008). Since 1975, the organism was found to show resistance in 

almost all sets of therapy including the first and second generation cephalosporins. Moreover, 

a gradual increase in the resistance was found against the third and fourth generation 

cephalosporins, fluoroquinolones, semi synthetic aminoglycosides, and carbapenems 

(Manchanda et al., 2010). In contrast, imipenem was a drug of choice with almost 100% A. 

baumannii susceptibility. Nevertheless, a global emergence and spread of resistant to imipenem 

further limited the choice of antibiotics. Thus, carbapenems were the only useful agents 

remaining that could combat many severe A. baumannii infections. Furthermore, due to the 

emergence of carbapenem resistance of A. baumannii, largely through clonal spread, the 

therapeutic options are decreasing (Villers et al., 1998; Canduela et al., 2006; Manchanda et 

al., 2010).  

Antibiotic resistance mechanisms shown by A. baumannii fall into three broad categories: i) 

enzymes that inactivate the broad spectrum of antibiotics such as β-lactamases and 

carbapenemases ii) outer membrane protection by selective permeability through porins and 

efflux pumps and iii) mutations altering the target sites or cellular functions like penicillin-

binding proteins (Thomson and Bonomo, 2005; Rice, 2006; Eliopoulos et al., 2008). In A. 

baumannii, single or combination use of these mechanisms may occur in the pathogen resulting 

in resistance. The virulence factors showed by A. baumannii further increase its survival and 

pathogenicity making them an extensively resistant species (Lee et al., 2017b). Some of the 

prominent invasive strategies shown by this bacterium include production of capsular 

polysaccharide, which in turn shows intrinsic resistance to range of antibiotics. Further, A. 
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baumannii lipopolysaccharide consists of endotoxin that adds to their virulence by releasing 

O-antigen. Lastly, proteins present in the outer membrane possess strong adhesive properties 

towards epithelia cells, which aids in making it easier for the bacteria to localise and invade 

the host (Lin and Lan, 2014; Lee et al., 2017). Thus, virulence factors coupled with antibiotic 

resistance has made A. baumanni a global threat for infections (Manchanda et al., 2010).  

 1.8.3. Enterococcus faecium 

Enterococci are one of the earliest members of the animal microbiome, which are believed 

to have existed in the early Devonian period around million years ago (Van Tyne and 

Gilmore, 2014). An oxygen-depleted environment which was rich in nutrients enabled the 

growth of these bacteria. Enterococcus faecium is commonly found in the gastrointestinal 

tract as a commensal in various organisms including humans (Miller et al., 2014; Tyne and 

Gilmore, 2014). E. faecium are Gram-positive cocci, facultative anaerobes, which are non-

sporulating. E. faecium is considered one of the most prevalent multidrug resistant 

organisms in the hospital setting worldwide (Van Tyne et al., 2013). It is the third most 

commonly prevalent pathogen in the heath-care settings responsible to cause several 

infections such as sepsis, surgical wounds, urinary tract infections and endocarditis (Van 

Tyne et al., 2013; Miller et al., 2014).  

Hospital acquired E. faecium infections began to emerge in the late 1990s in the United States, 

alongside with the acquisition of vancomycin resistance. Vancomycin resistant E. faecium now 

occurs in most of the European countries such as Germany, Cyprus, Italy, Portugal and the UK 

and prevalence rates have risen above 10%. In some regions (e.g., Ireland and Greece) rates 

have exceeded 30% (Arias and Murray, 2012; Faron et al., 2016). 

Enterococcus faecium has shown a gradual resistance to range of antibiotics such as 

ampicillin, imipenem, gentamicin, vancomycin and streptomycin (Arias and Murray, 2012). 

Various mechanisms that cause antibiotic resistance in E. faecium are i) the cell wall acting 
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as a protective barrier which inactivates drug binding proteins by altering the target sites or 

by causing drug inactivation, ii) the cell membrane increases bacterial resistance by altering 

the target and iii) changes in the ribosome decreases drug uptake, causes antibiotic 

inactivation and changes in cell signalling through efflux pump alteration (Hollenbeck and 

Rice, 2012). The last line of therapeutic drugs, daptomycin has been shown to fail and there 

have been an increased number of resistant isolates demonstrated (Rosa et al., 2014). It is 

thought that bacteria developed resistance gradually due to multiple mutations involving 

genes that control cell envelop homeostasis (Palmer et al., 2011). 

1.9. Bacterial biofilms  

A biofilm is a one or more microbial species in a complex association within which cells stick 

to each other on abiotic or biotic surfaces, enclosed within milieu of extracellular polymeric 

substance (EPS) secreted by the bacteria themselves (Jarm, 2014; Vos, 2015) (table1.2). The 

substrate characteristics, for instance hydrophobicity / hydrophilicity, roughness and chemistry 

highly influence biofilm formation (Song et al., 2015).  

  



22 
 

Table 1.2. Composition of biofilms (Jamal et al., 2015) 

Composition Percentage of matrix 

Microbial cells 2 – 5 % 

DNA and RNA < 1 – 2 % 

Polysaccharide 1 – 2 % 

Protein < 1 – 2 % (including enzymes) 

Water Up to 97 % 
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It is generally considered that biofilms shield microorganisms from opsonization, not only from 

the antibiotics but also from innate immune responses of antibodies, the ciliary action of 

epithelial cells and phagocytosis (Song et al., 2015). In addition, the bacterial inhabitants of 

biofilms are significantly more resistant than planktonic phenotype cells to antimicrobial 

substances. Thus, after biofilm formation the treatment of an infection is generally more 

difficult (Römling et al., 2014). Bacteria that form biofilms are often found on the surfaces of 

tissues and on biomaterials in areas of persistent infection (Costerton et al., 1999). Medical 

devices, implants and catheters are specifically susceptible to biofilm development. In fact, 

biofilm development is a major concern of implant failure and frequently restricts the lifespan 

of many indwelling medical components (Dror et al., 2009; McConoughey et al., 2014; 

Percival et al., 2015).  

The mechanisms of the antimicrobial resistance of biofilms are categorized into four categories 

which comprise of a) direct inactivation of antimicrobially active molecules b) modifications 

in target action sensitivity c) drug concentration reduction before reaching to the target area 

and (d) efflux schemes. However, it should be noted that the levels of antibiotic resistance in 

biofilms can differ among diverse settings and the crucial aspects responsible for this resistance 

may also vary (Xu et al., 2000; Mah and O’Toole, 2001; Høiby et al., 2010).  

 1.9.1. Klebsiella pneumoniae biofilms 

Klebsiella pneumoniae can produce biofilms in which bacterial cell aggregates are embedded 

inside an EPS which stick to one other and / or to a substrate. Polysaccharides and DNA are 

the main constituents of complex EPS (Di Martino et al., 2003). The most clinically noteworthy 

biofilms of K. pneumoniae are those developed on the internal surfaces of catheters and other 

indwelling devices (Niveditha et al., 2012). Biofilms of K. pneumoniae can be a significant 

reason for the colonization of the respiratory, gastrointestinal and urinary tracts, that ultimately 
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lead to the development of aggressive infections particularly in immunocompromised patients 

(Nicolle, 2014). 

Formation of biofilms of K. pneumoniae on abiotic / biotic substrata begin with the adherence 

of cells which progresses to microcolony development, maturation of the colonies and lastly 

dispersal of planktonic cells. The vital K. pneumoniae bacterial structures responsible in the 

biofilm development process are the fimbriae and the capsular polysaccharides (CPs) (Wang 

et al., 2016). Fimbriae facilitate adherence, whilst the CPs supports cell-to-cell communication 

and biofilm structure. Given the dynamic process of biofilm production and the variability of 

environmental stimuli, embedded cells must be capable of swift and extensive changes in gene 

expression (Vuotto et al., 2014). The bacterial cell cycles are vital processes controlled by 

quorum sensing, which is a system of responses responsible for the co-ordination of genetic 

factors in a microorganism community. In K. pneumoniae, regulators and autoinducers of a 

putative quorum sensing system have been designated, however data is still incomplete (Schroll 

et al., 2010; Vuotto et al., 2014). Klebsiella pneumoniae biofilms are partly protected from 

immune defences. The milieu of the complex biofilms blocks the contact of antibodies and 

other antimicrobial substances, thus decreasing their efficacy (Nicolle, 2014).  

 1.9.2. Acinetobacter baumannii biofilms 

As major infections are acquired in healthcare surroundings, an improved understanding of 

microorganism survival and their persistence in this environment is important. It is 

hypothesized that the capability of clinical isolates to survive dehydration, therapeutic options 

and the stress of nutrient availability direct the microbes to form biofilms on medically used 

materials. Bacterial functions such as cell to cell communication, substrate-controlled 

attachments, and excretion of biomolecules are vital aspects for biofilm development 

(Dufour et al., 2010). Acinetobacter baumannii can form biofilms on abiotic surfaces such as 

polystyrene and glass (Longo et al., 2014). 
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For A. baumannnii biofilm formation, pili production is essential. Using the pili, the bacterial 

cells can attach to the substrate and form microcolonies which ultimately lead to full biofilm 

development (Cerqueira and Peleg, 2011; Longo et al., 2014). Biofilm related proteins are 

responsible for cell adhesion and cell to cell communication of biofilms (Weber et al., 2016). 

In addition, the production of capsular polysaccharide, surface antigen protein, the protection 

system of iron acquisition and outer membrane porins, when taken together increases bacterial 

resistance to most antibiotics, making A. baumannii an increasingly important resistant 

pathogen (Lee et al., 2017b). Though this species of bacteria is generally described as being 

ubiquitous in nature, strains belonging to A. baumannii are emerging as difficult opportunistic 

pathogens owing to the rapid increase in multidrug resistance. These infections can cause 

diseases particularly in compromised human and lately in the worst cases of necrotizing 

fasciitis (Longo et al., 2014; Lee et al., 2017b).  

 1.9.3. Enterococcus faecium biofilms 

Enterococcus faecium is considered a significant nosocomial pathogen which can develop 

biofilms on implanted biomaterials. It is responsible for the cause of several infections that are 

linked with wounds, burns and the urinary tract. This pathogen is a cause of concern in 

pyogenic infections, pelvic infections, endocarditis, blood stream and intra-abdominal 

infections owing to its rapid ability to form a biofilm matrix (Paganelli et al., 2013; Almohamad 

et al., 2014).  

Pili expression is the first step of E. faecium cell adhesion on the substrate. Moreover, pili and 

EPS are considered to form a complex milieu that aid the bacterial cell to adhere to each other 

as well as to the surfaces (Hendrickx et al., 2013). The subsequent steps that lead to the E. 

faecium biofilm maturation is still not clearly described. However, various genes that lead to 

the formation of microcolonies after bacterial adhesion are autolysins, glycolipids and cell wall 

associated proteins. After the adhesion phase, components such as polysaccharides, 
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lipoteichoic acid, extracellular DNA, and proteases can contribute to maturation of the biofilms 

(Dunny et al., 2014; Farahani, 2016). 

Apart from the bacterial existence in a planktonic form or as a sessile aggregation, the presence 

of nutrient rich conditioning films such as plasma or blood further increases the resistance 

capacity of pathogens. The next section describes details about bovine plasma which was used 

as conditioning film in this research. 

1.10. Bovine plasma as conditioning films of bacteria 

Conditioning films (CF) are formed on either surfaces or surrounding the cells and occur in 

the presence of organic biomolecules, especially proteins. The microbial host is a complex 

system comprising of a range of different types of organic load. According to various 

studies, CFs composed of proteinaceous and polysaccharide components from blood, plasma, 

tears, urine, and saliva respiratory secretions may affect the attachment of bacteria to 

biomaterials (Dunne, 2002; Lorite et al., 2011; Quintana et al., 2017). 

Pathogens are surrounded in the in vivo conditions with a variety of organic materials such as 

plasma, blood and toxins that can affect the efficacy of an antimicrobial agents (Lourenço et 

al., 2018). In this study, plasma from bovine was used as one such substance to determine its 

effect on the antimicrobial efficacy of the compounds. The common proteins comprised in 

bovine plasma are albumin and prealbumin, transferrin, immunoglobulins, glycoprotein, 

lipoproteins, complement proteins, and coagulation proteins (for example plasminogen, 

thrombin, and fibrinogen). The presence of a CF provides a nutrient rich milieu that can 

enhance planktonic bacterial growth and might also decrease their susceptibility to 

antimicrobial agents. Moreover, the presence of CF on any substrate (biotic / abiotic) alters the 

adhesion conditions for the bacteria to this surface (Dunne, 2002; Gnanadhas et al., 2013).  

Metals coatings such as titanium nitrate and zirconium nitride silver surfaces have been 

described as a potential material for use in bone fixation implants. These coatings were shown 
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to have a reduction in the retention of Staphylococcus epidermis and S. aureus when tested in 

presence of bovine serum albumin and blood conditiong films (Saubade et al., 2018 and Slate 

et al., 2019). However, studies related to the impact of conditioning films on bacteria growth 

pattern and antimicrobial efficacy in liquid medium conditions have not been widely explored. 

1.11. Difference in Gram-positive and Gram-negative bacterial structures and their effect 

on resistance  

Broadly, owing to the majorly different cell-wall structure between two types of bacteria (Table 

1.3), the resistance mechanisms are varied for each targeting antibacterial molecule between 

Gram-negative and Gram-positive bacteria (Hans et al., 2014). In Gram-negative bacteria, the 

penetration of various toxic substances is prevented by the outer membrane (Munita and Arias, 

2016). Beta-lactams, some fluoroquinolones and tetracyclines are hydrophilic in nature and are 

particularly affected by any modification in the outer membrane, as they often target water-

filled diffusion channels (porins) to cross the cell wall. A major example of this is vancomycin, 

which is found to be majorly inactive against Gram-negative bacteria owing to its outer 

membrane protection mechanism (Pagès et al., 2008).  Gram-negative and Gram-positive 

bacteria also demonstrate differences in their susceptibility towards therapeutic agents. 

Similarly, low susceptibility of Acinetobacter baumannii and Pseudomonas to beta lactams 

compared to Enterobacteriaceae is in part owing to the reduced number of differential porin 

expression (Hancock and Brinkman, 2002).  
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Table 1.3. General differentiative features of Gram-negative and Gram-positive bacterial cell-

wall (Sondi and Salopek-Sondi, 2004; Schäffer and Messner, 2005 and Weidenmaier and 

Peschel, 2008). 

Gram-positive Cell wall Gram-negative cell wall 

Single layer and majorly made of 

peptidoglycan 

Double layer with a peptidoglycan inside 

outer membrane 

Thicker peptidoglycan layer (20 to 80 

nanometer (nm)) 

Thinner peptidoglycan (5 to 10 nm) 

Periplasmic space is absent Periplasmic space is present 

Outer membrane is absent Outer membrane is present (7 to 10 nm thick) 

Teichoic acid is present Teichoic acid is absent 

Porins are absent Porins are present 

Low lipid content (2 – 5 %) High lipid content (15 – 20 %) 

Generally, lipopolysaccharide is absent Lipopolysaccharide is present  

Example E. faecium Example K. pneumoniae and A. baumannii 
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1.12. Bacteria macromolecules 

Some bacteria have flagella and pili on to the outer surface (Ferris and Beveridge, 1985). The 

cell envelope contains a capsule, cell wall, and cell membrane. The cytoplasm consists of 

enzymes, plasmid (DNA), the ribosomes (RNA and protein), and some inclusions that store 

nutrients and waste (Madigan, 2015). A living bacterial cell is composed of 70 % water and 30 

% of ‘dry’ composition which includes macromolecules and small quantity of monomers and 

inorganic ions (Beveridge, 1999; Huang et al., 2008). Macromolecules (proteins, 

polysaccharides, lipids) which represent 96% of the cell dry biomass are small monomers 

(Madigan, 2015).  These monomers are sugars, nucleotides, amino acids, fatty acids and their 

precursors, which represent 3% of the dry cell weight while inorganic ions of the cell comprise 

the remaining 1% (Kaiser, 2007; Madigan, 2015) (Table 1.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Table 1.4. The macromolecules in the bacterial cell and their subunits and location (Kaiser et 

al., 2007; Madigan, 2015). 

Macromolecule 

 

Primary subunit (monomer) 

 

Location in the cell 

Proteins Amino acids Cell wall, cell membrane, 

pili, flagella, ribosomes, as 

enzymes in the cytoplasm 

Lipids 

 

Fatty acids Membranes, storage depots 

Polysaccharides Sugars (carbohydrates 

molecules) 

Cell wall, capsule, inclusions 

(energy and carbon storage) 

Lipopolysaccharides 

 

Sugars and fatty acids Membranes 

DNA 

 

Nucleotides Ribosomes 

RNA 

 

Nucleotides Nucleoid, plasmid 
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1.13. Need for an alternative antimicrobial 

All the above-mentioned factors such as bacterial resistance to existing antibiotics, the lack 

of new antibiotic discovery, increase in the AMR, MDR and XDR, morbidity and mortality 

due to bacterial infections, formation of bacterial biofilms and interaction of the organic 

biomolecules have produced a plethora of complex interactions leading to antimicrobial 

resistance that require novel interventions. This study tested a range of metal ions and 

graphene-based compounds (GBCs) as antimicrobials. In this work, these materials have 

been considered for use as biocides for cleaning solutions or for use in topical interventions 

to prevent the transmission and subsequent infection of infection.   

1.14. Metal ions as antimicrobials 

The antimicrobial properties of metals have been recognised throughout the history of medicine 

and healthcare (Elsome et al., 1996). For example, silver salts were used to control eye and 

wound infections and copper/mercury salts were used to prevent leprosy, gonorrhoea, 

tuberculosis and syphilis (Lemire et al., 2013). The wide application of metals in medicine was 

predominant until the discovery of antibiotics after which the use of metals as antimicrobials 

began to diminish. However, at the commencement of the twenty-first century, a rapid increase 

in antimicrobial resistance (AMR) threats and a lack of new available antibiotic drugs was 

observed (Habiba et al., 2015). Due to the development of pathogens in counteracting biocidal 

action of the antimicrobials, metals and their derivatives (for example, ions, nanoparticles and 

complex) may provide a solution to reduce the transmission of AMR bacteria. 

1.15. General metal antimicrobial mechanism 

Despite the historic documented utilisation of metals as antimicrobials, the details of the 

toxicity of the metals is not clear. However, there is some chemical effect of metals that 

determines their antimicrobial efficacies on the cells (Hobman and Crossman, 2014). The 

antimicrobial action of metals begins with the metal ions affinity for varied cellular components 
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and biomolecules, which might form stable complexes leading to damaging vital bacterial cell 

processes (Nies et al., 1999; Hobman and Crossman, 2014). Metals demonstrate toxological 

effects in several ways, such as displacement / damage of essential enzymes, blocking vital 

biomolecule functional groups and participating in cellular chemical reactions (Lemire et al., 

2013). One or more of these processes may damage proteins, denature DNA, induce oxidative 

stress and effect the biological walls / membranes (Lemire et al., 2013; Hobman and Crossman, 

2014) (Figure 1.3 – 1.5). Usually metals demonstrate more than one type of antimicrobial mode 

of action (Table 1.5).  
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ROS / enzyme denaturation / electron transport / DNA  damage 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Antimicrobial activity mechanisms associated with metal nanoparticles that release 

metal ions (Adapted from Dizaj et al., 2014; Kolmas et al., 2014). 
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Figure 1.4. Antimicrobial mechanism showing metals such as iron, copper and arsenic increase 

intracellular ROS, which lead to DNA or vital enzymes (cysteine and peptide deformylase) 

degradation which are required for cell growth (Adapted from Lemire et al. 2013).                                                       

 

Interference with nutrient uptake / membrane damage 

  Fe (III)    

                                                                                                                     

                         

 

         Bacterial membrane 

 

Figure 1.5. Antimicrobial mechanism showing that the content of the bacterial membrane is 

highly electronegative, it attracts metal cations (such as copper (Cu), Cadmium (Cd) or Gallium 

(Ga) (III)), which assimilate leading to cell lysis (Adapted from Lemire et al. 2013). 
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Table 1.5. The antimicrobial properties of the metal ions tested in this study. 

Metals in 

ionic form 

Bacteria Antimicrobial properties References 

Silver   

S. aureus, 

 E. coli 

Precipitation of electron-dense 

particles, cell membrane damage, 

binding to protein and enzymes in 

the cell wall and membrane. 

Sondi & Salopek-Sondi, 

2004; Pal et al., 2007; 

Feng et al., 2000 

Copper E. coli, 

Salmonella 

species 

Reactive oxygen species 

generation (ROS), Cu-bacterial 

protein binding, DNA damage, 

enzyme degeneration. 

Stevenson et al., 2013 

Rhodium / 

Ruthenium 

A. baumannii, 

E. faecium,  

K. pneumonaie  

Interruption of translation and 

transcription process, damage to 

ribosomal unit. 

 Bien et al., 1999; 

Beloglazkina et al., 2016; 

Vaidya et al., 2018 

Zinc S. aureus,  

S. pyogenes,  

P. aeruginosa 

Oxidative stress, ROS production, 

structural changes in cell wall. 

Ann et al., 2014; 

Sirelkhatim et al., 2015 

Gold  P. aeruginosa, 

E. coli 

Disrupt bacterial cell membrane, 

destruction of intracellular 

structures, and interaction with 

bacterial DNA. 

Zhao et al., 2010 

Platinum / 

Palladium 

E. coli,  

B. subtilis,  

B. cereus,  

S. aureus 

Bacterial protein and DNA 

damage, cellular protein-metal 

binding and exchange. 

Kovala-Demertzi et al., 

2003 

Gallium / 

Indium / 

Niobium 

P. aeruginosa, 

E. coli 

Interference with cellular Fe 

metabolism, Fe irreversible 

mechanism. 

Rogers et al., 1982; 

Olakanmi et al., 2010 

Molybdenum E. coli, 

B. subtilis 

DNA lesions, disturbance in iron 

haemostasis 

Lemire et al., 2013 

Titanium / 

Tantalum 

S. aureus,  

E. coli  

ROS generation through 

production of hydroxyl radicals 

Wang et al., 2016 

Yttrium S. aureus,  

E. coli 

Disrupt membrane potential, 

reduce internal pH, increase 

lipoperoxidation  

Lellouche et al., 2012 
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1.16. Antimicrobial potency of metal tested in this study 

 1.16.1. Silver  

Biomaterial implants in tissue, bone and organ replacement therapy have been extensively 

used. Bacterial transmission risks and colonisation on biomaterial surfaces are significant post-

implantation problems. The bacterial risks can be reduced with antibiotic impregnation. 

However, increased AMR species pose a challenge in controlling bacterial infections. Silver 

and its compounds have been used in medical devices because of their antimicrobial potency 

(Samani et al., 2013). Though the metallic form of Ag is inert, ionised Ag exhibits high 

reactivity as it can readily bind to nuclear membranes, microbial cell walls, and tissue proteins. 

This can lead to cell distortion and death (Krishnani et al., 2012). An in vitro study by Feng et 

al. (2000), demonstrated that Ag ions successively inhibited Gram negative (E. coli) and Gram 

positive (S. aureus) cells by entering inside the cytoplasm and damaging the DNA. Two studies 

confirmed that Ag in an ionic form successively inhibited AMR pathogens including 

Enterococcus species and A. baumannii, thus demonstrating the use of Ag as potential medical 

implant antimicrobial (Hrenovic et al., 2013; Ahmad and Viljoen, 2015).  

Wounds may be colonised with pathogenic bacteria, which are responsible for localised and 

systemic infections, and therefore delayed wound healing. To reduce bacterial infections risks, 

Ag is used in wound dressings to control tissue damage at the wound site owing to bacterial 

colonisation (Jones et al., 2004; Thomas et al., 2011). The disk diffusion antimicrobial 

susceptibility test for silver alginate has been demonstrated to produce an enlarged zone of 

inhibition (ZoI) against bacterial species isolated from burn wounds including A. baumannii, 

K. pneumoniae and E. faecium (Thomas et al., 2011). The Ag dressing showed up to 30 mm 

(millimetre) ZoI against E. coli, S. aureus and Streptococcus faecalis (Castellano et al., 2007). 

Another study found that the Ag containing Hydrofibre demonstrated a greater ZoI against 

aerobic, anaerobic and antibiotic-resistant bacteria. Silver Hydrofibre were found to kill all 
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these challenging microbes after a 30 minutes exposure period, which was tested through the 

depth of penetration assays (Jones et al., 2004). Such work demonstrates the potential of Ag 

for use as an antimicrobial including for its use in dressings.  

 1.16.2. Copper as an antimicrobial  

Surfaces in hospitals such as door handles, touch plates, call buttons, bed rails and toilet seats 

can be highly contaminated with pathogenic bacteria (Grass et al., 2011). Recently, the 

antimicrobial properties of Cu have gained significant attention to reduce the microbial load 

and thus, the transmission risks (Casey et al., 2010). Copper ions (0.4 and 0.8 mg/L 

concentrations) showed a significant potential application to disinfect water at hospital site, by 

reducing P. aeruginosa and A. baumannii by 99.99% after 1.5 and 24 hours respectively 

(Huang et al., 2008). Copper and its alloys are thought to possess medical and health care 

applications owing to their ability to kill bacteria by contact (Hans et al., 2014). However, the 

antimicrobial potency of Cu ions has been shown to vary according to the Cu content, time 

exposure and moisture content (Elguindi et al., 2011). This is supported by the work of Espírito 

et al. (2011), which concluded that a dry surface and 99.99 % pure Cu demonstrated a broad-

spectrum and greater antimicrobial activity in laboratory and hospital settings compared to a 

lower content of Cu coupons. In addition, an Austrian study confirmed that the antimicrobial 

efficacy of the Cu coupons elevated with exposure of time (Steindl et al., 2012). Copper metal 

when in complex form has also showed a greater and specific toxicity against pathogens 

(Szymański et al., 2012). Schiff base complexes chelated with Cu metal have gained significant 

attention for their antimicrobial abilities (Rosu et al., 2006). The release of the hydroxyl group 

of Cu ions from such complexes blocks the functional group on bacterial proteins and enzymes, 

inhibits or alters nucleic acids synthesis and/or changes bacterial cell wall synthesis 

(Amachawadi et al., 2015). Thus, Cu possesses a bacteria contact killing potency, which can 

be utilised on hospital surfaces and in water disinfection services in hospitals. 
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 1.16.3. Platinum  

Platinum is low in abundance in the earth curst (0.003 parts per million (ppm) – 5 ppm) making 

it an extremely valuable and an expensive metal. After Rh, it is the second most expensive 

metal costing £37.66/gram on the London Platinum and Palladium Market (Capeness et al., 

2015). Despite its cost, Pt possess the potential application to be utilised in high end medical 

implants (such as cardiovascular defibrillators, hip and knee implants) and catheters, to treat 

antimicrobially persistant infections (Cowley and Woodward, 2011; Saygun et al., 2006). 

Although platinum possesses antimicrobial properties, platinum complexes are already known 

to have low human cell toxicity (Mishra et al., 2006). The cisplatin Pt (II) and Pt (IV) 

complexes have been shown to have potential as anticancer sources with high action and low 

toxicity. However, in the Gaballa (2010) study, it was reported that the Pt co-ordination charge 

changes the complex antimicrobial action on bacterial cell permeability, with ionic form 

demonstrating a greater antimicrobial efficacy than neutral co-ordination forms.  

 1.16.4. Gold  

The antimicrobial property of Au and its compounds have been documented since earliest 

civilization by medical specialists to treat infections caused by bacterial. Recently, rising 

attention in the antimicrobial efficacy of Au against resistant pathogens (especially against 

Gram-positives) have been studied for use in the medical field (Sim et al., 2014). Work by 

others has demonstrated that Au ions and complexes (sulfanylcarboxylates and phosphanegold 

(I) dithiocarbamates) possess greater antimicrobial efficacy against Gram-positive species (S. 

aureus and B. subtilis) compared to Gram-negative species (K. pneumonaie, E. coli and P. 

aeruginosa) (Barreiro et al., 2012; Nazari et al., 2012; Sim et al., 2014).  

 1.16.5. Palladium  

For over 20 years, palladium based alloys has been utilised in the dental restorative materials 

(dental crown implants and bridge alloys). Palladium based dental biomaterials are considered 
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biocompatible for oral environments and are thought to control oral pathogenic infections 

(Woodward, 2012). Recently, Pd alloys were considered as a potential catheter guidewire as a 

temporary implant, since as this material is antimicrobial, it can prevent cardiovascular disease 

infections (Woodward, 2012). Much attention has been carried out on screening the 

antimicrobial efficacy of the Pd complexes in medical implants to control bacterial 

transmissions (Juribašić et al., 2011). This is because Pd complexes possess a similar 

antimicrobial activity to antibiotics, which can be used as therapeutic sources to prevent AMR 

species infections (Sharma et al., 2011). Results demonstrating greater antimicrobial inhibitory 

effects were found for Pd complexes (with o-toludinethiosemicarbazone and tetradentate 

macrocyclic) than antibiotics (amoxicillin and penicillin) against Bacillus cereus, K. 

pneumoniae and E. coli (Khan and Yusuf, 2009; Anacona et al., 1999).  

 1.16.6 Rhodium and ruthenium 

Rhodium and Ru possesses a potential to be used as organometallic antimicrobials, in photodynamic 

antimicrobial chemotherapy and as photosensitisers or as topical applications to control bacterial 

infections. Both these complexes possess a greater toxicity against bacterial cells than eukaryotic 

cells (Bien et al., 1999; Ernst et al., 2011; Gorle et al 2014; Mukherjee et al., 2014; Li et al., 2015). 

This was confirmed with two studies using Human Colorectal Carcinoma cell lines to test for the 

cytotoxicity of Rh metalloinsertors against Human monocytic THP-1 cells and red blood cells to 

test oligonuclear polypyridylruthenium (II) complexes (Ernest et al., 2011; Li et al., 2011). The 

mononuclear methyl Rh complex showed excellent antimicrobial properties against range of 

Gram-positive and Gram-negative bacteria (Li et al., 2015). The polypyridylruthenium (II) 

demonstrated good antimicrobial activity (MIC = 12.5 μgml−1 against S. aureus) (Li et al., 2011). 

Rhodium complexes with tetraaza macrocyclic and Ru (II) carbonyl thiosemicarbazone 

complexes have also been shown to possess an effective antimicrobial efficacy against range 

of bacteria (Bien et al., 1999; Jayabalakrishnan and Natarajan, 2002; Kannan et al., 2008). 
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 1.16.7. Titanium and tantalum  

Orthopaedic implants are generally introduced into joints of the spine, knee and shoulder. 

Moreover, metal plates are often implanted as adjacent bone in case of fracture repair and re-

alignment of spine (Zhao et al 2009; Chang et al., 2014). Bacterial adhesion and infections are 

the major risk associated with implants, which are unsusceptible to most therapeutic options 

(Chang et al., 2014). Titanium / Ta is naturally selected for such implantation owing to 

combination of characteristics such as corrosion resistivity, bio-compatibility, mechanical 

strength, cost, capability to connect with bone and other tissues and primarily owing to their 

antibacterial potency (Zhao et al., 2009; Wu et al., 2018). Titanium / Ta has found extensive 

usage as orthopaedic implants for joint replacement, fracture healing and bone regeneration 

and as dental restoration materials (Silva et al., 2002; Del Curto et al., 2005; Zhao et al., 2009; 

Ferraris and Spriano, 2016; Ijaz et al., 2018). Both these metals-based materials are often found 

to be used in surgical instruments (Zhao et al., 2009). According to two studies, the 

antimicrobial efficacy of Ti coated surfaces demonstrated bacterial control. Titanium coated 

film releases Ti ions, which demonstrated no viable bacterial counts after 40 h of incubation 

against S. aureus and E. coli (Chung et al., 2008). However, titanium surfaces showed E. coil 

reduction (bacterial adhesion test) and bacterial accumulation (scanning electron microscopy 

(SEM) (Seddiki et al., 2014). Two studies by Huang et al. (2010) and Zhang et al. (2015) 

demonstrated that Ta-nitride and Ta oxide based coatings demonstrated antibacterial effects 

against both S. aureus and Actinobacillus actinomycetemcomitans. 

 1.16.8. Zinc and gallium  

In burn / invasive wound infections are at a greater risk for the pathogen infections and 

transmission risks (Yang et al., 2017). Zinc (Zn) / gallium (Ga) is widely applied to treat burn 

/ wounds owing the release of enzymes that are needed for microbial elimination in the infected 

area. In addition, owing to its anticancer and antibacterial properties Zn and Ga in nanoparticle 
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and ions forms were found to have drug delivery applications (Zhou et al., 2007; Zhu et al., 

2015). Moreover, Zn is relatively inexpensive, relatively less toxic and biocompatible (Kumar 

et al, 2013). Owing to antimicrobial and ultraviolet absorption properties, Zn is also found an 

application in cosmetics and sunscreen (Kumar et al., 2013; Lu et al., 2015). The use of zinc 

oxide nanoparticles showed a 90 % and 48 % growth reduction against B. subtilis and E. coli 

respectively (Adam et al., 2014).  A study by Ghule et al. (2006) demonstrated < 20 colonies 

after treatment with Zn-nitride against S. aureus. Yang et al. (2017) showed that Ga ions had 

an effective inhibitory concentration against E. coli and E. faecalis (256 μgmL−1) and 512 μgmL−1 

against S. aureus, K. pneumoniae, A, baumannii, S. epidermis, P. aeruginosa, E. cloacae, and S. 

maltophilia, which are all microbes commonly associated with burn infections.  

 1.16.9. Yttrium, indium, molybdenum and niobium 

With the increasing risk of pathogenic dissemination in the healthcare setting, novel metals 

such as Y, Mo and Nb usage as material coatings or as biomaterials have been investigated and 

have been found to decrease bacterial load (Baena et al., 2006; Gordon et al., 2007; 

Krishnamoorthy et al., 2013). Various studies have demonstrated the use of yttrium-based 

lasers to remove microbial load on dentures and dental implants (Kreisler et al., 2003; Gordon 

et al., 2007; Kamel et al., 2014). Yttrium-based lasers have been shown to produce up to 99 % 

bacterial reduction including the reduction of Enterococcus faecalis (Kreisler et al., 2003; 

Gordon et al., 2007). Yttrium complexes have demonstrated effective antibacterial activity 

against several Gram-negative and Gram-positive bacteria. Yttrium (III) complex with 

pyridinedicarboxylate demonstrated an inhibitory concentration of 600 µgmL-1 -900 µgmL-1 

against E. coli and S. aureus (Cai et al., 2010). Molybdenum trioxide (MoO3) was found to 

inhibit (100 %) pathogens such as P. aeruginosa and S. aureus (Zollfrank et al., 2012) after 6 

h of incubation. This study claimed that a Mo based coating could be used as an innovative 

approach to prevent pathogen dissemination. Another study investigated the antibacterial 
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efficiency of MoO3 nanoplates against E. coli, Salmonella typhimurium and Enterococcus 

faecalis, and Bacillus subtilis (MIC = 8 µgmL-1 – 16 µgmL-1). The study demonstrated that 

MoO3 had antimicrobial efficacy equivalent with the standard antibiotic kanamycin 

(Krishnamoorthy et al., 2013). Tests of the antimicrobial activity against E. coli were 

performed using a Mo coating and it was demonstrated that there was a complete kill of 

bacterial colonies (Mardare and Hassel, 2014). Moreover, Mo disulphide nanostructures 

inhibited P. aeruginosa biofilm up to 60 % at 150 µgmL-1 (Qureshi et al., 2015). Binuclear 

Niobium(V)Tartrate complexes have been shown to display an effective antimicrobial 

inhibition (8 mm – 16 mm) at 60 µg against range of pathogens (Revanasiddappa et al., 2012).  

Also, Nb coating were found to reduce 95 % of E. coli biofilms (Baena et al., 2006). Indium 

(III) is an electron emitter, which allows its complexes to be possible dual imaging-therapeutic agents 

(Wang et al., 2017). An In (III) complex with semicarbazone demonstrated an antimicrobial 

inhibitory zone of 8 mm – 16 mm and MIC of 62.5 µgmL-1   – 1000 µgmL-1 against range of Gram-

positive and Gram-negative bacteria (Wang et al., 2017). Indium coated nanoparticles 

demonstrated P. aeruginosa and S. epidermis inhibition of up to 20 mm (Pradeev Raj et al., 

2017). 

1.17. Graphene oxide (GO) and metal-GO as alternative antimicrobial 

Graphene is a single atom thick, two-dimensional sheet of carbon arranged hexagonally which 

was first isolated in 2004 by Geim and Novoselov (Chen et al., 2014). Graphene based 

compounds are recognised as a promising antibacterial material for application in the biological 

and medical fields (Szunerits and Boukherroub, 2016). Graphene oxide (GO) is a derivative of 

graphene that is modified by a various oxygen containing groups like carboxyl, epoxy and 

carbonyl. These groups provide chemical stability and solubility in water to GO (He et al., 

2015).  
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Figure 1.6. Structure of graphene and graphene oxide (Li et al., 2018). 
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The antimicrobial activity of graphene materials is dependent on both physical and chemical 

effects. Physical damage is brought about by the direct contact of sharp edges with bacterial 

membranes, which has been suggested to lead to destructive extraction of lipid molecules. 

Chemically, the generation of oxidative stress owing to release of intracellular ROS species is 

the major mechanism of bacterial destruction for graphene-based compounds (Figure 1.6) (Zou 

et al., 2016; Prasad et al., 2017). According to Adlhart et al. (2018), GO possess the potential 

to be used as a coated biocide in hopital settings to reduce / control the transmission risk 

associated with bacterial infections. This is owing to the morphological structure of GO with 

sharp edges. According to a study by Hu et al. (2010) and Hui et al. (2014), GO, rGO and 

graphene demonstrated inhibitory activity against the growth of a range of Gram-positive and 

Gram-negative bacteria including A. baumannii and E. faecium. Furthermore, graphene-based 

compounds have been used to disperse and stabilize various materials, such as polymers, metals 

and metalloids (Zou et al., 2016; Al-Jumaili et al., 2017). The use of graphene compounds not 

only provide a platform for the metal’s stabilization and delivery but also prevents their 

aggregation. This is because the use of the graphene compounds provides the advantage of 

increased surface area of the particle, and thus, potentially elevated antimicrobial efficacy 

(Whitehead et al., 2017). Moreover, metals possess a range of transition states and GO possess 

a high capacity of storing and transporting electrons (Yang et al., 2013). Such a hybrid can 

provide an excellent photocatalytic material to control an aquatic bacterial load (Yang and Xu, 

2013). In addition, such metal-graphene materials have shown to control medical pathogens. 

The graphenes have shown potential antimicrobial activities that can be used in commercial 

product packing, biomedical appication, medical infection control and crop diseases (Chen et 

al., 2014; Nanda et al., 2016). Bacterial cell viability asssys were shown to provide nearly a 90 

% reduction for Pseudomonas syringae and Xanthomonas campestris when tested with GO (Chen 

et al., 2014). An AgGO composite was also shown to demonstrate strong antibacterial activity 
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with no viable E. coli cells after 10 mins of AgGO contact in a slurry reactor (Ma et al., 2011). 

Graphene oxide and rGO were also found to display lower numbers of viable bacterial counts 

compared to control against E. coli (Hu et al., 2010).  
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Figure 1.7. Antimicrobial mechanism of metal-GO hybrids on the bacterial cell membrane 

leading to death of the bacteria owing to physical damage of membrane by GO and 

internilisation of metal ions leading to cellular process damage producing ROS which can 

damage / lyse DNA (Adapted from Chowdhuri et al., 2015; Jin et al., 2017).  
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1.18. Efficacy of antimicrobials in combination  

Combination therapy might be advantageous over monotherapy owing to several reasons: i) 

tackling development of bacteria resistance, ii) achieve broad spectrum target to inhibit bacteria 

iii) combinations might act additively or synergistically and iv) have broad antimicrobial 

activity and v) decrease the risk of inappropriate treatments (Pletz et al., 2017; Rhodes et al., 

2017). 

There is growing interest for the use of metal ion applications as organometallics therapy in 

combination with antibiotics for the treatment of arthritis and cancer tumors a part of which is 

to control the problem of transmission or colonization of AMR bacteria as an alternative 

strategy (Nazari et al., 2012; Ahmad et al., 2014). A study revealed that Au+3 ions increased 

the antimicrobial potency of several antibiotics such as cephalexin, tetracycline, amikacin, 

clindamycin, vancomycin and nitrofurantoin against E. coli and P. aeruginosa (Nazari et al., 

2012). Due to an increasing failure of antibiotics towards resistant bacterial species, the clinical 

efficacy of various metal combined with medicinal plant extracts has also been screened. A 

study concluded that Zn ions combined with methanol and ethanol plant extracts of aloe vera 

and coriander enhanced the ZoI by up to 30 mm against S. aureus, P. aeruginosa and E. coli 

(Pandey and Shrivastava, 2013). Another study revealed a synergistic type of antimicrobial 

effect between Ag ion and Mentha piperita essential oil (Ahmad et al., 2014).  

Metal coatings are extensively used as an implant device to control bacterial infections. A study 

aimed to test the combined antimicrobial effect of Ag and Zn ions coated onto hydroxyapatite 

(HAp). This study concluded that Ag and Zn ion incorporation onto a HAp structure improved 

its antimicrobial potency (Samani et al., 2013). A study by Huang et al. (2008) confirmed the 

synergistic effects of Ag and Cu ions against A. baumannii. This study found that combined 

Ag and Cu metals led to a greater inhibition compared to Ag and Cu metals in isolation. A 

bacterial (Staphylococcus epidermis and S. aureus) colony count method also demonstrated a 
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significantly lowered (66 %) bacterial load on Au-Pd combination coated prosthetic graft (60 

% Au and 40 % Pd) after 12 hours of incubation compared to a control graft (Saygun et al., 

2006). Thus, metal combinations seem to be a positive approach to find alternative 

antimicrobial sources because of their synergistic antimicrobial efficacy (Harrison et al., 2008). 

Silver and zinc coated zeolites were found to demonstrate 6 log and 3.5 log reduction in the 

bacterial count of S. aureus and E. coli respectively after 6 h (Cowan et al., 2003). An 8-fold 

of antimicrobial efficacy enhancement was achieved in a combinatorial treatment of Zn, Cu, 

nickel, cadmium and Ag against E. coli and B. subtilis. These combinations demonstrated 

synergistic efficacy and showed lower minimum inhibitory concentration (MIC) compared to 

the individual efficacy (Garza-Cervantes et al., 2017). Further Ravichandran et al. (2016) 

confirmed that combination of Zn, Cu and graphene produced a strong antimicrobial activity 

with inhibition of 16 mm against E. coli and S. aureus. 

These findings suggest the use of metals may provide a positive approach to reducing AMR 

transmission and colonisation in some areas. Further, a synergistic effect of metal combinations 

with medicinal plants, antibiotics and with each other may also enhance antimicrobial 

efficacies. These properties thus possess a potential application not only to control AMR 

bacteria, but also to control them using lower antimicrobial concentrations. 

1.19. Antimicrobial efficacy on bacterial biofilm phenotype 

A biofilm is difficult to treat owing to its complex polymeric structure and innate resistance. 

Once formed on a medical device, such as implants, or contaminated surfaces lead to 

infections risks. Thus, there is a need to design biomaterials that can restrict bacterial 

increased survival and hence biofilm development. Metals and GO alone or in combination with 

other antimicrobial agents can be an effective disinfectant (on hospital equipment or surfaces) or 

antisepsis (as biomaterials) to control bacterial biofilms (Ma et al., 2011; Ma et al., 2013; Zou et al., 

2016). Gallium coated modified medical devices have demonstrated antimicrobial efficacy in P. 
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aeruginosa biofilm control (Ma et al., 2013).  Moreover, these antimicrobials also showed an 

effective control on pathogens found in wound infected areas. The sol-gel dressing made of Ag 

metal showed an effective reduction in the adhesion and formation of S. epidermis biofilm over 

period of 10 days (Stobie et al. 2008). Biofilm evaluation techniques using microtiter plates 

revealed that newly formed and mature biofilms of S. aureus and P. aeruginosa was effectively 

reduced by GO after 24 h of treatment. According to this study GO can be an effective 

antiseptic in controlling chronic wounds bacterial infections (Di Giulio et al., 2018). Oral 

pathogen biofilms are responsible for the etiopathogenesis causing periodontal disease. The 

conventional anti-biofilm approaches are usually focused on developing dental adhesives that 

can to control attachment and colonization of pathogens (Yang et al., 2012; Sadekuzzaman et 

al., 2015). Lately, graphene-based materials such as GO have been tested against oral 

pathogens signifying an option to use them in dental materials (He et al., 2015; Rago et al., 

2015). Bregnocchi et al. (2017) demonstrated only 28 % Streptococcus mutans biofilm survival 

after 24 h of incubation with GO based dental adhesives using a crystal violet biofilm assay. 

Combinations of antimicrobials further enhances the antimicrobial efficacy to prevent bacterial 

colonisation. Jaueen Kim et al. (2008) found that Ag and tobramycin sequential treatments 

demonstrated an enhanced antimicrobial potency of 200% on biofilm of P. aeruginosa. 

Gallium-Ti coated surfaces after 28 days of incubation, showed an effective E. coli biofilms 

control (Zhu et al., 2015). The addition of 0.1 % Nb to Cu was also shown to reduce 99.9 % of 

E. coli biofilms after 24 h of treatment (Baena et al., 2006).  

1.20. Potential cytotoxicity of metal ions and GBCs  

The effect of the metal on the human cell in terms of toxicity also needs consideration. A study 

by Heidenau et al. (2005), demonstrated that higher concentrations (2.5 ˟ 10-3 molL-1) of Cu 

were tolerable by tissue cells (surrounding the abdominal wall). However, the histopathology 

evaluation for Au and Pd coatings of a polypropylene graft (a graft used in abdominal wall 
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defects and inguinal hernia) demonstrated a tolerable fibroblastic proliferation and tissue 

denaturation (Saygun et al., 2006). Silver dressings have also been found to exhibit tissue and 

cell toxicity. To extend this, multiple daily application of Ag topical creams and solutions in 

wound dressing showed astringent effects on surrounding tissues leading to its discolouration 

(Saygun et al., 2006). Silver ions released from silver nitrate solution higher than 50 x 10-4 % 

to prevent wound bacterial infections were found to show toxic effects on keratinocyte 

monolayer and fibroblastic cell lines after 3 hours of incubation (Poon and Burd, 2004). Metal 

combinations (silver, mercury and zinc) on titanium coatings (used in fracture implantation) 

increased the coatings antimicrobial efficacy against S. aureus. However, these metals 

exhibited strong cytotoxicity. More than 50 percent (%) fibroblastic cells were reduced at 

concentrations 3.5 x 10-3, 3.6 x 10-3 and 4.2 x 10-3 M/L of Ag, Zn and Hg respectively. It is 

important to adjust cofounding factors such as test parameters (temperature, pH, moisture 

content) for culture conditions of cell lines and bacteria to enable a more direct in vitro metal 

toxicity comparison (Heidenau et al., 2005). 

Aim 

Evaluate the antimicrobial efficacies for metal ions and GBCs against K. pneumoniae, A. 

baumanii and E. faecium in the absence and presence of bovine plasma as conditioning films. 
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Chapter 2 

2. Methods and materials 

2.1. Synthesis of graphene-based compounds  

The GO, AgGO, CuGO, AuGO and PdGO were prepared in the laboratories of Prof. Craig 

Banks by his research students at Manchester Metropolitan University. For the synthesis of the 

compounds, all chemicals (analytical grade or higher) were used as received from Sigma-

Aldrich (UK) without any further purification and all solutions were prepared with deionised 

water of a resistivity not less than 18.2 MU cm. Synthetic graphite powder was commercially 

obtained from Gwent Group (Pontypool, UK). 

Graphene oxide (GO) was synthesized by using the Hummers method via the oxidation of 

synthetic graphite (Hummers Jr. and Offeman, 1958). Graphite flakes (5 g) and NaNO3 (2.5 g) 

were combined in 115 mL of concentrated H2SO4 and stirred for 30 min. KMnO4 (15.0 g) was 

gradually added to the suspension, whilst kept in an ice bath (<5 °C), and the rate of addition 

was controlled to keep the reaction temperature below 15 °C. The mixture was heated to 35 °C 

for a 30 min period and underwent continuous stirring producing a brown paste. A further 

dilution was made by adding 250 mL of water to the mixture and the temperature was increased 

to 70 °C for 15 min. The resultant mixture was diluted by adding H2O until a final volume of 

1 L was obtained. Finally, the solution was treated with 15 mL of H2O2 (30% w/w) to terminate 

the reaction, at which stage the solution became yellow in appearance. For purification, the 

mixture was filtrated and the obtained solid was washed thoroughly with Milli Q water several 

times in order to remove sulphate contamination. 

The powder was dried at 60 °C during 48 h. In the preparation of the AgGO, a sonochemical 

reduction method was utilised (Anandan and Muthukumaran, 2015). Following preparation of 

the GO, 0.5 g was added to 150 mL of ethylene glycol and sonicated for 30 min. In a separate 

vesicle, 1.0 g of silver nitrate was added to 20 mL of ethylene glycol and sonicated for 30 min. 
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The silver nitrate dispersion was added drop-wise to the GO solution whilst undergoing 

sonication for 30 min to produce a homogeneous mixture. Finally, 50 mL of 0.1 M NaBH4 was 

added to the resultant AgGO mixture and a further 30 min of sonication was performed. The 

product was purified with repeated steps of H2O and ethanol washing, after which the solution 

was dried at 50 °C. 

The ZnOGO was fabricated by dissolving 5.0 g GO in 200 mL of N, N, -dimethylformamide 

(DMF), along with 20 mL of 1Mzinc acetate dihydrate (pH of 6.5). The homogeneous solution 

was heated to 60 °C and was stirred continuously for 120 min, after which the solution was 

heated to 250 °C. Following solvent evaporation, partial ZnO/ZnOHGO was produced. The 

resulting dried product was collected and ground in an agate mortar prior to being annealed at 

450 °C for 120 min within atmospheric conditions to obtain the final ZnOGO product (Liu et 

al., 2012).  

The graphene oxide solution, graphene, graphene carboxyl, graphene fluorocarbons, graphene 

nanoplatelets, graphene oxygen, graphene argon, graphene ammonia and graphene nitrogen 

were purchased from Graphene Supermarket (USA). Except for the graphene oxide solution, 

all GBCs were ground to fine particles using a mortar and pestle. Two milligrams of ground 

GBCs were suspended in 2 mL of sterile water and using a vortex mixer a homogenous mix 

was obtained. Each time before use the suspension was vortex.  

2.2. Metal ions preparation 

Standard ionic solutions of 1 mgmL-1 of yttrium (Y), titanium (Ti), tantalum (Ta), indium (In), 

niobium (Nb), rhodium (Rh), ruthenium (Ru), molybdenum (Mo), zinc (Zn), gallium (Ga), 

silver (Ag), copper (Cu), platinum (Pt), gold (Au) and palladium (Pd) (Sigma-Aldrich, UK) 

were used (Table 2.1). These were diluted with a sterile water to obtain 0.5 mgmL-1, 0.1 mgmL-

1 and 0.05 mgmL-1 metal concentrations respectively. As the metals were dissolved in acids, 
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four acid control solutions were used; 5 % hydrochloric acid (HCl) 10 % HCl, 5 % nitric acid 

(HNO3) and 2 % (HNO3), which corresponded to the ion diluents (Fisher Scientific, UK). 
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Table 2.1. Metal ions, acid diluents, atomic number, electronic configuration, subshell 

electronic configuration, electronegativity (Pauling scale), charge on ions and counter ions in 

solution for the metal ions used in this study (Lenntech, 2017; Science notes, 2015; The 

catalyst, no year).  

Please note that as the metals were dissolved in acid solutions it is difficult to find the 

exact metal charges, hence all the possible metal charges are mentioned with the most 

common in bold. * EN = electronegativity 

Metals Acids 

controls 

Atomic 

number 

Electronic 

configuration 

EN**  Possible charge on 

Ion in solution 

Counter 

ion in 

solution 

Y 2 % HNO3 39 [Kr]4d15s2 1.22 +3, +2, +1 Nitrate 

Ti 2 % HNO3 22 [Ar]3d34s2 1.54 +4, +3, +2, +1, -1, -

2 

Nitrate  

Ta 2 % HNO3 73 [Xe]4f14 5d3 6s2 1.50 +5, +4, +3, +2, +1, 

-1, -3 

Nitrate 

In 2 % HNO3 49 [Kr]4d10 5s2 5p1 1.78 +3, +2, +1, -1, -2, -

5 

Nitrate 

Nb 2 % HNO3 41 [Kr]4d4 5s1 1.60 +5, +4, +3, +2, -2, -

1, -3  

Nitrate 

Zn 2 % HNO3 30 [Ar]3d10 4s2 1.65 0, +1, +2, -2 Nitrate 

Ag 2 % HNO3 47 [Kr]4d10 5s1 1.93 +1, +2, +3, +4, -2, -

1 

Nitrate 

Cu 2 % HNO3 29 [Ar]3d10 4s1 1.90 +1, +2, +3, +4, -2 Nitrate 

Ga 5 % HNO3 31 [Ar]3d10 4s2 4p1 1.81 +3, +2, +1, -1, -2, -

4 

Nitrate 

Rh 5 % HCl 45 [Kr]4d8 5s1 2.28 +6, +5, +4, +3, +2, 

+1, -1, -3 

Chloride 

Ru 5 % HCl 44 [Kr]4d7 5s1 2.20 +1, +2, +3, +4, +5, 

+6, +7, +8, -4, -2 

Chloride 

Pt 5 % HCl 78 [Xe]4f14 5d9 6s1 2.28 +6, +5, +4, +3, +2, 

+1, -1, -2, -3 

Chloride 

Au 5 % HCl 79 [Xe]4f14 5d10 6s1 2.54 +5, +3, +2, +1, -1, -

2, -3 

Chloride 

Pd 5 % HCl 46 [Kr]4d10 2.20 0, +1, +2, +3, +5, 

+4, +6 

Chloride 

Mo 10 % HCl 42 [Kr]4d5 5s1 2.16 +6, +5, +4, +3, +2, 

+1, -1, -2, -4 

Chloride 
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2.3. Bacterial strains and growth conditions 

Pure cultures of K. pneumoniae NCTC 9633, A. baumannii NCTC 12156 and E. faecium 

NCTC 7171 were used and stored at -80°C. K. pneumoniae and A. baumannii were sub-cultured 

every 3 weeks onto a nutrient agar and incubated at 37°C in aerobic conditions for 24 h. Brain 

heart infusion agar was used to subculture E. faecium every 3 weeks and was grown in a 5 % 

CO2 incubator for 24 h at 37 °C. Nutrient agar and broth for K. pneumoniae and A. baumannii 

and brain heart infusion agar and broths for E. faecium were used for all the tests. 

2.4. Bacterial preparation 

From overnight growth of the bacterial cultures, 10 mL of appropriate broth were put into a 

sterile universal for Zone of inhibition (ZoI) assays. One hundred and fifty millilitres of 

appropriate broth were put into a conical flask for minimum inhibitory concentrations (MICs) 

assays and crystal violet biofilm assays (CVBAs). These were inoculated with a single colony 

of bacteria and incubated overnight according to the above conditions. Following incubation, 

the cells were harvested at 1721 × g for 10 min and washed once using sterile distilled water 

and vortexed until formation of homogenous mixture. The washed bacterial suspension was re-

harvested by centrifuging again 1721 × g for 10 min and re-suspended in sterile water. The 

inocula were measured in a spectrophotometer at 540 nanometres and compared against a blank 

of sterile distilled water to determine their optical density (OD). To determine the cell 

concentrations, the OD adjusted inocula were serially diluted. Hundred microliters (µL) of the 

OD adjusted inoculums were spread onto the respective agars using sterile spreaders and 

incubated for 24 h in the appropriate conditions. After incubation, the colonies were counted 

and quantified using following formula. 

Number of colonies × dilution factor / conversion of dilution factor to mL 

The cell concentrations corresponded to K. pneumoniae 2.82 × 108, A. baumanii 1.85 × 108 and 

E. faecium 3.95 × 108 colony forming units per mL (CFU/mL). 
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2.5. Bacterial conditioning film (CF) preparation 

Powdered bovine plasma (P4639 Sigma Aldrich, UK) was used to form the conditioning films. 

One gram of plasma was dissolved in 10 mL of sterile water. Using a 10 mL sterile syringe, 

the plasma suspension was filter sterilised through 0.2 µm filters into a sterile universal. The 

sterile plasma suspension was stored at -4 °C for future use.  

To prepare the bacteria with a conditioning film, 1 mL of sterilised plasma was mixed into 9 

mL of OD = 1 ± 0.1 adjusted bacterial suspension. These plasma and bacterial mix suspension 

(10 %) were directly used to perform the microbiology tests. 

All the following assays are performed in the absence and presence of 10 % bovine plasma 

condition films.   

2.6. Zone of inhibition (ZoI) to test single samples in the absence and presence of 10 % 

CF 

The ZoI was measured using the different metal ion solution concentrations, 0.05 mgmL-1, 0.1 

mgmL-1, 0.5 mgmL-1 and 1 mgmL-1. Hundred microliters of cell suspension or cell suspension 

and 10 % plasma CF was pipetted and spread across the entire area of the agar. Three equal 

wells (8 mm diameter) were cut out of each agar plate using a sterile cork borer and a stainless-

steel needle, which were sterilised in 70 % ethanol and flamed before use. To each of the wells, 

100 µL of the metal ions or GBCs was added. The plates were incubated in the appropriate 

incubating condition for 24 h. The ZoI was measured in mm to determine an average mean 

value (n = 24). The tested metal ions were categorised based on inhibition zones 

demonstration into i) 0 mm = no effect, ii) 0 mm – 4 mm = weak effect, iii) 4 mm – 9 mm 

= moderate effect and iv) > 9 mm = strong effect. 
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2.7. Minimum inhibitory concentration test (MIC) in the absence and presence of 10 % 

CF 

The minimal inhibitory concentration (MIC) is defined as the lowest concentration of 

antimicrobial to prevent bacterial growth (Russel and Chopra, 1990). One millilitre of 

Triphenyl tetrazolium chloride (TTC) blue metabolic dye (Sigma-Aldrich, UK), was added into 

9 mL of the cell suspension so that the working concentration of the dye was 0.15 % w/v. To 

determine the MIC, 100 µL of the test samples / acid controls were added to a 96 well flat-

bottomed micro titre plate (MTP). One hundred microliters of bacterial suspension or bacterial 

suspension and 10 % plasma CF with the TTC dye was then added using a multi-channel 

pipette; the first column of cell/metal ion suspension was mixed, then 100 µL of the 

sample/bacterial mix was transferred to the column 2 wells. The dilution method was repeated 

until column 10 upon which 100 µL of the mixture was disposed of. To column 11, 100 µL of 

bacterial suspension without a metal (positive control) was added and to column 12 and 100 

µL of un-inoculated broth was added (negative control). After incubation, the MIC was taken 

as lowest concentration that inhibited the visible growth of the bacteria by comparison with the 

controls. Growth was indicated by a change of colour in the well to dark blue/purple (n = 4). 
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Figure 2.1. The dilution of metals ions or GBCs and bacterial suspension with and without 

plasma CF across the 96 wells of the MTP. The red and blue lines indicate the dilution of the 

content across the plate. 
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2.8. Minimum bactericidal concentration test (MBC) in the absence and presence of 10 

% CF 

The MBC is defined as the lowest concentration required to completely inactivate the inoculum 

in a given time (Humphreys et al., 2011). Twenty-five microliters of culture were taken from 

the first well that showed no growth and the last well that demonstrated growth and was 

pipetted onto agar plates using Miles and Misra methodology. These plates were incubated 

overnight for 24 h at 37 °C in a 5 % CO2 incubator. After incubation, the lowest concentration 

well sample that showed no bacterial growth on the agar plate was determined to be the MBC 

for that test sample (n = 4). 

2.9. Time kill assay in the absence and presence of 10 % CF 

Time kill assays were performed to investigate the viable cell count over period in presence of 

antimicrobial agents using 100 µL of 0.01 mgmL-1, 0.1 mgmL-1 and 1 mgmL-1 of metal ions 

and 1 mg and 10 mg of GBCs over a period of 0 h, 2 h, 4 h and 24 h. To evaluate the effect of 

metal ions and GBCs on bacteria; t = 0 is considered after addition of the test samples and OD 

adjusted bacteria into media broth. As metals were dissolved into acids. 2 % HNO3 and 5 % 

HCl acid controls antimicrobial effects were also tested against each isolate. A negative control 

without any antimicrobial agents were also performed. In a sterile universal, 15 mL of sterile 

respective broth was taken. One hundred microliters of OD = 1.0 ± 0.1 adjusted bacterial 

suspension or bacterial suspension and 10 % plasma CF was added to the 15 mL of the broth. 

At each time point, 100 µL of sample was taken and serially diluted to 10-8. One hundred 

microliters were taken from each dilution and poured onto sterile agar plates, which were 

incubated for 24 h. The plates were used to quantify for viable bacterial cells using below 

formula, 

 

Colony forming unit per mL (CFUmL-1) = (no. of colonies x dilution factor) 

                        volume of culture                    
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2.10. Scanning electron microscopy (SEM) in the absence and presence of 10 % CF 

 2.10.1 Sample preparation 

Polished silicon wafers (Montco Technologies, USA) were cut into 1 cm × 1 cm size pieces 

using a ruler and diamond scriber pen. In a conical flask, 30 mL of sterile broths was prepared. 

Into the broth, 1 mL of OD adjusted bacterial suspension or bacterial suspension and 10 % 

plasma CF were added. One hundred microliters of metal ions and 20 mg of GBCs were added 

to test against both the Gram-negative species. Against Gram-positive E. faecium 200 µL of 

metal ion solutions and 40 mg of GBCs were added. Five millilitres of treated bacterial 

suspension or bacterial suspension and 10 % plasma CF from conical flask were taken at 0 h 

and 24 h into a sterile universal and centrifuged at 1727 g for 15 min. The supernatant was 

poured off and the treated bacterial pellet was re-suspended in 0.5 mL of sterile water. Twenty-

five microliters of the treated bacterial suspension were was pipetted onto a silicon wafer and 

dried at room temperature for 2 h before the fixation and dehydration process. 

 2.10.2. Fixation  

The air-dried treated cells were than fixed using 4 % glutaraldehyde solution made from a 25 

% glutaraldehyde (Agar Scientific, UK) stock solution. The samples were kept in the fridge 

overnight. 

 2.10.3. Dehydration 

The silicon wafers with the fixed treated cells were dehydrated in 10 %, 30 %, 50 %, 70 %, 

90 % and absolute graded ethanol solutions for 10 min at each concentration and air dried. 

 2.10.4. Sputter coating  

The dehydrated cells were put on carbon tabs and were coated with Au-Pd film using Polaron 

sputter SC7640 for 2 min with 200 voltage and 20 mA current.  
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 2.10.5. Sample microscopy 

The samples were analysed for any change in the morphology by means of Carl Zeiss Ltd. 

scanning electron microscopy (Supra 40VP) using SmartSEM software. 

2.11. Energy dispersive analysis (EDAX) in the absence and presence of 10 % CF 

 2.11.1. Sample preparation 

The samples for EDAX analysis were prepared in a similar way as described in 2.10.1 – 2.10.4 

following all the steps of fixation, dehydration, and sputter coating.  

 2.11.2. Sample microscopy 

The coated samples were analysed for any change in the composition of carbon, nitrogen, 

oxygen, potassium and phosphorous over 0 h and 24 h of metal ions / GBCs treatment. The 

EDAX Inc. manufacturer and Apollo 40 SDD model of microscope was used. The software 

used to analyse the samples was Genesis. Point analysis was used at magnification of 25x (n = 

3).  

2.12. Raman spectroscopy in the absence and presence of 10 % CF 

 2.12.1. Sample preparation  

The bacterial control and metal ions / GBCs treated samples for Raman analysis were prepared 

in the same way as described in 2.10.1. The only difference was that glass slides were used 

instead of silicon wafers to prepare the bacterial samples for Raman analysis (n = 3).  

 2.12.2. Sample microscopy 

The samples were analysed using DXR Raman microscope model of Thermo Scientific 

manufacturer and OMNIC software. The following experimental conditions were used (Table 

2.2). The sample was focussed with the help of the laser on the target using the microscope 

adjustment knobs to get the clearest image on the screen.  
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Table 2.2. Raman experimental set up  

Parameters Selected set up 

Collection exposure time 5 sec 

Preview exposure time 1 sec 

Sample exposure 20 

Cosmic ray threshold Medium 

Photo bleach time 1 min 

Laser wavelength 532 nano-metre 

Laser power 10 mega watt 

Spectrograph aperture 25 micrometre pinhole 

Minimum and maximum range 100 cm-1 and 3000 cm-1 

Estimated resolution 2.7 cm-1 – 4.2 cm-1 

Estimated spot size 0.7 micrometre 

Objective of microscope 50x 

Grating  900 line / millimetre 
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2.13. Zone of inhibition assay to test combined samples in the absence and presence of 10 

% CF 

All the steps of ZoI synergy assay were performed as was the single metal test. The only 

difference was that only two wells of same size (8 mm diameter) were cut out of the agar plate 

to test metal combinations efficacy (n = 8). ZoI results looked for the type (synergy, additivity, 

antagonism and autonomy) (Table 2.1) and grade (I-IV) of inhibition results for different metal 

ions combination at four (0.05 mgmL-1, 0.1 mgmL-1, 0.5 mgmL-1 and 1 mgmL-1) concentrations 

(Table 2.4).  
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Table 2.3. Four possible interaction outcomes for the antimicrobial combinations (autonomy, 

antagonism, additivity and synergism) using ZoI tests (Davidson et al., 2005; Kalan and 

Wright, 2011). 

Type of 

interactions 

Interpretation 

 

 

Autonomy 

 

The independent efficacy of the combined 

antimicrobials with no enhancement or reduction 

impact of the individual metals. 

 

 

 

Antagonism 

 

The reduced the efficiency of the combined 

antimicrobials compared to their additive 

response.  

 

 

 

Additivity 

 

The equivalent efficiency of the combined 

antimicrobials compared to the additive response 

of each antimicrobial acting independently. 

 

 

 

Synergism 

 

The increased efficiency of the combined 

antimicrobials compared to their additive 

response.  
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2.14. Fractional inhibitory concentration (FIC) test in 1:2, 1:1 and 2:1 in the absence and 

presence of 10 % CF 

The bacterial suspension or bacterial suspension and 10 % plasma CF and test samples for the 

FIC test were prepared as described for the MIC test (sub section 2.4). The FIC was determined 

using a 96 well flat-bottomed MTPs. The metal ions / GBCs were added as described in Table 

2.5. The bacterial suspension with 0.15% (w/v) TTC (100 µL) was added into each well of the 

MTP in rows A-F, working backwards from column 12 using a multi-channel pipette. The 

inoculation and metals mixture were mixed in column 1 and then 150 µL was transferred to 

column 2. This was repeated across all the wells to column 12, where once mixed, 150 µL was 

removed and disposed of. The MTP were then incubated overnight at 37 °C. After incubation, 

the FIC was taken as lowest concentration that inhibited the visible growth of the bacteria 

(Table 2.6). Growth was indicated by a change of colour in the well from clear/cloudy/metal 

colour to that of a dark blue/purple (n = 4).  

Table 2.4. Volumes for individual metal ions in combined metal ions and GBCs in combined 

GBCs. 

Ratios Samples  Volume 

2:1 Sample 1 100 µL 

 Sample 2 50 µL 

1:1 Sample 1 75 µL 

 Sample 2 75 µL 

1:2 Sample 1 50 µL 

 Sample 2 100 µL 
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2.15. The fractional bactericidal concentration in 1:2, 1:1 and 2:1 in the absence and 

presence of 10 % CF 

The FBC assays were performed using a 50-dropper pipette, to take an aliquot of the bacteria 

and metal / GBCs mix sample from the MIC well that showed no growth. Twenty five 

microliters were pipetted as a drop onto an agar plate. The first well that showed growth was 

served as a control. These plates were incubated overnight at 37 °C. After incubation, the lowest 

concentration well sample that showed no bacterial growth on the agar plate was determined 

to be the MBC for that test sample (n = 4). 

The mean well numbers were used to represent the results for the FIC and the FBC for metal 

ions / GBCs combinations values. The corresponding concentrations according to the three 

ratios 2:1, 1:1 and 1: 2 of metal combinations are demonstrated (Table 2.6). 

The FIC / FBC values were calculated as  

[ ∑FIC / FBC = FIC / FBC of agent A + FIC / FBC of agent B] 

Where 

[ FIC/FBC of agent A =
MIC of agent A in combination

MIC of agent A alone
 ] 

And 

  [ FIC/FBC of agent B =
MIC of agent B in combination

MIC of agent B alone
 ]            

Following which, the compounds investigated (A and B) were synergistic if FIC ≤ 0.5, additive 

if FIC > 0.5 ≤ 1.0, indifferent if FIC > 1.0 ≤ 4 and antagonistic if FIC > 4 (Perwaiz et al., 2007).  
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Table 2.5. Individual metal ion / GBCs concentrations in a combination in respective ratios in the FICs and FBCs tests across the wells 1-12 in 

mgmL-1. MC- metal combination, M1- metal 1 and M2 – metal 2. 

 

 

 

 

 

 

 

 

 

 

 

 

MC Volumes Ratio  1 2 3 4 5 6 7 8 9 10 11 12 

M1 100  

2:1 

0.333 0.166 0.083 0.041 0.020 0.010 0.005 0.002 0.001 0.0006 0.0003 0.0001 

M2 50 0.166 0.083 0.041 0.020 0.010 0.005 0.002 0.001 0.0006 0.0003 0.0001 0.00008 

M1 75  

1:1 

0.250 0.125 0.062 0.031 0.015 0.007 0.003 0.001 0.0009 0.0004 0.0002 0.0001 

M2 75 0.250 0.125 0.062 0.031 0.015 0.007 0.003 0.001 0.0009 0.0004 0.0002 0.0001 

M1 50  

1:2 

0.166 0.083 0.041 0.020 0.010 0.005 0.002 0.001 0.0006 0.0003 0.0001 0.00008 

M2 100 0.333 0.166 0.083 0.041 0.020 0.010 0.005 0.002 0.0013 0.0006 0.0003 0.0001 
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2.16. Crystal violet biofilm assay (CVBA) to test single sample effects in the absence and 

presence of 10 % CF 

 2.16.1. Preparation of stainless steel coupons 

Fine polished (FP) 304 grade stainless steel coupons (10 mm × 10 mm) were used in the assays 

to grow the biofilms on. The coupons were washed thoroughly by sequentially soaking the 

coupons into beakers each containing either acetone, methanol or ethanol (BDH, UK) for 10 

min with a sterile water wash in between each step. The washed coupons were air dried and 

stored for use at room temperature.  

 2.16.2. Biofilm formation and crystal violet biofilm assay 

The cell suspension or cell suspension and 10 % plasma CF were prepared in the same manner 

as described in section 2.4 and 2.5. Twelve well culture plates were used to grow the biofilms. 

The cleaned coupons were place in the centre of the well with the fine polished side facing 

upward. One millilitre of adjusted cell suspension was added to each well and incubated for 7 

days at 37 °C to produce a biofilm. A parafilm cover was used on the outer side of the plate to 

prevent against moisture loss and air contaminants over the incubation time. After incubation, 

the stainless-steel coupons were carefully washed with 2 mL of sterile distilled water using a 

pipette to remove any loose planktonic cells whilst avoiding damaging the biofilms. These 

coupons were air dried at room temperature for 2 h. One millilitre of test samples test samples 

at different concentrations (50 mg/L, 100 mg/L, 250 mg/L or 500 mg/L) was added into each 

respective well. The plates were incubated for 24 h at 37 °C. Respective broths were also added 

into one of the wells to serve as a negative control. Following incubation, the metal ion 

solutions were removed using a pipette and disposed of. The coupons were washed gently with 

1 mL of sterile distilled using a pipette and air dried at room temperature for 2 h. One millilitre 

of 0.03 % crystal violet solution (Oxoid, UK) was added into each well with a coupon and left 

for 30 min. The coupons were gently washed with 2 mL sterile distilled water using a pipette 
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to remove any excess stain. The coupons were placed into new 12 well plates and air dried at 

room temperature for 1 h. One millilitre of 33 % glacial acetic acid (BDH, UK) was added to 

each well and left for 30 min to solubilise any stained biofilm. The solution was removed using 

a pipette and the absorbance was measured at OD590. 

2.17. Crystal violet biofilm assay for combined samples antimicrobial effects in 1:2, 1:1 

and 2:1 in the absence and presence of 10 % CF 

All the steps were followed in a similar manner as described for single CVBA assay (sub 

section 2.16). The only difference was the individual samples were added as described in Table 

2.7.  

Table 2.6. Volumes added of individual metal ions in combined metal ions and GBCs in 

combined GBCs in the CVBA assay. 

Ratios Samples  Volume 

2:1 Sample 1 75 µL 

 Sample 2 25 µL 

1:1 Sample 1 50 µL 

 Sample 2 50 µL 

1:2 Sample 1 25 µL 

 Sample 2 75 µL 
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2.18. Cytotoxicity assay 

The in vitro cytotoxicity of different metal ions (Ag, Cu, Au, Pd and Au) and GBCs (GO, 

AgGO, AuGO and PdGO) were assessed using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-

2H-tetrazolium bromide (96992, Sigma-Aldrich, UK) (MTS) assay in skin fibroblast cell lines 

(American Type Culture Type). All cell lines were maintained in Dulbecco's modified Eagle's 

medium (DMEM) (D5030; Sigma-Aldrich, UK) supplemented with 10% foetal calf serum 

(F0804, Sigma-Aldrich, UK) at 37°C and 5% CO2. Cells were counted with a haemocytometer 

and 3 × 104 cells per well were seeded in 96-well plates and incubated for 24 h at 37°C and 5% 

CO2. The cells were incubated with metal ions (Ag, Cu, Pt, Au and Pd) and GBCs (GO, AgGO, 

AuGO and PdGO) at 1 mgmL-1. After incubation at 37°C and 5% CO2, the cells were washed 

using Roswell Park Memorial Institute (RPMI) medium (1640, Sigma-Aldrich, UK). One 

hundred microliters of RPMI media and 20 µL of MTS solution were added to the culture plate 

and incubated for 1 h – 6 h at 37°C and 5% CO2. The percentage of cell viability was 

determined at 490 nm. Untreated cells were used as negative control and cells treated with 

ethanol, 2 % HNO3 and 5 % HCl were used as positive controls. 

2.19. Statistical analysis 

Mean values were used to compare the antimicrobial efficacy results of the metal ions / GBCs 

samples at varying concentrations. Standard error was used to analyse the distributions of the 

data from the mean value, and confidence intervals of 95% were calculated for the ZoI, MIC, 

MBC, time kill assay and CVBAs and were used to plot the error bars. Data were analysed for 

normal distribution using Shapiro-Wilk test. The data that were normally distributed were 

analysed using two-tailed independent student’s t-test. Whilst, the data that were not normally 

distributed were analysed using Mann-Whitney U-test. Microsoft Excel and SPSS were used 

for the data analysis. 
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Chapter 3 

3. Metal ions antimicrobial efficacies against K. pneumoniae, A. baumannii 

and E. faecium in the presence and absence of 10 % bovine plasma  

conditioning film 

3.0. Introduction  

This chapter investigated fifteen metal ion solutions antimicrobial efficacies using preliminary 

tests such as zone of inhibition, minimum inhibitory concentration and minimum bactericidal 

concentration. These methods were feasible and easy to use. The metal ions solutions that 

demonstrated the greatest antimicrobial efficacies were further tested against selected 

pathogens using following methods. 

a) time kill assay: this assay was used to study the activity of an antimicrobial agent against a 

bacterial strain to determine the bactericidal or bacteriostatic activity of an antimicrobial 

agent over time.  

b) scanning electron microscopy: this method was used to analysed morphological changes to 

bacteria after antimicrobial agent treatment. 

c) energy dispersive x-ray microscopy: this method was used to analyse the elemental 

changes (carbon, oxygen, phosphorous, nitrogen and potassium) into the bacteria after 

antimicrobial agent treatment. 

d) Raman spectroscopy: Raman spectroscopy is a label-free analytical technique that can 

provide detailed molecular information of a sample in a non-destructive way.  Raman 

spectroscopy measure the transitions between vibrational levels of the molecules. The most 

important feature of the Raman spectroscopy is the ability to measure molecular properties of 

live cells in a culture medium. This method was used to analysed chemical changes 

(polysaccharide, protein, lipid and amide) into bacteria after antimicrobial agents treatment. 
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e) combitionation assays: to analyse the antimicrobial efficacies of antimicrobial agents in 

combinations; zone of inhibition, fractional inhibitory concentration and fractional bactericidal 

concentration assays were used. These assays measured the possible interactions between the 

tested antimicrobial agents. 

f) crystal violet biofilm assay: this assay was used to analyse the antimicrobial agents efficacy 

against the biofilm phenotype of bacteria. 

g) MTT assay: this assay was used to analyse the potential cell toxicity of antimicrobial agents 

for skin fibroblast cells. 

Objective  

 Evaluate the antimicrobial efficacies of the metal ions using ZoI, MIC, MBC and time 

kill assays against three selected pathogens in the absence and presence of 10 % 

bovine plasma. 

 Demonstrate the morphological, elemental and chemical changes for Ag, Cu, Pt, Au 

and Pd ions in the absence and presence of 10 % bovine plasma. 

 Determine the antimicrobial efficacies of Ag, Cu, Pt, Au and Pd against selected 

bacterial biofilms in the absence and presence of 10 % bovine plasma. 

 Determine antimicrobial efficacies of metal ions combinations (AgCu, AgPt, AgAu, 

AgPd, CuPt, CuAu, CuPd, AuPt, AuPd, PtPd) in the absence and presence of 10 % 

bovine plasma. 
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3.1 Antimicrobial efficacies for fifteen tested single metal ions in the absence and presence 

of 10 % bovine plasma conditioning films 

 3.1.1 Zone of inhibition 

Zone of inhibition assays were carried out using fifteen different single metal ions in the 

absence and presence of 10 % bovine plasma to determine the antimicrobial efficacy of the 

metal ions in a semi-solid matrix (agar). The results demonstrated that generally, an increasing 

antimicrobial efficacy was found with increasing concentrations of metal ions, from 0.05 

mgmL-1 to 1 mgmL-1 (p < 0.001) (Figure 3.1 and 3.2, a-c) against the three tested pathogens. 

The antimicrobial samples were categorised based on inhibition zones demonstration into i) 

0 mm = no effect, ii) 0 mm – 4 mm = weak effect, iii) 4 mm – 9 mm = moderate effect and 

iv) > 9 mm = strong effect. 

 

  3.1.1.1. Antimicrobial efficacies for K. pneumoniae, A, baumannii and E. 

faecium in the absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, at 1 mgmL-1, the Rh ions (11.5 mm) demonstrated the strongest 

antimicrobial efficacies. At 1 mgmL-1, Ru ions (10.7 mm), Pt ions (10.3 mm), Au and Pd ions 

(up to 10.0 mm) demonstrated strong antimicrobial efficacy. The Ti and Ta ions demonstrated 

moderate antimicrobial efficacies at all tested concentrations (1.0 mm – 9.0 mm). The Pt ions 

(3.5 mm – 6.0 mm) followed with the Au, Pd and Rh ions (1.5 mm – 4.0 mm) demonstrated 

the strongest antimicrobial efficacies at 0.05 mgmL-1 and 0.1 mgmL-1 concentrations.  The Mo 

ions demonstrated a weak antimicrobial activity at 0.1 mgmL-1, 0.5 mgmL-1 and 1 mgmL-1 (> 

2.5 mm) (Figure 3.1, a). Against K. pneumoniae, Y and Zn ions demonstrated no inhibition at 

0.05 mgmL-1 and 0.1 mgmL-1. Niobium Ga and Cu ion demonstrated no inhibition at 0.05 

mgmL-1.  
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A. baumannii 

Against A. baumannii, the strongest antimicrobial efficacies at 1 mgmL-1 was found for the Rh 

ions (12.5 mm), followed with the Pt ions (9.7 mm), then Au (8.7 mm), Ru (8.0 mm) and Pd 

(7.2 mm) ions. The Mo ions (1.0 mm, 3.0 mm and 2.0 mm) and the Cu ions (1.0 mm, 2.9 mm 

and 2.8 mm) demonstrated weak antimicrobial efficacies at 0.1 mgmL-1, 0.5 mgmL-1, 1 mgmL-

1 respectively (Figure 3.1, b). Yttrium, Mo, Zn and Cu ions demonstrated no inhibitory zones 

at 0.05 mgmL-1.  

E. faecium 

Against E. faecium, the strongest antimicrobial efficacies at 0.5 mgmL-1 and 1 mgmL-1 were 

demonstrated for Rh ions (6.0 mm and 7.0 mm respectively). The Pt, Au, Pd, Ag, Ti and Ta 

ions demonstrated moderate efficacies at 0.5 mgmL-1 and 1 mgmL-1 (3.0 mm – 5.5 mm) (Figure 

3.1, c). At concentration of 0.05 mgmL-1 and 0.1 mgmL-1 only Ag (3.1 mm and 3.7 mm) and 

Au ions (1 mm and 1.4 mm) and at 0.1 mgmL-1 Ti ions (0.5 mm) demonstrated inhibitory zones. 

The remaining ions displayed no inhibitions at 0.05 mgmL-1 and 0.1 mgmL-1 concentrations.  

 

 

  3.1.1.2. Antimicrobial efficacies for K. pneumoniae, A. baumannii and E. 

faecium in the presence of 10 % bovine plasma conditioning film  

K. pneumoniae 

Against K. pneumoniae, at 1 mgmL-1, Rh ions (11 mm) demonstrated the strongest efficacies, 

followed with Ru ions (10.5 mm) and Pt ions (10 mm). The Zn, Ti, Au and Pd ions (6.0 mm – 

9.0 mm) demonstrated a moderate antimicrobial efficacy at 0.5 mgmL-1 and 1 mgmL-1. The 

Mo ions demonstrated lower antimicrobial efficacies at all tested concentrations (0.1 mm – 1.5 

mm) (Figure 3.2, a). Yttrium and Zn ions demonstrated no inhibition at 0.05 mgmL-1 and 0.1 

mgmL-1. Moreover, Nb, Ga and Cu ion demonstrated no inhibition at 0.05 mgmL-1.  



75 
 

A. baumannii 

Against A. baumannii, The Rh ions demonstrated the strongest efficacies at 1 mgmL-1 (11 mm) 

and Pd ions demonstrated the strongest efficacies at 0.05 mgmL-1, 0.1 mgmL-1 and 0.5 mgmL-

1 (5.5 mm, 4 mm and 8 mm respectively). Moreover, Pt (9 mm), Au (8 mm) and Pd (7.5 mm) 

ions demonstrated good antimicrobial efficacies at 1 mgmL-1. The Mo ions (1.3 mm, 2 mm and 

2 mm) and Cu ions (0.2 mm, 0.5 mm and 2 mm) demonstrated weak antimicrobial efficacies 

at 0.1 mgmL-1, 0.5 mgmL-1, 1 mgmL-1 respectively (Figure 3.2, b). The Zn and Ga ions 

demonstrated no inhibitory zones at 0.05 mgmL-1 and 0.1 mgmL-1. Moreover, Y, Ti and In at 

0.05 mgmL-1 displayed no inhibition.  

E. faecium 

Against E. faecium, the strongest antimicrobial efficacies at 0.5 mgmL-1 and 1 mgmL-1 were 

demonstrated for the Rh ions (5.0 mm and 6.5 mm respectively), followed with Au and Pd ions 

(4.0 mm and 6.0 mm respectively). The Pt, Ag, Ti and Ta ions demonstrated moderate 

efficacies at 0.5 mgmL-1 and 1 mgmL-1 (3.0 mm – 5.5 mm) (Figure 3.2, c). At 0.05 mgmL-1 

and 0.1 mgmL-1 only Ag ions (1.6 mm and 1.9 mm respectively) and Au ions (1 mm) at 0.1 

mgmL-1 demonstrated inhibition. The remaining metal ions displayed no inhibitions at 0.05 

mgmL-1 and 0.1 mgmL-1 concentrations.  

 

Overall, the Rh ions demonstrated the strongest antimicrobial efficacy, followed with Pt ions 

and Pd ions against all the tested pathogens. At 0.05 mgmL-1 and 0.1 mgmL-1, the weakest 

antimicrobial metal ions were Y and Zn and Mo at 0.5 mgmL-1 and 1 mgmL-1 against K. 

pneumoniae. Against A. baumannii, Mo ions in the absence of CF and Zn and Ga ions in the 

presence of CF at 0.05 mgmL-1 and 0.1 mgmL-1 and Cu ions at 0.5 mgmL-1 and 1 mgmL-1 

showed the weakest antimicrobial activity. Against E. faecium, Y, Zn and In ions demonstrated 

the weakest antimicrobial activity. The presence of 10 % conditioning film (CF) resulted 
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inhibitory zones reduction of up to 1.0 mm to 1.5 mm against all the tested pathogens at all the 

tested concentrations. 
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Figure 3.1. Inhibitory effects for fifteen metal ions at 0.05 mgmL-1, 0.1 mgmL-1, 0.5 mgmL-1 

and 1 mgmL-1 against a) K. pneumoniae, b) A. baumannii and c) E. faecium in the absence of 

10 % plasma conditioning film (n = 24).  
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Figure 3.2. Inhibitory effects for fifteen metal ions at 0.05 mgmL-1, 0.1 mgmL-1, 0.5 mgmL-1 

and 1 mgmL-1 against a) K. pneumoniae, b) A. baumannii and c) E. faecium in the presence of 

10 % plasma conditioning film (n = 24).  
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 3.1.2. Minimum inhibitory concentrations (MICs) 

The MIC effects were evaluated by comparing the metal ions inhibitory concentrations with 

their respective acid control inhibitory concentrations. 

 

  3.1.2.1. MICs against K. pneumoniae, A. baumannii and E. faecium in the 

absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, Pt ions (0.003 mgmL-1) demonstrated the strongest efficacies 

compared to its respective acid control (5 % HCl, 0.015 mgmL-1). The Ag (0.01 mgmL-1) and 

Au and Pd ions (0.05 mgmL-1) displayed the second strongest antimicrobial inhibitory effects 

(2 % HNO3 (0.03 mgmL-1) and 5 % HCl (0.015 mgmL-1)). The Mo ions (0.03 mgmL-1), Zn 

(0.03 mgmL-1), Ru (0.015 mgmL-1) and Ga ions (0.015 mgmL-1) demonstrated with the same 

inhibitory values as their respective controls, hence the weakest inhibitory efficacies (0.03 

mgmL-1) (Table 3.1).   

A. baumannii 

Against A. baumannii, the Ag ions (0.003 mgmL-1) demonstrated the strongest efficacies, 

followed with the Ta ions (0.007 mgmL-1) compared with 2 % HNO3 control (0.062 mgmL-1). 

Weak antimicrobial efficacies were found with Ga (0.011 mgmL-1), Zn (0.031 mgmL-1) and Y 

ions (0.031 mgmL-1) compared to their respective controls (0.015 mgmL-1 and 0.062 mgmL-1 

(Table 3.1). The weakest efficacy was demonstrated for Mo ions (0.003), with similar as 

control inhibitory concentration.  

E. faecium 

Against E. faecium, the strongest efficacy was demonstrated for Ag ions (0.015 mgmL-1) 

compared to 2 % HNO3 control (0.125 mgmL-1). The Ta and Ti ions displayed the second 

strong inhibitory antimicrobial efficacy (0.031 mgmL-1). The Mo (0.015 mgmL-1), Y (0.125 
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mgmL-1) and Ga (0.062 mgmL-1) ions displayed the weakest efficacies with same inhibitory 

values as their respective controls (10 % HCl, 2 % HNO3 and 5 % HNO3). The Pt (0.011 mgmL-

1), Pd (0.015 mgmL-1) and Au (0.011 mgmL-1) ions displayed strong efficacies when compared 

with 5 % HCl control (0.062 mgmL-1) (Table 3.1).  

 

  3.1.2.1. The MICs against K. pneumoniae, A. baumannii and E. faecium in 

the presence of 10 % bovine plasma conditioning films 

K. pneumoniae 

Against K. pneumoniae, the Pt ions, Au ions and Pd ions (0.007 mgmL-1) demonstrated the 

strongest efficacies compared with 5 % HCl control (0.031 mgmL-1). The Ag ions (0.013 

mgmL-1) demonstrated the second strong antimicrobial efficacy compared with 2 % HNO3 

(0.039 mgmL-1). The Ti (0.023 mgmL-1), Ta (0.015 mgmL-1), Rh (0.011 mgmL-1) and Ru 

(0.015 mgmL-1) displayed moderate efficacies compared with respective controls (2 % HNO3 

and 5 % HCl). The Mo (0.003 mgmL-1) and Zn ions (0.039 mgmL-1) displayed the same 

inhibitory values as their respective controls and hence the weakest efficacies (10 % HCl (0.003 

mgmL-1) and 5 % HNO3 (0.039 mgmL-1)). (Table 3.2).  

A. baumannii 

Against A. baumannii, the Ag ions (0.004 mgmL-1) demonstrated the strongest antimicrobial 

activity compared with 2 % HNO3 control (0.062 mgmL-1). Tantalum (0.015 mgmL-1) and Rh 

(0.009 mgmL-1) ions displayed moderate inhibition compared with 2 % HNO3 (0.062 mgmL-

1) and 5 % HCl (0.031 mgmL-1) controls respectively. Zn (0.039 mgmL-1) and Y (0.046 mgmL-

1) ions displayed a weak inhibition (2 % HNO3 control (0.062 mgmL-1)). The Mo (0.003 mgmL-

1) displayed same inhibitory values as their respective controls (10 % HCl (0.003 mgmL-1)) 

and thus, the weakest efficacies. (Table 3.2). 
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E. faecium 

Against E. faecium, the Ag ions (0.015 mgmL-1) displayed the strongest efficacy (2 % HNO3 

(0.125 mgmL-1)). Platinum, Au and Pt ions (0.015 mgmL-1 – 0.019 mgmL-1) and Ti and Ta 

ions (0.031 mgmL-1) displayed a moderate compared with their controls 5 % HCl (0.078 

mgmL-1) and 2 % HNO3 (0.125 mgmL-1) respectively. The Y (0.125 mgmL-1), Zn (0.125 

mgmL-1) and Mo (0.015 mgmL-1) ions demonstrated the weakest inhibition with same 

concentrations as their respective controls (2 % HNO3 and 10 % HCl respectively) (Table 3.2).  

 

Thus, in summary, the best antimicrobial inhibitory efficacy was demonstrated for the Pt ions 

against K. pneumoniae. Whilst, the Pt ions, Pd ions and Au ions demonstrated the best 

antimicrobial efficacies in the presence of plasma against K. pneumoniae. Against A. 

baumannii and E. faecium, the Ag ions demonstrated the best MICs. The Mo ions against Gram 

negative species and the Mo, Y and Zn ions against E. faecium demonstrated with the weakest 

MICs. All the tested metal ions demonstrated a lower antimicrobial activity against all the three 

bacterial isolates in the presence of 10 % bovine plasma CF. The most resistant bacteria were 

E. faecium.  
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Table 3.1. Minimum inhibitory concentration for fifteen metal ions and four acid carrier 

solutions against K. pneumoniae, A. baumannii and E. faecium in the absence of 10 % plasma 

conditioning films (n = 4). The highlighted blue colour represents the greatest antimicrobial 

efficacy compared to their respective acid controls. 

Metal ions/acid 

controls 

 

K. pneumoniae 

 

A. baumannii 

 

E. faecium 

Y (2 % HNO3) 0.015 ± 0 0.031 ± 0 0.125 ± 0 

Ti (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

Ta (2 % HNO3) 0.007 ± 0 0.007 ± 0 0.031 ± 0 

In (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

Nb (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

Rh (5 % HCl) 0.007 ± 0 0.007 ± 0 0.031 ± 0 

Ru (5 % HCl) 0.015 ± 0 0.007 ± 0 0.031 ± 0 

Mo (10 % HCl) 0.003 ± 0 0.003 ± 0 0.015 ± 0 

Zn (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.125 ± 0 

Ga (5 % HNO3) 0.015 ± 0 0.011 ± 0.002 0.062 ± 0 

Ag (2 % HNO3) 0.011 ± 0.002 0.003 ± 0 0.015 ± 0 

Cu (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

Pt (5 % HCl) 0.003 ± 0 0.005 ± 0.001 0.011 ± 0.002 

Au (5 % HCl) 0.005 ± 0.001 0.003 ± 0 0.011 ± 0.002 

Pd (5 % HCl) 0.005 ± 0.001 0.007 ± 0 0.015 ± 0 

2 % HNO3 0.031 ± 0 0.062 ± 0 0.125 ± 0 

5 % HNO3 0.015 ± 0 0.015 ± 0 0.062 ± 0 

5 % HCl 0.015 ± 0 0.015 ± 0 0.062 ± 0 

10 % HCl 0.003 ± 0 0.003 ± 0 0.015 ± 0 
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Table 3.2. Minimum inhibitory concentration for fifteen metal ions and four acid carrier 

solutions against K. pneumoniae, A. baumannii and E. faecium in the presence of 10 % plasma 

conditioning films (n = 4). The highlighted blue colour represents the greatest antimicrobial 

efficacy compared to their respective acid controls. 

Metal ions/acid 

controls 

 

K. pneumoniae 

 

A. baumannii 

 

E. faecium 

Y (2 % HNO3) 0.031 ± 0 0.046 ± 0.007 0.125 ± 0 

Ti (2 % HNO3) 0.023 ± 0.003 0.031 ± 0 0.031 ± 0 

Ta (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

In (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.109 ± 0.013 

Nb (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.125 ± 0 

Rh (5 % HCl) 0.011 ± 0.002 0.009 ± 0.001 0.031 ± 0 

Ru (5 % HCl) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

Mo (10 % HCl) 0.003 ± 0 0.003 ± 0 0.015 ± 0 

Zn (2 % HNO3) 0.039 ± 0.006 0.039 ± 0.006 0.125 ± 0 

Ga (5 % HNO3) 0.031 ± 0 0.015 ± 0 0.062 ± 0 

Ag (2 % HNO3) 0.013 ± 0.00 0.004 ± 0.0008 0.015 ± 0 

Cu (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.062 ± 0 

Pt (5 % HCl) 0.007 ± 0 0.007 ± 0 0.015 ± 0 

Au (5 % HCl) 0.007 ± 0 0.007 ± 0 0.015 ± 0 

Pd (5 % HCl) 0.007 ± 0 0.007 ± 0 0.019 ± 0.003 

2 % HNO3 0.039 ± 0.006 0.062 ± 0 0.125 ± 0 

5 % HNO3 0.039 ± 0.006 0.031 ± 0 0.093 ± 0.015 

5 % HCl 0.031 ± 0 0.031 ± 0 0.078 ± 0.013 

10 % HCl 0.003 ± 0 0.003 ± 0 0.015 ± 0 
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 3.1.3. Minimum bactericidal concentrations (MBCs) 

The MBCs antimicrobial effects were evaluated by comparing with their respective acid 

control values. 

  3.1.3.1. The MBCs against K. pneumoniae, A. baumannii and E. faecium in 

the absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, the Ag ions (0.011 mgmL-1) demonstrated the strongest antimicrobial 

activity compared to 2 % HNO3 control concentration (0.062 mgmL-1). The Pt, Au and Pd 

(0.003 mgmL-1) ions demonstrated the second strong bactericidal activity (5 % HCl control 

(0.015 mgmL-1)). In addition, the Cu, Ti and Ta ions (0.015 mgmL-1) displayed moderate 

efficacies compared with 2 % HNO3 (0.062 mgmL-1) control concentration. The Nb ions (0.046 

mgmL-1), followed with the Zn and In (0.031 mgmL-1) ions displayed weak bactericidal 

efficacies compared with 2 % HNO3 control (0.062 mgmL-1). The Mo ions displayed similar 

bactericidal concentration as the acid control (0.003 mgmL-1) and hence the weakest 

bactericidal efficacy (Table 3.3).  

A. baumannii 

Against A. baumannii, the Ag ions (0.007 mgmL-1) demonstrated the strongest bactericidal 

efficacy compared to 2 % HNO3 control concentration (0.062 mgmL-1). Moderate bactericidal 

efficacies were demonstrated for the Ti, Ta, Cu (0.015 mgmL-1) compared with 2 % HNO3 

control (0.062 mgmL-1) and Pt, Au and Pd ions (0.005 mgmL-1 – 0.007 mgmL-1) compared 

with 5 % HCl control (0.015 mgmL-1). The weakest bactericidal efficacy was demonstrated for 

the Mo (0.007 mgmL-1) and Rh (0.015 mgmL-1) ions with same bactericidal concentrations as 

their respective controls (Table 3.3).  
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E. faecium 

Against E. faecium, the strongest bactericidal activity was demonstrated for the Ta and Ag 

(0.062 mgmL-1) ions compared to 2 % HNO3 (0.250 mgmL-1) concentration and Pt, Au and Pd 

ions (0.031 mgmL-1) compared with 5 % HCl (0.125 mgmL-1) concentration. The Mo (0.015 

mgmL-1) and Zn (0.250 mgmL-1) ions demonstrated the weakest bactericidal efficacies with 

same bactericidal concentrations as their respective controls (Table 3.3). 

 

  3.1.3.2. The MBCs against K. pneumoniae, A. baumannii and E. faecium in 

the presence of 10 % bovine plasma conditioning films 

K. pneumoniae 

Against K. pneumoniae, Ag ions (0.015 mgmL-1) demonstrated the strongest efficacies 

compared with the 2 % HNO3 control value (0.078 mgmL-1). In addition, the Pt, Au and Pd 

ions (0.015 mgmL-1) displayed a significant bactericidal activity compared with 5 % HCl 

(0.062 mgmL-1). The Ti (0.039 mgmL-1) and Ta (0.031 mgmL-1) ions compared with 2 % 

HNO3 (0.078 mgmL-1) displayed moderate efficacies. Moreover, Y, In, Nb, Cu (0.062 mgmL-

1) (2 % HNO3 control) and Ga ions (0.062 mgmL-1) (5 % HNO3 (0.078 mgmL-1)) demonstrated 

weak antimicrobial efficacy compared with respective controls. The Mo (0.007 mgmL-1) and 

Zn (0.078 mgmL-1) demonstrated the weakest antimicrobial effects with similar bactericidal 

concentration as 10 % HCl and 2 % HNO3 respectively (Table 3.4).  

A. baumannii 

Against A. baumannii, the Ag ions (0.007 mgmL-1) demonstrated the strongest bactericidal 

efficacy compared to the 2 % HNO3 control concentration (0.125 mgmL-1). Moderate 

bactericidal efficacies were demonstrated for the Ti (0.039 mgmL-1) and Ta (0.031 mgmL-1) 

compared with 2 % HNO3 control (0.125 mgmL-1) and Pt, Au and Pd ions (0.015 mgmL-1) 

compared with 5 % HCl control (0.062 mgmL-1). The least bactericidal efficacy was 
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demonstrated for the Mo ions (0.007 mgmL-1) with same bactericidal concentrations as their 

respective controls (Table 3.4).  

E. faecium 

Against E. faecium, the strongest bactericidal activity was demonstrated for the Ag (0.031 

mgmL-1) ions compared to 2 % HNO3 (0.250 mgmL-1) concentration and Pt, Au and Pd ions 

(0.031 mgmL-1) compared with 5 % HCl (0.125 mgmL-1) concentration. Whilst, the weakest 

bactericidal activity was demonstrated for the Y (2 % HNO3 (0.250 mgmL-1)), Zn 2 % (HNO3 

(0.250 mgmL-1)) and Mo (2 % HCl (0.015 mgmL-1)) ions with similar values as their acid 

controls (Table 3.4).  

 

In summary the bactericidal efficacies demonstrated that the Ag ions against both the Gram-

negative pathogens and Ag, Pt, Au and Pd ions against E. faecium demonstrated the strongest 

bactericidal concentrations in the presence and absence of plasma CF. The weakest bactericidal 

efficacy was demonstrated for the Mo ions against all the tested pathogens in the presence or 

absence of plasma. Moreover, Zn and Y ions demonstrated the least efficacies against E. 

faecium. Interestingly, Ag ions were found to demonstrate a greater antimicrobial activity in 

presence of 10 % plasma CF (0.031 mgmL-1) than without plasma (0.062 mgmL-1) against E. 

faecium. All the tested metal ions demonstrated a lower bactericidal activity against all the 

three bacterial isolates in the presence of 10 % bovine plasma CF. Gram-positive E. faecium 

was the most resistant bacteria.  
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Table 3.3. Minimum bactericidal concentrations for fifteen metal ions and four acid carrier 

solutions against K. pneumoniae, A. baumannii and E. faecium in the absence of 10 % plasma 

conditioning film (n = 4). The highlighted blue colour represents the greatest antimicrobial 

efficacy compared to their respective acid controls. 

Metal ions/acid 

controls 

 

K. pneumoniae 

 

A. baumannii 

 

E. faecium 

Y (2 % HNO3) 0.023 ± 0.005 0.031 ± 0 0.125 ± 0 

Ti (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.125 ± 0 

Ta (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

In (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.125 ± 0 

Nb (2 % HNO3) 0.046 ± 0.011 0.015 ± 0 0.125 ± 0 

Rh (5 % HCl) 0.015 ± 0 0.007 ± 0 0.062 ± 0 

Ru (5 % HCl) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

Mo (10 % HCl) 0.003 ± 0 0.007 ± 0 0.015 ± 0 

Zn (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.250 ± 0 

Ga (5 % HNO3) 0.015 ± 0 0.015 ± 0 0.062 ± 0 

Ag (2 % HNO3) 0.011 ± 0.002 0.007 ± 0 0.062 ± 0 

Cu (2 % HNO3) 0.015 ± 0 0.015 ± 0 0.125 ± 0 

Pt (5 % HCl) 0.003 ± 0 0.007 ± 0 0.031 ± 0 

Au (5 % HCl) 0.003 ± 0 0.005 ± 0.001 0.031 ± 0 

Pd (5 % HCl) 0.003 ± 0 0.007 ± 0 0.031 ± 0 

2 % HNO3 0.062 ± 0 0.062 ± 0 0.250 ± 0 

5 % HNO3 0.031 ± 0 0.031 ± 0 0.125 ± 0 

5 % HCl 0.015 ± 0 0.015 ± 0 0.125 ± 0 

10 % HCl 0.003 ± 0 0.007 ± 0 0.015 ± 0 
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Table 3.4. Minimum bactericidal concentrations for fifteen metal ions and four acid carrier 

solutions against K. pneumoniae, A. baumannii and E. faecium in the presence of 10 % plasma 

conditioning film (n = 4). The highlighted blue colour represents the greatest antimicrobial 

efficacy compared to their respective acid controls. 

Metal ions/acid 

controls 

 

K. pneumoniae 

 

A. baumannii 

 

E. faecium 

Y (2 % HNO3) 0.062 ± 0 0.062 ± 0 0.250 ± 0 

Ti (2 % HNO3) 0.039 ± 0.006 0.039 ± 0.006 0.062 ± 0 

Ta (2 % HNO3) 0.031 ± 0 0.031 ± 0 0.062 ± 0 

In (2 % HNO3) 0.062 ± 0 0.062 ± 0 0.125 ± 0 

Nb (2 % HNO3) 0.062 ± 0 0.062 ± 0 0.125 ± 0 

Rh (5 % HCl) 0.031 ± 0 0.015 ± 0 0.062 ± 0 

Ru (5 % HCl) 0.031 ± 0 0.031 ± 0 0.062 ± 0 

Mo (10 % HCl) 0.007 ± 0 0.007 ± 0 0.015 ± 0 

Zn (2 % HNO3) 0.078 ± 0.027 0.062 ± 0 0.250 ± 0 

Ga (5 % HNO3) 0.062 ± 0 0.031 ± 0 0.125 ± 0 

Ag (2 % HNO3) 0.015 ± 0 0.007 ± 0 0.031 ± 0 

Cu (2 % HNO3) 0.062 ± 0 0.062 ± 0 0.125 ± 0 

Pt (5 % HCl) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

Au (5 % HCl) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

Pd (5 % HCl) 0.015 ± 0 0.015 ± 0 0.031 ± 0 

2 % HNO3 0.078 ± 0.017 0.125 ± 0 0.250 ± 0 

5 % HNO3 0.078 ± 0.017 0.062 ± 0 0.208 ± 0.027 

5 % HCl 0.062 ± 0 0.062 ± 0 0.166 ± 0.027 

10 % HCl 0.007 ± 0 0.007 ± 0 0.015 ± 0 
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3.1.4. Time kill assay for five selected metal ions (Ag, Cu, Pt, Au and Pd ions) 

 3.1.4.1. Antimicrobial efficacy against K. pneumoniae with and without 10 % 

bovine plasma conditioning film 

The antimicrobial effects of five metal ions Ag, Cu, Pt, Au and Pd were tested at 0 h, 2 h, 4 h 

and 24 h time points. These metals were tested in the presence and absence of 10 % bovine 

plasma against K. pneumoniae (Figure 3.3 and 3.4, a-e). The bacterial growth pattern was also 

analysed in the presence 2 % HNO3 and 5 % HCl acid controls. With and without CF, 1 to 2 

log reductions in bacterial viable count were demonstrated for all tested metal ions when 

compared with acid controls (2 % HNO3 and 5 % HCl) and negative control (from 1011 to 109) 

(p < 0.05). With and without CF, the tested bacteria time kill profile for Ag, Pt, Au and Pd ions 

(0.01 mgmL-1 and 0.1 mgmL-1) and Cu ions (0.01 mgmL-1, 0.1 mgmL-1 and 1 mgmL-1) showed 

a gradual rise in the viable cells over a period of 24 h (from 107 to 109) (p > 0.05). At 1 mgmL-

1, Ag ions at 4 h, Pt ions at 2 h and Au and Pd ions at 0 h time points demonstrated 100 % 

bacterial reduction in the absence of plasma CF. At 1 mgmL-1, Ag ions at 24 h and Pt, Au and 

Pd ions at 4 h (p < 0.001) demonstrated 100 % bacterial reduction in the presence of plasma 

CF. The bacterial control growth pattern showed a log increase in viable count when allowed 

to grow in presence of 10 % bovine plasma (Figure 3.3 and 3.4, a-e). 

Overall, without plasma CF, Au and Pd ions and with plasma CF, Pt ions, Au ions and Pd ions 

demonstrated the best antimicrobial efficacies whilst, Cu ions showed the least antimicrobial 

efficacy.  
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Figure 3.3. Time kill assay results for a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against K. pneumoniae in the absence of 10 % 

plasma conditioning film (p < 0.001) (n = 3).  
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Figure 3.4. Time kill assay results for a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against K. pneumoniae in the presence of 10 % 

plasma conditioning film (p < 0.001) (n = 3).  
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 3.1.4.2. Antimicrobial efficacy against A. baumannii with and without 10 % bovine 

plasma conditioning films 

The antimicrobial effects of five metal ions Ag, Cu, Pt, Au and Pd were tested at 0 h, 2 h, 4 h 

and 24 h time points. These metal ions were tested in the presence and absence of 10 % bovine 

plasma against A. baumannii (Figure 3.5 and 3.6, a-e). The bacterial growth pattern was also 

analysed for 2 % HNO3 and 5 % HCl acid controls. With and without CF, 1 to 2 log reductions 

in bacterial viable count were demonstrated for all tested metal ions when compared with acid 

controls (2 % HNO3 and 5 % HCl) and negative control (from 1011 to 109) (p < 0.05). With and 

without CF, the tested bacteria time kill profile for Ag, Pt, Au and Pd ions (0.01 mgmL-1 and 

0.1 mgmL-1) and Cu ions (0.01 mgmL-1, 0.1 mgmL-1 and 1 mgmL-1) showed a gradual rise in 

the viable cells over a period of 24 h (from 107 to 109) (p > 0.05). At 1 mgmL-1, Ag ions at 24 

h, Pt ions at 2 h and Au and Pd ions at 0 h time points demonstrated 100 % bacterial reduction 

in the absence of plasma CF. At 1 mgmL-1, Ag ions at 24 h and Pt ions, Au and Pd ions at 4 h 

(p < 0.001) demonstrated 100 % bacterial reduction in the presence of plasma CF. The bacterial 

control growth pattern showed a log increase in viable count when allowed to grow in presence 

of 10 % bovine plasma (Figure 3.5 and 3.6, a-e). 

 

Overall, without plasma CF, Au and Pd ions and with plasma CF, Pt, Au and Pd ions 

demonstrated the best antimicrobial efficacies, whilst, Cu ions showed the least antimicrobial 

efficacy.  
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Figure 3.5. Time kill assay results for a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against A. baumannii in the absence of 10 % plasma 

conditioning film (p < 0.001) (n = 3).  
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Figure 3.6. Time kill assay results for a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against A. baumannii in the presence of 10 % 

plasma conditioning film (p < 0.001) (n = 3).  
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 3.1.4.3 Antimicrobial efficacy against E. faecium with and without 10 % bovine 

plasma conditioning films 

The antimicrobial effects of five metal ions Ag, Cu, Pt, Au and Pd were tested at 0 h, 2 h, 4 h 

and 24 h time points. These metals were tested in the presence and absence of 10 % bovine 

plasma against E. faecium (Figure 3.7 and 3.8, a-e). The bacterial growth pattern was also 

analysed for 2 % HNO3 and 5 % HCl acid controls. With and without CF, 1 to 2 log reductions 

in bacterial viable count were demonstrated for all tested metal ions when compared with acid 

controls (2 % HNO3 and 5 % HCl) and negative control (from 1011 to 109) (p < 0.05). With and 

without CF, the tested bacteria time kill profile for Ag, Pt, Au and Pd ions (0.01 mgmL-1 and 

0.1 mgmL-1) and Cu ions (0.01 mgmL-1, 0.1 mgmL-1 and 1 mgmL-1) showed a gradual rise in 

the viable cells over a period of 24 h (from 107 to 109) (p > 0.05). Silver ions demonstrated the 

best antimicrobial effects with zero viable bacterial at 24 h when tested in the presence or 

absence of CF plasma at 1 mgmL-1 (p < 0.001). Platinum, Au and Pd ions showed a 5-log 

reduction in bacterial viable count when compared with E. faecium negative control at 1 mgmL-

1 (p < 0.05) (Figure 3.7 and 3.8, a-e).  

 

Overall, with and without plasma CF, Ag ions demonstrated the best antimicrobial efficacy and 

Cu ions demonstrated the least antimicrobial activity. E. faecium was found to be the most 

resistant against all the tested metals. 
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Figure 3.7. Time kill assay results for a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against E. faecium in the absence of 10 % plasma 

conditioning film (p < 0.05) (n = 3).  
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Figure 3.8. Time kill assay results of a) Ag, b) Cu, c) Pt, d) Au and e) Pd ions at 0.01 mgmL-

1, 0.1 mgmL-1 and 1 mgmL-1 concentrations against E. faecium in the presence of 10 % plasma 

conditioning film (p < 0.05) (n = 3).  

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0 2 4 6 8 10 12 14 16 18 20 22 24

C
F

U
m

L
-1

Time points (h)

Ag0.01 Ag0.1

Ag1 2 % HNO3

EF CF

*

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0 2 4 6 8 10 12 14 16 18 20 22 24

C
F

U
m

L
-1

Time points (h)

Cu0.01 Cu0.1

Cu1 2 % HNO3

EF CF

b)

*

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0 2 4 6 8 10 12 14 16 18 20 22 24

C
F

U
m

L
-1

Time points (h)

Pt0.01 Pt0.1

Pt1 5 % HCl

EF CF

c)

*

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0 2 4 6 8 10 12 14 16 18 20 22 24

C
F

U
m

L
-1

Time points (h)

Au0.01 Au0.1

Au1 5 % HCl

EF CF

d)

*

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0 2 4 6 8 10 12 14 16 18 20 22 24

C
F

U
m

L
-1

Time points (h)

Pd0.01 Pd0.1

Pd1 5 % HCl

EF CF

e)

*

a) 



98 
 

3.1. Discussion 

Antimicrobial efficacies in the absence conditioning film 

Various antimicrobial applications of metals to reduce bacterial infection and transmission 

risks have been explored, for instance, silver in wound dressings, silver and copper to disinfect 

water at hospital sites and gold and palladium coatings on catheters (Huang et al., 2008; 

Chandra et al., 2011; Thomas et al., 2011). Recently, graphene based compound have been 

suggested a potential material for the development of antimicrobial surfaces owing to their 

contact-based antimicrobial efficacy (Perreault et al., 2015). 

From this work, the Rh, Pt and Pd ions demonstrated the best antimicrobial efficacies in the 

ZoI results. Silver, Pt, Pd and Au ions demonstrated strong antimicrobial efficacies in the MIC, 

MBC and time kill assay.  

 Metal ions suggested antimicrobial mechanisms 

  Platinum, palladium and rhodium 

The target of Pt in the form of primary cis-platin is DNA but it also has an affinity for the 

sulphur and selenium donors present in many proteins (Lippard, 1989; Roberts and Thomson, 

1979). A palladium complex with 1,6-bis(benzimidazol-2-yl)-3,4-dithiahexane was thought to 

exhibit bacterial toxicity mechanisms due to metal protein binding leading to DNA damage, 

causing cell death. Rhodium ions were suggested to target protein synthesis and enzyme 

disruption (Vaidya et al., 2018). Aslan et al. (2011) used salicylaldehyde 

benzenesulfonylhydrazone Pd complexes (12 mm) and demonstrated a greater ZoI compared 

to Pt (10 mm) when used at a 140 µgdisk-1 against K. pneumoniae. Further, in agreement with 

our results, the tetraaza macrocyclic complexes of metals (Pt, Pd and iridium (Ir)) demonstrated 

antimicrobial activity in order of Pd > Pt > Ir against S. aureus and E. coli (Chandra et al., 

2011). Platinum nanoparticles have demonstrated antimicrobial efficacies against Bacillus 

subtilis, S. aureus, P. aeruginosa and E. coli (Ayaz Ahmed et al., 2016) whereas other studies 
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have found no effect (Wernicki et al., 2014). A study tested the antibacterial properties of nine 

different metal surfaces against S. aureus and E. coli and found that Pd demonstrated a greater 

antimicrobial efficacy than other metals tested (Yasuyuki et al., 2010). Another study also 

looked at the antimicrobial efficacy of number of metals including platinum and palladium and 

it was found that they were effective against E. coli (Kawakami et al., 2008). Similar to our 

results, Pt cisplatin ionic co-ordinated complexes have demonstrated an effective ZoI (19 mm, 

21 mm and 25 mm) at 200 µMmL-1 and MIC of 75 µMmL-1 against B. subtilis, S. aureus and 

E. coli respectively (Gaballa, 2010). The Rh (III) complex with tetradentate macrocyclic 

demonstrated an antimicrobial inhibitory zone of 25 mm against E. coli and 28 mm against S. 

aureus (Chandra et al., 2011). 

  Gold 

The mechanistic action of gold has been suggested to be due to strong cationic attractions to 

the negatively charged plasma membrane of microbes which lead to cell membrane disruption, 

ROS accumulation and consequent cell death (Huh and Kwon, 2011; Casey et al., 2010). A 

study found that gold demonstrated little effect against Escherichia coli or S. aureus 

(Kawakami et al., 2008). However, gold in nanoparticle and ionic form has been suggested to 

have antimicrobial activity (Zhang et al., 2015). Few studies have demonstrated the 

antimicrobial efficacy of Au in their ionic forms; however, Au complexes (tetradentate 

macrocyclic, etc.) have been shown to demonstrate inhibition against bacterial pathogens 

(Saygun et al., 2006; Mishra et al., 2006; Nazari et al., 2012). In agreement to our results, Au 

complex of phosphanegold (I) dithiocarbamates has been shown to demonstrate lower MICs 

and MBCs (7.81 to 125 µgmL-1) against S. aureus and B. subtilis (Sim et al., 2014). 

  Silver 

Silver alginate has displayed antimicrobial efficacy against bacterial species including A. 

baumannii, K. pneumoniae and E. faecium (Castellano et al., 2007; Thomas et al., 2011). 
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Another study stated that nano-silver particles inhibited 99 % of E. coli within 30 mins of 

exposure at 0.5 g (Xia et al., 2017). The antimicrobial efficacies of Ag have been a combination 

of mechanisms. Firstly, Ag ions might bind and destabilise the bacterial cell membrane 

phospholipids (Jung et al., 2008). This would lead to disruption in the electron transport chain 

and loss of potassium ions and decreased adenosine triphosphate (Sutterlin et al., 2012). 

Secondly, Ag ions can interact with cytoplasmic molecules such as nucleic acids and enzymes. 

Thirdly, intracellular Ag ion accumulation might generate ROS. Furthermore, Ag ions impact 

on the process of cell division by interacting with the nitrogen bases of the deoxyribonucleic 

acid chains (Jung et al., 2008; Dakal et al., 2016). These processes might lead to cell 

destruction. Silver ions have also been shown to demonstrate low MIC values (0.004 to 0.64 

mgL-1) against the tested pathogens including Enterococcus species (Ahmad and Viljoen, 

2015).  

  Copper 

Though Cu is a known antimicrobial and possess some of the above-mentioned chemical 

antimicrobial modes of action against bacterial cells in this study. Copper ions demonstrated 

weak antimicrobial efficacies against the tested bacteria. In agreement with our results, Ag ions 

demonstrated a greater antimicrobial efficacy than Cu ions in the bacterial viability tests 

against Listeria monocytogenes (Tamayo et al., 2014). The lower antimicrobial efficacy of Cu 

has been suggested to be due to the hemostasis mechanisms (Slavin et al., 2017). It has also 

been suggested that Cu+2 is reduced to Cu+, once Cu+2 binds with the bacterial protein thiol 

group. This is followed with a dismutation of the displaced Cu+ to regenerate Cu+2 (Berthon et 

al., 1995; Slavin et al., 2017).  The reversible bonding of Cu and bacterial thiol group might 

form oxidized variable of amino acids (e.g. cystine an oxidized variable of cysteine). These 

oxidized amino acids can participation in the vital bacterial cellular process (Berthon et al., 

1995; Rigo et al., 2004). However, Ag+ binds to amino acids in an irreversible bonding forming 
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amino acid precipitation leaving no residue to participate in vital cellular process (Scarpa et al., 

1996; Rigo et al., 2004). In contrast to our results, Cu (II) complexes with ethylenediamine 

were found to be the most antimicrobial with inhibitory concentrations of 4 µgmL-1 – 6 µgmL-

1 compared to nickel (II) and zinc (II) complex (6 µgmL-1 – 8 µgmL-1) against E. coli, S. aureus 

and P. aeruginosa (Raman et al., 2011). Copper ions released from copper alloys have been 

suggested to target bacteria by increasing ROS production and thus inducing DNA damage. 

However, this concept has been contested and it has further been demonstrated that the cell 

envelope is the first part of the attack when bacteria are in contact with the dry copper surface 

(Santo et al., 2011). In terms of the results of this study, this concept holds true and would in 

part explain the low antimicrobial results when the copper was used in solution. Further, there 

are significant differences that exist between the exposure of bacteria to copper ions and 

exposure to metallic copper surfaces, since the cells on dry metallic copper surfaces are not in 

an environment that promotes growth. Therefore, these cells face challenges that are different 

from those in a wet environment (Casey et al., 2010; Santo et al., 2011). It has also been 

suggested that the antibacterial property of copper is attributed mainly to the adhesion of the 

bacteria to the copper because of their opposite electrical charges, resulting in a reduction 

reaction at the bacterial cell wall; this has led to suggestions that copper ions do not act like 

some other metals ions such as silver (Zanzen et al., 2013). Thus, it may be that when the 

bacteria are in direct contact with copper surfaces, an enhanced antimicrobial effect is achieved. 

Effect of conditioning films 

The metal ions were also tested in the presence of 10 % bovine plasma, to replicate in vivo like 

conditions. It should also be noted that in presence of 10 % plasma CF, a decrease in the 

antimicrobial efficacies of all the metals were found in all the tests when used against the metal 

ions alone. Bovine plasma is a mixture of variety of proteins such as albumin, pre-albumin, 

glycoprotein, immunoglobins etc. (Farrell et al., 2013). This can be explained in part metal ions 
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in a liquid phase undergo immediate hydrolysis, when in the presence of the plasma proteins. 

The hydrolysis process makes metal ions a weak component to bind with the bacterial 

components owing to formation of a multiple oxidation state. This might increase the overall 

time of the redox reaction between metal ions and bacterial components (Iqbal et al., 2009; 

Benedetti et al., 2011; Bal et al., 2013). In agreement with our finding, Lourenco et al. (2018) 

demonstrated that Au nanoparticles demonstrated a 3.8 log S. aureus reduction in absence of 

bovine serum albumin (BSA); whilst only 0.5 log bacterial reduction in the presence of BSA. 

Similarly, titanium nitride silver coated surfaces showed no inhibition in presence of blood and 

BSA condition films and 0.06 to 0.1 mm of inhibitory zones were found against S. aureus in 

absence of CFs (Saubade et al., 2018). 
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3.2. Morphological changes observed using scanning electron microscopy (SEM) 

 3.2.1. Klebsiella pneumoniae, A. baumannii and E. faecium structural changes after 

treatment with metal ions (Ag, Cu, Pt, Au and Pd) at 0 h and 24 h in the absence of 10 % 

bovine plasma conditioning film 

The changes in the bacterial cell morphology after the metal ions treatment was analysed using 

SEM. The untreated cells were found to have normal and smooth surface and intact shape 

(Table 3.5 - 3.7, a). Different characteristics of morphological changes were observed after 

metal ion treatment at 0 h and 24 h. It was also evident that all the bacterial cells were found 

with greater deformities after 24 h metal ion treatment than 0 h treatment. The prominent 

changes after Ag and Cu ions treatment against A. baumannii and E. faecium were cell seepage 

and hence lysis (Table 3.6 and 3.7 – i c and ii c). The significant morphological changes 

observed after Pt, Au and Pd ions treatment were numerous pits / holes formation on the 

surfaces, cell surface grooves, cell shape changes (deformed or elongation) when compared 

with the control (Table 3.5 – 3.7, iii – iv - b, c). The noticeable deformed feature in the K. 

pneumoniae cells was the breakage of cell junction after 24 h Pt ion treatment (Table 3.5, iii – 

c). Against E. faecium in the presence Pt, Au and Pd ions stressed environment, a blanket of 

cell seepage content appearance was observed (Table 3.7 – iii – v, c).  
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Table 3.5. Morphological changes of K. pneumoniae in the absence of 10 % plasma 

conditioning film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = 

platinum, Au = gold and Pd = palladium.  

Control 

 

Metal ion 

solutions 

K. pneumoniae after 0 

h metal treatment in the 

absence of CF 

K. pneumoniae after 24 

h metal treatment in the 

absence of CF 
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 b) c) 

Ag        i) 

  

Cu       ii) 

  

Pt        iii) 

  

Au      iv) 

  

Pd        v) 
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Deformation  

Cell junction 
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Table 3.6. Morphological changes of A. baumannii in the absence of 10 % plasma conditioning 

film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = platinum, Au = 

gold and Pd = palladium. 

Control 

 

Metal ion 

solutions 

A. baumannii after 0 h 

metal treatment in the 

absence of CF 

A. baumannii after 24 h 

metal treatment in the 

absence of CF 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 b) c) 

Ag        i) 

  

Cu       ii) 

  

Pt        iii) 

  

Au      iv) 

  

Pd        v) 
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Deformed cell 

Holes  

Cell elongation  
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Table 3.7. Morphological changes of E. faecium in the absence of 10 % plasma conditioning 

film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = platinum, Au = 

gold and Pd = palladium. 

Control 

 

Metal ion 

solutions 

E. faecium after 0 h 

metal treatment in the 

absence of CF 

E. faecium after 24 h 

metal treatment in the 

absence of CF 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 b) c) 

Ag        i) 

  

Cu       ii) 

  

Pt        iii) 

  

Au      iv) 

  

Pd        v) 

  

 

 

Cell seepage 
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Rough surface  

Cell junction 

breakage 

Pits  
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 3.2.2. Klebsiella pneumoniae, A. baumannii and E. faecium structural changes after 

metal ions (Ag, Cu, Pt, Au and Pd) treatment at 0 h and 24 h in the presence of 10 % 

bovine plasma conditioning film 

The changes in the bacterial cell morphology after the metal ions treatment in the presence of 

conditioning film was analysed using SEM. The untreated cells remained intact and plump 

(Table 3.8 – 3.10; a). Different characteristics of morphological changes were observed after 

metal ions treatment at 0 h and 24 h. It is also apparent that all the bacterial cells were found 

with severe irregularities after 24 h metal ions treatment than 0 h treatment. After Pt, Au and 

Pd ions treatment at 0 h, cells were found to become flattened with pits on surfaces of Gram-

negative bacteria (Table 3.8 and 3.9, iii – v (b)). It was observed that the cells of E. faecium 

become spongy looking in structure and shorter in shape with visible pits on the surface (Table 

3.10, iii – v (b)). When treated with Ag and Cu ions at 0 h, the K. pneumoniae cells morphology 

transformed to abnormal shape with a rough surface (Table 3.8, i - ii (b)), E. faecium became 

more elongated and flattened with deep holes (Table 3.10, i - ii (b)) and A. baumannii cells 

were lysed (Ag ions) and swollen with pits (Cu ions) (Table 3.9, i - ii (b)) compared with the 

untreated cells. Platinum and Ag ions were found to be the most aggressive of all tested ionic 

solutions on all the tested cells with total distortion of cells, larger and numerous pits and even 

cell lysis (Table 3.8 - 3.10 i and iii – c). Platinum, Au and Pd ions demonstrated numerous 

groves and what looked to be deeper holes against K. pneumoniae; flattened surface, large 

depths and swollen edges in most of the cell area when the metal ions were treated against A. 

baumannii and cell lysis with small pits (Au / Pd ions) and a narrowed width with large holes 

(Pt ions) against E. faecium. Specifically, the K. pneumoniae cell wall after 24 h treatment in 

Pd ion solution were found to have deep folds and distortion of the cell so that is appeared 

cylindrical in shape was observed (Table 3.8 v-c).  
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Table 3.8. Morphological changes of K. pneumoniae in the presence of 10 % plasma 

conditioning film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = 

platinum, Au = gold and Pd = palladium. 

Control 

 

Metal ion 

solutions 

K. pneumoniae after 0 

h metal treatment in the 

presence of CF 

K. pneumoniae after 24 

h metal treatment in the 

presence of CF 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 b) c) 

Ag        i) 

  

Cu        
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Pt        iii) 

  

Au      iv) 

  

Pd        v) 

  

 

 

Rough surface 

Holes  

Deep folds  

Swollen surface 
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Table 3.9. Morphological changes of A. baumannii in the presence of 10 % plasma 

conditioning film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = 

platinum, Au = gold and Pd = palladium. 

Control 

 

Metal ion 

solutions 

A. baumannii after 0 h 

metal treatment in the 

presence of CF 

A. baumannii after 24 h 

metal treatment in the 

presence of CF 
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Cell leakage 

Swollen surface 

Larger groves 

Holes 



110 
 

Table 3.10. Morphological changes of E. faecium in the presence of 10 % plasma conditioning 

film after metal ions treatment at 0 h and 24 h. Ag = silver, Cu = copper, Pt = platinum, Au = 

gold and Pd = palladium. 

Control 

 

Metal ion 

solutions 

E. faecium after 0 h 

metal treatment in the 

presence of CF 

E. faecium after 24 h 

metal treatment in the 

presence of CF 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 b) c) 

Ag        i) 

  

Cu       ii) 

  

Pt        iii) 

  

Au      iv) 

  

Pd        v) 

  

 

 

Flat surface 

Holes  

Squeezed and large  

grove 

Cell leakage  
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3.2. Discussion  

In the absence of conditioning films  

All the tested bacterial cells demonstrated physical abnormalities after metal ions treatment 

compared to the untreated cells in this study. Several studies demonstrated similar bacterial 

physical damage results, where untreated cells were intact and normal (Klaus-Joerger et al., 

2001; Sondi et al., 2004; Khan et al., 2005). Bacterial cells were found to appear shorter than 

control after the Pd and Pt ions treatment in our study. Similarly, Campylobacter jejuni cells 

appeared shorter and compact with craters on the surface following treatment with magnesium 

oxide nanoparticles treatment at 1 mgmL-1. The mechanism suggested that resulted in the 

shorter cell length was leakage of the cellular contents leading to cell size reduction (He et al., 

2016). In this study, bacterial cells treated with Pt ions were swollen with numerous grooves 

on the surface, and some of the bacteria treated with metal ions also displayed cell elongation. 

Similar morphological changes were demonstrated in the studies of Santos et al. (2014) and 

Huang et al. (2017), where the underlining mechanism was cell wall extraction or 

disorganisation leading to internalisation of the metal ions and alteration in the cytoplasm 

content after Ag, Cu and Ga ions treatment.  

In the presence of conditioning films 

It has been suggested that the presence of organic proteins surrounds the bacteria in in vivo 

conditions (Sotogaku et al., 1999; Cardile et al., 2014; Franca and Cerca et al., 2016). Bacterial 

adhesion to such proteins might boost their growth and thus increase pathogenicity (Cardile et 

al., 2014). All the tested metal ions demonstrated morphological abnormalities after Ag, Cu, 

Pt, Au and Pd ions treatment in the presence of plasma CF as similar grade to when tested in 

the absence of plasma CF.  However, a study confirmed S. aureus cells were less damaged in 

the 10 % human plasma after vancomycin treatment owing a formation of additional protective 

layer that surrounded the bacteria (Cardile et al., 2014). According to Tedjo et al. (2007), 
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protein adsorption might decrease the negative charge on the bacterial surface and thus reduce 

bacterial affinity for the antimicrobial cations. It has further been demonstrated that citrate 

capped Ag nanoparticles, polyvinylypyrrolidone coated Ag nanoparticles and uncapped Ag 

nanoparticles demonstrated severe damage to S. typhimurium cells without organic load. 

However, only uncapped Ag nanoparticles at 6 µgmL-1 – 8 µgmL-1 demonstrated membrane 

damage to bacteria in the presence of 3 % bovine serum albumin (Gnanadhas et al., 2013). 

Such results demonstrate that several factors such as metal chelation with proteins and 

hydrophobic forces between bacterial surface and proteins affects the antimicrobial and cell 

interactions and thus the extent of the bacterial morphological damage (Gnanadhas et al., 2013; 

Tuson and Weibel, 2013). It is clear that the effect of the presence of conditioning films and 

their influence on the antimicrobial action of molecules is complex, and further investigation 

is warranted. 
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3.3. Elemental changes observed using energy dispersive X-ray analysis 

 3.3.1. Elemental changes for Klebsiella pneumoniae, A. baumannii and E. faecium 

after treatment with metal ions (Ag, Cu, Pt, Au and Pd) at 24 h in the absence of 10 % 

bovine plasma conditioning film (n = 3) 

The EDAX analysis results were presented for an average of three atomic percentage (At %) 

analysis for untreated cells and cells treated with Ag, Cu, Pt, Au and Pd ions after 24 h.  

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, the control elemental At % was 51.33 % 

for carbon, 20 % for nitrogen, 28 % for oxygen, 0.41 % for phosphorous and 0.15 % for 

potassium. Treatment of the bacteria with the Pd ions demonstrated the greatest changes in all 

the bacterial elements, with the strongest changes seen for the carbon (36.83 %), oxygen (48.44 

%) and nitrogen (0.99 %) content. Platinum ions demonstrated At % changes in nitrogen (15 

%), carbon (56 %), phosphorous (0.65 %) and potassium (0.03 %) content. Gold ions 

demonstrated At % changes for oxygen (23 %), phosphorous (0.08 %) and potassium (0.65 %) 

content. Silver ions demonstrated an effect on phosphorous content (0.25) of the cells. Copper 

ions demonstrated the least effects on the elemental composition of the cell wall (Figure 3.9, 

a-e). 

A. baumannii 

Against A. baumannii in the absence of plasma CF, the control elemental At % was 49 % for 

carbon, 23 % for nitrogen, 26 % for oxygen, 0.86 % for phosphorous and 0.51 % for potassium. 

A strong elemental change was demonstrated for Ag and Pt ions (carbon = 59 % and 56 %, 

nitrogen = 18 % and 13 %, oxygen = 21 % and 25 %, phosphorous = 0.15 % and 1.37 % and 

potassium = 0.45 % and 2.77 % respectively). Copper ions demonstrated a weak effect on At 

% of carbon (53 %) and oxygen (25 %). Gold ions demonstrated the least effects on At % of 

nitrogen (20 %) and phosphorous (0.64 %) (Figure 3.10, a-e). 
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E. faecium  

Against E. faecium in the absence of plasma CF, the control elemental At % were 46 % for 

carbon, 24 % for nitrogen, 30 % for oxygen, 0.29 % for phosphorous and 0.4 % for potassium. 

A strong change in the At % of carbon (59 %), nitrogen (16 %) and oxygen (23 %) was 

demonstrated against bacteria treated with Au ions. The maximum At % change for 

phosphorous (0.03 %) and potassium (0.87 %) was demonstrated with Pt ions and Ag ions 

respectively. Moreover, Ag ions demonstrated a significant change on the At % of nitrogen (14 

%). Treatment of E, faecium with Pd ions showed the least elemental changes in the cell walls 

(Figure 3.11, a-e). 

 

Overall, the most active ions were Pd ions against K. pneumoniae, Ag and Pt ions against A. 

baumannii and Au ions against E. faecium. The least active ions were Cu against K. 

pneumoniae, Cu and Au against A. baumannii and Pd against E. faecium.  
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Figure 3.9. The EDAX results against K. pneumoniae in the absence of 10 % plasma 

conditioning film signifying elemental changes after metal ions treatment at 24 h. a) At % of 

carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; e) At % of potassium. 

Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.10. The EDAX results against A. baumannii in the absence of 10 % plasma 

conditioning film signifying elemental changes after silver, copper, platinum, gold and 

palladium ions treatment at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, 

d) At % of phosphorous; e) At % of potassium. Ag = silver, Cu = copper, Pt = platinum, Au = 

gold and Pd = palladium (n = 3). 
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Figure 3.11. The EDAX results against E. faecium in the absence of 10 % plasma conditioning 

film signifying elemental changes after silver, copper, platinum, gold and palladium ions 

treatment at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of 

phosphorous; e) At % of potassium. Ag = silver, Cu = copper, Pt = platinum, Au = gold and 

Pd = palladium (n = 3). 
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 3.3.2. Elemental changes for Klebsiella pneumoniae, A. baumannii and E. faecium 

after metal ions (Ag, Cu, Pt, Au and Pd) 24 h treatment in the presence of 10 % bovine 

plasma conditioning film 

The EDAX analysis results were taken at the atomic percentage (At %) for cells treated with 

Ag, Cu, Pt, Au and Pd ions at 24 h in the presence of CF.  

K. pneumoniae 

Against K. pneumoniae in the presence of CF, the control elemental At % was 55 % for carbon, 

16 % for nitrogen, 28 % for oxygen, 0.32 % for phosphorous and 0.85 % for potassium. 

Compared with the control, Pd ions demonstrated the strongest effects in the At % of carbon 

(29 %), nitrogen (6.3 %), oxygen (51 %) phosphorous (1.3 %) and potassium (9.23 %). 

Moreover, Au ions demonstrated an effect on the elemental composition of the bacteria At % 

of carbon (60 %), nitrogen (21 %) and phosphorous (0.22 %). The Cu ions on At % of carbon 

(55 %) and phosphorous (0.37 %) and Au ions on At % of nitrogen (18 %) and potassium (0.86 

%) were the least affected (Figure 3.12, a-e).  

A. baumannii 

Against A. baumannii in the presence of plasma CF, the control elemental At % was 54 % for 

carbon, 17 % for nitrogen, 28 % for oxygen, 0.09 % for phosphorous and 0.52 % for potassium. 

The maximum effects were demonstrated for Pd ions treated bacterial cells with At % for 

carbon = 49 %, nitrogen = 24 %, oxygen = 26 %, phosphorous = 0.3 % and potassium = 0 % 

compared with control. A noteworthy change was demonstrated in At % of potassium with Pt 

(2.85 %), Cu (1.15 %) and Au (1.07 %) ions. A weak effect was demonstrated with Au ions on 

At % of carbon (54 %), nitrogen (18 %) and oxygen (26 %). Moreover, a weak effect was also 

demonstrated with Cu ions on At % of carbon (54 %) and phosphorous (0.09 %) (Figure 3.13, 

a-e). 
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E. faecium 

Against E. faecium in the presence of plasma CF, the control elemental At % was 52 % for 

carbon, 20 % for nitrogen, 27 % for oxygen, 0.75 % for phosphorous and 0.17 % for potassium. 

The Cu ions demonstrated a strong effect on At % of carbon (55 %), nitrogen (17 %), oxygen 

(26 %) and potassium (0.3 %) compared with the control. Moreover, Pt ions also demonstrated 

a good effect on At % of carbon (49 %), nitrogen (22 %), phosphorous (0.03 %) and potassium 

(0.09 %). A weak At % effect was demonstrated for Pd ions on carbon (51 %), nitrogen (20 

%), oxygen (27 %) and phosphorous (0.75 %) with Pd ions (Figure 3.14, a-e).  

 

In summary, the Pd ions against K. pneumoniae and A. baumannii and Cu ions against E. 

faecium demonstrated the most changes in the elemental composition of the bacterial. The least 

At % effects were noted for Cu ions against K. pneumoniae, Cu and Au ions against A. 

baumannii and Pd ions against E. faecium. Moreover, some of the metal ions showed variance 

in the elemental effects in the presence of plasma CF. 
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Figure 3.12. The EDAX results against K. pneumoniae in the presence of 10 % plasma 

conditioning film conditioning films signifying elemental changes after silver, copper, 

platinum, gold and palladium ions treatment at 24 h. a) At % of carbon, b) At % of nitrogen, c) 

At % of oxygen, d) At % of phosphorous; e) At % of potassium. Ag = silver, Cu = copper, Pt 

= platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.13. The EDAX results against A. baumannii in the presence of 10 % plasma 

conditioning film signifying elemental changes after silver, copper, platinum, gold and 

palladium ions treatment at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, 

d) At % of phosphorous; e) At % of potassium. Ag = silver, Cu = copper, Pt = platinum, Au = 

gold and Pd = palladium (n = 3). 
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Figure 3.14. The EDAX results against E. faecium in the presence of 10 % plasma conditioning 

film signifying elemental changes after silver, copper, platinum, gold and palladium ions 

treatment at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of 

phosphorous; e) At % of potassium. Ag = silver, Cu = copper, Pt = platinum, Au = gold and 

Pd = palladium (n = 3). 
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3.3. Discussion  

Elemental changes in the absence of conditioning films 

The elements such as carbon, nitrogen, oxygen, phosphorous and potassium are vital for 

bacterial cell vital process and growth. Insufficient or deprived of one of the elemental 

components might hinder the vital processes required to maintain bacterial cell integrity and 

growth. According to this study results, compared to control Pd ions showed significant 

changes in all the elements against K. pneumoniae in the absence and presence of plasma CF. 

Moreover, against A. baumannii Ag ions on carbon, phosphorous and oxygen At % and Pt ions 

on carbon, nitrogen and phosphorous At % demonstrated major elemental changes. Against E. 

faecium Ag ions on carbon, nitrogen, phosphorous and potassium At % and Au ions on carbon, 

nitrogen, oxygen and phosphorous At % also demonstrated major elemental changes. Studies 

related to analysis of bacteria elemental At % changes after antimicrobial treatment have not 

previously been investigated, thus it was difficult to compared the results. However, following 

antimicrobials treatment of the bacteria, it may be that the changes in elemental composition 

have induced cell stress through the competition of nutrients. One study found that bacterial 

cell volume decreased as did the size following bacterial growth in phosphorous and protein 

deprived nutrient conditions. This study explained that bacterial damage could be due to effect 

on nucleic acids losses (Vrede et al., 2002). Another study demonstrated that carbon and 

oxygen content reduction might affect the glycogen, fat, nucleic acids and sulphate in amino 

acids, thus damaging the vital process required for cell survival (Fagerbakke et al., 1996). 

Heldel et al. (1996) stated that nitrogen forms a base for several amino acids such as glutamine, 

proline, thus is a vital nutrient for various enzymes and protein of bacteria. It may be that as 

was demonstrated in this study, the depletion of nitrogen, through competition with another 

molecule may have led to cell death. The growth of Bacillus subtilis has been shown to be 

affected in potassium limited conditions, which was suggested to be because potassium is 
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required for ribosomal unit function, pH maintenance of cells and the electron transport chain 

to maintain ATP function. Alteration of any of these elements and hence cellular function might 

led to cell damage (Gundlach et al., 2017). It has also been demonstrated that limited nitrogen 

and phosphorous content affected the sulfolipid and phospholipid composition of the cellular 

membrane and hence bacterial cell integrity; this was clearly visible in the SEM results after 

Ag ions and Pt ions treatment in our study (Cotner et al., 2010). Further, the SEM results in 

this thesis demonstrated shrinkage and shorter cell length after metal ion treatment. Changes 

in the biochemical composition of the cellular membrane were confirmed by the Raman results 

following antimicrobial treatments. Thus, it can be assumed that metal ions damage the bacteria 

at a molecular level.  
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3.4. Chemical changes observed using Raman microscopy 

 3.4.1. Chemical changes for K. pneumoniae, A. baumannii and E. faecium after 

metal ions (Ag, Cu, Pt, Au and Pd) treatment at 24 h in the absence of 10 % bovine plasma 

conditioning film  

The Raman spectral profile attributed to cell biomolecules were CH stretch (2920 cm-1 -2960 

cm-1), proteins (C-N stretch: 760 cm-1 – 810 cm-1), lipids (CH2 and CH3 bending: 1440 cm-1 – 

1470 cm-1) and amides (1620 cm-1 - 1680 cm-1). The chemical effects on bacteria for metal ions 

were analysed by comparing with bacterial control.  

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, the band shifts noted for control were 

2952 cm-1 for CH bond, 1671 cm-1 for amide, 1442 cm-1 for CH2 / CH3 bending, 1085 cm-1 for 

C-O stretch and 784 cm-1 for C-N stretch. The maximum band shifts variation in the CH bond 

(2934 cm-1), CH2 and CH3 bending (1459 cm-1) and C-O stretch (1095 cm-1) was demonstrated 

with Cu ions treated bacteria. A strong chemical effect was also demonstrated with Pt and Pd 

ions for CH bond (2935 cm-1) and amide (1661 cm-1). Moreover, Pt and Pd ions demonstrated 

a strong effect on C-N stretch (792 cm-1) and C-O stretch (1101 cm-1) respectively. The Cu and 

Pd ions demonstrated no effect on C-N stretch (784 cm-1). Silver ions demonstrated the greatest 

effect on amide content (1652 cm-1) (Figure 3.15, a-e).  

A. baumannii 

Against A. baumanni in the absence of plasma CF, the band shift noted for control were 2937 

cm-1 for CH bond, 1664 cm-1 for amide, 1446 cm-1 for CH2 / CH3 bending, 1096 cm-1 for C-O 

stretch and 792 cm-1 for C-N stretch. A strong chemical effect was demonstrated for Ag ions 

with band shift of 2941 cm-1 for CH bond, 1674 cm-1 for amide, 1452 cm-1 for CH2 / CH3 

bending, 1100 cm-1 for C-O stretch and 784 cm-1 for C-N stretch compared with the control. 

Moreover, an effective chemical band shifts was demonstrated for CH2/CH3 bending (1454 cm-
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1) with Cu and Pt ions, for C-O stretch (1101 cm-1) with Pd ions and for C-N stretch (763 cm-

1) with Pt ions. A weak chemical shift was demonstrated for CH bond (2932 cm-1), amide (1663 

cm-1) and C-O stretch (1093 cm-1) with Cu ions treated bacteria.  Moreover, with Pt ions and 

Au ions demonstrated a weak band shift for amide 1663 cm-1 and 1448 cm-1 respectively 

(Figure 3.16, a-e)  

E. faecium 

Against E. faecium in the absence of plasma CF, the band shift noted for control were 2936 

cm-1 for CH bond, 1658 cm-1 for amide, 1450 cm-1 for CH2 / CH3 bending, 1097 cm-1 for C-O 

stretch and 787 cm-1 for C-N stretch. A good chemical effect was demonstrated with Ag ions 

treated bacterial cells compared to control (amide = 1663 cm-1, CH2 / CH3 bending = 1454 cm-

1, and C-N stretch = 798 cm-1). The minimal band shift effect was demonstrated on the CH 

bond (2936 cm-1) and amide (1659 cm-1) with Cu ions and on the CH2/CH3 bending (1450 cm-

1) with Au and Pd ions and on the C-N stretch (785 cm-1) with Au ions (Figure 3.17, a-e).  

 

In summary, Raman spectroscopy demonstrated that the metal ions that most affected the 

molecular vibrations of the bacterial cell wall were Pt ions against K. pneumoniae and Ag ions 

against A. baumannii and E. faecium, with a weak effect demonstrated following Cu ions 

incubation against all the tested bacteria.  
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Figure 3.15. Raman spectral bands shifts (cm-1) and their tentative band shift assignments for 

K. pneumoniae control and after treatment with Ag, Cu, Pt, Au and Pd ions at 24 h in the 

absence of 10 % plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 

bending shift, d) C-O stretch; e) C-N stretch shift. Ag = silver, Cu = copper, Pt = platinum, Au 

= gold and Pd = palladium (n = 3). 
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Figure 3.16. Raman spectral bands shifts (cm-1) and their band shift tentative assignments for 

A. baumannii control and after treatment with Ag, Cu, Pt, Au and Pd ions at 24 h in the absence 

of 10 % plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending 

shift, d) C-O stretch; e) C-N stretch shift. Ag = silver, Cu = copper, Pt = platinum, Au = gold 

and Pd = palladium (n = 3). 
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Figure 3.17. Raman spectral bands shifts (cm-1) and their tentative band shift assignments for 

E. faecium control and after Ag, Cu, Pt, Au and Pd ions treatment at 24 h in the absence of 10 

% plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) 

C-O stretch; e) C-N stretch shift. Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = 

palladium (n = 3). 
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 3.4.2. Chemical changes for Klebsiella pneumoniae, A. baumannii and E. faecium 

after metal ions (Ag, Cu, Pt, Au and Pd) 24 h treatment in the presence of 10 % bovine 

plasma conditioning film 

The Raman spectral profile attributed to cell biomolecules were CH stretch (2920 cm-1 -2960 

cm-1), proteins (C-N stretch: 760 cm-1 – 810 cm-1), lipids (CH2 and CH3 bending: 1440 cm-1 – 

1470 cm-1) and amides (1620 cm-1 - 1680 cm-1). The chemical effects on bacteria for metal ions 

were analysed by comparing with bacterial control.  

K. pneumoniae 

Against K. pneumoniae in the presence of plasma CF, the band shifts noted for control were 

2943 cm-1 for CH bond, 1677 cm-1 for amide, 1446 cm-1 for CH2 / CH3 bending, 1095 cm-1 for 

C-O stretch and 785 cm-1 for C-N stretch. The maximum band shifts were demonstrated on the 

CH bond (2932 cm-1), CH2 and CH3 bending (1454 cm-1) and C-N stretch (776 cm-1) for 

bacteria treated with Pd ions. Whilst, Cu ions showed the maximum amide shift (1646 cm-1). 

Moreover, Pt ions demonstrated a good effect on the CH bond (2936 cm-1), amide (1663 cm-1) 

and C-N stretch (776 cm-1) band shifts. No change was demonstrated with Cu ions on C-O 

stretch and with Au ions on C-N stretch band shifts (Figure 3.18, a-e).  

A. baumannii 

Against A. baumanni in the presence of plasma CF, the band shift noted for control were 2937 

cm-1 for CH bond, 1664 cm-1 for amide, 1446 cm-1 for CH2 / CH3 bending, 1096 cm-1 for C-O 

stretch and 792 cm-1 for C-N stretch. A strong chemical effect was demonstrated for the Pt ions 

with band shift of 2942 cm-1 for CH bond, 1642 cm-1 for amide, 1454 cm-1 for CH2 / CH3 

bending, 1096 cm-1 for C-O stretch and 774 cm-1 for C-N stretch compared with the control. A 

weak effect was demonstrated with Cu ions on the CH bond (2931 cm-1), amide (1661 cm-1) 

and C-N stretch (782 cm-1), with Pd ions on the CH2 / CH3 bending (1447 cm-1) and C-O stretch 
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(1098 cm-1) and with Ag ions on the C-O stretch (1098 cm-1) and C-N stretch (782 cm-1) band 

shift (Figure 3.19, a-e). 

E. faecium 

Against E. faecium in the presence of plasma CF, the band shift noted for control were 2933 

cm-1 for CH bond, 1653 cm-1 for amide, 1452 cm-1 for CH2 / CH3 bending, 1097 cm-1 for C-O 

stretch and 783 cm-1 for C-N stretch. The maximum shift on the CH bond (2935 cm-1), amide 

(1614 cm-1), C-N stretch (773 cm-1) and CH2 / CH3 bending (1444 cm-1) was demonstrated for 

bacteria treated with Au, Pt, Pd and Ag ions respectively. Whilst, Pd ions on the amide and Cu 

ions on the CH2/CH3 bending demonstrated the minimal effects (Figure 3.20, a-e).  

 

In summary, Raman spectroscopy demonstrated that the metal ions that most affected the 

molecular vibrations of the bacterial cell wall were demonstrated with Pt and Pd ions against 

K. pneumoniae and Pt ions against A. baumannii and E. faecium. A weak effect was 

demonstrated with Cu and Au ions against K. pneumoniae and Cu ions against A. baumannii 

and E. faecium. 
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Figure 3.18. Raman spectral bands shifts (cm-1) and their tentative assignments for K. 

pneumoniae control and after Ag, Cu, Pt, Au and Pd ions treatment at 24 h in the presence of 

10 % plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, 

d) C-O stretch; e) C-N stretch shift. Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd 

= palladium (n = 3). 
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Figure 3.19. Raman spectral bands shifts (cm-1) and their tentative assignments for A. 

baumannii control and after Ag, Cu, Pt, Au and Pd ions treatment at 24 h in the presence of 10 

% plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) 

C-O stretch; e) C-N stretch shift. Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = 

palladium (n = 3). 
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Figure 3.20. Raman spectral bands shifts (cm-1) and their tentative assignments for E. faecium 

control and after Ag, Cu, Pt, Au and Pd ions treatment at 24 h in the presence of 10 % bovine 

conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-O stretch; 

e) C-N stretch shift (n = 3). Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = 

palladium (n = 3). 
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3.4. Discussion  

Chemical changes in absence of conditioning films 

Following treatment, there were clearly changes in the bacterial cell wall, membrane and 

cytoplasm observed in the SEM images. The chemical changes that led to these differences in 

cell morphology was investigated using Raman spectroscopy which measured the vibrational 

changes of the chemical bonds within the biochemical composition (such as lipids, 

polysaccharides, nucleic acids and proteins) of the bacterial cells (Armentano et al., 2014). 

When compared to control, all the tested metal ions demonstrated a reduced shift in the CH 

stretch and amide against K. pneumoniae. Following treatment of the bacteria with either Cu 

ions and Au ions against A. baumannii and Au ions against E. faecium a decrease in the CH 

stretch and amide shifts was demonstrated. Similar to our results, a decrease in the vibrational 

magnitude was observed in the amide shift corresponding at 1658 cm-1 after ceftazidime, 

patulin and epigallocatechin gallate 1-3 days bacteria treatment at 400-500 µgmL-1 (Jung et al., 

2014). It has been suggested that the decrease in the amide content corresponded to the 

denaturation / inhibition of the proteins whilst the decrease in the CH stretch corresponded to 

the conformational changes in the lipids / polysaccharide / proteins content of the cell wall 

(Owen et al., 2006; Jung et al., 2014). Both of these induced changes might lead to the 

destruction of the bacteria. In this thesis, the results found that all the tested metal ions not 

demonstrate strong vibrational changes in the CH stretch except against K. pneumoniae. The 

reason why this result occurred is unclear as metal ions are known to damage cell wall / 

membrane and the CH stretch corresponds to aliphatic rings and form a lipid and 

polysaccharide constitute of bacterial cell wall / membrane. Similar results were obtained were 

weak to no changes were demonstrated in a signal at 2932 cm-1 vibration after tetracycline 

treatment against L. lactis (Wang et al., 2016).  
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Other studies that have investigated the effect of antimicrobials on the bacterial cell wall using 

Raman spectroscopy showed that spectra in the region of 1100 cm-1 – 900 cm-1 corresponded 

to changes in the bacterial membrane glycosidic linkage (C-O) (Lu et al., 2012). The results in 

this thesis demonstrated an increase in the C-O band vibration from 1085 cm-1 to 1110 cm-1 

after metal ions treatment. Similar results were obtained after gramicidin treatment at 50 µgmL-

1 against S. aureus (Liou et al., 2015). This suggests that the C-O vibrational change might be 

due to destruction of bacterial membrane lipid and carbon linkage. Another study proposed that 

vibrational changes at 1093 cm-1 after diallyl sulphide treatment against Campylobacter jejuni 

might be owing to destruction of phosphodiester bond in the backbone of DNA (Lu et al., 

2012). Two studies confirmed vibrational changed peaks at 1440 cm-1 – 1450 cm-1 confirming 

CH2 bend in the lipid and protein based alterations leading to bacteria damage after range of 

antibiotics treatment including gentamycin, ciprofloxacin and tetracycline against K. 

pneumoniae and E. coli (Wang et al., 2016; Premasire et al., 2017). Some of the metal ions 

treatment resulted in our study with increased vibrational spectral profiles such as Pt ions 

against K. pneumoniae and Ag and Cu ions against E. faecium on C-N stretch, Ag ions and Pd 

ions against A. baumannii and Ag ions, Pd ions and Pt ions against E. faecium on amide stretch. 

Likewise, after tetracycline and arsenic treatment the band vibration magnitude were increased 

at 1235 cm-1 – 1243 cm-1 and 1680 cm-1 respectively against E. coli (Cui et al., 2016). The 

suggested mechanism can be aggregation, accumulation or misfolding of the biomolecules. 

Such results may be due to the depletion or overlapping of individual monomers of the vital 

biomolecules after antimicrobial treatment leading to bacterial damage (Tamás et al., 2014). 

Jung et al. (2014) found that bacterial death could be due to changes in the cellular 

biomolecules after antimicrobial treatment. This can be observed in the work presented in this 

thesis from the SEM and Raman results, whereby following incubation of the bacteria by the 

metal ions demonstrated cell wall / membrane damage and cellular leakage, which corresponds 
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to the cell death results that were demonstrated in the MIC, MBC and time kill assays. It should 

be noted that no changes were observed after AuGO treatment on CH2 / CH3 bending against 

A. baumannii, Cu ions and Pd ions treatment on C-N stretch against K. pneumoniae and Pt ions 

and Cu ions treatment on CH stretch against A. baumannii and E. faecium respectively. Thus, 

further analysis might enhance the understanding of the mechanism of chemical action 

responsible for bacterial cell death.  

Chemical and elemental changes in presence of conditioning films 

The Raman and EDAX results demonstrated that following incubation of the metal ions and 

GBCs with the bacteria in the presence of plasma conditioning films, chemical and elemental 

changes were again demonstrated in the cellular structure. In agreement with these results, a 

study found that the CH stretch shifted to a lower frequency of 2955 cm-1 to 2835 cm-1 from 

2995 cm-1 to 2863 cm-1 after tetracycline treatment on bacterial samples extracted from humans 

(Trivedi et al., 2015). However, as studies related to testing antimicrobial agents inducing 

chemical and elemental changes in the presence of organic load by others has not been 

conducted, it is difficult to compare the data.    
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3.5. Antimicrobial efficacies for ten metal ions in combination against K. pneumoniae, A. 

baumannii and E. faecium 

 3.5.1 Zone of inhibition for metal ions combinations in the absence and presence 

of 10 % bovine plasma conditioning film 

To determine the synergies of the combined metal ions in the presence and absence of 10 % 

bovine plasma CF, AgCu, AgPt, AgAu, AgPd, CuPt, CuAu, CuPd, AuPt, AuPd and PtPd were 

tested using the ZoI assay in combination. Gold/platinum, AuPd and PtPd combined ions 

demonstrated synergy at the 0.5 mgmL-1 and 1 mgmL-1 against all the tested bacteria and 

AgPd, CuAu and CuPd against K. pneumoniae showed synergy at 1 mgmL-1. The remaining 

combinations of ions at 1 mgmL-1 showed additive interactions against A. baumannii and E. 

faecium.   No inhibition was observed at 0.05 mgmL-1 of concentration against E. faecium. 

Silver/copper combination demonstrated indifference effects at all the tested concentrations 

against all the bacteria (Table 3.11). None of the combined ions demonstrated antagonistic 

interactions.   

Overall, the best antimicrobial efficacies of the combined metal ions which displayed 

synergistic interaction were demonstrated for AuPt, AuPd and PtPd and AgCu. The presence 

of plasma CF did not demonstrate any effect on the combined metal ions efficacies. 

Enterococcus faecium was found to be the most resistant bacteria. 
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Table 3.11. The ZoI combination assay for interactions type and inhibition grade of combined metal ions 

against K. pneumoniae, A. baumannii and E. faecium in the absence and presence of 10 % plasma conditioning 

film. The inhibition zones were graded from 0 to 4, which measured as, 0–4 mm = grade 0, 4–8 mm = grade 

1, 8–12 mm = grade 2, 12–16 mm = grade 3 and 16–20 mm = grade 4 (n = 24). To highlight additivity and 

synergism intections purple and red colour were used respectively.   

Combine

d ions 

Concentr

ations 

(mgmL-1) 

Type of combination and grade of inhibition 

K. pneumoniae A. baumannii E. faecium 

AgCu 0.05 Indifference Grade Cu(0) Ag(1) Indifference Grade Cu(0) Ag(1) No inhibition 

AgPt 0.05 Indifference Grade Ag(1) Pt(1) Indifference Grade Ag(1) Pt(1) No inhibition 

AgAu 0.05 Indifference Grade Ag(1) Au(1) Indifference Grade Ag(1) Au1) No inhibition 

AgPd 0.05 Indifference Grade Ag(1) Pd(1) Indifference Grade Ag(1) Pd(1) No inhibition 

CuPt 0.05 Indifference Grade Cu(0) Pt(1) Indifference Grade Cu(0) Pt(1) No inhibition 

CuAu 0.05 Indifference Grade Cu(0) Au(1) Indifference Grade Cu(0) Au(1) No inhibition 

CuPd 0.05 Indifference Grade Cu(0) Pd(1) Indifference Grade Cu(0) Pd(1) No inhibition 

AuPt 0.05 Indifference Grade Au(1) Pt(1) Indifference Grade Au(1) Pt(1) No inhibition 

AuPd 0.05 Indifference Grade Au(1) Pd(1) Indifference Grade Au(1) Pd(1) No inhibition 

PtPd 0.05 Indifference Grade Pt(1) Pd(1) Indifference Grade Pt(1) Pd(1) No inhibition 

AgCu 0.1 Indifference Grade Cu(0) Ag(1) Indifference Grade Cu(0) Ag(1) Indifference Grade Cu(0) Ag(1) 

AgPt 0.1 Indifference Grade Ag (1) Pt(1) Indifference Grade Ag (1) Pt(1) Indifference Grade Ag (1) Pt(1) 

AgAu 0.1 Indifference Grade Ag (1) Au(1) Indifference Grade Ag (1) Au(1) Indifference Grade Ag (1) Au(1) 

AgPd 0.1 Indifference Grade Ag (1) Pd(1) Indifference Grade Ag (1) Pd(1) Indifference Grade Ag (1) Pd(1) 

CuPt 0.1 Indifference Grade Cu(0) Pt(1) Indifference Grade Cu(0) Pt(1) Indifference Grade Cu(0) Pt(1) 

CuAu 0.1 Indifference Grade Cu(0) Au(1) Indifference Grade Cu(0) Au(1) Indifference Grade Cu(0) Au(1) 

CuPd 0.1 Indifference Grade Cu(0) Pd(1) Indifference Grade Cu(0) Pd(1) Indifference Grade Cu(0) Pd(1) 

AuPt 0.1 Indifference Grade Au(2) Pt(2) Indifference Grade Au(2) Pt(2) Indifference Grade Au(1) Pt(1) 

AuPd 0.1 Indifference Grade Au(2) Pd(2) Indifference Grade Au(2) Pd(2) Indifference Grade Au(1) Pd(1) 

PtPd 0.1 Indifference Grade Pt(2) Pd(2) Indifference Grade Pt(2) Pd(2) Indifference Grade Pt(1) Pd(1) 

AgCu 0.5 Indifference Grade Ag(2) Cu(2) Indifference Grade Ag(2) Cu(2) Indifference Grade Ag(1) Cu(1) 

AgPt 0.5 Additivity Grade Ag(2) Pt(3) Indifference Grade Ag(2) Pt(3) Indifference Grade Ag(1) Pt(2) 

AgAu 0.5 Additivity Grade Ag(2) Au(3) Additivity Grade Ag(2) Au(3) Indifference Grade Ag(1) Au(2) 

AgPd 0.5 Additivity Grade Ag(2) Pd(3) Additivity Grade Ag(2) Pd(3) Indifference Grade Ag(1) Pd(2) 

CuPt 0.5 Additivity Grade Cu(1) Pt(3) Additivity Grade Cu(1) Pt(3) Indifference Grade Cu(1) Pt(2) 

CuAu 0.5 Additivity Grade Cu(1) Au(3) Additivity Grade Cu(1) Au(3) Indifference Grade Cu(1) Au(2) 

CuPd 0.5 Additivity Grade Cu(1) Pd(3) Additivity Grade Cu(1) Pd(3) Indifference Grade Cu(1) Pd(2) 

AuPt 0.5 Synergy Grade Au(3) Pt(3) Synergy Grade Au(3) Pt(3) Additivity Grade Au (2) Pt(2) 

AuPd 0.5 Synergy Grade Au(3) Pd(3) Synergy Grade Au(3) Pd(3) Additivity Grade Au (2) Au(2) 

PtPd 0.5 Synergy Grade Pt(3) Pd(3) Synergy Grade Pt(3) Pd(3) Additivity Grade Au (2) Pd(2) 

AgCu 1 Indifference Grade Ag(2) Cu(2) Indifference Grade Ag(2) Cu(2) Indifference Grade Ag(2) Cu(2) 

AgPt 1 Additivity Grade Ag(2) Pt(4) Additivity Grade Ag(2) Pt(4) Additivity Grade Ag(2) Pt(3) 

AgAu 1 Additivity Grade Ag(2) Au(4) Additivity Grade Ag(2) Au(4) Additivity Grade Ag(2) Au(3) 

AgPd 1 Synergy Grade Ag(2) Pd(4) Additivity Grade Ag(2) Pd(4) Additivity Grade Ag(2) Pd(3) 

CuPt 1 Additivity Grade Cu(2) Pt(4) Additivity Grade Cu(2) Pt(4) Additivity Grade Cu(1) Pt(3) 

CuAu 1 Synergy Grade Cu(2) Au(4) Additivity Grade Cu(2) Au(4) Additivity Grade Cu(1) Au(3) 

CuPd 1 Synergy Grade Cu(2) Pd(4) Additivity Grade Cu(2) Pd(4) Additivity Grade Cu(1) Pd(3) 

AuPt 1 Synergy Grade Au(4) Pt(4) Synergy Grade Au(4) Pt(4) Synergy Grade Au(3) Pt(3) 

AuPd 1 Synergy Grade Au(4) Pd(4) Synergy Grade Au(4) Pd(4) Synergy Grade Au(3) Pd(3) 

PtPd 1 Synergy Grade Pt(4) Pd(4) Synergy Grade Pt(4) Pd(4) Synergy Grade Pt(3) Pd(3) 
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Figure 3.21. Examples of combined metals used in ZoI to demonstrate the interactions. a) 

Palladium/platinum ions against Gram negative bacteria (indifference interaction) and b) 

gold/palladium ions against E. faecium (synergy interaction). 
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 3.5.2 Fractional inhibitory concentration (FIC) for combined metal ions in 2:1, 

1:1 and 1:2 ratios 

The FIC was used to determine the synergistic antimicrobial efficacy of the AgCu, AgPt, 

AgAu, AgPd, CuPt, CuAu, CuPd, AuPt, AuPd and PtPd in the presence and absence of 10 

% bovine plasma. The FIC was performed in 2:1, 1:1 and 1:2 ratios of metal ion 

combinations.  

 

  3.5.2.1. FIC against K. pneumoniae, A. baumannii and E. faecium for 

combined metal ions in the absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae in the absence of CF, AgCu and CuPd combined ions in 1:2 ratio 

demonstrated an indifferent effect (FIC > 1.0 ≤ 4.0). The remaining metal ion combinations 

in the different ratios were found to demonstrate additive effects (FIC index > 0.5 and ≤ 1.0) 

(Table 3.12).  

A. baumannii 

Against A. baumannii, in the absence of CF, AgCu in all the tested ratios and CuAu in 2:1 

produced synergistic antimicrobial effect (FIC = ≤ 0.5). Copper/platinum were found to 

demonstrate indifferent antimicrobial effects in all the ratios. The remaining combinations 

demonstrated additive antimicrobial effects with FIC index > 0.5 and ≤ 1.0 (Table 3.13).  

E. faecium 

Against E. faecium, in the absence of 10 % CF, AgPd in all the tested ratios, AgAu in 2:1 

ratio and Ag in combination with Cu and Pt in 1:2 ratio showed a synergistic effect (FIC = 

≤ 0.5). Gold/palladium in all the three ratios, AgPt in 2:1 and 1:1 ratio, CuPd and AuPt in 

1:1 and 1:2 ratios and CuPt in 2:1 ratio showed indifferent antimicrobial effects (FIC index 
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= > 1.0 and ≤ 4.0). The remaining combinations demonstrated an additive effect with FIC 

index > 0.5 and ≤ 1.0) (Table 3.14). 

  3.5.2.2. The FIC against K. pneumoniae, A. baumannii and E. faecium for 

combined metal ions in the presence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumonaie, all the combinations were found to demonstrate synergistic 

antimicrobial efficacy except for CuPd in all the three tested ratios, CuPt in 2:1 and CuAu 

in a 1:2 ratio. The Cu ions in combination with Pt, Au and Pd ions demonstrated additive 

effects with FIC index > 0.5 and ≤ 1.0 (Table 3.12). 

A. baumannii 

Against A. baumannii, CuPt in all the tested ratios, Cu in combination with Au and Pd in 

2:1 and 1:1 ratio and Pd in combination with Au and Pt in 1:1 ratio demonstrated additivity 

(FIC index = > 0.5 and ≤ 1.0). The remaining tested meal ions combinations demonstrated 

synergism (≤ 0.5) (Table 3.13).  

E. faecium 

Against E. faecium, only AgCu in 1:2 ratio demonstrated synergy. Silver/copper, CuPt and 

CuPd in 1:1 ratio and AgPt, AuPt, AuPd and PtPd in 1:2 ratio demonstrated an additive 

effect with FIC index > 0.5 and ≤ 1.0. The rest of the combinations were found to have 

indifferent antimicrobial efficacies with FIC index of > 1.0 and ≤ 4.0 (Table 3.14).  

 

In summary, in the absence of the plasma CF, the least antimicrobially active combined 

metal ions against K. pneumoniae were AgCu and CuPd, against A. baumannii was CuPt 

and against E. faecium was AuPd. The least active combined ions in presence of plasma 

were CuPd, CuPt and CuAu against K. pneumoniae and AgPd, AgAu and CuAu against E. 

faecium. The best efficacies were demonstrated for AgCu (without CF) and Ag combinations 
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(with CF) against A. baumannii, AgPd (without CF) and AgCu (with CF) against E. faecium 

and Ag combinations and AuPt, AuPd and PtPd against K. pneumoniae. 

 

Overall, Gram-negative pathogens in the presence of 10 % CF were found to be more 

sensitive to the metal ions. The different ratios of metal ion combinations affected the 

antimicrobial interactions/efficacies. No combinations demonstrated an antagonist 

interaction.  
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Table 3.12. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against K. pneumoniae (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = palladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 0.60 ± 0 0.31 ± 0 0.58 ± 0 0.28 ± 0  1.10 ± 0 0.45 ± 0.04 

AgPt 0.83 ± 0.13 0.41 ± 0 0.66 ± 0 0.32 ± 0.05  0.77 ± 0 0.27 ± 0.04  

AgAu 0.88 ± 0  0.37 ± 0 0.74 ± 0.12 0.37 ± 0 0.55 ± 0 0.37 ± 0 

AgPd 0.66 ± 0.11 0.41 ± 0 0.74 ± 0.12 0.43 ± 0 0.55 ± 0 0.45 ± 0 

CuPt 0.99 ± 0 0.58 ± 0 0.93 ± 0.15 0.34 ± 0 0.74 ± 0 0.49 ± 0.08 

CuAu 0.77 ± 0 0.49 ± 0 0.68 ± 0.11 0.49 ± 0.12 0.52 ± 0 0.62 ± 0 

CuPd 0.77 ± 0 0.58 ± 0 0.91 ± 0 0.60 ± 0.14 1.05 ± 0 0.79 ± 0 

AuPt 0.77 ± 0 0.41 ± 0 0.83 ± 0 0.21 ± 0 0.88 ± 0 0.45 ± 0 

AuPd 0.66 ± 0 0.41 ± 0 0.66 ± 0 0.43 ± 0 0.66 ± 0 0.45 ± 0 

PtPd 0.88 ± 0  0.49 ± 0 0.83 ± 0 0.49 ± 0 0.77 ± 0 0.43 ± 0.05 
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Table 3.13. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against A. baumannii (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = pal ladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 0.37 ± 0 0.24 ± 0 0.46 ± 0 0.15 ± 0.02 0.49 ± 0 0.12 ± 0 

AgPt 0.66 ± 0.13 0.24 ± 0.04  0.62 ± 0.11 0.37 ± 0 0.58 ± 0.09 0.41 ± 0 

AgAu 0.99 ± 0  0.24 ± 0.04 0.74 ± 0 0.37 ± 0 0.99 ± 0 0.41 ± 0 

AgPd 0.83 ± 0.11 0.24 ± 0.04 0.74 ± 0 0.37 ± 0 0.66 ± 0 0.41 ± 0 

CuPt 1.16 ± 0 0.66 ± 0 1.37 ± 0.19 0.93 ± 0.16 1.58 ± 0.26 0.62 ± 0.10 

CuAu 0.49 ± 0 0.66 ± 0 0.62 ± 0 0.93 ± 0.16 0.74 ± 0 0.41 ± 0 

CuPd 0.66 ± 0 0.66 ± 0 0.74 ± 0 0.93 ± 0.16 0.83 ± 0 0.41 ± 0 

AuPt 0.88 ± 0 0.49 ± 0 0.83 ± 0 0.49 ± 0 0.77 ± 0 0.49 ± 0 

AuPd 0.83 ± 0 0.49 ± 0 0.74 ± 0 0.62 ± 0.10 0.66 ± 0 0.49 ± 0 

PtPd 0.60 ± 0  0.37 ± 0.06 0.58 ± 0 1.00 ± 0 0.55 ± 0 0.49 ± 0 
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Table 3.14. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against E. faecium (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = palladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 0.74 ± 0 1.03 ± 0.18 0.62 ± 0 0.74 ± 0 0.37 ± 0.06 0.49 ± 0.08 

AgPt 1.10 ± 0 1.16 ± 0 1.16 ± 0 1.24 ± 0 0.45 ± 0.07 0.99 ± 0.16 

AgAu 0.41 ± 0.06  1.32 ± 0 0.58 ± 0 1.49 ± 0 0.60 ± 0 1.24 ± 0.20 

AgPd 0.24 ± 0 1.16 ± 0 0.37 ± 0.06 1.24 ± 0 0.49 ± 0 1.33 ± 0 

CuPt 1.13 ± 0.04 1.03 ± 0.17 0.79 ± 0 0.99 ± 0 0.97 ± 0 1.16 ± 0 

CuAu 0.60 ± 0 1.24 ± 0.21 0.79 ± 0 1.24 ± 0 0.97 ± 0 1.49 ± 0 

CuPd 0.99 ± 0 1.03 ± 0.17 1.24 ± 0 0.99 ± 0  1.49 ± 0 1.16 ± 0 

AuPt 0.66 ± 0 1.83 ± 0 1.33 ± 0 1.74 ± 0 1.33 ± 0 0.83 ± 0 

AuPd 1.21 ± 0 1.83 ± 0 1.16 ± 0 1.74 ± 0  1.10 ± 0 0.83 ± 0 

PtPd 0.60 ± 0  1.49 ± 0 0.58 ± 0 1.49 ± 0 0.55 ± 0 0.74 ± 0 
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 3.5.3. The fractional bactericidal concentration (FBC) for combined metal ions in 

2:1, 1:1 and 1:2 ratios  

  3.5.3.1. The FBC against K. pneumoniae, A. baumannii and E. faecium for 

combined metal ions in the absence of 10 % bovine plasma conditioning film 

The FBC was used to determine the synergistic antimicrobial efficacy of the metal ions in 

combination in the presence and absence of 10 % bovine plasma CF. The FBC was 

performed in 2:1, 1:1 and 1:2 ratios of metal ion combinations.  

K. pneumoniae 

Against K. pneumoniae in the absence of CF, all the metal ion combinations demonstrated 

indifferent effects except CuAu in 2:1 ratio. Only CuAu in 2:1 ratio demonstrated an additive 

effect with FBC index = 0.99 (Table 3.15).  

A. baumannii 

Against A. baumannii in the absence of CF, AgCu in 2:1 and 1:2 ratios and AgPd in 1:1 and 

AgPt in 1:2 ratio produced synergistic antimicrobial effect (FBC = ≤ 0.5). Copper/platinum 

in 2:1 and 1:1 ratio, CuAu and CuPd in 2:1 and AgCu in 1:2 ratio was found to demonstrate 

indifference antimicrobial effects (FBC = ≥ 1.0 and < 4.0). The remaining combinations 

demonstrated additive antimicrobial effects with FBC index > 0.5 and ≤ 1.0 (Table 3.16).  

E. faecium 

Against E. faecium, in the absence of 10 % CF, AgCu in all the ratios and AgPt in 1:1 ratio 

demonstrated a synergistic effect with FBC index = ≤ 0.5. Gold in combination with Pt and 

Pd in all ratios, PtPd in 2:1 and 1:2 ratio and AgPt and Cu in combination with Pt, Au and 

Pd in 2:1 ratio demonstrated additive antimicrobial interactions FBC = > 0.5 and ≤ 1.0. The 

remaining combinations were found with indifferent antimicrobial effects FBC = > 1.0 and 

≤ 4.0 (Table 3.17). 
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  3.5.3.1. The FBC against K. pneumoniae, A. baumannii and E. faecium for 

combined metal ions in the presence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, AgCu, AuPt, AuPd and PtPd in all the three tested ratio and Ag in 

combination with Pt, Au and Pd in 2:1 and 1:2 ratio demonstrated a synergistic effect. The 

remaining metal ion combinations demonstrated an additive antimicrobial effect (FBC = > 

0.5 and ≤ 1.0) (Table 3.15). 

A. baumannii 

Against A. baumannii, all the silver combinations in the tested three ratios except AgPd in 

the 1:2 ratio demonstrated synergistic antimicrobial efficacies (FBC index = ≤ 0.5). The 

remaining combinations except CuPd in 1:2 ratio demonstrated an additive antimicrobial 

effect with FBC index = > 0.5 and ≤ 1.0 (Table 3.16).  

E. faecium 

Against E. faecium, only AgCu in 1:2 ratio demonstrated a synergistic antimicrobial efficacy 

with ≤ 0.5 FBC index. Silver/copper in 2:1 and 1:1, AuPt, AuPd and PtPd in 1:1 and 1:2, 

Ag in combination with Pt, Au and Pd demonstrated an additive antimicrobial effect with 

FBC index = > 0.5 and ≤ 1.0. The remaining combinations were found to produce an 

indifferent antimicrobial interaction FBC index > 1.0 and ≤ 4.0 (Table 3.17).  

 

Overall, in the absence of 10 % plasma CF, CuAu against K. pneumoniae and AgCu against A. 

baumannii and E. faecium demonstrated the best efficacies. Whilst in the presence of 10 % 

plasma CF, AgCu against all the tested pathogens and AuPt, AuPd and PtPd against K. 

pneumoniae and AgPt and AgAu against A. baumannii demonstrated the best antimicrobial 

efficacies.  
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Overall, Enterococcus faecium was found to be a resistant species out of the three tested 

microbes. The different ratios of metal combinations demonstrated that metal ions in 

combination affected the antimicrobial interactions/efficacies. No combinations 

demonstrated an antagonist interaction. 
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Table 3.15. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against K. pneumoniae (n = 4).  

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = palladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 1.12 ± 0 0.33 ± 0 1.16 ± 0 0.53 ± 0.04 1.10 ± 0 0.29 ± 0 

AgPt 1.10 ± 0 0.41 ± 0 2.00 ± 0.33 0.78 ± 0.04 1.55 ± 0 0.45 ± 0 

AgAu 1.10 ± 0  0.41 ± 0 1.33 ± 0  0.78 ± 0.04 1.55 ± 0 0.45 ± 0 

AgPd 1.10 ± 0 0.41 ± 0 1.33 ± 0 0.78 ± 0.04 2.33 ± 0.38 0.45 ± 0 

CuPt 1.99 ± 0 0.66 ± 0 1.87 ± 0.31 0.74 ± 0 1.49 ± 0 0.83 ± 0 

CuAu 0.99 ± 0 0.66 ± 0 1.24 ± 0 0.74 ± 0 2.24 ± 0.37 0.83 ± 0 

CuPd 1.99 ± 0 0.66 ± 0 2.50 ± 0 0.74 ± 0 2.99 ± 0 0.83 ± 0 

AuPt 1.99 ± 0 0.49 ± 0 2.00 ± 0 0.49 ± 0 1.99 ± 0 0.49 ± 0 

AuPd 1.99 ± 0 0.49 ± 0 2.00 ± 0 0.49 ± 0 1.99 ± 0 0.49 ± 0 

PtPd 2.99 ± 0.49 0.49 ± 0 3.00 ± 0.50 0.49 ± 0  2.99 ± 0.49 0.49 ± 0 
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Table 3.16. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against A. baumannii (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = palladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 0.31 ± 0.05 0.21 ± 0.02 1.20 ± 0 0.21 ± 0.02 0.33 ± 0 0.15 ± 0.02 

AgPt 0.74 ± 0.12 0.36 ± 0 0.99 ± 0 0.42 ± 0 0.49 ± 0 0.48 ± 0 

AgAu 0.55 ± 0  0.33 ± 0 0.58 ± 0  0.37 ± 0 0.60 ± 0 0.41 ± 0 

AgPd 0.99 ± 0 0.41 ± 0 0.49 ± 0 0.49 ± 0 0.99 ± 0 0.58 ± 0 

CuPt 1.32 ± 0 0.63 ± 0.07 1.50 ± 0 0.74 ± 0.09 1.66 ± 0 0.96 ± 0 

CuAu 1.16 ± 0.19 0.58 ± 0.07 0.91 ± 0 0.65 ± 0.08 1.05 ± 0 0.83 ± 0 

CuPd 1.32 ± 0 0.72 ± 0.09 0.74 ± 0 0.87 ± 0.1 0.83 ± 0 1.16 ± 0 

AuPt 0.99 ± 0 0.53 ± 0 0.99 ± 0 0.54 ± 0 0.99 ± 0 0.56 ± 0 

AuPd 0.99 ± 0 0.58 ± 0 0.99 ± 0 0.62 ± 0 0.74 ± 0.12 0.66 ± 0 

PtPd 0.74 ± 0.12 0.64 ± 0 0.74 ± 0.24 0.67 ± 0 0.99 ± 0 0.69 ± 0 
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Table 3.17. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against E. faecium (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). Au = gold, Cu = copper, Pt = platinum, Pd = palladium and 

Ag = silver. Synergistic interaction was highlighted using red colour. 

ZoI 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

AgCu 0.20 ± 0 0.99 ± 0 0.09 ± 0 0.78 ± 0.09 0.08 ± 0 0.49 ± 0 

AgPt 0.66 ± 0 1.46 ± 0 0.37 ± 0 1.39 ± 0.17 1.66 ± 0 0.73 ± 0 

AgAu 1.99 ± 0.33 1.46 ± 0 1.50 ± 0  1.39 ± 0.17 1.66 ± 0 0.73 ± 0 

AgPd 1.32 ± 0 1.46 ± 0 1.50 ± 0 1.39 ± 0.17 1.66 ± 0 0.73 ± 0 

CuPt 0.99 ± 0 1.06 ± 0 1.25 ± 0 1.13 ± 0.14 2.24 ± 0.37 1.06 ± 0 

CuAu 0.99 ± 0 1.06 ± 0 1.25 ± 0 1.13 ± 0.14 1.49 ± 0 1.06 ± 0 

CuPd 0.75 ± 0.12 1.06 ± 0 1.25 ± 0 1.13 ± 0.14 1.49 ± 0 1.06 ± 0 

AuPt 1.00 ± 0 1.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0 

AuPd 1.00 ± 0 1.99 ± 0 0.99 ± 0 0.99 ± 0 0.74 ± 0.12 0.99 ± 0 

PtPd 1.00 ± 0 1.99 ± 0 1.49 ± 0.25 0.99 ± 0  0.74 ± 0.12 0.99 ± 0 
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3.5. Discussion  

Combined metal ions antimicrobial efficacies 

Following this study, the ZoI combination, FIC and FBC results demonstrated that none of the 

combinations of metal ions showed antagonistic interactions. Though Cu ions were found to 

be a weak antimicrobial when tested individually, AgCu combined ions were found to display 

synergism in most of the tested ratios in the FIC and FBC test against A. baumannii and E. 

faecium. Moreover, CuAu against A. baumannii demonstrated synergism in the FIC test. In 

agreement with our results, a synergistic effect was demonstrated for Ag and Cu combined ions 

that inactivated (99.99 %) water contaminated with pathogens including A. baumannii within 

6 hours in a batch disinfection test (Huang et al., 2008). In agreement with our work, it has 

been shown that when Cu and Ag transition metals were combined, the MIC were reduced to 

0.5 and 0.25 respectively with demonstration of > 80 % of E. coli and B. subtilis inhibition for 

AgCu combination (Garza-Cervantes et al., 2017). This combined mode of action may be due 

to Cu acting as iron (Fe) homolog and replacing essential micronutrient Fe uptake (Lemire et 

al., 2013; Zanzen et al., 2018). Thus, this might increase diffusion of the combined 

antimicrobial into the bacterial cell membrane through efflux pumps (Lemire et al., 2013). 

Inside the bacteria Ag, Cu and Au ions attack vital cellular activities leading to cell lysis (Hoiby 

et al., 2010; Lemire et al., 2013). According to a study by Ahmad et al. (2014), Ag ions 

significantly enhanced the antimicrobial action of Mentha piperita essential oil by producing a 

synergistic interaction. The mean ZoI for Mentha piperita against E. coli (12 mm) and S. aureus 

(17 mm) was demonstrated, which increased to 21 mm for the Ag and Mentha piperita 

combination. Another study has shown that the addition of Au ions in combination with Ag 

nanoparticles decreased their overall negative charge. This might explain a mechanism of 

action that would lead to a greater adherence of meal cation particles to the bacterial surface 
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through the electrostatic interactions, thus increasing their antimicrobial effects (Wang et al., 

2016).  

Conditioning film effect on combined metal ions antimicrobial activity 

Interestingly, in the presence of 10 % bovine plasma, the combined ions demonstrated an 

elevated antimicrobial efficacy, whilst the single metal ions did not, suggesting an adjuvant 

effect. 

 Chemistry between plasma proteins and metal ions 

The enhanced antimicrobial efficacy demonstrated in presence of plasma proteins may be due 

to one or a combined mechanism of action categorised as i) the affinity of the metal ions to 

bind to the plasma proteins, ii) redox reactions, iii) electrostatic reactions, iv) charge of metal 

and plasma proteins, v) co-ordination complex formation and vi) interaction with bacterial cell 

(Sotogaku et al., 1999; Corbin et al., 2008; Zeitlinger et al., 2011). A two-way redox reaction 

might occur, where positively charged metal ions show strong affinity towards negatively 

charged proteins present in the plasma (Zeitlinger et al., 2011). This affinity between metal ion 

and protein can make them bind reversibly or irreversibly (Jackson and Byrne, 1996). The 

exchange of ions occurring through redox reaction is dependent on oxidation state of both the 

components (Zanzen et al., 2013; Dudev and Lim, 2014). According to a study by Dudev and 

Lim, (2014), the net charge of protein plays a vital role in the electrostatic reactions with metal 

ions. Proteins with a high negative charge surface potentially attract more cations and thus 

increases binding (Sotogaku et al., 1999). However, the formation of co-ordination protein 

metal complexes is a multifaceted process where only a metal ion with specific oxidation 

charge can show binding properties to precise plasma proteins surface site (Sotogaku et al., 

1999; Dudev and Lim, 2014). For example, metal ions such as Cu+2, Mn+2 and Ni+2 bind to N-

terminal site of albumin through peptide bond and forms a stable planner co-ordinate complex, 
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whilst, metals Zn+1 or Zn+2 cannot displace the amide group of albumin and hence cannot form 

complexes (Bal et al., 2013; Slavin et al., 2017).  

 Metal-plasma protein complex antimicrobial efficacies on bacteria 

Once metal ions form a complex with proteins, different modes of action may occur. For 

example, before metal ions attach to the oppositely charge bacterial membrane components, 

bacteria might absorb the proteins components (Hulander et al., 2009). This bacterial and 

metal-plasma protein complex attachment might generate electrochemical potential difference 

between metal ions in the complex (Hulander et al., 2009; Garza-Cervantes, 2017), thus 

resulting in an enhanced antimicrobial effect. It has also been suggested that the 

electrochemical potential difference between Ag ions and aluminium oxide salts generate 

reactive oxygen ions (Slavin et al., 2017). Another study suggested that the presence of reactive 

oxygen reacts with water (in our case present in proteins of bovine plasma), which releases 

additional free oxygen radicals into the milieu (Kittler et al., 2010; Yang et al., 2017). This free 

oxygen radical ultimately lead to ROS generation (Slavin et al., 2017). Thus, the damage cause 

to the bacterial has been proposed to originate with ROS release and oxidative damage, owing 

to bacteria attachment to the protein-metal complex. This may occur before the metal ions 

target the bacteria (Graza-Cervantes, 2017; Yang et al., 2017). Metals ions then later act on the 

bacterial cell-membrane and internalise within the bacteria, disrupting one or another vital 

cellular process (Lemire et al., 2013). This binding process between the metal-plasma protein 

complex and the bacterial surfaces may increase the combined ions antimicrobial efficacies. 

Contrasting data was reported in a study by Gnanadhas et al. (2013) where the best efficacy for 

PVP-AgNPs was found following the least interaction with BSA proteins. However, other 

molecules that bound to a BSA conditioning film, for example cit-AgNPs and uncapped AgNPs 

were found to be less antimicrobially active (Gnanadhas et al., 2013). Another mechanism 

might be that the plasma proteins undergo conformational changes whilst forming a complex 
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with the metal (Dudev and Lim, 2014). This might alter the protein present in plasma surfaces 

epitopes, which could alter (and may enhance or decrease) bacterial attachment with the 

bounded metal ions (Hulander et al., 2009). 

The binding affinity and electrostatic bond between metals and plasma proteins is influenced 

by other parameters such as pH, ionic radius of metal, temperature and competition between 

the metal valence ions (Sotogaku et al., 1999; Dudev and Lim., 2014). Thus, further 

investigations might aid in better understanding of the antimicrobial mechanistic activity. 

However, as most of the metal ions demonstrated synergistic in the presence of plasma 

proteins, such combinations may possess the potential to be used as biocides also in vivo like 

conditions. 

Thus, the action of these different metal ions against a range of different bacterial species 

requires further in-depth elucidation to determine their exact modes of action (Lemire et al., 

2013). Moreover, as metal form and antimicrobial efficacies are co-related, testing individual 

metal in different forms against range of bacteria might give in-depth knowledge about 

efficacies. 
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3.6. Crystal violet biofilm assay to test antimicrobial efficacies for five single metal ions 

and ten combined metal ions against K. pneumoniae, A. baumannii and E. faecium in the 

presence and absence of 10 % plasma conditioning film 

 3.6.1. Antibiofilm assay for five single metal ions against K.  pneumoniae, A 

baumannii and E. faecium in the presence and absence of 10 % bovine plasma 

conditioning film 

The antibiofilm efficacy of five metal ions was evaluated by comparing the growth by 

measuring the absorbance of treated bacterial biofilms with the respective negative controls 

after 24 h.  

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, Au and Pd ions at 0.5 mgmL-1 

demonstrated no viable bacterial biofilm density (OD = 0). In the presence of plasma CF, Pt, 

Au and Pd ions demonstrated no viable bacterial biofilm growth (OD = 0). Interestingly, Pt and 

Au ions demonstrated a slightly greater viable bacterial biofilm growth at 0.25 mgmL-1 (0.03 

and 0.05 respectively) than at 0.1 mgmL-1 (0.02 and 0.04 respectively). Silver (0.02, 0.03, 0.04, 

0.07) and Cu (0.01, 0.02, 0.05, 0.06) ions demonstrated an increase in antibiofilm efficacy with 

an increase in ion concentration in the presence or absence of plasma.  

A. baumannii 

Against A. baumannii in the absence or presence of plasma, Ag, Pt, Au and Pd ions 

demonstrated 100 % bacterial biofilm inhibition (OD = 0) at 0.5 mgmL-1. In the absence of CF, 

Au and Pd ions demonstrated a slightly greater viable bacterial biofilm growth at 0.25 mgmL-

1 (0.06 and 0.06 respectively) than at 0.1 mgmL-1 (0.04). Silver (0, 0.05, 0.05, 0.09), Cu (0.03, 

0.05, 0.05, 0.07) and Pt (0, 0.03, 0.03, 0.03) ions in absence of plasma CF and all tested metal 

ions in presence of plasma CF demonstrated an increase in antibiofilm efficacy with 

concentrations increase. 
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E. faecium 

Against E. faecium, in the absence or presence of plasma, Pt, Au and Pd ions demonstrated 100 

% bacterial biofilm inhibition (OD = 0) at 0.5 mgmL-1. It should be noted that Ag ions 

demonstrated a higher viable biofilm growth (OD = > 0.1) in absence of CF, however 

demonstrated 100 % biofilm inhibition in the presence of plasma CF. In absence of plasma, the 

Pt (0.04), Au (0.05) and Pd (0.04) ions tested at 0.25 mgmL-1 demonstrated a greater biofilm 

growth than when tested at lower concentrations (0.05 mgmL-1 (0.03, 0.04, 0.03 respectively) 

and 0.1 mgmL-1 (0.03, 0.02, 0.03 respectively)).  

 

Overall, against K. pneumoniae Au and Pd ions (without plasma CF) and Pt, Au and Pd ions 

(with plasma CF), against A. baumanii Ag, Pt, Au and Pd ions in both the conditions and against 

E. faecium Pt, Au and Pd ions (without plasma) and Ag, Pt, Au and Pd ions (with plasma) 

demonstrated the best antibiofilm efficacies. Copper ions demonstrated the least antibiofilm 

efficacies in all the tested conditions.  
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Figure 3.22. Biofilm absorbance after Ag, Cu, Pt, Au and Pd ions treatment against a) K. 

pneumoniae, b) A. baumannii and c) E. faecium in the absence of 10 % plasma conditioning 

film. All the metal ions demonstrated a statistical significance compared to negative control (p 

< 0.001). Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.23. Biofilm absorbance after Ag, Cu, Pt, Au and Pd ions treatment against a) K. 

pneumoniae, b) A. baumannii and c) E. faecium in the presence of 10 % plasma conditioning 

film. All the metal ions demonstrated a statistical significance compared to negative control (p 

< 0.001). Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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 3.6.2. Antibiofilm assay for ten combined ions against K. pneumoniae, A baumannii 

and E. faecium in the absence of 10 % bovine plasma conditioning films 

The antibiofilm efficacy of AgCu, AgPt, AgAu, AgPd, CuPt, CuAu, CuPd, AuPt, AuPd and 

PtPd (2:1, 1:1 and 1:2 ratios) were evaluated using CVBA. The efficacies were analysed by 

comparing the growth absorbance of treated bacterial biofilms with respective negative 

controls after 24 h. It should be noted that all the tested metal ions demonstrated a lower 

absorbance than the respective acid controls.  

K. pneumoniae 

Against K. pneumoniae, AuPt, AuPd and PtPd combined ions demonstrated no biofilm growth 

at 0.5 mgmL-1 at all the tested ratios (p < 0.001). Copper/platinum in all the three ratios at 0.05 

mgmL-1 (0.29) and 0.1 mgmL-1 (0.24) demonstrated the highest bacterial biofilm growth. 

(Figure 3.24, a-c).  

A. baumannii 

Against A. baumannii, AuPt, AuPd and PtPd combined ions showed 100 % inhibition with OD 

= 0 (p < 0.001). Combined ions of AgPt, CuPt and CuPd demonstrated the lowest antibiofilm 

activity (OD = 0.1 – 0.5). Silver/platinum ions (0.05) displayed a greater viable bacterial 

biofilm grow that 0.05 mgmL-1 than negative control (0.4). The combined ions were the least 

effective overall in controlling biofilm growth in a 1:1 ratio compared to the 2:1 and 1:2 

ratios (Figure 3.25, a-c).  

E. faecium 

Against E. faecium, AuPt, AuPd and PtPd ion combinations showed 100 % growth inhibition 

with OD = 0 (p < 0.001). The copper ions combination with Ag, Pt and Pd ions demonstrated 

a lower antibiofilm efficacy in all the tested ratios (0.1- 0.3) (Figure 3.26, a-c).  

In summary combined ions of AuPt, AuPd and PtPd demonstrated the best combinations to 

deter biofilm growth, while CuPt demonstrated the least antibiofilm efficacy.  
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Figure 3.24. The CVBA results for metal ions and controls in the absence of 10 % plasma 

conditioning film against K. pneumoniae a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, 

Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.25. The CVBA results for metal ions and controls in the absence of 10 % plasma 

conditioning film against A. baumannii a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, 

Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.26. The CVBA results for metal ions and controls in the absence of 10 % plasma 

conditioning film against E. faecium a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, Cu 

= copper, Pt = platinum, Au = gold and Pd = palladium (n=3). 
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 3.6.3. Antibiofilm assay for ten combined ions against K.  pneumoniae, A 

baumannii and E. faecium in the presence of 10 % bovine plasma conditioning film 

The antibiofilm efficacy of AgCu, AgPt, AgAu, AgPd, CuPt, CuAu, CuPd, AuPt, AuPd and 

PtPd (2:1, 1:1 and 1:2 ratios) were evaluated using CVBA. The efficacies were analysed by 

comparing the absorbance to determine the growth of the treated bacterial biofilms with 

respective negative controls grown in presence of 10 % bovine plasma after 24 h. It was found 

that all the tested ions demonstrated a lower absorbance than the respective acid controls.  

K. pneumoniae 

Against K. pneumoniae, AuPt, AuPt and PtPd combined ions demonstrated no viable biofilm 

growth at 0.5 mgmL-1 in all the tested ratios (p < 0.001). Silver/copper, AgPt and AgPd 

combined ions in all the three ratios at 0.05 mgmL-1 and 0.1 mgmL-1 demonstrated the least 

antibiofilm efficacies (OD = up to 0.22). Copper combinations with Au, Pt and Pd ions 

demonstrated a moderate antibiofilm efficacy (OD = 0.13) (Figure 3.27, a-c).  

A. baumannii 

Against A. baumannii, AuPt, AuPd and PtPd combined ions showed 100 % inhibition with OD 

= 0 (p < 0.001) at 0.5 mgmL-1. AuPt, AuPd and PtPd and AgPd combined ions reduced biofilm 

growth at all tested concentrations and in all ratios (OD 0.002 - 0.1). Combined ions of CuPd 

demonstrated the lowest antibiofilm activity (OD = 0.1 – 0.22). The remaining combined ions 

displayed a moderate antibiofilm activity (OD = 003 – 0.2) (Figure 3.28, a-c).  

E. faecium 

Against E. faecium, AuPt, AuPd and PtPd combined ions showed 100 % inhibition with OD = 

0 (p < 0.001). Moreover, comparatively AuPd and PtPd and AgPd combined ions delivered the 

greatest antibiofilm efficacies at all tested concentrations and in all ratios (OD 0.002 - 0.1). 

Combined ions of AgCu at 0.05 mgmL-1 and CuPt and CuAu at all tested concentrations 
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demonstrated the lowest antibiofilm efficacy in all the tested ratios (OD = 0.1 – 0.3) (Figure 

3.27, a-c).  

 

In summary, combined ions of AuPt, AuPd and PtPd against Gram-negative bacteria and AuPd 

and PtPd against E. faecium demonstrated the best antibiofilm efficacies, while copper ions 

combinations demonstrated the least antibiofilm efficacies. Interestingly, all the tested 

combined ions demonstrated a greater antibiofilm efficacy (OD = 0 – 0.33) in presence of 

plasma compared to the absence of plasma (OD = 0 – 0.5).  
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Figure 3.27. The CVBA results for metal ions and controls in the presence of 10 % plasma 

conditioning film against K. pneumoniae a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, 

Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.28. The CVBA results for metal ions and controls in the presence of 10 % plasma 

conditioning film against A. baumannii a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, 

Cu = copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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Figure 3.29. The CVBA results for metal ions and controls in the presence of 10 % plasma 

conditioning film against E. faecium a) 2:1 ratio, b) 1:1 ratio and c) 1:2 ratio. Ag = silver, Cu 

= copper, Pt = platinum, Au = gold and Pd = palladium (n = 3). 
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3.6. Discussion  

Antibiofilm efficacies in the absence and presence of plasma conditioning film 

The difference in metal ion antimicrobial activity on biofilms can be explained based on the 

extent by which these cations are neutralised or sequestered to the EPS of the bacterial biofilms 

(Silvestry-Rodriguez et al., 2008). It is thought that the bacterial biofilms demonstrate 

multifactorial resistance mechanisms and the biosorption of reactive and charged species in the 

liquid phase is one of the major mechanisms of bacterial protection (Aslam, 2008). The 

biosorption process, may result in the antimicrobial compound becoming neutralized and /or 

diluted to sub-lethal concentrations (Massop and Davidson, 2003). This will result in the 

antimicrobial effect of the metal ions not being effective, once they reach the biofilms. In 

addition, cation size, charge ratio, oxidation state, bacterial EPS charge and physical conditions 

such as pH and temperature affect the amount of binding of the antimicrobial agent to the 

biofilm (Monteiro et al., 2009). This ultimately can influence the diffusion and extent of 

penetration of the antimicrobial agent. In agreement with our results, it has been shown that 

Ag demonstrated a reduction in the bacterial biofilm communities of the water distribution 

system at 14 – 20 µgmL-1, however, it failed to completely eradicate them (Silvestry-Rodriguez 

et al., 2008). Thus, it can be hypothesised that in our study, the Ag and Cu ions (0.5 mgml-1) 

concentration was not enough to reach the bacteria inside the EPS complex, unlike Pt, Au and 

Pd ions which demonstrated a complete inhibition of the biofilm. Though presence of plasma 

CF increased bacterial biofilm growth absorbance, however the antibiofilm metal ions results 

were consistent in the presence and absence of CF, this suggests that the biofilm is influencing 

the rate of antimicrobial efficacies. 
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3.7. Cytotoxicity for five metal ions (Ag, Cu, Pt, Au and Pd) 

The skin fibroblast controls demonstrated 100 % viability in the MTT assay. Palladium ions 

demonstrated the least cell toxicity with 44 % cell viability. In contrast to our results, platinum 

chloride salts demonstrated the least and palladium chloride demonstrated a moderate 

biotoxicity for osteoblast and mouse fibroblast cell lines (Egorova and Ananikov, 2016). 

Silver and Au ions showed 37 % and 32 % cell viability and a moderate cell toxicity. Platinum 

(24 %) and copper ions (27 %) demonstrated the most toxic cell effects with a comparable cell 

viability as positive controls (20 % - 24 %) (Figure 3.30). Similar to the results demonstrated 

in this work, Cu and Au ions were found to demonstrate a toxicity to human oligodendroglial 

cells and human gingival fibroblasts at concentrations between 9.8 μM and 2083 μM (Issa 

et al., 2007). 
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Figure 3.30. Cytotoxicity assays for Ag, Cu, Pt, Au and Pd ions against skin fibroblast cells (n 

= 3). Ag = silver, Cu = copper, Pt = platinum, Au = gold and Pd = palladium. 
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Chapter 4 

Antimicrobial efficacies of graphene-based compounds against K. 

pneumoniae, A. baumannii and E. faecium with and without presence of 10 

% bovine plasma 

3.0. Introduction  

All the tests described in the introduction section of chapter 3 (page; 71 and 72) 

were repeated on the GBCs.  

Objective  

 Evaluate the antimicrobial efficacies of the graphene-based compounds (GBCs) against 

three selected pathogens in the absence and presence of 10 % bovine plasma. 

 Demonstrate the morphological, elemental and chemical changes for GO, AgGO, 

AuGO and PdGO in the absence and presence of 10 % bovine plasma. 

 Determine the antimicrobial efficacies of GO, AgGO, CuGO, AuGO and PdGO against 

selected bacterial biofilms in the absence and presence of 10 % bovine plasma. 

 Determine antimicrobial efficacies of GBCs combinations (GOAgGO, GOCuGO, 

GOAuGO, GOPdGO, AgGOCuGO, AgGOAuGO, AgGOPdGO, CuGOAuGO, 

CuGOPdGO and AuGOPdGO) in the absence and presence of 10 % bovine plasma. 
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4.1. Antimicrobial efficacies for fourteen graphene-based compounds in the absence and 

presence of 10 % bovine plasma condition film 

 4.1.1. Zone of inhibition with and without plasma conditioning film 

The ZoI test was performed for fourteen graphene-based compounds (GBCs) against the three 

medical pathogens. Following the tests, AgGO showed the strongest inhibitory effects with 4 

- 4.5 mm, 2 - 3 mm and 4 mm of ZoI against K. pneumoniae, A. baumanniii and E. faecium 

respectively in the presence or absence of plasma CF. Gold-graphene oxide and PdGO showed 

little antibacterial effects with 0.5 mm to 1.5 mm of inhibition. Copper-GO only demonstrated 

1 mm of inhibition against A. baumannii in absence of plasma conditioning film (CF). The 

remaining nine tested components GO solution, graphene oxygen, graphene carbonyl, 

graphene fluorocarbons, graphene nanoplatelets, graphene argon, graphene ammonia, 

graphene nitrogen and graphene were found to demonstrate no zones of inhibition in the 

presence or absence of plasma.  

Enterococcus faecium was found to be the most resistant bacteria. The presence of plasma CF 

were found to reduce the inhibitory effects (0.5 mm to 1 mm) for AgGO, GO, CuGO, AuGO 

and PdGO against the three tested bacteria (Figure 4.1 and 4.2).  

Overall, AgGO has demonstrated the best inhibitory efficacy and CuGO was the least active 

compared to GO, AgGO, AuGO and PdGO.  
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Figure 4.1. ZoI (mm) for fourteen GBCs at 0.01 mgmL-1 in the absence of 10 % plasma 

conditioning film against K. pneumoniae, A. baumannii and E. faecium (n = 24). 
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Figure 4.2. ZoI (mm) for fourteen GBCs at 0.01 mgmL-1 in the presence of 10 % plasma 

conditioning film against K. pneumoniae, A. baumannii and E. faecium (n = 24). 
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              4.1.2. Minimum inhibitory concentration (MIC) with and without 10 % plasma 

conditioning film 

Following the MIC test, AgGO showed the strongest inhibition activity against all the three 

pathogens (0.015 mgml-1 to 0.0.31 mgml-1) when tested in the absence or presence of plasma 

CF. The GO solution, graphene oxygen, graphene carbonyl, graphene fluorocarbons, graphene 

nanoplatelets, graphene argon, graphene ammonia, graphene nitrogen and graphene 

demonstrated no inhibition in the presence or absence of plasma CF. Apart from AgGO, the 

inhibitory efficacies were in the order of PdGO > GO > AuGO > CuGO in the absence and 

presence of CF against all bacteria.  

The presence of plasma CF found to increase the inhibitory concentration only for GO (0.046 

mgml-1 without CF and 0.062 mgml-1 with CF) against A. baumannii (Table 4.1 and 4.2). 

Overall, AgGO demonstrated the best inhibitory efficacy and CuGO was the least active 

antimicrobial compared to GO, AgGO, AuGO and PdGO. Except for GO MICs, the presence 

of plasma did not exhibit any impact on other GBCs MICs.  
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Table 4.1. Minimum inhibitory concentrations result in mgml-1 for fourteen GBCs in absence 

of 10 % plasma conditioning film against K. pneumoniae, A. baumannii and E. faecium (n = 

4). The highlighted red colour represents the greatest antimicrobial efficacy. 

Compounds  Klebsiella 

pneumoniae 

Acinetobacter  

baumannii 

Enterococcus  

faecium 

Graphene oxide 

solution 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene  > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene carboxyl > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

fluorocarbons 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

nanoplatelets 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene oxygen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene argon > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

ammonia 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene nitrogen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

GO 0.062 ± 0 0.046 ± 0 0.125 ± 0 

AgGO 0.031 ± 0 0.015 ± 0 0.031 ± 0 

CuGO 0.125 ± 0 0.125 ± 0 0.25 ± 0 

AuGO 0.062 ± 0 0.062 ± 0 0.125 ± 0 

PdGO 0.062 ± 0 0.062 ± 0 0.062 ± 0 
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Table 4.2. Minimum inhibitory concentrations result in mgml-1 for fourteen GBCs in the 

presence of 10 % plasma conditioning film against K. pneumoniae, A. baumannii and E. 

faecium (n = 4). The highlighted red colour represents the greatest antimicrobial efficacy. 

Compounds  Klebsiella 

pneumoniae 

Acinetobacter  

baumannii 

Enterococcus  

faecium 

Graphene oxide 

solution 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene  > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene carboxyl > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

fluorocarbons 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

nanoplatelets 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene oxygen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene argon > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

ammonia 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene nitrogen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

GO 0.062 ± 0 0.062 ± 0 0.125 ± 0 

AgGO 0.031 ± 0 0.015 ± 0 0.031 ± 0 

CuGO 0.125 ± 0 0.125 ± 0 0.25 ± 0 

AuGO 0.062 ± 0 0.062 ± 0 0.125 ± 0 

PdGO 0.062 ± 0 0.062 ± 0 0.062 ± 0 
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                4.1.3. Minimum bactericidal concentration (MBC) with and without 10 % 

bovine plasma conditioning film 

Following the MBC test, the AgGO demonstrated the best bactericidal activity against all the 

three pathogens (0.031 mgml-1 to 0.0.62 mgml-1) in the absence or presence of plasma CF. The 

GO solution, graphene oxygen, graphene carbonyl, graphene fluorocarbons, graphene 

nanoplatelets, graphene argon, graphene ammonia, graphene nitrogen and graphene were 

found to present no inhibition in the presence and absence of plasma. Apart from AgGO, the 

bactericidal efficacies were in the order of PdGO > GO > AuGO > CuGO in the absence and 

presence of CF against all bacteria.  

The presence of 10 % bovine plasma CF demonstrated no profound effect on the bactericidal 

concentrations for any of the tested components (Table 4.3 and 4.4). 

Overall, AgGO demonstrated the best bactericidal efficacy and CuGO was the least active 

antimicrobial compared to GO, AgGO, AuGO and PdGO.  
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Table 4.3. Minimum bactericidal concentrations in mgml-1 for fourteen GBCs in the absence 

of 10 % plasma conditioning film against K. pneumoniae, A. baumannii and E. faecium (n = 

4). The highlighted red colour represents the greatest antimicrobial efficacy. 

Compounds  Klebsiella 

pneumoniae 

Acinetobacter  

baumannii 

Enterococcus  

faecium 

Graphene oxide 

solution 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene  > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene carboxyl > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

fluorocarbons 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

nanoplatelets 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene oxygen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene argon > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

ammonia 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene nitrogen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

GO 0.125 ± 0 0.062 ± 0 0.25 ± 0 

AgGO 0.062 ± 0 0.031 ± 0 0.062 ± 0 

CuGO 0.25 ± 0 0.25 ± 0 0.25 ± 0 

AuGO 0.125 ± 0 0.125 ± 0 0.187 ± 0 

PdGO 0.125 ± 0 0.125 ± 0 0.125 ± 0 
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Table 4.4. Minimum bactericidal concentrations in mgml-1 for fourteen GBCs in the presence 

of 10 % plasma conditioning film against K. pneumoniae, A. baumannii and E. faecium (n = 

4). The highlighted red colour represents the greatest antimicrobial efficacy. 

Compounds  Klebsiella 

pneumoniae 

Acinetobacter  

baumannii 

Enterococcus  

faecium 

Graphene oxide 

solution 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene  > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene carboxyl > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

fluorocarbons 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

nanoplatelets 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene oxygen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene argon > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene 

ammonia 

> 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

Graphene nitrogen > 0.5 ± 0 > 0.5 ± 0 > 0.5 ± 0 

GO 0.125 ± 0 0.062 ± 0 0.25 ± 0 

AgGO 0.062 ± 0 0.031 ± 0 0.062 ± 0 

CuGO 0.25 ± 0 0.25 ± 0 0.25 ± 0 

AuGO 0.125 ± 0 0.125 ± 0 0.187 ± 0 

PdGO 0.125 ± 0 0.125 ± 0 0.125 ± 0 
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3.1.4. Time kill assay for selected GBCs (graphene oxide (GO) and metal-GO hybrids 

(AgGO, AuGO and PdGO)) in the absence and presence of 10 % bovine plasma 

conditioning film  

The time kill assay was performed to investigate the antibacterial efficacies for GO, AgGO, 

AuGO and PdGO (1 mg and 10 mg) at 0, 2 h, 4 h and 24 h time points against three pathogens 

in the presence and absence of 10 % serum bovine plasma. Silver-GO at 1 mg showed no viable 

count after 2 h against both the tested Gram-negative species and 6 logs of bacterial reduction 

against E. faecium. The best antibacterial efficacy was demonstrated for 10 mg of AgGO with 

no viable count at 0 h against both the tested Gram-negative species and at 4 h against Gram-

positive bacteria respectively (p < 0.05) (Figure 4.3 and 4.4). Graphene oxide at 4 h of treatment 

and AuGO and PdGO after 24 h of treatment at 10 mg demonstrated no viable count (p < 0.05) 

against A. baumannii and K. pneumoniae (Figure 4.3 and 4.4 – a, b). Against E. faecium at 10 

mg concentration, GO showed no viable bacterial count and AuGO and PdGO demonstrated 6 

logs of bacterial reduction after 24 h of treatment (Figure 4.3 and 4.4 – c).  Two to three log 

bacterial viable count reduction was demonstrated for GO, AuGO and PdGO (1 mg) at 24 h 

treatment against A. baumannii and K. pneumoniae (Figure 4.3 and 4.4 – a, b). No reduction 

was found for GO, AuGO and PdGO at 1 mg of concentration against E. faecium (Figure 4.3 

and 4.4 – c). 

Thus, in summary, AgGO demonstrated the best antimicrobial efficacy and AuGO was the 

least active antimicrobial efficacy.  
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Figure 4.3. Time kill assay for GO, AgGO, AuGO and PdGO at 1 mg and 10 mg concentrations 

against a) K. pneumoniae, b) A. baumannii and c) E. faecium in the absence of 10 % plasma 

conditioning film (p < 0.05). 
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Figure 4.4. Time kill assay results of GO, AgGO, AuGO and PdGO at 1 mg and 10 mg 

concentrations against a) K. pneumoniae, b) A. baumannii and c) E. faecium in the presence of 

10 % plasma conditioning films (p < 0.05). 
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4.1. Discussion 

Antimicrobial efficacies of the graphene based compounds   

From the results of the ZoI, MIC, MBC and time kill tests, AgGO displayed the best 

antimicrobial efficacy followed with PdGO and GO. Similarly, amongst the GO, graphite, 

AgGO and zinc oxide-graphene oxide, AgGO demonstrated the best antimicrobial with MIC 

of 0.12 mg mL−1 against E. coli / Enterococcus faecium and 0.25 mg mL−1 against S. aureus / 

K. pneumoniae (Whitehead et al., 2017). In another study by Xu et al. (2011), AgGO 

nanocomposites displayed a large inhibitory zone against S. aureus and E. coli (up to 17 mm).  

Physical and chemical factors of graphene based compounds 

  Antimicrobial efficacies and physical factors of graphene based compounds  

One of the most well described mechanisms for the antimicrobial action of graphene-based 

metal compounds can be induction of oxidative stress generated by GO. Reactive oxygen 

species might be produced upon adsorption of oxygen on the edges and pits present on the GO 

flakes (Zou et al., 2016). Graphene oxide also contains high amounts of oxygen related 

functional groups such as carboxyl and hydroxyl on the surface (Jin et al., 2017). It is feasible 

that the oxygen content might be reduced by various cellular enzymes which generates ROS, 

once in contact with the bacteria (Zou et al., 2016). It has been shown that GO generated higher 

levels of ROS than graphene owing to the larger number of oxygen functional group present, 

thus making them better antimicrobials (Santos et al., 2012). This was confirmed for 

poly(vinylcarbazole)-GO nanocomposites with the highest percentage of thiols present in a 

glutathione loss test (an antioxidant that nullifies ROS production) at 1 mgmL-1 compared to a 

graphene nanocomposite (Musico et al., 2014). Another antibacterial mechanism of GO is 

described to be wrapping and trapping. It can be assumed that the groves, defects and 

distortions that are formed during the production of GO from graphene aids in trapping 

bacterial cells (Krishnamoorthy et al., 2012). Once trapped, the nano-walls of the GO induce 
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bacterial damage by wrapping around the bacterial membrane and hindering vital cellular 

process (Akhavan and Ghaderi, 2010). It is also assumed that this trap and wrap phenomenon 

will cut off bacterial nutrient supplies and other conditions required for growth (Zou et al., 

2016). Supporting results were observed where graphene oxide polymer nanocomposites and 

carbon nanotube GO compounds altered the bacterial cell shape and integrity and inhibited cell 

proliferation by wrapping around them (Akhavan and Ghaderi, 2010; Mejias Carpio et al., 

2012). 

  Antimicrobial efficacies and chemical factors of graphene based compounds 

Several chemical factors influence AgGO antibacterial mechanism. It has been suggested that 

the chemical properties of GO such as negative zeta potential, partial hydrophobicity and 

presence of carboxyl groups on the surface enhance its antimicrobial properties (Kurantowicz 

et al., 2015; Prasad et al., 2016). According to Kurantowicz et al. (2015), GO negative zeta 

potential (-49.8 mega volt) and partial hydrophobic nature resulted in a greater bacterial 

attraction / adhesion to the surfaces. Moreover, owing to the presence of carboxyl group in the 

macromolecule bacterial structures such as fatty acids and amino acids, the GO surface rich in 

carboxyl group can be speculated to play an attractive role to attach bacteria on their surfaces. 

(Sanchez et al., 2012; Kurantowicz et a., 2015).  

Work by others has been in agreement with the results found in this study, whereby GO was 

found to show a good antimicrobial efficacy against E. coli with MIC of 25 µgmL-1 

(Veerapandian et al., 2013). Apart from physically damaging bacterial membrane Kurantowicz 

et al. (2015), other detrimental effects of GO could be induction of oxidative stress and 

hindrance in adenosine phosphate (ATP) production (He et al., 2010; Liu et al., 2011). Copper-

GO nanoparticles have also been demonstrated to show antimicrobial efficacy against 

Pseudomonas syringe producing inhibition of 12.5 mm at 16 µgmL-1 (Li et al., 2017). 

Similarly, another study demonstrated an effective MIC of 40 mM and 20 mM with CuO 
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nanoparticles against E. coli and S. aureus respectively (DeAlba-Montero et al., 2017). This 

was in contrast with our results, where CuGO demonstrated poor antibacterial activity. 

that particle size was not found to affect the antimicrobial activity of ZnO. 

The GO solution, graphene, graphene oxygen, graphene carboxyl, graphene fluorocarbons, 

graphene nanoplatelets, graphene argon, graphene nitrogen and graphene ammonia did not 

demonstrate any bacteriostatic or bactericidal effects. Little has been reported about other 

tested graphene materials except for the graphene and graphene nanoplatelets. Graphene nano-

walls and graphene nanoplatelets have been found to demonstrate effective antibacterial 

efficacies (Jastrzebska et al., 2012). Similarly, a study by Scaffaro et al. (2017) found an 

effective inhibitory effect (32 mm) for graphene nanoplatelets against Micrococcus luteus.  

Furthermore, a drop diffusion method demonstrated only 26 % and 41 % E. coli and S. aureus 

survival for graphene nano-walls (Jastrzebska et al., 2012).  

The reason that the functionalised graphene’s tested in this study did not demonstrate any 

antimicrobial efficacy may be explained as mentioned in the Barbolina et al. (2016) study, 

regarding a purity of the tested graphene-based derivatives. Accordingly, the commercial 

purchased GO flakes were found to demonstrate no bacterial potency in the cell viability test 

against E. coli at 1 mgmL-1 concentration (Barbolina et al., 2016). Since the above-mentioned 

graphene derivatives were purchased from a commercial supplier, it is unknown as to the exact 

nature of the graphene shape and size in the solution provided which could invariably hinder 

their antibacterial activity. Further analysis of the functionalised graphene to characterise them 

would increase the knowledge of the specification of these purchased compounds. 

Conditioning film effect on single graphene based compound antimicrobial efficacies 

The presence of the bovine plasma CF was not shown to have a major influence on the 

antimicrobial efficacies of the graphene derivatives. Only 0.5 mm to 1 mm of ZoI reduction 

for the GO, CuGO, AgGO and PdGO was demonstrated. In the MIC assay, only GO inhibitory 
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concentration against A. baumannii were found to be reduced in the presence of CF. In 

agreement with our results, the presence of bovine plasma conditioning agent film was shown 

not to demonstrate any effect on the antimicrobial effects of Ti-nitride and Ag coated surfaces 

against S. aureus (Saubade et al., 2018). However, in contrast to these results, uncapped Ag 

nanoparticles (AgNps) have been shown to display a lower antimicrobial efficacy in presence 

of 3 % BSA compared to poly(vinylpyrrolidone) coated AgNps (PVP-AgNps) and citrate 

coated AgNPs (cit-AgNps) against Salmonella typhirium at 3 µgmL-1 (Gnanadhas et al., 2013). 

Since in the work presented in this thesis, the CF did not alter the antibacterial activity when 

used with the graphene derivatives it may be suggested that the graphene oxide did not compete 

with the bovine plasma proteins. This suggests that graphene based materials possess the 

potential to be used as antibacterial material / biocides where organic load is present. However, 

investigations in presence of other CFs such as blood, serum and other biological fluids would 

increase this knowledge. 
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4.2. Morphological changes observed using SEM for GO and metal-GO hybrids 

 4.2.1. Structural changes in the Klebsiella pneumoniae, A. baumannii and E. 

faecium after GO, AgGO, AuGO and PdGO treatment at 0 h and 24 h in the absence of 

10 % bovine plasma conditioning film 

The untreated cells were found to have normal and smooth surface and intact shape (Table 4.5 

– 4.7, a). However, after treatment, all the bacterial cells were found morphological changes 

after 24 h. When compared with the control, the treated bacterial cells were found to 

demonstrate a ‘rougher’ looking surface. This might be owing to the deposition of the GO and 

metal-GO hybrids particles. The other prominent damage was a compressed cell surface with 

large pits and cell seepage (with AgGO ion treatment). The 24 h AuGO treatment left the cell 

structure deformed and augmented with a ‘spongy’ rounded shape. The bacterial cells shape 

changed to swollen, round or irregular after the treatment compared with control (Table 4.5 – 

4.7, i – iv, b and c). Against E. faecium AgGO and AuGO, against A. baumannii AgGO and 

against K. pneumoniae GO and AgGO demonstrated cell leakage. Palladium-GO treated K. 

pneumoniae cell showed the greatest changes with surface pits / holes and egg like oval shape 

after 24 h (Table 4.5). 
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Table 4.5. Changes in the K. pneumoniae morphology using SEM in the absence of 10 % 

plasma conditioning film after GO and metal-GO hybrids treatment (0 h and 24 h). GO = 

graphene oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = 

palladium graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

K. pneumoniae after 0 

h Metal-GO hybrids 

treatment in the 

absence of CF 

K. pneumoniae after 

24 h Metal-GO 

hybrids treatment in 

the absence of CF 

 

 

 

 

 

 

 

 

a) 

 
 

 b) c) 

GO        

             i) 

  
AgGO  

            ii) 

  
AuGO 

           iii) 

  
PdGO 

           iv) 

  
 

 

 

 

 

 

 

Pits and oval 

shape 

Spongy and 

swollen shape  

Cell leakage  

Cell elongation 
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Table 4.6. Changes in the A. baumannii morphology using SEM in the absence of 10 % plasma 

conditioning film after GO and metal-GO hybrids treatment (0 h and 24 h). GO = graphene 

oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = palladium 

graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

A. baumannii after 0 

h Metal-GO hybrids 

treatment in the 

absence of CF 

A. baumannii after 24 

h Metal-GO hybrids 

treatment in the 

absence of CF 

 

 

 

 

 

 

 

 

a) 

 
 

 b) c) 

GO 

             i) 

  
AgGO 

            ii) 

  
AuGO 

           iii) 

  
PdGO 

           iv) 

  
 

 

 

 

 

 

 

Compressed  

surface 

Cell leakage  

Swollen cell 

Pits formation 
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Table 4.7. Changes in the E. faecium morphology using SEM in the in the absence of 10 % 

plasma conditioning films after GO and metal-GO hybrids treatment (0 h and 24 h). GO = 

graphene oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = 

palladium graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

E. faecium after 0 h 

metal treatment in 

the absence of CF 

E. faecium after 24 h 

metal treatment in 

the absence of CF 
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 b) c) 
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AgGO 

            ii) 

  
AuGO 
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PdGO 

           iv) 

  
  

 

 

 

 

 

 

Cell leakage  

Pit formations 

Compressed surface 
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 4.2.2. Klebsiella pneumoniae, A. baumannii and E. faecium structural changes after 

GO, AgGO, AuGO and PdGO treatment at 0 h and 24 h in the presence of 10 % bovine 

plasma conditioning film 

The untreated cells were intact and appeared undamaged before treatment (Table 4.8 – 4.10, 

a). However, again, all the bacterial cells were to demonstrate changes in morphologies after 

24 h treatment compared with 0 h. The Gram–negative pathogens were found with the greatest 

morphologically damage when compared with the E. faecium. Enterococcus faecium cells at 0 

h treatment was relatively smooth and looked undamaged. The prominent E. faecium and K. 

pneumoniae changes was appearance of cellular content leakage following treatment with 

AgGO after 24 h. Palladium-GO treated K. pneumoniae cells showed the appreance of lines on 

surface with extensive pits. Against K. pneumoniae GO and AuGO and against A. baumannii 

PdGO at 24 h treatment demonstrated that the bacteria looked to have a damaged centre and 

swollen edges. Moreover, cell elongation was demonstrated at 0 h treatment against A. 

baumannii for AuGO and PdGO and for GO against K. pneumoniae. Moreover, cell shrinkage 

and broader width were also demonstrated at 24 h following GO, AuGO and PdGO treatment 

against A. baumannii and K. pneumoniae (Table 4.8 – 4.10, i-iv, b and c).  
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Table 4.8. Changes in the K. pneumoniae morphology using SEM in the presence of 10 % 

plasma conditioning film after treatment with GO and mtal-GO hybrids (0 h and 24 h). GO = 

graphene oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = 

palladium graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

K. pneumoniae after 0 

h metal treatment in 

the presence of CF 

K. pneumoniae after 

24 h metal treatment 

in the presence of CF 

 

 

 

 

 

 

 

 

a) 

 

 
 

 b) c) 

GO 
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AgGO 

            ii) 

  
AuGO 
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PdGO 
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Cell elongation and 

centre pits 

Cell leakage 

Lines on surface 

Compressed centre 

and swollen edges 
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Table 4.9. Changes in the A. baumannii morphology using SEM in the presence of 10 % 

plasma conditioning film after treatment with GO and metal-GO hybrids (0 h and 24 h). GO = 

graphene oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = 

palladium graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

A. baumannii after 0 

h metal treatment in 

the presence of CF 

A. baumannii after 24 

h metal treatment in 

the presence of CF 
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Table 4.10. Changes in the E. faecium morphology using SEM in the presence of 10 % plasma 

conditioning film after treatment with GO and metal-GO hybrids (0 h and 24 h). GO = graphene 

oxide, AgGO = silver graphene oxide, AuGO = gold graphene oxide and PdGO = palladium 

graphene oxide. 

Control 

 

Metal-

GO 

hybrids 

E. faecium after 0 h 

metal treatment in 

the presence of CF 

E. faecium after 24 h 

metal treatment in 

the presence of CF 
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4.2. Discussion  

All the tested bacterial cells demonstrated physical abnormalities GO and metal-GO hybrids 

treatment compared to the untreated cells in this study in the absence and presence of plasma 

CF. It has been suggested that the antimicrobial action of GO and metal-GO hybrids might be 

attack to the cell membrane affecting cell permeability resulting in cell leakage (K. Gupta et 

al., 2016; Das et al., 2017). The suggested mechanism is described in the SEM subsection of 

chapter 3. 
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4.3. Elemental changes observed using EDAX 

 4.3.1. Elemental changes against Klebsiella pneumoniae, A. baumannii and E. 

faecium after GO, AgGO, AuGO and PdGO at 24 h treatment in the absence of 10 % 

bovine plasma conditioning film  

The EDAX analysis results were presented for an average of three atomic percentage (At %) 

for untreated cells and cells treated with GO, AgGO, AuGO and PdGO at 24 h.  

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, the control elemental At % were 51.33 

% for carbon, 20 % for nitrogen, 28 % for oxygen, 0.41 % for phosphorous and 0.15 % for 

potassium. Compared with the control, AgGO demonstrated the greatest effects in the At % of 

carbon (58 %), oxygen (22 %), phosphorous (0.01 %). Graphene-oxide showed the maximum 

changes in the At % of potassium (1.02%). The nitrogen At % was the most affected with 

PdGO treatment. The phosphorous and potassium content disappeared after PdGO and AuGO 

and PdGO treatment respectively (Figure 4.5, a-e).  

A. baumannii 

Against A. baumannii in the absence of plasma CF, the control elemental At % were 49 % for 

carbon, 23 % for nitrogen, 27 % for oxygen, 0.86 % for phosphorous and 0.51 % for potassium. 

The greatest elemental chamges were demonstrated for PdGO treated bacterial cells with At % 

for carbon = 66 %, nitrogen = 5 %, oxygen = 43 %, phosphorous = 0.11 % and potassium = 11 

% compared with the control. A noteworthy change was demonstrated for GO in At % of 

oxygen (31 %) and for AuGO in At % nitrogen = 13 %. The potassium and phosphorous content 

disappeared after AgGO treatment. No change was found in the At % of oxygen (26 %) with 

AgGO and AuGO treatment (Figure 4.6, a-e). 
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E. faecium 

Against E. faecium in the absence of plasma CF, the control elemental At % were 46 % for 

carbon, 24 % for nitrogen, 30 % for oxygen, 0.29 % for phosphorous and 0.4 % for potassium. 

Changes in carbon (55 %) and nitrogen (16 %) At % were noted for AuGO and AgGO 

compared to the control. Moreover, AuGO demonstrated the maximum effects on At % of 

oxygen (25 %) and phosphorous (0.8 %). The potassium content disappeared after AgGO, 

AuGO and PdGO treatment (Figure 4.7, a-e). 

 

In summary, AgGO against K. pneumoniae and E. faecium and PdGO against A. baumannii 

demonstrated the greatest elemental changes. The least At % effects were noted for AuGO 

against K. pneumoniae, AgGO against A. baumannii and GO against E. faecium.  
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Figure 4.5. The EDAX results against K. pneumoniae in the absence of 10 % plasma 

conditioning film signifying elemental changes after GO, AgGO, AuGO and PdGO treatment 

at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; 

e) At % of potassium (n = 3). 
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Figure 4.6. The EDAX results against A. baumannii in the absence of 10 % plasma 

conditioning film signifying elemental changes after GO, AgGO, AuGO and PdGO treatment 

at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; 

e) At % of potassium (n = 3). 
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Figure 4.7. The EDAX results against E. faecium in the absence of 10 % plasma conditioning 

film signifying elemental changes GO, AgGO, AuGO and PdGO treatment at 24 h. a) At % of 

carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; e) At % of potassium 

(n = 3). 
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 4.3.2. Elemental changes against Klebsiella pneumoniae, A. baumannii and E. 

faecium after GO, AgGO, AuGO and PdGO 24 h treatment in the presence of 10 % 

bovine plasma conditioning film 

The EDAX analysis results were presented for an average of three atomic percentage (At %) 

for untreated cells and treated with GO, AgGO, AuGO and PdGO at 24 h. 

 K. pneumoniae 

Against K. pneumoniae in the presence of CF, the control elemental At % were 55 % for carbon, 

16 % for nitrogen, 28 % for oxygen, 0.32 % for phosphorous and 0.85 % for potassium. 

Compared with the control, AgGO demonstrated the greatest effects in the At % of carbon (59 

%), nitrogen (11 %), oxygen (22 %) and phosphorous (0.01 %). The greatest potassium change 

was demonstrated for GO (1.1 %). Moreover, GO demonstrated an effect on At % of carbon 

(56 %), nitrogen (20 %) and oxygen (23 %). The phosphorous and potassium content 

disappeared after PdGO and AuGO and PdGO treatment respectively (Figure 4.8, a-e).  

A. baumannii 

Against A. baumannii in the presence of plasma CF, the control elemental At % was 54 % for 

carbon, 17 % for nitrogen, 28 % for oxygen, 0.09 % for phosphorous and 0.52 % for potassium. 

Large changes were demonstrated for PdGO treated bacterial cells with At % for carbon = 62 

%, nitrogen = 6 %, oxygen = 39 %, phosphorous = 0 % and potassium = 11 % compared with 

control. A noteworthy change was demonstrated for AuGO in At % of nitrogen (11 %). The 

potassium and phosphorous content disappeared after AuGO and PdGO treatment respectively. 

No change was found in the At % of oxygen (26 %) with GO and nitrogen (17 %) for GO and 

AgGO treatment (Figure 4.9, a-e). 

E. faecium 

Against E. faecium in the presence of plasma CF, the control elemental At % were 52 % for 

carbon, 20 % for nitrogen, 27 % for oxygen, 0.75 % for phosphorous and 0.17 % for potassium. 
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Changes in the content of carbon (53 %), nitrogen (14 %) and phosphorous (5 %) At % changes 

was noted for AgGO compared to control. The maximum oxygen At % effect was noted for 

PdGO (35 %). Moreover, AuGO demonstrated good elemental effects on At % of N (15 %). 

The potassium content disappeared after AgGO, AuGO and PdGO treatment (Figure 4.10, a-

e). 

 

In summary, AgGO against K. pneumoniae and E. faecium and PdGO against A. baumannii 

demonstrated the best elemental changes. The least At % effects were noted for AuGO against 

K. pneumoniae, GO against A. baumannii and E. faecium. Moreover, some of the GO and 

metal-GO showed variance in the elemental effects in the presence of plasma CF compared to 

absence of CF. 
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Figure 4.8. The EDAX results against K. pneumoniae in the presence of 10 % plasma 

conditioning film signifying elemental changes after GO, AgGO, AuGO and PdGO treatment 

at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; 

e) At % of potassium (n = 3). 
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Figure 4.9. The EDAX results against A. baumannii in the presence of 10 % plasma 

conditioning film signifying elemental changes after GO, AgGO, AuGO and PdGO treatment 

at 24 h. a) At % of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; 

e) At % of potassium (n = 3). 
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Figure 4.10. The EDAX results against E. faecium in the presence of 10 % plasma conditioning 

film signifying elemental changes after GO, AgGO, AuGO and PdGO treatment at 24 h. a) At 

% of carbon, b) At % of nitrogen, c) At % of oxygen, d) At % of phosphorous; e) At % of 

potassium (n = 3). 
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4.4. Chemical changes observed using Raman Spectroscopy 

 4.4.1. Chemical changes for K. pneumoniae, A. baumannii and E. faecium after 

GO, AgGO, AuGO and PdGO at 24 h treatment in the absence of 10 % bovine plasma 

conditioning film 

The spectral profiles attributed to cell biomolecules were CH stretch (2920 cm-1 -2960 cm-1), 

proteins (C-N stretch: 760 cm-1 – 810 cm-1), lipids (CH2 and CH3 bending: 1440 cm-1 – 1470 

cm-1) and amides (1620 cm-1 - 1680 cm-1). The chemical effects on bacteria for GO and metal 

-GO hybrids were analysed by comparing with bacterial control.  

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, the band shifts noted for control were 

2952 cm-1 for CH bond, 1671 cm-1 for amide, 1442 cm-1 for CH2 / CH3 bending, 1085 cm-1 for 

C-O stretch and 784 cm-1 for C-N stretch. The maximum band shifts were noted for AgGO 

treated bacteria (2932 cm-1 for CH bond, 1661 cm-1 for amide, 1460 cm-1 for CH2 / CH3 bending, 

1099 cm-1 for C-O stretch and 755 cm-1 for C-N stretch). No effect was demonstrated in the 

CH2 / CH3 bending for AuGO treated bacteria. A noteworthy shift was demonstrated with 

PdGO treatment in the CH bond (2938 cm-1), amide (1665 cm-1), C-O (1091 cm-1) and C-N 

(765 cm-1). The minimal shift was noted for CH bond (2940 cm-1), amide (1668 cm-1), C-O 

(1095 cm-1) and C-N (772 cm-1) with GO treated bacteria (Figure 4.11, a-e).   

A. baumannii 

Against A. baumanni in the absence of plasma CF, the band shift noted for control were 2937 

cm-1 for CH bond, 1664 cm-1 for amide, 1446 cm-1 for CH2 / CH3 bending, 1096 cm-1 for C-O 

stretch and 792 cm-1 for C-N stretch. The maximum band shifts were noted for AgGO treated 

bacteria with 2930 cm-1 for CH bond, 1658 cm-1 for amide, 1462 cm-1 for CH2 / CH3 bending, 

1081 cm-1 for C-O stretch and 742 cm-1 for C-N stretch. A noteworthy shift was demonstrated 

in the C-N stretch with GO (779 cm-1), AuGO (765 cm-1) and PdGO (774 cm-1) treatment. The 
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minimal shifts were noted for CH bond (2936 cm-1) and amide (1664 cm-1) with AuGO and for 

CH2 / CH3 bending (1445 cm-1), C-O (1095 cm-1) and C-N (774 cm-1) with PdGO treated 

bacteria (Figure 4.12, a-e).   

E. faecium 

Against E. faecium in the absence of CF, the band shift noted for control were 2936 cm-1 for 

CH bond, 1658 cm-1 for amide, 1450 cm-1 for CH2 / CH3 bending, 1097 cm-1 for C-O stretch 

and 787 cm-1 for C-N stretch. The most chemical band shifts were demonstrated with PdGO 

treated bacterial cells compared to control (CH bond = 2945 cm-1, amide = 1640 cm-1, 

CH2/CH3 bending = 1439 cm-1, C-O stretch = 1088 cm-1 and C-N stretch = 760 cm-1). 

Moreover, AgGO demonstrated strong chemical effects with band shift of 2945 cm-1 for CH 

bond, 1642 cm-1 for amide, 1460 cm-1 for CH2/CH3 bending, 1089 cm-1 for C-O stretch and 

762 cm-1 for C-N stretch. The least C-N stretch band shift was demonstrated with GO (781 cm-

1). Whilst, AuGO was least effective for CH bond (2935 cm-1), amide (1660 cm-1), C-O (1095 

cm-1) and CH2/CH3 bending (1445 cm-1) shifts (Figure 4.13, a-e).  

 

In summary, AgGO against K. pneumoniae and A. baumannii and PdGO against E. faecium 

showed the maximum chemical changes, whilst, GO against K. pneumoniae, AuGO and PdGO 

against A. baumannii and AuGO against E. faecium showed the minimal chemical change. 
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Figure 4.11. Raman spectral bands shifts (cm-1) and their assignments for K. pneumoniae 

control and after treatment with GO, AgGO, AuGO and PdGO at 24 h in the absence of 10 % 

plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-

O stretch; e) C-N stretch shift (n = 3). 
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Figure 4.12. Raman spectral bands shifts (cm-1) and their assignments for A. baumannii control 

and after treatment with GO, AgGO, AuGO and PdGO at 24 h in the absence of 10 % plasma 

conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-O stretch; 

e) C-N stretch shift (n = 3).  
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Figure 4.13. Raman spectral bands shifts (cm-1) and their assignments for E. faecium control 

and after GO, AgGO, AuGO and PdGO treatment at 24 h in the absence of 10 % plasma 

conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-O stretch; 

e) C-N stretch shift (n = 3).  
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 4.4.2. Chemical changes observed using Raman Spectroscopy for Klebsiella 

pneumoniae, A. baumannii and E. faecium after GO, AgGO, AuGO and PdGO at 24 h 

treatment in the presence of 10 % bovine plasma conditioning film 

The spectral profile attributed to cell biomolecules were CH stretch (2920 cm-1 -2960 cm-1), 

proteins (C-N stretch: 760 cm-1 – 810 cm-1), lipids (CH2 and CH3 bending: 1440 cm-1 – 1470 

cm-1) and amides (1620 cm-1 - 1680 cm-1). The chemical effects on bacteria for GO and metal-

GO were analysed by comparing with bacterial control.  

K. pneumoniae 

Against K. pneumoniae in the presence of plasma CF, the band shifts noted for control were 

2943 cm-1 for CH bond, 1677 cm-1 for amide, 1446 cm-1 for CH2 / CH3 bending, 1095 cm-1 for 

C-O stretch and 785 cm-1 for C-N stretch. The maximum band shifts were noted for AgGO 

treated bacteria (2930 cm-1 for CH bond, 1665 cm-1 for amide, 1462 cm-1 for CH2 / CH3 bending, 

1099 cm-1 for C-O stretch and 752 cm-1 for C-N stretch). A noteworthy shift was demonstrated 

with PdGO and AuGO treated bacteria. The minimal shift was noted for CH bond (2940 cm-

1), amide (1666 cm-1), C-O (1091 cm-1) and C-N (775 cm-1) with GO treated bacteria (Figure 

4.14, a-e).   

A. baumannii 

Against A. baumanni in the presence of plasma CF, the band shift noted for control were 2935 

cm-1 for CH bond, 1662 cm-1 for amide, 1447 cm-1 for CH2 / CH3 bending, 1099 cm-1 for C-O 

stretch and 782 cm-1 for C-N stretch. The maximum band shifts were noted for AgGO treated 

bacteria with 2929 cm-1 for CH bond, 1653 cm-1 for amide, 1465 cm-1 for CH2 / CH3 bending, 

1085 cm-1 for C-O stretch and 748 cm-1 for C-N stretch. The minimal shifts were noted for CH 

bond (2934 cm-1), amide (1662 cm-1), CH2 / CH3 bending (1448 cm-1), C-O (1096 cm-1) and 

with PdGO and C-N (781 cm-1) with GO treated bacteria (Figure 4.15, a-e).   
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E. faecium 

Against E. faecium in the presence of plasma CF, the band shift noted for control were 2933 

cm-1 for CH bond, 1653 cm-1 for amide, 1452 cm-1 for CH2 / CH3 bending, 1097 cm-1 for C-O 

stretch and 783 cm-1 for C-N stretch. The greatest chemical band shifts were demonstrated with 

PdGO treated bacterial cells compared to control (CH bond = 2948 cm-1, amide = 1641 cm-1, 

CH2/CH3 bending = 1438 cm-1, C-O stretch = 1084 cm-1 and C-N stretch = 761 cm-1). 

Moreover, AgGO demonstrated strong chemical effects with band shift of 2942 cm-1 for CH 

bond, 1640 cm-1 for amide, 1468 cm-1 for CH2/CH3 bending, 1089 cm-1 for C-O stretch and 

765 cm-1 for C-N stretch. Whilst, AuGO was least effective for CH bond (2934 cm-1), C-O 

(1094 cm-1). The minimal band shift change was demonstrated with GO treated bacteria for 

amide (1656 cm-1) and C-N stretch (780 cm-1) (Figure 4.16, a-e).  

 

In summary, AgGO against K. pneumoniae and A. baumannii and PdGO against E. faecium 

showed the maximum chemical change, whilst, GO against K. pneumoniae, AuGO against A. 

baumannii and GO against E. faecium showed the minimal chemical change. Moreover, some 

of the GO and metal-GO showed differences in the chemical bondings in the presence of 

plasma CF compared to absence of CF. 
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Figure 4.14. Raman spectral bands shifts (cm-1) and their assignments for K. pneumoniae 

control and after GO, AgGO, AuGO and PdGO treatment at 24 h in the presence of 10 % 

plasma conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-

O stretch; e) C-N stretch shift (n = 3).  
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Figure 4.15. Raman spectral bands shifts (cm-1) and their assignments for A. baumannii control 

and after GO, AgGO, AuGO and PdGO treatment at 24 h in the presence of 10 % plasma 

conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-O stretch; 

e) C-N stretch shift (n = 3).  
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Figure 4.16. Raman spectral bands shifts (cm-1) and their assignments for E. faecium control 

and after GO, AgGO, AuGO and PdGO treatment at 24 h in the presence of 10 % plasma 

conditioning film; a) CH bond shift, b) Amides shift, c) CH2 / CH3 bending shift, d) C-O stretch; 

e) C-N stretch shift (n = 3).  
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4.4. Discussion  

As described in chapter 3 discussion of elemental and chemical changes, there 

are significant changes on chemical and At % of elements of bacteria after GBCs 

treatment. This as described before in sub-section of EDAX and Raman results 

of chapter 3, can affect the integral cell components of bacteria that might lead to 

its damage / destruction. Thus, in presence or absence of CFs, GBCs can also 

damage at molecular level.  
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4.5. Antimicrobial efficacies for eight combined GO and metal-GO hybrids against K. 

pneumoniae, A. baumannii and E. faecium 

 4.5.1 Zone of inhibition for combined GO and metal-GO hybrids with and without 

10 % bovine plasma conditioning film 

The combined effects of the GOAgGO, GOCuGO, GOAuGO, GOPdGO, AgGOCuGO, 

AgGOAuGO, AgGOPdGO, CuGOAuGO, CuGOPdGO and AuGOPdGO was evaluated using 

the ZoI combination test in the presence and absence of 10 % bovine plasma CF. All the 

tested combinations demonstrated an indifferent effect with the inhibition grade of 1 (0 – 4 

mm). No tested combination showed antagonist, additive or synergistic effects (Table 4.11).  
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Table 4.11. The ZoI combination assay for interactions type and inhibition grade of GO and 

metal-GO hybrids combination against K. pneumoniae, A. baumannii and E. faecium in the 

absence and presence of 10 % plasma. The inhibition zones were graded from 0 to 4, which 

measured as, 0–4 mm = grade 0, 4–8 mm = grade 1, 8–12 mm = grade 2, 12–16 mm = grade 

3 and 16–20 mm = grade 4 (n = 24). 

Metal 

combinations 

Type of combination and grade of inhibition 

K. pneumoniae A. baumannii E. faecium 

GOAgGO Indifference Grade GO(1) 

AgGO(1) 

Indifference Grade GO(1) 

AgGO(1) 

Indifference Grade GO(1) 

AgGO(1) 

GOCuGO Indifference Grade GO(1) 

CuGO(1) 

Indifference Grade GO(1) 

CuGO(1) 

Indifference Grade GO(1) 

CuGO(1) 

GOAuGO Indifference Grade GO(1) 

AuGO(1) 

Indifference Grade GO(1) 

AuGO(1) 

Indifference Grade GO(1) 

AuGO(1) 

GOPdGO Indifference Grade GO(1) 

CuGO(1) 

Indifference Grade GO(1) 

CuGO(1) 

Indifference Grade GO(1) 

CuGO(1) 

AgGOCuGO Indifference Grade AgGO(1) 

CuGO(1) 

Indifference Grade AgGO(1) 

CuGO(1) 

Indifference Grade AgGO(1) 

CuGO(1) 

AgGOAuGO Indifference Grade AgGO(1) 

AuGO(1) 

Indifference Grade AgGO(1) 

AuGO(1) 

Indifference Grade AgGO(1) 

AuGO(1) 

AgGOPdGO Indifference Grade AgGO(1) 

PdGO(1) 

Indifference Grade AgGO(1) 

PdGO(1) 

Indifference Grade AgGO(1) 

PdGO(1) 

CuGOAuGO Indifference Grade CuGO(1) 

AuGO(1) 

Indifference Grade CuGO(1) 

AuGO(1) 

Indifference Grade CuGO(1) 

AuGO(1) 

CuGOPdGO Indifference Grade CuGO(1) 

PdGO(1) 

Indifference Grade CuGO(1) 

PdGO(1) 

Indifference Grade CuGO(1) 

PdGO(1) 

AuGOPdGO Indifference Grade AuGO(1) 

PdGO(1) 

Indifference Grade AuGO(1) 

PdGO(1) 

Indifference Grade AuGO(1) 

PdGO(1) 
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             4.5.2. Fractional inhibitory concentration (FIC) for combined GO and metal-GO 

hybrids in 2:1, 1:1 and 1:2 ratios in the absence and presence of 10 % bovine plasma 

conditioning film 

The FIC was used to determine the synergistic inhibitory antimicrobial efficacy of the GO 

and metal-GO hybrids combination in the presence and absence of 10 % bovine plasma CF. 

The FIC was performed in 2:1, 1:1 and 1:2 ratios.  

 

  4.5.2.1. FIC against K. pneumoniae, A. baumannii and E. faecium in the 

absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, GOAuGO, GOPdGO and AuGOPdGO combinations demonstrated 

additive effects (FIC = > 0.5 and ≤ 1.0) in all the tested ratios. The least active antimicrobial 

combinations which demonstrated indifferent effects were the AgGO combination with 

CuGO, AuGO and PdGO (Table 4.12). 

A. baumannii 

Against A. baumannii, AuGOPdGO in 1:2 and 1:1 and CuGO in combination with GO, 

AuGO and PdGO in 1:1 ratio demonstrated an additive efficacy (FIC = > 0.5 and ≤ 1.0). All 

the remaining combinations demonstrated indifferent efficacy (FIC = > 1.0 and ≤ 4.0) (Table 

4.13). 

E. faecium 

Against E. faecium, GO in combination with CuGO and AuGO demonstrated a strong 

antimicrobial efficacy with synergistic interactions in 2:1 and 1:2 ratios (FIC ≤ 0.5) and an 

additive antimicrobial effect in 1:1 ratio (FIC = > 0.5 and ≤ 1.0). The GOAgGO 

demonstrated antimicrobial efficacy with synergism in 2:1, additivity in 1:2 and indifference 
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in 1:1 ratio. In all the tested ratios, AgGOPdGO and AuGOPdGO demonstrated indifferent 

antimicrobial effects in all the tested ratios (Table 4.14). 

  4.5.2.2. FIC against K. pneumoniae, A. baumannii and E. faecium in the 

presence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae, only AuGOPdGO demonstrated additive antimicrobial effects in 

presence of plasma CF in all the tested ratios. The least active antimicrobial with 

indifference effects were AgGO combination with CuGO, AuGO and PdGO (without 

plasma) and GOCuGO combination (with plasma). The presence of plasma CF reduced the 

antimicrobial efficacy with a greater number of combinations demonstrating an indifferent 

antimicrobial effect (FIC > 1.0 and ≤ 4.0) (Table 4.12).  

A. baumannii 

Against A. baumannii, AuGOPdGO, GO in combination with AuGO and PdGO 

demonstrated an additive antimicrobial efficacy in all the tested ratios. GOCuGO showed 

additive antimicrobial effects in 2:1 and 1:2 ratios. The remaining combinations 

demonstrated indifferent antimicrobial efficacy (Table 4.13).  

E. faecium 

Against E. faecium, GOCuGO, GOAuGO and AuGOPdGO demonstrated an additive 

antimicrobial effect in all the tested ratios (FIC = > 0.5 and ≤ 1.0). The AuGOPdGO, 

GOPdGO, AgGOCuGO, AgGOAuGO, AgGOPdGO demonstrated an indifferent 

antimicrobial activity in all the tested ratios (FIC = > 1.0 0 and ≤ 4.0) (Table 4.14).  

 

In summary, in the absence and presence of plasma CF, AuGOPdGO demonstrated the best 

antimicrobial efficacies against Gram-negative pathogens and GOCuGO and GOAuGO 

were the most active antimicrobial against E. faecium. The least active antimicrobial 
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combinations were AgGOAuGO, AgGOCuGO and AgGOPdGO in absence of plasma CF 

and GOCuGO in the presence of CF against K. pneumoniae. Most of the tested combinations 

against A. baumannii and E. faecium demonstrated an indifferent antimicrobial effect. 
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Table 4.12. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against K. pneumoniae (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Additive interaction was highlighted using purple colour. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 0.64 ± 0 

 

0.64 ± 0 1.50 ± 0 

 

1.50 ± 0 1.00 ± 0.17 

 

1.64 ± 0 

GOCuGO 0.82 ± 0 1.66 ± 0  0.74 ± 0 1.49 ± 0 1.28 ± 0 1.28 ± 0 

GOAuGO 0.98 ± 0  2.00 ± 0 1.00 ± 0 2.00 ± 0 0.96 ± 0 0.96 ± 0 

GOPdGO 0.98 ± 0 2.00 ± 0 1.00 ± 0 2.00 ± 0 0.96 ± 0 0.96 ± 0 

AgGOCuGO 0.72 ± 0 0.72 ± 0 1.24 ± 0 2.49 ± 0 1.93 ± 0 1.93 ± 0 

AgGOAuGO 0.80 ± 0 0.80 ± 0 1.50 ± 0 1.50 ± 0 2.58 ± 0 2.58 ± 0 

AgGOPdGO 0.80 ± 0 0.80 ± 0 1.50 ± 0 1.50 ± 0 2.58 ± 0 2.58 ± 0 

CuGOAuGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 1.01 ± 0.17 0.82 ± 0 

CuGOPdGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 0.82 ± 0 0.82 ± 0 

AuGOPdGO 0.98 ± 0  0.98 ± 0 1.00 ± 0 1.00 ± 0 0.98 ± 0 0.98 ± 0 

 

 

  



226 
 

Table 4.13. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against A. baumannii (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Additive interaction was highlighted using purple colour. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 2.22 ± 0.25 

 

1.49 ± 0 

 

1.32 ± 0 

 

2.56 ± 0 1.55 ± 0.17 

 

1.49 ± 0 

 

GOCuGO 1.05 ± 0 0.82 ± 0  0.92 ± 0 1.49 ± 0 1.55 ± 0 0.65 ± 0 

GOAuGO 1.21 ± 0  0.98 ± 0 1.17 ± 0 1.00 ± 0 1.09 ± 0 0.98 ± 0 

GOPdGO 1.21 ± 0 0.98 ± 0 1.17 ± 0 1.00 ± 0 1.09 ± 0 0.98 ± 0 

AgGOCuGO 1.41 ± 0.37 2.15 ± 0 1.71 ± 0.29 2.31 ± 0 1.66 ± 0 1.66 ± 0 

AgGOAuGO 1.49 ± 0 1.49 ± 0 1.24 ± 0 1.24 ± 0 1.74 ± 0.21 1.99 ± 0 

AgGOPdGO 1.49 ± 0 1.49 ± 0 1.24 ± 0 1.24 ± 0 1.74 ± 0.21 1.99 ± 0 

CuGOAuGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 1.66 ± 0.17 1.66 ± 0 

CuGOPdGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 1.66 ± 0 1.66 ± 0 

AuGOPdGO 0.98 ± 0  0.98 ± 0 1.00 ± 0 1.00 ± 0 2.00 ± 0 0.98 ± 0 
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Table 4.14. Fractional inhibitory concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against E. faecium (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Additive and synergistic interactions were highlighted using purple and red colours  

respectively. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 0.48 ± 0 

 

0.97 ± 0 

 

1.24 ± 0 

 

1.24 ± 0 0.72 ± 0 

 

1.48 ± 0 

GOCuGO 0.40 ± 0 0.82 ± 0.09 0.74 ± 0 0.74 ± 0 0.49 ± 0.08 0.66 ± 0 

GOAuGO 0.48 ± 0  0.99 ± 0.10 0.99 ± 0 0.99 ± 0 0.48 ± 0 0.99 ± 0 

GOPdGO 0.65 ± 0 1.32 ± 0.14 1.49 ± 0 1.49 ± 0 0.82 ± 0 1.66 ± 0 

AgGOCuGO 1.40 ± 0 1.40 ± 0 2.24 ± 0 2.24 ± 0 0.80 ± 0 1.65 ± 0 

AgGOAuGO 1.48 ± 0 1.48 ± 0 1.87 ± 0.31 2.49 ± 0 0.97 ± 0 1.98 ± 0 

AgGOPdGO 1.64 ± 0 1.64 ± 0 2.25 ± 0.37 3.00 ± 0 1.30 ± 0 2.66 ± 0 

CuGOAuGO 0.66 ± 0 0.66 ± 0 0.74 ± 0 0.74 ± 0 1.24 ± 0.20 0.82 ± 0 

CuGOPdGO 0.99 ± 0 0.99 ± 0 1.24 ± 0 1.24 ± 0 2.25 ± 0.37 1.50 ± 0 

AuGOPdGO 1.32 ± 0  1.32 ± 0 1.49 ± 0 1.49 ± 0 1.66 ± 0 1.66 ± 0 
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             4.5.3. Fractional bactericidal concentration (FIC) for combined GO and metal-

GO hybrids in 2:1, 1:1 and 1:2 ratios in the absence and presence of plasma  

The FBC were used to determine the synergistic bactericidal antimicrobial efficacy of the 

GO and metal-GO hybrids combination in the presence and absence of 10 % bovine plasma. 

The FBC were performed in 2:1, 1:1 and 1:2 ratios.  

  4.5.3.1. FBC against K. pneumoniae, A. baumannii and E. faecium in the 

absence of 10 % bovine plasma conditioning film 

K. pneumoniae 

Against K. pneumoniae in the absence of plasma CF, GO in combination with CuGO, AuGO 

and PdGO and AuGOPdGO combinations demonstrated additive antimicrobial effects (FIC 

= > 0.5 ≤ 1.0) in all the tested ratios. The, GOAgGO demonstrated synergistic antimicrobial 

effects in 1:2 ratio. The least active antimicrobial with indifferent effects was AgGO 

combination with CuGO, AuGO and PdGO (Table 4.15). 

A. baumannii 

Against A. baumannii in the absence of plasma CF, AuGOPdGO in 2:1 and 1:1 ratio and 

CuGO in combination with AuGO and PdGO in 1:1 ratio demonstrated an additive 

antimicrobial efficacy (FIC = > 0.5 and ≤ 1.0). The remaining tested combination were found 

to demonstrate indifferent antimicrobial efficacies (FIC = > 1.0 and ≤ 4.0) (Table 4.16).  

E. faecium 

Against E. faecium in the absence of plasma CF, GOCuGO in 2:1 and 1:2 ratios and 

GOAgGO in 2:1 ratio demonstrated a strong antimicrobial efficacy with synergistic 

interactions (FIC ≤ 0.5). Moreover, GOAuGO and GOPdGO demonstrated good 

antimicrobial efficacy with additive effects in 2:1 and 1:2 ratios. In all the tested ratios, 

AgGOPdGO and AuGOPdGO demonstrated indifferent antimicrobial effects (Table 4.17).  
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  4.5.3.1. FBC against K. pneumoniae, A. baumannii and E. faecium in the 

presence of 10 % bovine plasma CF 

K. pneumoniae 

Against K. pneumoniae, only AuGOPdGO demonstrated additive antimicrobial effects in 

presence of plasma CF in all the tested ratios. The least active antimicrobial with 

indifference effects were the GOCuGO combination. The presence of plasma CF decreased 

the antimicrobial efficacy with a greater number of combinations demonstrating indifferent 

antimicrobial results (FIC > 1.0 and ≤ 4.0) (Table 4.15).  

A. baumannii 

Against A. baumannii, AuGOPdGO, GO in combination with AuGO and PdGO 

demonstrated an additive antimicrobial efficacy in all the tested ratios. The GOCuGO 

showed antimicrobial additive effects in 2:1 and 1:2 ratios. The remaining combinations 

demonstrated indifferent antimicrobial efficacy (Table 4.16).  

E. faecium 

Against E. faecium, GOCuGO showed a strong antimicrobial efficacy with a synergistic 

interaction in 2:1 ratio and additive antimicrobial effects in 1:1 and 1:2 ratios. The 

AuGOPdGO, GOPdGO, AgGOCuGO, AgGOAuGO, AgGOPdGO demonstrated an 

indifferent antimicrobial activity in all the tested ratios (FIC = > 1.0 and ≤ 4.0) (Table 4.17).  

 

In summary, in the absence and presence of plasma CF, AuGOPdGO demonstrated the best 

antimicrobial efficacies against Gram-negative pathogens and GOCuGO demonstrated the 

greatest antimicrobial efficacy against E. faecium. The combinations with the least 

antimicrobial efficacies were AgGOAuGO, AgGOCuGO and AgGOPdGO in absence of 

plasma CF and GOCuGO in the presence of CF against K. pneumoniae. The majority of the 
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tested combinations demonstrated an indifferent antimicrobial effect against A. baumannii 

and E. faecium.  
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Table 4.15. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against K. pneumoniae (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Additive and synergistic interactions were highlighted using purple and red colours 

respectively. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 0.56 ± 0.14 

 

0.65 ± 0 

 

1.49 ± 0 

 

1.30 ± 0.16 0.32 ± 0 

 

1.35± 0.27 

 

GOCuGO 0.82 ± 0 1.66 ± 0 0.74 ± 0 1.50 ± 0 0.66 ± 0 1.41 ± 0.07 

GOAuGO 0.99 ± 0  1.99 ± 0 0.99 ± 0 2.00 ± 0 0.99 ± 0 0.99 ± 0 

GOPdGO 0.99 ± 0 1.99 ± 0 0.99 ± 0 2.00 ± 0 0.99 ± 0 0.99 ± 0 

AgGOCuGO 0.82 ± 0 0.74 ± 0 1.49 ± 0 2.19 ± 0.27 2.66 ± 0 2.00 ± 0 

AgGOAuGO 0.82 ± 0 0.82 ± 0 1.49 ± 0 1.49 ± 0 2.66 ± 0 2.66 ± 0 

AgGOPdGO 0.82 ± 0 0.82 ± 0 1.49 ± 0 1.49 ± 0 2.66 ± 0 2.66 ± 0 

CuGOAuGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.50 ± 0 0.82 ± 0 0.82 ± 0 

CuGOPdGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.50 ± 0 0.82 ± 0 0.82 ± 0 

AuGOPdGO 0.99 ± 0  0.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0 

 

 

 

 

 



232 
 

Table 4.16. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against A. baumannii (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Synergistic interaction was highlighted using purple colour. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 1.98 ± 0.33 

 

1.49 ± 0.25 

 

1.50 ± 0 

 

2.56 ± 0 

 

1.64 ± 0 

 

1.49 ± 0 

 

GOCuGO 1.50 ± 0 0.82 ± 0 1.24 ± 0 1.49 ± 0 2.00 ± 0 0.65 ± 0 

GOAuGO 1.66 ± 0  0.98 ± 0 1.49 ± 0 1.00 ± 0 1.32 ± 0 0.98 ± 0 

GOPdGO 1.66 ± 0 0.98 ± 0 1.49 ± 0 1.00 ± 0 1.32 ± 0 0.98 ± 0 

AgGOCuGO 1.40 ± 0 2.15 ± 0.37 1.12 ± 0 2.31 ± 0 1.65 ± 0 1.66 ± 0 

AgGOAuGO 1.48 ± 0 1.49 ± 0 1.24 ± 0 1.24 ± 0 1.98 ± 0 1.99 ± 0 

AgGOPdGO 1.48 ± 0 1.49 ± 0 1.24 ± 0 1.24 ± 0 1.98 ± 0 1.99 ± 0 

CuGOAuGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 1.66 ± 0 1.66 ± 0 

CuGOPdGO 1.32 ± 0 1.32 ± 0 0.74 ± 0 1.49 ± 0 1.66 ± 0 1.66 ± 0 

AuGOPdGO 0.99 ± 0  0.98 ± 0 0.99 ± 0 1.00 ± 0 1.99 ± 0 0.98 ± 0 
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Table 4.17. Fractional bactericidal concentration in 2:1. 1:1 and 1:2 ratios in the absence and 

presence of 10 % plasma conditioning film against E. faecium (n = 4). 

Synergy = < 0.5, additivity > 0.5 ≤ 1.0, > 1.0 ≤ 4.0 indifference and > 4.0 = antagonism > 

4.0 (Sueke et al., 2010). GO = graphene oxide, AgGO = silver graphene oxide, CuGO = 

copper graphene oxide, AuGO = gold graphene oxide and PdGO = palladium graphene oxide 

Additive and synergistic interactions were highlighted using purple and red colours 

respectively. 

GBCs 

combinations 

2:1 1:1 1:2 

 Without 

CF 

With CF Without 

CF 

With CF Without 

CF 

With CF 

GOAgGO 0.48 ± 0 

 

0.99 ± 0 

 

1.09 ± 0.13 

 

1.24 ± 0 

 

0.74 ± 0 

 

1.50 ± 0 

 

GOCuGO 0.49 ± 0 0.49 ± 0 1.00 ± 0 1.00 ± 0 0.49 ± 0 0.99 ± 0 

GOAuGO 0.55 ± 0  0.55 ± 0 1.16 ± 0 1.16 ± 0 0.60 ± 0 1.21 ± 0 

GOPdGO 0.66 ± 0 0.66 ± 0 1.50 ± 0 1.50 ± 0 0.82 ± 0 1.66 ± 0 

AgGOCuGO 1.50 ± 0 1.50 ± 0 2.19 ± 0.27 2.51 ± 0 0.99 ± 0 2.00 ± 0 

AgGOAuGO 1.55 ± 0 1.55 ± 0 2.34 ± 0.29 1.68 ± 0 1.10 ± 0 2.22 ± 0 

AgGOPdGO 1.66 ± 0 1.66 ± 0 2.63 ± 0.32 3.01 ± 0 1.32 ± 0 2.66 ± 0 

CuGOAuGO 1.10 ± 0 1.10 ± 0 1.16 ± 0 1.16 ± 0 1.21 ± 0 1.21 ± 0 

CuGOPdGO 1.10 ± 0 1.32 ± 0 1.16 ± 0 1.50 ± 0 1.21 ± 0 1.66 ± 0 

AuGOPdGO 1.55 ± 0  1.55 ± 0 1.66 ± 0 1.66 ± 0 1.77 ± 0 1.77 ± 0 
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4.5. Discussion 

Combined graphene oxide and metal-graphene oxide antimicrobial efficacies in absence of 

conditioning films 

A combination of the GO mechanism coupled with the presence of metal ions may in some 

cases result in synergistic antimicrobial effects. In the presence of GO, the metal ion could 

further induce the production of ROS by interrupting the electron transmembrane chain and 

interacting with respiratory enzymes of the cells (Holt and Bard, 2005). This dual mechanism 

would create an imbalance between the ROS generation and the intrinsic ability of the bacteria 

to readily detoxify the reactive intermediates and repair cellular damage. The surplus ROS 

formation and their inadequate elimination would result in the production of oxidative stress 

(Zou et al., 2016; Jin et al., 2017). This proceeds other antimicrobial mechanisms that occur in 

the cell-membrane such as cross-linking, denaturation and fracture of phospholipids leading to 

cell death (Jin et al., 2017).  It may also be hypothesised that, as the GO weakens the bacterial 

wall, penetration of the metal ions released from the graphene metal hybrids will gain ‘easier’ 

access into the damaged bacterial membrane and into the cytoplasm (Musico et al., 2014). Once 

inside the cell, various vital bacterial intracellular mechanisms can be damaged by the metal 

ions. Two studies demonstrated 100 % bacterial killing and > 20 mm of inhibition at 50 to 150 

µgmL-1 for reduced GO against E. coli, S. aureus and P. aeruginosa (Turcheniuk et al., 2015; 

Saikia et al., 2016). These studies also demonstrated that reduced GO nano-walls demonstrated 

the trap and wrap mechanism against bacteria, which might lead to bacterial death owing to 

easier penetration of Au ions and their antimicrobial actions on the bacterial cellular 

mechanism. A study by Dasari Shareena et al. (2018), demonstrated that Au nanoparticles 

caused bacterial cell death owing to the leakage of sugars and proteins by binding to the 

bacterial membrane cross-linkage components. Further, silver ions released from 

nanoparticles, strongly bind to the thiol groups of bacterial proteins, which has been suggested 
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to inhibit with cell division causing bacterial death (Shao et al., 2015; Chandraker et al., 2017). 

Copper ions released from reduced GO based GOCu nanoparticles have been demonstrated to 

cause lipid and protein oxidation, thus causing cellular damage, resulting in a 99.9 % E. coli 

and S. aureus inhibition at 16 mgL-1 (Ouyang et al., 2013). Similarly, GO-Ag nanocomposites 

demonstrated 100 % E. coli inhibition at 100 µgmL-1. 

In the work presented in this thesis, AgGO combinations with AuGO, CuGO and PdGO 

demonstrated the least antimicrobial efficacy with indifferent interactions against K. 

pneumoniae. The decrease seen in the work presented in this thesis can be attributed to 

chemistry of metal ions that might work against each other. In agreement to our results, a study 

demonstrated that a Cu (II) and Zn (II) combined peptide complex demonstrated no 

antimicrobial activity when compared to their individual effects (8 mm – 9 mm) (Porciatti et 

al., 2010). The study claimed that this result was as a consequence of both the metal ions 

competing with each other to bind with the bacterial sites (nitrogen, sulphur). Thus, they 

resulted in a negative antimicrobial effect resulting in a decrease in each other’s antimicrobial 

efficacy (Oboda et al., 2018). These results demonstrate that the complexing of antimicrobials 

does not always work as expected and thus needs serious considerations. 

Conditioning film effect on combined graphene oxide and metal-graphene oxide hybrids 

antimicrobial efficacies  

Against A. baumannii in the presence of plasma CF, GO in combination with CuGO, AuGO 

and PdGO and AuGOPdGO demonstrated additive effects. Whilst most of the tested 

combination showed indifference efficacy in the FIC and FBC results. It is difficult to know 

the exact mechanism for the difference in the antimicrobial mechanism in the presence of the 

plasma CF. However, a study stated that experimental surrounding such as liquid or solid 

medium, selected bacterial species, presence of in vivo like conditions, oxygen content during 

experimentation affects the antimicrobial mechanism (Zou et al., 2016). The GO antimicrobial 
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activity was found to be reduce in presence of bovine plasma CF. Accordingly, the plate killing 

assay in absence of plasma demonstrated 72 % killing which reduced to 60 % in BSA presence 

against E. coli at 200 µgmL-1 (Hui et al., 2014). In contrast, GO were found to efficiently 

expedite E. coli growth in all the CFUmL-1 at 25 µgmL-1 in presence of Luria–Bertani broth, 

which contains peptises and peptones as organic load (Ruiz et al., 2011). It is assumed organic 

content of the conditioning films might bind to the surface of GO through covalent bond. 

Furthermore, the presence of organic load voids the planner spaces of the GO, thus affecting 

its antibacterial potency (Hui et al., 2014). However, another study stated that smaller size 

particles of GO may decrease the percentage of proteins to occupy the void space (Mu et al., 

2012). Thus, detailed investigations selecting specific GO size and shape, physiochemical 

conditions, broad range of pathogens selection and presence of body fluids might increase the 

understanding regarding varying antimicrobial potency of GO based compounds.  
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4.6. Crystal violet biofilm assay (CVBA) to test antimicrobial efficacies for single and 

combined GO and metal-GO hybrids against K. pneumoniae, A baumannii and E. faecium 

in the presence and absence of plasma conditioning film  

4.6.1. Antibiofilm assay for GO and metal-GO hybrids against K.  pneumoniae, A 

baumannii and E. faecium in the presence and absence of 10 % bovine plasma 

conditioning film 

The CVBA was performed to assess the antibacterial activity after 24 h treatment with GO, 

AgGO, CuGO, AuGO and PdGO against the three bacteria in the form of biofilms. Following 

the CVBA test in absence of 10 % bovine plasma, AgGO and CuGO against all tested 

pathogens; GO against E. faecium; AuGO against A. baumannii and E. faecium and PdGO 

against A. baumannii showed a significance antimicrobial efficacy compared negative control 

bacteria biofilm (p < 0.05). In the presence of 10 % bovine plasma all the tested GBCs except 

GO against A. baumannii showed a significant antimicrobial efficacy compared to the negative 

control bacteria biofilm (p < 0.05). The bacterial biofilms were found to be more resistant in 

absence of plasma CF for AuGO, PdGO and GO (Figure 4.17 and 4.18).  

 

Overall, with the lowest absorbance, AgGO demonstrated the best antibiofilm efficacy 

followed with CuGO and GO demonstrated the least antibiofilm activity.  
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Figure 4.17. The CVBA results for GO and metal-GO hybrids in the absence of 10 % plasma 

conditioning film against a) K. pneumoniae, b) A. baumannii and c) E. faecium (n = 3).  
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Figure 4.18. The CVBA results for five GBCs in the presence of 10 % plasma conditioning 

film against a) K. pneumoniae, b) A. baumannii and c) E. faecium. (n = 3). 
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           4.6.2. Antibiofilm assay GO and metal-GO hybrids in combinations against K.  

pneumoniae, A baumannii and E. faecium in the absence of 10 % bovine plasma 

conditioning films 

The combined effects of the GOAgGO, GOCuGO, GOAuGO, GOPdGO, AgGOCuGO, 

AgGOAuGO, AgGOPdGO,, CuGOAuGO, CuGOPdGO and AuGOPdGO were tested using 

CVBA. Following the CVBA results in 2:1, 1:1 and 1:2 ratios in the absence of 10 % bovine 

plasma CF, when compared with the negative control all the GBC combinations showed a 

statistical significance (p < 0.01) except AuGOPdGO in 2:1 and 1:2 ratio (Figure 4.20, a-c).  

 

Overall, AgGOCuGO demonstrated the best antibiofilm efficacy with lowest biofilm 

absorbance and AuGOPdGO demonstrated the least efficacy with the greatest absorbance 

compared to control. 
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Figure 4.19. The CVBA results for GO and metal-GO hybrids combination in 2:1, 1:1 and 1:2 

ratios in the absence of 10 % plasma conditioning film against a) K. pneumoniae, b) A. 

baumannii and c) E. faecium (n = 3).  
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             4.6.3. Biofilm results against K. pneumoniae, A. baumannii and E. faecium in the 

presence of 10 % bovine plasma conditioning film 

The combined effects of the GOAgGO, GOCuGO, GOAuGO, GOPdGO, AgGOCuGO, 

AgGOAuGO, AgGOPdGO,, CuGOAuGO, CuGOPdGO and AuGOPdGO were tested using 

CVBA. Following the CVBA results in 2:1, 1:1 and 1:2 ratios in the presence of 10 % bovine 

plasma CF, when compared with the negative control all the GBC combinations showed a 

highly statistical significance (p < 0.01) (Figure 4.21, a-c).  

 

Overall, AgGOCuGO demonstrated the best antibiofilm efficacy with lowest biofilm 

absorbance and AuGOPdGO demonstrated the least efficacy with the greatest absorbance 

compared to control. 
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Figure 4.20. The CVBA results for GO and metal-GO hybrids combination in 2:1, 1:1 and 1:2 

ratios in the presence of 10 % plasma conditioning film against a) K. pneumoniae, b) A. 

baumannii and c) E. faecium (n = 3).  
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4.6. Discussion  

Graphene oxide and metal-graphene oxide hybrids antibiofilm efficacies in the absence and 

presence of plasma conditioning film 

The CVBA assay results for GO-metal hybrids, AgGO and CuGO (without CF) and AgGO, 

CuGO, AuGO and PdGO (with CF) demonstrated statistically significant antibiofilm activity. 

The lowest absorbance compared to bacterial control biofilm was recorded for AgGO. It is 

interesting to mention that CuGO was the least active antimicrobial against the tested bacteria 

in the planktonic form, whilst it demonstrated the second best antibiofilm efficacies. AuGO 

and PdGO combinations with GO, AgGO and each other were found with least antibiofilm 

efficacy. In agreement to our study results, a study confirmed that AgNPs of 40 mm size coated 

catheters displayed a complete bacterial biofilm inhibition after 18 h of treatment (Palanisamy 

et al., 2014). A study confirmed that Au coated nanoparticles at 100 µM demonstrated complete 

eradication of K. pneumoniae biofilm in time dependent biofilm assay (Ahmed et al., 2016). 

The antibiofilm efficacies of the tested graphene-based derivatives can be explained owing to 

the cumulative efficacies between GO and metal ions. Several studies have reported 

irreversible physical damage of the bacterial cell membrane for GO (Hu et al., 2010; Chen et 

al., 2014; He et al., 2015). To extend this, a study confirmed extraction of phospholipid content 

with GO treatment from the damaged bacterial membrane (Hegab et al., 2016). Increased or 

prolonged GO exposure might develop strong van der walls interactions between membrane 

lipids and the GO interface. This physical damage can create stress within biofilm matrix and 

alter (reduce or increase) its other biochemical compositions (Masurkar et al., 2012). Moreover, 

the bacterial micro colonies inside the biofilm matrix are held in a stack like structures, which 

are separated through channels composed mainly of water. The reduction of biochemical 

content alters the passage of nutrients through this channel resulting in an easy diffusion of 
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antimicrobial agents (in our case metal ions) (Namasivayam et al., 2013). This process overall 

can lead to bacterial biofilm inhibition.  

The results from this study demonstrated an increased in biofilm mass absorbance in the 

presence of CF compared to when organic load was absent. The elevated growth may be due 

to the increase in the availability of nutrients. The presence of organic soil can led to different 

biochemical composition of the biofilms (Aslam, 2008). Thus, the difference in the mechanistic 

activity of the tested metal ion and GO-metal hybrids in the presence and absence of CF can 

be attributed to the plasma CF affecting the metabolic and physiology of EPS structure in the 

biofilm matrix (Massop and Davidson, 2003).  
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4.7. Cytotoxicity for GO and metal-GO hybrids 

The skin fibroblast controls demonstrated 100 % viability in the MTT assay. Palladium-GO 

demonstrated the least cell toxicity with 81 % cell viability, followed with AuGO with 47 % 

cell viability. A moderate cell toxicity was demonstrated for GO and AgGO with 37 % and 35 

% cell viability (Figure 4.22). It has been demonstrated that there was a biocompatibility of 

GO at 20 µgmL-1, however, cytotoxicity was demonstrated at 50 µgmL-1 (Pang et al., 2017). 

A study confirmed that reduced-GO-Ag nanocomposite demonstrated a reduction on human 

liver cells at 50 µgmL-1. (Ali et al., 2018).  
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Figure 4.21. Cytotoxicity assays for GO, AgGO, AuGO and PdGO against skin fibroblast 

cells (n = 3).  
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Chapter 5 

5. Discussion 

Bacterial infections have become one of the major public health issues. Moreover, bacterial 

biofilms are estimated to cause nearly 80 % of infections. Antibiotics were widely used to 

address this issue; however, the misuse of antibiotics has resulted in increased bacterial 

resistance. Antimicrobial resistance has developed as one of the primary healthcare related 

problems that threatens the effective prevention and treatment of patients (Boucher et al., 

2009). This has led to an increase in the treatment costs, and mortality and morbidity of 

patients, putting a substantial financial and staffing burden on healthcare (Pham et al., 2015; 

Al-Jumaili et al., 2017). Bacteria have also been shown to demonstrate resistance to biocides 

used as antiseptics or disinfectants in hospital settings (Arancibia et al., 2000; Chen and 

Cooper, 2002). In order to slow down the transmission of potentially infectious 

microorganisms, there has been investigations into the use of alternative products such as 

metals and graphene materials as antimicrobial / biocidal agents (Silver et al., 2006; Bregnocchi 

et al., 2017; Whitehead et al., 2017; Vaidya et al., 2018). Metals in various forms such as 

surfaces, metal complexes, metal ions and metal nanoparticles have demonstrated an effective 

antimicrobial efficacy against a broad range of MDR pathogens (Elsome et al., 1999; Tom et 

al., 2004; Espirito et al., 2011; Chandra et al., 2011; Dizaj et al., 2014; Maleki Diza et al., 2015 

and Ji et al., 2016). Currently, graphene-based materials are being proposed as novel effective 

antibacterial (Chen et al., 2014; Whitehead et al., 2017). In order to try to find novel 

antimicrobials to tackle the issue of the rise in bacterial infections, the research presented in 

this thesis investigated the antimicrobial efficacies of range of metal ions, graphene oxide, GO-

metal hybrids against three prominent ESKAPE pathogens of healthcare concern, K. 

pneumoniae, A. baumannii and E. faecium.  

 



249 
 

5.1. Antimicrobial efficacies for metal ions and graphene based compounds 

 Antimicrobial efficacies and metal ions chemistry 

  d and p blocks transition metals 

All the tested metals belong to either d and p blocks of the transition metals in a periodic table. 

This means they possess a range of oxidation states and a strong redox reaction capacity 

(Livage, 1993). Thus, it can be hypothesised that metals with such properties might 

demonstrate an effective antimicrobial activity as they can easily bind with the negatively 

charged bacterial membranes (Lemire et al., 2013). This was in part true for the Ag, Au, Pt, Rh 

and Pd ions that displayed an effective antimicrobial potency.  

  Redox reaction 

It can be assumed that the redox reaction between these ions and phosphate /amine /sulfhydryl 

groups may possibly affect two vital processes inside the bacterial cell (Beloglazkina et al., 

2016). Firstly, these five metal ions can bind to the large cavities of the ribosome, such as the 

peptide-conducting tunnel passing through the ribosomal subunit. Secondly, they might hinder 

the translation and transcription process required for the RNA and DNA formation (Bien et al., 

1999). Thus, this two-way redox reaction leads to protein dysfunction and ultimately 

destruction of bacteria cell (Bien et al., 1999; Huang et al., 2011; Thomas et al., 2011). 

Moreover, the antimicrobial efficacy is determined, to some degree, by the inherent 

physicochemical characteristics of the metal ions (Kolmas et al., 2014). Antimicrobial drugs 

whose active species is positively charged ions have been demonstrated to display an affinity 

for the negative sugar residues and phosphate groups on the microbial cell membrane (Dizaj et 

al., 2014). Metal ions might demonstrate one of the mechanisms such as cell-membrane / cell-

wall degradation, protein dysfunction, oxidative stress enzymes disruption or DNA 

denaturation that might result in bacterial impairment owing (Lemire et al., 2013).  
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  Electronegativity 

In this study, which used metal ions in solution, the most electronegative metals produced the 

best antimicrobial results overall. This may be a result of the hydrated metal ions being highly 

attracted to polar sites on the bacterial cell surface; these highly attractive forces resulting in 

increased interactions which resulted in their increased antimicrobial efficacy (Lemire et al., 

2013). Supporting results were demonstrate for Rh ions (2.28 electronegativity) which have 

been shown to demonstrate and increased affinity for phosphate or sulfhydryl groups inside the 

bacterial cell compared to other tested metal ions (for example Y = 1.22 or In = 1.78) (Bien et 

al., 1999; Beloglozkina et al., 2016).  

  Outer shell structure 

Although, Pt has similar value of electronegativity as Rh, other co-founding factors such as the 

metal ions oxidation state, the metal’s outer shell structure and milieu inside the bacterial cell 

influences metal ion antimicrobial efficacy. A study investigated the bacterial toxicity of metal 

ions based on their outer shell structure and classified them as; class I (ions with 

filled p orbitals; e.g. Ga, Y), class II ions (ions with partly filled or filled d orbitals; Pt, Au, Pd, 

Cu, Ag, Mo) and class III (ions with filled s orbitals; Cu, Rh, Ru, Ta). The study results using 

MIC test against Cupriavidus metallidurans demonstrated that the metal ions belonging to the 

class II were the most antimicrobial (Frankel et al., 2016). Metal ions belonging to the class II 

are considered as soft acids that demonstrate strong affinities for the electron donating sulphur 

and nitrogen found in protein of K. pneumoniae, A. baumannii and E. faecium. The exchange 

of electrons between class II metal cations and accepting anionic protein groups (in this case 

of bacteria) forms covalent bonds. Moreover, oxidation state determines the metal’s activity 

and classified them as redox active or inactive. Redox active metals possess several oxidation 

states and can house a variable number of valence electrons (Harrison et al., 2008; Lemire et 

al., 2013). However, redox inactive metals have one oxidation state and can accommodate a 
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limited number of electrons. Thus, metal reactivity towards biomolecules is influenced by both 

tendencies to acquire electrons and the ability for the metals to be reduced (Finney & 

O’Halloran, 2003; Lemire et al., 2013). Thus, varying chemical factors influenced the metal 

ions antimicrobial efficacy against the bacterial cells.  

Thus, the tested metal ions demonstrated varying level of bacterial toxicity and it can be 

assumed that various chemical and biological aspects impact their antimicrobial efficacy 

against bacteria.   

Antimicrobial efficacies and form and size of the graphene based compounds 

It is assumed that the form, size and the active components of the compounds also affects their 

antibacterial potency (Whitehead et al., 2017). The particle atomic structure might affect its 

bacterial interaction intensity (Selim et al., 2015). According to the Pal et al. (2007), the 

difference in the particles atomic structure might alter their surface properties and hence, their 

interaction with the with bacteria, thus producing different degrees of antimicrobial efficacy. 

Another theory for the differencing antimicrobial efficacies demonstrated with metals can be 

the particle size of the tested compounds. The particle size of the graphene derivatives tested 

in this study were relatively large compared to AgGO.  It has been suggested that the smaller 

the size of the compounds, the greater the compounds antibacterial efficacy. However, 

inconsistent data have been reported in a study by Chen et al. (2014), where it was demonstrated 

that particle size was not found to affect the antimicrobial activity of ZnO.  

5.2. Methodology and concentration impact on the metal ions, graphene oxide and metal-

graphene oxide hybrids antimicrobial efficacies  

Methodology  

In our study, when tested individually, Rh ions were found to be most active in the ZoI test, 

followed with Pt and Pd ions. However, Ag, Pt, Au and Pd ions demonstrated the best 

antimicrobial efficacies in other tests. Moreover, in a combined metal ions tests, AgCu was 
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the least active in the ZoI test, whilst found to synergism and additive effects in the FIC and 

FBC test. Following GBCs results, AgGO was found to be the consistent strongest 

antimicrobial in all the individual GBCs antimicrobial tests. The ZoI results of the combined 

GBCs antimicrobial efficacy demonstrated indifferent interactions for all tested combinations. 

Whilst, few combinations demonstrated additive effects and GO in combination with AgGO, 

CuGO and AuGO against E. faecium and GOAgGO against A. baumannii (1:2 ratio) 

demonstrated synergism in the FIC and FBC.  

This difference in results may be due to the chemistry of the metal, or that the ZoI is carried 

out in a semisolid matrix, whereas the other assays used a liquid nutrient. The ZoI was included 

throughout this work as it is a standard testing procedure.  

Effect of concentrations 

It is hypothesized that an effective concentration of bacterial toxicity varies for each 

antimicrobial agent (Hou et al., 2017). GO and graphene at 50 μgmL-1 and 100 μgmL-1 

concentrations were incubated with S. aureus and a dose dependent assay was performed. After 

0 h, 8 h and 24 h not only the higher concentration displayed a strong graphene material 

activity, but also GO displayed a greater efficacy at both tested concentrations (Pang et al., 

2017). Similarly, The Pt, Pd, Rh and iridium tetradentate macrocyclic demonstrated an increase 

in inhibitory zones with increase in the concentration increases (125 μgmL-1, 250 μgmL-1 and 

500 μgmL-1) (Chandra et al., 2011). 

In this study concentration effect on antimicrobial efficacy were analysed using ZoI and CVBA 

and CfumL-1 tests. The ZoI test was performed using agar well diffusion method. Hence, it can 

be assumed that agar wells allowed leaching of the ionic solution. This solid-liquid phase 

interaction increased with greater tested metal ions concentrations, thus demonstrating a greater 

ion leaching through agar and a greater antimicrobial effect (Thomas et al., 2011). Whilst, 

CFUmL-1 and CVBA were performed in a liquid medium. It can be assumed that metal 
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interacted with bacteria in liquid phase through electrostatic force (Silvestry-Rodriguez et al., 

2008).  

Effect of ratios  

The FIC, FBC and CVBA were performed in this study in three ratios 2:1, 1:1 and 1:2. In this 

study, Cu even at highest tested concentrations was a weak antimicrobial individually in all the 

assays. However, AgCu displayed synergism in 1:2 FIC ratios against E. faecium. The AgCu 

combination demonstrated a synergistic efficacy in at all tested FIC ratio against A. baumannii. 

In our study, the FIC and FBC results displayed greater metal ions efficacies in presence of 

plasma CF. The results demonstrate that the antimicrobial efficacy, when used in ratios cannot 

be assumed. 

5.3. Difference in antimicrobial efficacies against Gram-positive and Gram-negative 

bacteria 

In this study the metal ion and graphene-metal hybrids antimicrobial potency were evaluated 

against two Gram-negative bacteria (K. pneumoniae and A. baumannii) and one Gram-positive 

bacteria (E. faecium). Overall, the Gram-positive E. faecium were found to be the most resistant 

compared to the Gram-negative species. However, GO in combination with AgGO, CuGO and 

AuGO and AgCu demonstrated synergism against E. faecium. This result is interesting since 

in the individual metal ion assays and the graphene combinations, E. faecium was demonstrated 

to be the most recalcitrant bacteria. 

The difference in the bacterial cell-wall structure and content is considered a major factor for 

varying bacterial resistant properties towards antimicrobial agents (Martinez de Tejada et al., 

2012). Accordingly, the cell-wall of Gram-positive bacteria is composed of thick peptidoglycan 

layer. Apart from thick peptidoglycan, Gram-positive cell-wall also consists of teichoic acids 

and proteins (Lambert, 2002). The teichoic acids crosslink the peptidoglycan layer and 

contribute to its overall anionic nature. In addition, lipoteichoic acid bind to peptidoglycan 
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layer connecting it to outside milieu (Martinez de Tejada et al., 2012). Proteins are also 

embedded and bind with peptidoglycan layer through covalent / non-covalent bonds 

(Weidenmaier and Peschel, 2008; Martinez de Tejada et al., 2012). The simpler Gram-positive 

cell-wall structure compared to Gram-negative is thought to provide easier entry to a cell of a 

toxic substance. However, the internal bacterial mechanism such as efflux pumps, degradative 

or inactivating enzymes (e.g. beta-lactamases) or modification of the antimicrobial target site 

might increase their antimicrobial resistance (Webber and Piddock, 2003; Poole, 2005). All or 

one of the mentioned mechanisms could explain the greater inhibitory values for the tested 

metal ions and GO-metal hybrids in all the assays against E. faecium (Lambert, 2002). 

The Gram-negative bacterial cell-wall contains a thin peptidoglycan layer sandwich within the 

outer and inner membrane, which is responsible for bacterial cell strength. The outer layer is a 

lipid-protein bilayer, with phospholipids in the inner leaflets and lipopolysaccharide in the 

outer leaflets and embedded transmembrane proteins (Beveridge, 1999; Sperandeo et al., 

2009). Some of these proteins might act as porins which act as channels for hydrophilic 

materials diffusion. This composition makes the outer membrane selectively permeable, which 

might aid in removal of unwanted toxic substances through efflux pumps (Bomberger et al., 

2009; Sperandeo et al., 2009; Schwechheimer and Kuehn, 2015). The tested metal ions and 

GO-metal hybrids demonstrated broad spectrum intracellular antimicrobial mechanism against 

bacteria such as DNA damage to release of ROS (Liu et al., 2011; Lemire et al., 2013). 

However, it is important that first antimicrobial agents bypass the first line of bacterial cell-

wall defence to reach the intracellular bacterial target site (Martinez de Tejada et al., 2012). 

Several studies reported that metal ions and GO demonstrated a potential activity on the 

bacterial cell membrane and diffusion through selective permeable Gram-negative outer 

membrane (Kannan et al., 2008; Liu et al., 2011; Nazari et al., 2012; Chen et al., 2014). This 

can be in part true for a greater antimicrobial activity demonstrated against K. pneumoniae and 
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A. baumannii. Similar results were found with a greater Au antimicrobial potency against Gram 

negative P. aeruginosa and E. coli compared to Gram positive S. aureus (Nazari et al., 2012). 

An Ag alginate wound dressing displayed a greater inhibitory potency against Gram-negative 

species compared to Gram-positive species (Thomas et al., 2011). A ZoI assay for GO-Ag 

nanocomposite at 100 µL demonstrated a greater antibacterial activity against E. coli (18 mm) 

compared to S. aureus (17.2 mm) (Chandraker et al., 2017) 

5.4. Host cell toxicity 

Toxicity is a consequence of antimicrobial agent exposure and over-accumulation leading to 

cell damage (Sahmali et al., 1991). Though metal ions and GBCs were found to be active 

antimicrobials, however, it is well-documented that one of the main limitations in using 

transition metals and GBCs as antimicrobial agents is their toxicity to eukaryotic cells 

(Takano et al., 2002; Issa et al., 2007; Lammel et al., 2013). Our study amongst tested metal 

ions Pd and amongst tested GBCs; PDGO were found to be least toxic. Various other factors 

such as pH, presence of organic loads, temperature and other environmental conditions 

might alter the toxicity, thus further investigations would be helpful (Sahmali et al., 1991; 

Issa et al., 2017). 
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Chapter 6 

6. Conclusion and Future Work 

6.1. Conclusion 

The focus of the present dissertation was to investigate the antimicrobial efficacies for metal 

ions and GBCs alone and in combined form in the absence and presence of 10 % bovine plasma 

against three medical pathogens in planktonic and biofilm phenotypes.  

The zone of inhibition results demonstrated that in the presence or absence of CF, Rh and Pt 

consistently killed all the bacterial types, 

The MIC and MBC test confirmed that against K. pneumoniae in the presence or absence of 

CF Pt, Au, Pd ions were the most effective, whilst Ag, Ti and Ta ions were the most effective 

antimicrobial against A. baumannii and Ag, Pt, Au and Pd ions were the most effective against 

E. faecium. Using the time kill assays Pt, Au, Pd against K. pneumoniae, Au, Pd against A. 

baumannii and Ag against E. faecium were the most effective antimicrobials. This clrealy 

demonstrates that the methodology used affects the results, and that overall, ag, Pt, Au, Pd were 

the most effective antimicrobials. In the biofilm assays, Pt, Au, Pd were consistently the most 

effective antimicrobial metal ions. 

Following the combined metal ion assays, in the zone of inhibition and biofilm assays, AuPd, 

AuPt and PtPd were the most consistently successful combinations against all the bacteria in 

the presence or absence of CF. For the FIC and FBC, AgCu in a 1:2 ratio in the presence or 

absence of CF was effective against all the bacteria, with the exception of the FIC for A. 

baumannii in the presence of a conditioning film, and FBC K. pneumoniae in the absence of 

conditioning film.  AgGO was consistently effective in the ZoI, MIC, MBC, time kill and 

biofilm assays in the presence or absence of CF. 

The SEM, EDAX and Raman confirmed changed to the bacterial morphology or biochemistry 

that was in line with the antimicrobial results demonstrated in the other assays. 
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The cytotoxicity assay on the skin fibroblast cell lines confimed that Pd ions and PdGO were 

the least toxic.  

This research results demonstrated that overall, Pt, Au, Pd and Au metal ions and AgGO were 

the most active antimicrobials in the presence or absence of CF. However, their cell host 

toxicity should be considered. These metal ions and GBCs could be considered to be used in 

applications such as biocides or antimicrobials to reduce bacterial transmission and infection 

in a hospital setting.  

6.2. Future work recommendations  

This study research showed that metal ions, GO and metal-GO hybrids demonstrated 

antimicrobial efficacies that resulted in chemical and morphological changes in the bacterial 

cells. Further analysis would improve knowledge regarding the mode of action and the effects 

on the molecular mechanisms of the tested antimicrobial agents on the different bacteria and 

may uncover why in the systems tested in this work that E. faecium was the most resistant 

bacteria. Moreover, the combined metal ions showed a greater antimicrobial efficacy in the 

presence of 10 % plasma CF. This is a noteworthy outcome, as it can be hypothesised that 

metal ions combinations were an active antimicrobial in presence of in vivo like conditions. 

Additional analysis using range of biological fluids would increase the knowledge and 

understanding of the adjunctive effect of the biological milieu on the antimicrobial effects of 

the metals. Copper ions in the single antimicrobial efficacy tests were found to be least active, 

whilst demonstrated a good to strong antimicrobial efficacy when tested in combinations. 

Moreover, CuGO also demonstrated a good antibiofilm efficacy, however was least active 

against bacterial planktonic phenotypes. Thus, antimicrobial testing various metals and GO 

based compounds in different forms such as surface, coupons, sheets or complex might 

demonstrate significant co-relation between form of antimicrobial agents and their efficacies. 

Since copper in a sheet form or coating is known to demonstrate antimicrobial efficacy, this 
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suggests that much further work is needed to understand the effects of the metals dependent on 

their chemical species. Furthermore, testing of metal ions and GBCs against broad spectrum of 

Gram-positive and Gram-negative bacteria might provide an insight about their antimicrobial 

efficacies and their used as potential antimicrobial agents. This research tested cell toxicity for 

skin fibroblast cells only for selected metal ions, GO and metal-GO hybrids. Some of the tested 

metal ions and GBCs demonstrated a lowered cell toxicity. However, testing these 

antimicrobials for various human cell lines at various concentrations increase knowledge 

toxicity for host cells and this should include the elucidation of the inflammatory pathways 

involved. The tested antimicrobials should be further investigated using a wider range of 

assays, including their efficacy when incorporated into formulations for use as antimicrobial 

agents. 
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Appendix 

 

Table 1. Normal distribution validity using Shapiro-Wilk test onto data of time kill assay in 

presence of conditioning films.  

 Klebsiella 

pneumoniae 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

Samples  Time Significance 

Ag0.01 0 .915 

.344 

.806 

.696 

.537 

.174 

.826 

.600 

.780 

.862 

.672 

.637 

 2 

 4 

 24 

Ag0.1 0 .702 

.817 

.463 

.157 

.503 

.206 

.780 

.851 

.363 

.747 

.878 

.183 

 2 

 4 

 24 

Ag1 0 .298 

.194 

.637 

. 

.194 

.862 

.109 

. 

.843 

.235 

.762 

. 

 2 

 4 

 24 

Cu0.01 0 .495 

.780 

.281 

.317 

.712 

.576 

.253 

.637 

.797 

.890 

.339 

.482 

 2 

 4 

 24 

Cu0.1 0 .747 

.567 

.000 

.843 

.712 

.637 

.806 

.756 

.463 

.567 

.183 

.266 

 2 

 4 

 24 

Cu1 0 1.000 

.593 

.679 

.878 

.702 

.637 

1.000 

.266 

.637 

.817 

.878 

.298 

 2 

 4 

 24 

Pt0.01 0 .747 

.780 

.433 

.424 

.567 

.800 

.567 

.780 

.537 

.762 

.235 

.692 

 2 

 4 

 24 

Pt0.1 0 .886 

.800 

1.000 

.915 

.129 

.298 

.384 

.510 

.831 

.094 

1.000 

.843 

 2 

 4 

 24 

Pt1 0 1.000 

.637 

.702 

1.000 

.220 

.890 
 2 

 4 
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 24 . 

. 

. 

. 

1.000 

.537 

Au0.01 0 .081 

.567 

.688 

.962 

.956 

1.000 

.391 

.147 

.274 

.549 

.424 

.605 

 2 

 4 

 24 

Au0.1 0 .194 

.482 

.679 

.107 

.862 

.843 

.726 

.567 

.000 

.843 

.253 

.637 

 2 

 4 

 24 

Au1 0 .862 

1.000 

. 

. 

.637 

.157 

. 

. 

.942 

.157 

.377 

.890 

 2 

 4 

 24 

Pd0.01 0 .363 

.927 

.948 

.961 

.298 

.823 

.157 

.298 

.363 

.567 

.221 

.417 

 2 

 4 

 24 

Pd0.1 0 .000 

.935 

.583 

.324 

1.000 

1.000 

.726 

.637 

.298 

.878 

.800 

.094 

 2 

 4 

 24 

Pd1 0 .253 

.567 

. 

. 

.554 

.298 

. 

. 

1.000 

.144 

.726 

.463 

 2 

 4 

 24 
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Table 2. Normal distribution validity using Shapiro-Wilk test onto data of time kill assay in 

absence of conditioning films.  

 Klebsiella 

pneumoniae 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

Samples  Time Significance 

Ag0.01 0 .084 

.281 

.927 

.605 

.497 

.348 

.339 

.956 

.583 

.384 

.073 

.708 

 2 

 4 

 24 

Ag0.1 0 .637 

.637 

.780 

.363 

1.000 

.194 

.463 

.688 

.843 

.780 

.780 

.739 

 2 

 4 

 24 

Ag1 0 .756 

.051 

. 

. 

. 

. 

. 

. 

.463 

.194 

.298 

. 

 2 

 4 

 24 

Cu0.01 0 .915 

.111 

.900 

.206 

.817 

.672 

1.000 

.939 

.794 

.384 

.637 

.114 

 2 

 4 

 24 

Cu0.1 0 .235 

.537 

.537 

.463 

.702 

.281 

.554 

.463 

.817 

.942 

.637 

.520 

 2 

 4 

 24 

Cu1 0 .797 

.463 

.407 

.537 

.726 

1.000 

.274 

.407 

.780 

.554 

.235 

.463 

 2 

 4 

 24 

Pt0.01 0 .417 

.637 

.485 

.826 

.567 

.384 

.688 

.843 

.637 

.339 

.878 

.915 

 2 

 4 

 24 

Pt0.1 0 .790 

.605 

.637 

1.000 

.843 

.911 

.100 

.417 

.927 

.363 

.806 

.132 

 2 

 4 

 24 

Pt1 0 1.000 

. 

. 

. 

.747 

. 

. 

. 

.780 

.235 

.520 

.298 

 2 

 4 

 24 

Au0.01 0 .339 .391 .956 

 2 
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 4 .194 

.298 

.747 

.266 

.298 

.672 

.915 

.739 

.739 

 24 

Au0.1 0 .510 

.593 

.637 

.927 

.702 

.726 

.122 

.637 

.274 

.780 

.583 

.826 

 2 

 4 

 24 

Au1 0 . 

. 

. 

. 

. 

. 

. 

. 

.878 

.927 

.537 

.328 

 2 

 4 

 24 

Pd0.01 0 .605 

.323 

.915 

.961 

.679 

.780 

.890 

.583 

.637 

.637 

.520 

.286 

 2 

 4 

 24 

Pd0.1 0 .417 

.497 

1.000 

.192 

.780 

.900 

.363 

.637 

.637 

.826 

.637 

.363 

 2 

 4 

 24 

Pd1 0 . 

. 

. 

. 

. 

. 

. 

. 

1.000 

.702 

1.000 

.780 

2 

4 

24 
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Table 3. Normal distribution validity using Shapiro-Wilk test onto the data of the Crystal 

violet biofilm assay in the presence of conditioning films. 

Samples Klebsiella 

pneumonia 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

 Significance 

Ag500 .637 . . 

Ag250 .363 .157 .637 

Ag100 .174 .000 .637 

Ag50 .363 .407 .554 

Cu500 .363 .000 1.000 

Cu250 .194 .174 .702 

Cu100 .363 .000 .567 

Cu50 .132 .637 .756 

Pt500 . . . 

Pt250 .637 .424 1.000 

Pt100 .206 .583 .339 

Pt50 .712 .000 .000 

Au500 . . . 

Au250 1.000 .637 .194 

Au100 .157 .463 .637 

Au50 .424 .000 .220 

Pd500 . . . 

Pd250 .144 .150 .637 

Pd100 .144 .637 .363 

Pd50 .132 .000 .637 
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Table 4. Normal distribution validity using Shapiro-Wilk test onto the data of the Crystal 

violet biofilm assay in the absence of conditioning films 

Samples Klebsiella 

pneumonia 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

 Significance 

Ag500 0.000 - 1.000 

Ag250 1.000 .726 .780 

Ag100 1.000 .915 .637 

Ag50 .5830 1.000 1.000 

Cu500 .637 .927 .964 

Cu250 1.000 .637 1.000 

Cu100 0.000 .628 1.000 

Cu50 0.000 1.000 .824 

Pt500 0.000 - - 

Pt250 .747 .483 0.000 

Pt100 .726 1.000 .637 

Pt50 .843 .970 .463 

Au500 - .843 - 

Au250 .893 0.000 1.000 

Au100 .756 0.000 .637 

Au50 .915 1.000 .702 

Pd500 - - - 

Pd250 1.000 1.000 .780 

Pd100 1.000 .806 .637 

Pd50 .637 .920 1.000 
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Table 5. Normal distribution validity using Shapiro-Wilk test onto the data of the Crystal 

violet biofilm assay in the presence of conditioning films 

Samples Klebsiella 

pneumonia 

Acinetobacter 

baumannii 

Enterococcus fecium 

 Significance 

GO .537 .000 .107 

AgGO .298 1.000 .000 

CuGO .298 1.000 .747 

AuGO .227 .637 .000 

PdGO .000 .780 .510 

 

Table 6. Normal distribution validity using Shapiro-Wilk test onto the data of the Crystal 

violet biofilm assay in the absence of conditioning films 

Samples  Klebsiella 

pneumonia 

Acinetobacter 

baumannii 

Enterococcus fecium 

 Significance 

GO .114 .911 .637 

AgGO .637 .266 .000 

CuGO .780 .712 .637 

AuGO .593 .908 1.000 

PdGO .152 .102 .253 
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Table 7. Normal distribution validity using Shapiro-Wilk test onto data of time kill assay in 

presence of conditioning films. 

 Klebsiella 

pneumoniae 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

Samples  Time Significance 

GO 0 .220 

.554 

. 

. 

.672 

.878 

.843 

.780 

.911 

.417 

.463 

.927 

 2 

 4 

 24 

AgGO 0 . 

. 

. 

. 

.157 

. 

. 

. 

.964 

.317 

.567 

.235 

 2 

 4 

 24 

AuGO 0 .281 

.817 

.806 

. 

.328 

.537 

.391 

.900 

.407 

.391 

.921 

.817 

 2 

 4 

 24 

PdGO 0 .344 

.900 

.826 

. 

.000 

.668 

.567 

.274 

.927 

.878 

.637 

.921 

2 

4 

24 

Table 8. Normal distribution validity using Shapiro-Wilk test onto data of time kill assay in 

absence of conditioning films. 

 Klebsiella 

pneumoniae 

Acinetobacter 

baumannii 

Enterococcus 

faecium 

Samples  Time Significance 

GO 0 1.000 

.213 

.890 

.935 

.537 

.747 

.424 

.206 

.726 

.094 

.780 

. 

 2 

 4 

 24 

AgGO 0 .567 

. 

. 

. 

.484 

. 

. 

. 

.696 

.600 

. 

. 

 2 

 4 

 24 

AuGO 0 .702 

.716 

.935 

.637 

.915 

.600 

.000 

.637 

.348 

.298 

1.000 

.780 

 2 

 4 

 24 

PdGO 0 .424 

.780 

.094 

.174 

.000 

.000 

.220 

.206 

.545 

.672 

.593 

.637 

 2 

 4 

 24 
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The effects of metal ion solutions (silver, copper, platinum, gold and palladium) were determined 
individually and in combination against Enterococcus faecium, Acinetobacter baumannii and Klebsiella 
pneumoniae. Platinum, gold and palladium showed the greatest antimicrobial efficacy in zone of 
inhibition (ZoI) assays. When tested in combinations using ZoI assays, gold/platinum, gold/palladium 
and platinum/palladium were indicative of synergy. Microbial inhibitory concentration demonstrated 
platinum and gold against Enterococcus faecium, platinum against Klebsiella pneumoniae and platinum 
and silver against Acinetobacter baumannii were optimal. Minimal bactericidal concentrations 
determined the greatest bactericidal activity was again platinum gold and palladium against all three 
bacteria. Fractional Inhibitory Concentration (FIC) studies demonstrated that the silver/platinum 
combination against Enterococcus faecium, and silver/copper combination against Acinetobacter 
baumannii demonstrated antimicrobial synergy. Following crystal violet biofilm assays for single metal 
ion solutions, antimicrobial efficacies were demonstrated for all the metals against all the bacteria 
Synergistic assays against biofilms demonstrated gold/palladium, gold/platinumand platinum/ 
palladium resulted in the greatest antimicrobial efficacy. Overall, platinum, palladium and gold metal 
ion solutions in individual use or combination demonstrated the greatest antimicrobial efficacies 
against planktonic or biofilm bacteria. This work demonstrates the potential for using a range of metal 
ions, as biocidal formulations against both planktonic or biofilm bacteria. 

The antimicrobial properties of metals have been recognised throughout the history of 
medicine and healthcare1. The application of metals in medicine was common until the 
discovery of antibiotics. Nevertheless, at the beginning of the twenty-first century, a rapid 
increase in antimicrobial resistance has been observed, which has corresponded with a 
lack of new antibiotic drugs. To reduce the transmission of potentially infectious 
microorganisms, there has been a revival of interest in the utilization of metals as 
antimicrobial/biocidal agents2. 

There is now a need for alternative biocidal formulations that may be used as active 
antimicrobials3, 4. Biocidal products as outlined in the EU Biocides Directive (98/8/EC), are 
those that are intended to destroy, render harmless, prevent the action of, or otherwise exert 
a controlling effect on any harmful organism by chemical or biological means (i.e. 
disinfectants, antiseptics and preservatives)2. Metal surfaces such as silver (Ag) and copper 
(Cu) have shown antimicrobial efficacies that may control bacterial transmission and 
infection risks in laboratory settings and hospital environments5, 6. Palladium (Pd) alloys 
have also been considered as potential materials for use as temporary implants to prevent 
cardiovascular disease infections7. Platinum (Pt) possesses metallurgic properties that 
enable it for use as an antimicrobial in medical implants, such as cardiovascular 
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defibrillators or hip and knee implants and catheters8. Gold (Au) nanoparticles have been 
previously explored for use as delivery vehicles for thioguanine9, and various antibiotics10–

12. The synergistic effects of metals or their complexes have  

 

Figure 1. Zone of inhibition values for five metals at different concentrations against 
tested three pathogens demonstrating that at higher concentrations platinum, gold and 
palladium were the most effective antimicrobials whereas at lower concentrations silver 
demonstrated the greatest antimicrobial activity (p < 0.001). Au = gold, Cu = copper, Pt = 

platinum, Pd = palladium and Ag = silver. 50, 100, 500 and 1000 are at concentrations in 

mgL−1 (n = 12). 

 

also been demonstrated13, 14. For example, phosphogold dithiocarbonate complexes have 
demonstrated to have comparable antimicrobial potency when compared to various 
antibiotics such as chloramphenicol against resistant pathogens13. An antimicrobial effect 
has also been demonstrated for Au+3 whereby an increase in bacterial inhibition was 
demonstrated when combined with cephalexin, clindamycin or vancomycin against 
Escherichia coli and Pseudomonas aeruginosa14. 

Enterococcus faecium is an emergent Gram-positive opportunistic pathogen that is the 
causative agent of several nosocomial infections including complicated urinary tract 
infections and surgical wound infections15–17. Enterococcus is difficult to inactivate due to 
its high level recalcitrance and tolerance of a wide range of growth conditions. E. faecium 
can survive for long periods of time on environmental surfaces including medical 
equipment, bedrails and door knobs15, 18, 19. Klebsiella pneumoniae is a Gram-negative 
microorganism that has a large polysaccharide capsule surrounding the bacterial cell, which 
both protects the bacteria and acts as a barrier to antimicrobial agents20. This species is an 
opportunistic pathogen principally related with hospital-acquired infections including those 
of the respiratory and urinary tract21. A. baumannii also has a role in hospital-acquired 
infections particularly in causing bacteremia, pneumonia, urinary tract and wound 
infections22. These bacterial strains also have the ability to form biofilms on abiotic and 
biotic substrates, which may be problematic on catheters, potentially leading to an increase 
in transmission and infection risks. This may result in increased patient morbidity and 
mortality12–14, 23. In order to determine the potential of a range of metal ions for their use as 
biocidal agents, a pilot study was carried out to determine the antimicrobial efficacy of five 
metals, both individually and in combination against E. faecium, K. pneumoniae and A. 
baumannii planktonic or biofilm phenotypes. The potential future use of such antimicrobials 
would be as biocidal agents for use where intensive cleaning solutions were required. 

Results 
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Zone of inhibition (ZoI) for single and combined metals. Zones of inhibition assays were 
used to determine the antimicrobial efficacies of the metal ions in a semi-solid media. Zone 
of inhibition assays using the individual or combined metal solutions, demonstrated an 
increase in antimicrobial activity which correlated with increased metal ion solution 
concentration (p < 0.001) (Fig. 1). When used individually, platinum, gold and palladium 

demonstrated the greatest ZoIs against all tested microbes (>5 mm and <11 mm) at 1000 

mgL−1 concentration. Copper demonstrated the lowest antimicrobial efficacies, (>2 mm and 

<4 mm ZoI) at 1000 mgL−1 concentration. Against E. faecium, only silver and gold exhibited 

antimicrobial activity at lower concentrations (50 mgL−1) (3 mm and 1 mm respectively). 
In order to determine the synergies of the metal ions, they were tested using ZoI assays 

in combination. It was demonstrated (Table 1), that the metal solutions gold/platinum, 
gold/palladium and platinum/palladium were most effective antimicrobial combinations 
and demonstrated synergy at the higher concentrations tested (Fig. 2b). However, most of 
the metal ion combinations tested using ZoI assays demonstrated an indifferent response 
(Fig. 2a). Interestingly at the lower concentration of 100 mgL−1 silver/platinum, silver/gold 
and silver/ palladium demonstrated antimicrobial activities equivalent to gold/platinum, 
gold/palladium and platinum/palladium (Table 1). 

Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations 
(MBC) for single metals. Following the MIC tests, the most effective antimicrobial metal 

ion solutions were found to be platinum against K. pneumoniae (3.90 mgL−1), silver and 

gold (3.90 mgL−1) against A. baumannii and platinum and gold against E. faecium (11.71 

mgL−1) (Table 2). A similar pattern was demonstrated for the MBC with the  

  AgCu AgPt AgAu AuPd CuPt CuAu CuPd AuPt AuPd PtPd 

50 

mgL−1 

E. faecium 0 0 0 0 0 0 0 0 0 0 
A. baumannii 1 2 2 2 1 1 1 2 2 2 
K. pneumoniae 1 2 2 2 1 1 1 2 2 2 

100 

mgL−1 

E. faecium 1 2 2 2 1 1 1 2 2 2 
A. baumannii 1 2 2 2 1 1 1 4 4 4 
K. pneumoniae 1 2 2 2 1 1 1 4 4 4 

500 

mgL−1 

E. faecium 2 3 3 3 3 3 3 4 4 4 
A. baumannii 4 5 5 5 4 4 4 6 6 6 
K. pneumoniae 4 5 5 5 4 4 4 6 6 6 

1000 

mgL−1 

E. faecium 4 4 4 4 4 4 4 6 6 6 
A. baumannii 4 6 6 6 6 6 6 8 8 8 
K. pneumoniae 4 6 6 6 6 6 6 8 8 8 

 
Table 1. Zone of inhibition assays for metal combinations against E. faecium, A. baumannii 
and K. pneumoniae (mm) demonstrating that platinum/palladium, gold/palladium or 
gold/platinum demonstrated the greatest antimicrobial activity. Au = gold, Cu = copper, Pt 

= platinum, Pd = palladium and Ag = silver (n = 3). The inhibition zones were graded from 

0 to 4, which measured as, 0–4 mm = grade 0, 4–8 mm = grade 1, 8–12 mm = grade 2, 12–

16 mm = grade 3 and 16–20 mm = grade 4. 

 

Test 

samples 

K. pneumoniae A.baumannii  E. faecium  

MIC MBC MIC MBC MIC MBC 

Ag 11.71 ± 2.76 11.71 ± 2.76 3.90 ± 0 7.81 ± 0 15.62 ± 0 62.50 ± 0 

Cu 15.62 ± 0 15.62 ± 0 15.62 ± 0 15.62 ± 0 62.50 ± 0 125.00 ± 0 

Pt 3.90 ± 0 3.90 ± 0 5.85 ± 1.38 7.81 ± 0 11.71 ± 2.76 31.25 ± 0 

Au 5.85 ± 1.38 3.90 ± 0 3.90 ± 0 5.85 ± 1.38 11.71 ± 2.76 31.25 ± 0 

Pd 5.85 ± 1.38 3.90 ± 0 7.81 ± 0 7.81 ± 0 15.62 ± 0 31.25 ± 0 
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Table 2. Minimal inhibitory concentration and minimal bactericidal concentration 
(mgL−1) values for the metals against tested three bacteria demonstrating that platinum 
and gold displayed the most inhibitory concentrations and platinum, gold and palladium 
demonstrated the most potent MBCs. Au = gold, Cu = copper, Pt = platinum, Pd = 

palladium and Ag = silver (n = 3). 

 

Figure 2. Examples of combined metals used in ZoI to demonstrate the interactions. (a) 
Palladium/platinum against Gram negative bacteria (indifference interaction) and (b) 
gold/palladium against E. faecium (synergy interaction). 

 

greatest bactericidal activity for platinum, gold and palladium at 3.90 mgL−1 against K. 

pneumoniae, 5.85 mgL−1 (gold) and 7.81 mgL−1 (platinum and palladium) against A. 

baumannii and 31.25 mgL−1 (gold, platinum and palladium) against E. faecium. Silver 
showed equable antimicrobial efficacy as platinum, gold and palladium against A. 
baumannii (≤7.81 mgL−1) and moderate efficacy against rest two pathogens. Copper was 

found to be the least active with an antimicrobial efficacy at 15.62 mgL−1 against the two 

Gram-negative bacteria and 125.00 mgL−1 against E. faecium (Table 3). 

Fractional inhibitory concentration (FIC) for metal combinations. The FIC was used to 
determine the synergistic antimicrobial efficacy of the metals in combination in a solution. 
The FIC determined that the silver/palladium combination against E. faecium and 
silver/copper combination against A. baumannii demonstrated  

Metal ion 

combinations AgCu AgPt AgAu AgPd CuPt CuAu CuPd AuPt AuPd Ptpd 

K. pneumoniae 0.57 ± 0 0.66 ± 0 0.73 ± 0.68 0.73 ± 0.68 0.92 ± 0.68 0.67 ± 0.68 0.90 ± 

0 
0.83 ± 

0 
0.66 ± 

0 
0.83 ± 

0 

A. baumannii 0.46 ± 0.34 0.61 ± 0.34 0.74 ± 0.34 0.74 ± 0 1.37 ± 1.38 0.62 ± 0 0.73 ± 

0 
0.83 ± 

0 
0.74 ± 

0 
0.57 ± 

0 

E. faecium 0.62 ± 0 1.16 ± 0 0.58 ± 0 0.37 ± 0.68 0.79 ± 0 0.79 ± 0 1.24 ± 

0 
1.33 ± 

0 
2.77 ± 

0 
1.10 ± 

0 

Table 3. Fractional inhibitory concentration index for metal ion combinations 
demonstrating a synergistic antimicrobial efficacy for silver/copper against K. 
pneumoniae and silver/palladium against E. faecium. Synergy = <0.5, indifference = 

0.5–4.0 or antagonism = >4.0. Au = gold, Cu = copper, Pt = platinum, Pd = palladium 

and Ag = silver (n = 3). 
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Figure 3. (a–c) Biofilm growth in the presence of metal ions tested individually and in 
combination at 500 mgL-1 against (a) K. pneumoniae, (b) A. baumannii and (c) E. 
faecium using crystal violet biofilm assay. The metals were tested in a 1:1 ratio. Au = 

gold, Cu = copper, Pt = platinum, Pd = palladium and Ag = silver (n = 3). 

 

synergistic antimicrobial efficacy (Table 3) (FIC synergistic value ≤ 0.5). All other metal 

combinations demonstrated indifferent FIC activities (FIC > 0.5 < 4.0). No metal ion 

solution combinations were found to demonstrate antagonistic interactions (>4.0) against 
the three tested microbes (Table 3). 

Biofilm accumulation assays for single and combined metals. The biofilm assays for the 
individual metal solutions demonstrated excellent antimicrobial efficacies for all the metals 
at 500 mgL−1 concentration against all the three bacteria (Fig. 3a–c). The silver against E. 
faecium was the only result that demonstrated partial antimicrobial activity. Synergistic 
assays against the biofilms demonstrated that at the greatest concentration (500 mgL−1) 
gold/palladium, gold/platinum and platinum/palladium resulted in the greatest antimicrobial 
efficacy with no detectable biofilm formation against all three tested bacteria along with 
silver/palladium and copper/gold against K. pneumoniae and silver/palladium against E. 
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faecium. Most of the other metal combinations demonstrated partial antimicrobial activity, 
with only a few demonstrating little antimicrobial activity. None of the metal ion 
combinations demonstrated no antimicrobial activity. 

Discussion 

With the increase in hospital-acquired infections and the development of multidrug resistant 
bacteria, it is imperative that new biocidal and antimicrobial formulations are found. Metal 
compounds and complexes of palladium, platinum, copper, gold and silver have been shown 
to demonstrate effective antimicrobial efficacies against a broad range of AMR pathogens5, 

6, 10, 19. Metals such as silver in wound dressings, copper on touch surfaces of patient 
equipment and gold and palladium coatings on catheters are considered to possess potential 
antimicrobial properties to reduce bacterial infection and transmission risks24–26. However, 
few studies have demonstrated the antimicrobial efficacy of platinum, gold and palladium 
in their ionic forms or in combination, although their complexes (tetradentate macrocyclic, 
cisplatin, etc.) have been shown to demonstrate inhibition against bacterial pathogens27–29. 

As expected, concentration played a pivotal role in increasing the antimicrobial activity 
in the present study. Similar results have been demonstrated by others for complexes 
containing N-(thiophen-2-ylmethylene)benzo[d] thiazol-2-amine schiff bases with copper, 
zinc, cobalt and nickel whereby antimicrobial efficacy increased with increasing 
concentrations (from 5 mgL−1 to 20 mgL−1)30. Copper, nickel and cobalt combined with 

coumarin-8-yl ligands have also showed greater bacterial inhibition at 100 mgL−1 compared 

to 25 mgL−1 or 50 mgL−1 against K. pneumoniae31. This is probably due to the greater 
quantity of metal ions resulting in increased metal-bacterial interactions, leading to 
increased cell death14. 

Overall, platinum, gold and palladium demonstrated the greatest antimicrobial efficacies 
against both planktonic bacteria and biofilms. However, in its ionic form, copper 
demonstrated little antimicrobial effect against cells or biofilms. In our work, which used 
metal ions in solution, the most electronegative metals produced the best antimicrobial 
results overall. This may be a result of the high electronegativity of the metal ions being 
highly attracted to the negatively charged bacteria. The result of these highly attractive 
forces may result in increased bacterial-metal ion interactions leading to greater 
antimicrobial efficacy and thus increased cell death. 

Although copper and silver are known antimicrobials these were not the most active 
metal ion solutions tested. The platinum, gold and palladium being the most effective 
antimicrobials was determined in all the assays, except in the results from the FIC. The FIC 
demonstrated that the silver combinations (silver/palladium against E. faecium and 
silver/copper against A. baumannii), demonstrated the most antimicrobial synergistic 
combination. This might be since, in our work the metal ions were in solutions whereas 
work by others usually involves the investigation of the antimicrobial efficacy of the metals 
in the form of surfaces, nanoparticles or complexes and it is known that the form of the 
metal will affect the antimicrobial mechanism of action. Although the MIC, MBC and FIC 
were carried out in liquid media, it may be that when the metals were combined as in the 
FIC, the metal ions interacted in a different way, resulting in the silver having a predominant 
effect. However, the reason for the FIC result with the silver is unclear and requires further 
investigation but it may be due to the principal oxidation state of the silver. What is clear is 
that the assay used does influence the results and one assay alone should not be used to 
determine the overall antimicrobial efficacy of a compound. 

Platinum nanoparticles have demonstrated antimicrobial efficacies against Bacillus 
subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli32 whereas 
others have found no effect33. A study tested the antibacterial properties of nine different 
metal surfaces against S. aureus and E. coli and found that in agreement with our results, 
palladium demonstrated greater antimicrobial efficacy than the other metals tested34. A 
study by Kawakami et al. (2008) also looked at the antimicrobial efficacy of a number of 
metals including platinum and palladium and it was found that they were effective against 
E. coli. However, in contrast to our results, their study found that gold demonstrated little 
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effect against E. coli or S. aureus35. However, gold in nanoparticle and ionic form has been 
suggested to have antimicrobial activity12, and gold nanoparticles have also been shown to 
inhibit biofilm formation36. Although not as effective in our study, silver in other forms has 
demonstrated antimicrobial efficacy. Silver alginate has been shown to have antimicrobial 
efficacy against bacterial species isolated from burn wounds including A. baumannii, K. 
pneumoniae and E. faecium25, 37. It is also well known that copper surfaces have 
antimicrobial efficacy against a wide range of microbes38–40. 

The differing toxic effects of metals and their components on bacteria can be due to 
various mechanisms such as antioxidant depletion, deoxyribonucleic acid (DNA) damage, 
impaired membrane function and/or interference with nutrient assimilation2. The most 
common hypothesis for the antimicrobial action of silver involves silver ions binding to the 
proteins and enzymes in the cell wall, cell membrane and peptidoglycan. This causes 
structural changes in the cell wall, such as pits. This increases cell permeability, leading to 
distortion and finally lysis of the cells40–42. Another antimicrobial mechanism of silver is its 
ability to inter-chelate with the phosphorus elements in bacterial DNA, which results in 
impaired ability to replicate and express ribosomal subunit proteins and other cellular 
proteins43–45. Platinum’s primary cisplatin target is DNA but it also has an affinity for the 
sulphur and selenium donors present in many proteins46, 47. A palladium complex with 1,6-
bis(be nzimidazol-2-yl)-3,4-dithiahexane was thought to exhibit bacterial toxicity 
mechanisms due to metal protein binding leading to DNA damage, causing cell death. 
Although the chemistry of palladium is very similar to that of platinum, palladium 
complexes differ from those of platinum in several respects. Palladium exhibits a greater 
propensity to exchange ligands, which is about 105 times higher than platinum48. The ligand 
dissociation generates active metal species that can easily interact with other compounds, 
thus palladium complexes are toxic because of their higher reactivity48. The mechanistic 
action of gold is thought to be due to strong cationic attractions to the negatively charged 
plasma membrane of microbes which leads to cell membrane disruption, Reactive Oxygen 
Species (ROS) accumulation and consequent cell death35, 49. Copper ions released from 
copper alloys have been suggested to target bacteria by increasing ROS production and thus 
inducing DNA damage. However, this concept is controversial as it has further been 
demonstrated that disruption of the cell envelope is the mode of action of contact killing 
mediated by dry metallic copper surfaces38. In terms of our results, this concept holds true 
and would in part explain the low antimicrobial results when the copper was in solution. 
Further, there are significant differences that exist between the exposure of bacteria to 
copper ions and exposure to metallic copper surfaces, since the cells on dry metallic copper 
surfaces are not in an environment that promotes growth. Therefore, these cells face 
challenges that are different from those in an aqueous environment38. It has also been 
suggested that the antibacterial property of copper ions do not act like some other metals 
ions such as silver50. Thus, it may be that when the bacteria are in direct contact with copper 
surfaces an enhanced antimicrobial effect is achieved. 

To the author’s knowledge, studies showing the antimicrobial efficacies of individual and 
combined metal ions has been little researched. A metal’s antimicrobial mechanistic activity 
is dependent on its chemical properties (for example donor atom selectivity, reduction 
potential), which govern their reactivity in bacterial cells. Thus, using antimicrobial agents 
in combination may further increase their antimicrobial efficacy by producing a synergistic 
effect51–53. In agreement with our results, work by others has also demonstrated that silver 
ions showed a lower MBC value for E. coli planktonic cells than for biofilms54. Since the 
physiology, gene expression and morphology of planktonic cells differs from those cells in 
biofilms, the difference in the efficacy of the antimicrobial agents against the bacteria in 
their different states might not be that unexpected53–55. 

Conclusion 

In this pilot study, gold, platinum and palladium demonstrated the most effective 
antimicrobial activity overall for individual metal ion solutions against both planktonic or 
biofilm phenotypes for three pathogens and could potentially be used in biocidal 
formulations where intensive cleaning is required. The synergistic combinations of 
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gold/platinum, gold/palladium and platinum/palladium have the potential to be used in a 
range of antimicrobial or biocidal combinations, particularly against the medically-
relevant pathogens tested in this study. Other metals demonstrated some antimicrobial and 
synergistic activity under certain conditions and against particular cells. Overall platinum 
demonstrated the greatest antimicrobial efficacy. The results suggest that when used as 
potential antimicrobials, the combinations selected must be tested towards bacteria in their 
relevant physiological states. It should be noted that the results of this preliminary study 
were only carried out against one strain of each bacterial species and hence future work 
will investigate the antimicrobial effects of the metal ions against a range of bacterial 
isolates. 

Methods 

Cultures and Media. Stock cultures of K. pneumoniae strain NCTC9633 and A. baumannii 
strain 12156 were subcultured onto Nutrient agar (NA) and incubated at 37 °C for 24 h. E. 
faecium strain NCTC7171 was subcultured onto columbia blood agar (Oxoid, UK) 
supplemented with 5% defibrinated horse blood in a 5% CO2 incubator for 24 h at 37 °C. 
Brain heart infusion (BHIA) agar (Oxoid, UK) and brain heart infusion broth (BHIB) 
(Oxoid, UK) were used for all the microbiological tests for E. faecium. Nutrient agar and 
nutrient broth (NB) (Oxoid, UK) were used to perform all the assays for K. pneumoniae or 
A. baumanii. Gram-negative microorganisms were incubated at 37 °C overnight in an 
aerobic atmosphere whilst E. faecium was incubated in a 5% CO2 incubator for 24 h at 37 
°C in static conditions for all the other assays in this study. All the assays were repeated at 
least thrice (n = 3). 

Chemical Preparation. Single element standard calibration solutions for Ion Coupled 

Plasma – Atomic Adsorption Spectroscopy (ICP-AAS) of 1000 mgL−1 of silver, copper, 
platinum, gold and palladium (Sigma-Aldrich, UK) were used. These were diluted with 
sterile water to the respective metal ion concentrations. 

Bacterial preparation. Ten millilitres of appropriate broth was put into a sterile universal 
for the Zone of inhibition (ZoI) assays. One hundred and fifty millilitres of appropriate broth 
was put into a conical flask for minimum inhibitory concentrations (MIC), minimum 
bactericidal concentration (MBC) and fractional inhibitory concentration (FIC) and crystal 
violet biofilm assays (CVBAs). These were inoculated with a single colony of bacteria and 
incubated overnight according to the conditions in the culture and media sub-section. Cells 
were harvested by centrifugation (3500 g for 10 min) and then washed with 10 mL sterile 
distilled water and vortexed to ensure an even distribution of the cell suspension. The 
washed cells were again re-harvested. The pellet was re-suspended in 10 mL of broth, 
vortexed and the resultant cell suspension was adjusted to an optical density at 540 
nanometres (nm) (OD540) of 1.0 using a spectrophotometer. The cell concentration 
corresponded to 3.95 × 108 colony-forming units per mL (CFUmL−1) at an OD540 of 1.0. 

Zone of inhibition assays.  Respective agar was poured into sterile Petri dishes, 

which were then cooled and 100 μL of cell suspension was pipetted and spread across the 
entire area of the agar. Three equal wells (8 mm diameter) were cut out of the each agar 
plate using a sterile cork borer and stainless steel needle. To each of the wells, 100 μL of 
the metal ion solution was added. The plates were incubated as mentioned in cultures and 
media sub-section. The ZoI was measured using the different metal ion solution 
concentrations, 50 mgL−1, 100 mgL−1, 500 mgL−1 and 1000 mgL−1. Following incubation, 
the ZoI was measured in mm from four sides of each well to determine an average mean 
value (n = 12). 
Zone of inhibition assays (synergy).  For the synergy assays, the same method was 
carried out as above (zone of inhibition) except that two wells were cut from the agar, 6 
mm apart (n = 3). The concentration of the metal ions used in the ZoI synergy assays was 

50 mgL−1, 100 mgL−1, 500 mgL−1 and 1000 mgL−1. Following incubation, the inhibition 
zones were graded from 0 to 4, which measured as, 0–4 mm – grade 0, 4–8 mm – grade 1, 
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8–12 mm – grade 2, 12–1 6 mm – grade 3 and 16–20 mm – grade 4. The grade of 
inhibition of the metal ion solution combinations were calculated as follows; 

 Σ metal ion solution combination = first metal grade of inhibition + second metal grade of inhibition
 (1) 

Individual metal ion MIC and MBC assays. One millilitre of Triphenyl tetrazolium chloride 
(TTC) blue metabolic dye (Sigma-Aldrich, UK), was added into 9 mL of the OD adjusted 
cell suspension so that the working concentration of the dye was 0.15% w/v. To determine 
the MIC, 100 μL of the test samples were added to a 96 well flat-bottomed microtiter plate 
(MTP). One hundred microliters of bacterial suspension with the TTC dye was then added; 
the first column of cell/metal ion suspension was mixed, then 100 μL of the sample/bacterial 
mix was transferred to the column 2 wells and repeated until column 10. To column 11, 100 
μL of bacterial suspension without a metal (positive control) was added and to column 12 

and 100 μL of un-inoculated broth was added (negative control). After incubation, the MIC 
was taken as lowest concentration that inhibited the visible growth of the bacteria by 
comparison with the controls. Growth was indicated by a change of colour in the well to 
dark blue/purple. Twenty-five microliters of culture was taken from the first well that 
showed no growth and the last well that demonstrated growth and was pipetted onto agar 
plates using Miles and Misra methodology56, 57 (n = 3). After incubation, the lowest 
concentration well sample that showed no bacterial growth on the agar plate was determined 
to be the MBC for that test sample (n = 3). 

Fractional inhibitory concentrations assay. The bacterial suspension and test samples for 
the FIC test were prepared as described in the sub-section culture and media and MIC 
method, except that both metal ion solutions were added to the wells in a 1:1 ratio. 
Following incubation at 37 °C for 24 h, the FIC values were calculated as; 

 Σ =FICFIC of antimicrobial A + FIC of antimicrobial B 

MIC or MBC of antimicrobial A in combination / 

MIC or MBC of antimicrobial A alone 

+ 

MIC or MBC of antimicrobial B in combination /  
MIC or MBC of antimicrobial B alone 

 

 

depending on the FIC values, the antimicrobial interaction was evaluated as synergy = <0.5, indifference = 0.5–4.0 or    

 antagonism = >4.0 (n = 3). 

Crystal Violet Biofilm Assay (CVBA). Preparation of stainless steel coupons. Fine polished 

(FP) 304 grade stainless steel coupons (10 mm × 10 mm) were used in the assays. Coupons 
were washed thoroughly by sequentially putting the coupons into beakers each containing 
either acetone, methanol or ethanol (BDH, UK) for 10 min with a sterile water wash in 
between each, and for the final step. The washed coupons were air dried and stored in sealed 
plastic containers at room temperature until used. 

Biofilm formation and CVBA (adapted from Christen et al. 1985). The cell suspension was 
prepared in the same manner as described in culture and media sub-section. Twelve well 
culture plates were used to grow the biofilms. Cleaned coupons were placed in the centre 
of the well with the fine polished surface facing upward. One millilitre of adjusted OD cell 
suspension was added to each well and incubated for 7 days at 37 °C to produce a biofilm. 
Plates were wrapped in ParafilmTM to prevent moisture loss and air contaminants over the 
long incubation time. After incubation, the stainless-steel coupons were carefully washed 
with 2 mL of sterile distilled water using a pipette to remove any loose planktonic cells 
whilst avoiding damaging the biofilms. The coupons were air dried at room temperature for 
2 h. One millilitre of metal ion solution at 500 mgL−1 was added into each respective well. 
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Respective agar broths were also added into one of the wells to serve as a negative control. 
The plates were incubated for 24 h at 37 °C. Following incubation, the metal ion solutions 
were removed. The coupons were carefully washed with 1 mL of sterile distilled water and 
were air dried at room temperature. One millilitre of 0.03% crystal violet solution (Oxoid, 
UK) was added into each well with a coupon and left for 30 min. The coupons were gently 
washed with 2 mL sterile distilled water to remove any excess stain. The coupons were 
placed into new 12 well plates and air dried at room temperature for 1 h. One millilitre of 
33% glacial acetic acid (BDH, UK) was added to each well and left for 30 min to solubilise 
any stained biofilm. The solution was removed and the absorbance measured at OD590 (n 
= 3). Bacterial biofilms were divided into breakpoint categories; OD < 0.067 antimicrobial; 

OD ≥ 0.068 but ≤ 0.135 partial antimicrobial activity; ≥OD 0.136–≤0.270 negligible 

antimicrobial activity; >0.271 no antimicrobial activity. These values were determined 
using quartiles of the lowest OD value determined from the control. 

Statistical analyses.  Mean values were used to compare the antimicrobial efficacy 
results of the metal ion solution samples at varying concentrations. Standard deviation or 
standard error were calculated to analyse the distributions of the data from the mean value, 
and confidence intervals of 95% were calculated for the ZoI, FIC and MBC synergy tests 
results to plot error bars. 
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With resistant bacteria on the increase, there is a need for new combinations of antimicrobials/biocidal agents to help control 

the transmission of such microorganisms. Particulate forms of graphite, graphene oxide (GO) and metal-hybrid compounds 

(silver-graphene oxide (AgGO) and zinc oxide graphene oxide (ZnOGO)) were fabricated and characterised. X-Ray diffraction 

and Diffuse Reflectance Infrared Fourier Transform Spectroscopy demonstrated the composition of the compounds. Scanning 

Electron Microscopy and Energy Dispersive X-Ray Spectroscopy determined the compounds were heterogeneous and irregular 

in shape and size and that the level of silver in the AgGO sample was 57.9 wt% and the ZnOGO contained 72.65 wt % zinc. 

The compounds were tested for their antimicrobial activity against four prominent bacteria; Escherichia coli, Staphylococcus 

aureus, Enterococcus faecium and Klebsiella pneumoniae. AgGO was the most effective antimicrobial (Minimum inhibitory 

concentration E. coli/Enterococcus faecium 0.125 mg mL1; S. aureus/K. pneumoniae 0.25 mg mL1). The addition of Ag 

enhanced the activity of GO against the bacteria tested, including the generally recalcitrant K. pneumoniae and Enterococcus 

faecium. These findings demonstrated that GO-metal hybrids have the potential to be utilised as novel antimicrobials or biocides 

in liquid formulations, biomaterials or coatings for use in the treatment of wounds where medically relevant bacteria are 

becoming increasingly resistant. 
© 2017 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Concerns about bacterial resistance from community-acquired and food-

borne pathogens has been growing for a number of years at both national and 

international levels. Several Grampositive and Gram-negative bacteria 

including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecium and 

Staphylococcus aureus are currently considered as emergent global pathogens, 

which pose a huge global health problem (Boucher et al., 2009). 
Metals have been used for decades to treat various infectious diseases, and 

their antimicrobial efficacies are now being reevaluated owing to the 

emergence of resilient pathogens. A particular interest has emerged particularly 

in the use of these 

compounds for topical/therapeutic use as well as for disinfection to prevent the 

adhesion and transmission of bacterial species. Silver is one of the most widely 
investigated metals for antimicrobial applications, and is being used in a 

number of medical purposes including catheters, biomaterials and wound 

dressings. Zinc oxide (ZnO) is used in such applications as food packaging 
(Tayel et al., 2011), textiles (Velmurugan et al., 2016), as antimicrobials 

(Deokar et al., 2016), and in wound dressings (Chaturvedi et al., 2016). 

Nanoparticles are interesting in that they can be synthesized with a high surface 
area to volume ratio and with unusual morphologies that contain sharp edges 

and corners. Graphite and the graphene derivatives have traditionally been used 

in electrochemistry, from applications in energy technologies, such as batteries 
and fuel cells and they have also been used in an array of functional composites 

(Unwin et al., 2016). Work has recently 
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combining the antimicrobial activity of metals together with the physical 

effect of GO on the bacterial cell walls, it may be hypothesised that the 

antimicrobial activity of graphene products may be increased. 
A number of disinfectants and antiseptics have been reported to be 

showing signs of becoming less effective so there is a need for the 

development of novel microbicides due to the current limitations (Russel and 

Chopra, 1990; Jennings et al., 2015). Transmission and infection problems 

due to bacterial adhesion to surfaces can be mitigated in part by the 

development of alternative antimicrobial sources/biocides. The aim of this 

work was to determine if metalGO hybrid compounds demonstrated increased 

antimicrobial efficacy compared to graphite and GO, against a range of 

bacteria. The development of such alternative antimicrobial actives may 

prove beneficial for use in such formulations such as biocidal, disinfecting or 

topical antimicrobials or cleaning agents or for incorporation into biomaterial 

coatings. 

2. Materials and methods 

2.1. Synthesis of compounds and characterisation 

For the synthesis of the compounds, all chemicals (analytical grade or 

higher) were used as received from Sigma-Aldrich (UK) without any further 

purification and all solutions were prepared with deionised water of resistivity 

not less than 18.2 MU cm. Synthetic graphite powder was commercially 

obtained from Gwent Group (Pontypool, UK). 
Graphene oxide (GO) was synthesized by the Hummers method via the 

oxidation of synthetic graphite (Hummers Jr. and Offeman, 1958). Graphite 

flakes (5 g) and NaNO3 (2.5 g) were combined in 115 mL of H2SO4 (conc.) 

and stirred for 30 min. Whilst kept in an ice bath (<5 C), KMnO4 (15.0 g) was 

gradually added to the suspension and the rate of addition was controlled to 

keep the reaction temperature below 15 C. The mixture was heated to 35 C 

for a 30 min period and underwent continuous stirring producing a brown 

paste. A further dilution was made by adding 250 mL of water to the mixture 

and the temperature was increased to 70 C for 15 min. The resultant mixture 

was diluted by adding H2O until a final volume of 1 L was obtained. Finally, 

the solution was treated with 15 mL of H2O2 (30% w/w) to terminate the 

reaction, at which stage the solution became yellow in appearance. For 

purification, the mixture was filtrated and the obtained solid was washed 

thoroughly with Milli Q water several times in order to avoid sulphate 

contamination. After purification, the powder was dried at 60 C during 48 h. 
In the preparation of the AgGO, a sonochemical reduction method was 

utilised (Anandan and Muthukumaran, 2015). Following preparation of the 

GO, 0.5 g was added to 150 mL of ethylene glycol and sonicated for 30 min. 

In a separate vesicle, 1.0 g of silver nitrate was added to 20 mL of ethylene 

glycol and sonicated for 30 min. The silver nitrate dispersion was added drop-

wise to the GO solution whilst undergoing sonication for 30 min to produce 

a homogeneous mixture. Finally, 50 mL of 0.1 M NaBH4 was added to the 

resultant AgGO mixture and a further 30 min of sonication was performed. 

The product was purified with repeated steps of H2O and ethanol washing, 

after which the solution was dried at 50 C. 
The ZnOGO was fabricated by dissolving 5.0 g GO in 200 mL of N, N,-

dimethylformamide (DMF), along with 20 mL of 1 M zinc acetate dihydrate 

(pH of 6.5). The homogeneous solution was heated to 60 C and was stirred 

continuously for 120 min, after which the solution was heated to 250 C. 

Following solvent evaporation, partial ZnO/ZnOHGO was produced. The 

resulting dried product was collected and ground in an agate mortar prior to 

being annealed at 450 C for 120 min within atmospheric conditions to obtain 

the final ZnOGO product (Liu et al., 2012). 

2.1.1. Preparation of compounds for testing 
For the analysis of the fabricated compounds, 20 mg of each test compound 

was added to 20 mL of sterile distilled water. The samples were vortexed for 10 

s and immediately 10 mL of prepared sample was pipetted onto a 10 mm  10 mm 

polished silicon wafer (Montco Silicon Technologies, USA) and air dried for 30 

min. The samples were stored at room temperature, in desiccators until use. 

2.1.2. X-Ray Diffraction (XRD) 
In order to identify the crystal phase of the compounds, X-Ray Diffraction 

(XRD) was performed using a PANalytical X'pert powder diffraction platform. 

Nickel filtered copper Ka radiation (l ¼ 1.54 Å) was used, with an anode voltage 

of 40 kV an anode current of 30 mA. A reflection transmission spinner stage (15 

rpm) was implemented to hold the powder samples. The XRD parameters were 

step size: 0.13; sample: powder; slit (antiscatter) size: 1/4. The 2q range was set 

between 10 and 100, in correspondence with literature ranges associated with the 

characterised samples (Li et al., 2007; Zhou et al., 2007; Kumar et al., 2013; 

Chowdhuri et al., 2015; Liu et al., 2016). Additionally, to ensure well-defined 

peaks, an exposure of 50 s per 2q step was implemented. 

2.1.3. Diffuse Reflectance Infrared Fourier Transform Spectroscopy 
(DRIFTS) 

Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) was 

carried out using a Spectra-Tech DRIFTS cell fitted in a Thermo e Nicolet Nexus 

FTIR spectrophotometer. The instrument was thoroughly purged (30 L/min) with 

CO2 and water-free air, produced using a Balaston purge gas generator. All 

samples were diluted to ca. 5 % wt. in finely ground KBr (Sigma, UK). The 

samples were used as received, with no further grinding. The sample was folded 

into the pre-ground KBr using a micro-spatula. The microsampling cup was over-

filled slightly and the cup dropped from a height of 1 cm onto the bench in order 

to shake off the excess mixture whilst at the same time, produce a slightly domed 

and naturally randomised, surface of KBr diluted sample. The same batch of 

ground KBr was used as the background. The background and sample spectra 

were made up of 164 scans with resolution set to 4 cm1. As the sample was diluted 

with KBr there were no specular reflection components so a blocker was not used. 

Spectra were plotted in absorbance (Liauw, 2003). 

2.1.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDX) 
In order to determine the shape, size and atomic elemental weight of the 

compounds, the samples were fixed to stubs using carbon tabs (Agar, UK). 

Scanning Electron Microscopy (Carl Zeiss Ltd.) was carried out using a Supra 

40VP SEM with SmartSEM software. Energy Dispersive X-Ray (EDAX Inc.) 

was carried out using an Apollo 40 SDD system with Genesis software. 

2.2. Microbiology and antibacterial testing 

2.2.1. Stock cultures of bacteria 
In preparation for the antimicrobial assays, stock cultures of S. aureus NCTC 

4137, K. pneumoniae NCTC 9633 or E. coli NCTC 10418 were inoculated onto 

nutrient agar (NA) or nutrient broth (NB) and incubated at 37 C for 24 h. Stock 

http://dx.doi.org/10.1016/j.ibiod.2017.06.020
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cultures of Enterococcus faecium NCTC 7171 were cultured onto Columbia 

blood agar with horse blood in a 5%, Brain heart infusion agar (BHIA) (Oxoid, 

UK) or brain heart infusion broth (BIHB) and incubated in 5% CO2 for 24 h at 

37 C. All medias were obtained from Oxoid (UK). 
2.2.2. Preparation of microbiological cultures 

Ten millilitres of appropriate broth was inoculated with a single colony of 

bacteria and incubated overnight according to the above conditions. Following 

incubation, cells were harvested at 567  g for 10 min and washed once, re-

suspended in sterile distilled water, vortexed for 30 s, and then centrifuged again 

at 567  g for 10 min. The inocula were examined in a spectrophotometer at 540 

nm and compared against a blank of sterile distilled water to determine their 

optical density. They were then diluted accordingly and quantified using serial 

dilutions. The cell concentrations corresponded to; E. coli 4.20  108, S. aureus 

1.30  108, Enterococcus faecium 3.95  108 and K. pneumoniae 2.82  108 colony 

forming units per mL (CFU/mL). 

2.2.3. Zones of inhibition 
The zones of inhibition assays were performed to test the antimicrobial 

efficacy of each individual compound (n ¼ 24). One hundred microliters of 

prepared cell suspension was pipetted and spread across the surface of the agar. 

Three equal wells (8 mm diameter) were cut out of the each agar plates. To each 

of the wells, 100 mL of suspended compound was added. The plates were 

incubated in the appropriate air conditions and temperature for 24 h. Following 

incubation, the zones of inhibition was measured in mm from four sides of each 

well to determine an average mean value (n ¼ 24). 

2.2.4. Minimum inhibitory concentrations (MIC) 
The minimal inhibitory concentration (MIC) is defined as the lowest 

concentration of antimicrobial to prevent bacterial growth (Russel and Chopra, 

1990). One millilitre of triphenyl tetrazolium chloride (TTC) blue metabolic dye 

(Sigma-Aldrich, UK), was added into 9 mL of the cell suspension so that the 

working concentration of the dye was 0.15% w/v. To determine the MIC, the 

samples and bacteria were added to a 96 well flat-bottomed microtiter plate 

(MTP) and a serial dilution method used across the plate. A bacterial suspension 

without any compound (positive control) and uninoculated broth (negative 

control) was included. After incubation, the MIC was taken as lowest 

concentration that inhibited the visible growth of the bacteria by comparison with 

the controls. Growth was indicated by a change of colour in the well to dark blue/ 

purple. 

2.2.5. Minimum bactericidal concentration (MBC) 
The MBC is defined as the lowest concentration required to completely 

inactivate the inoculum at a given time (Humphreys et al., 2011). To perform the 

MBC assays, 25 mL was sampled and pipetted onto agar plates from the MIC 

well that showed no growth and also from the first well that showed growth and 

incubated overnight in appropriate conditions. After incubation, the lowest 

concentration well sample that showed no growth on the agar plate was 

determined to be the MBC for that test sample. 

2.2.6. Statistical analysis 
Statistical tests were carried out using a two tailed distribution t-test with two 

sample homoscedastic variance. Results were reported as mean ± standard error 

or percentage and any observed differences were considered significant at a p < 

0.05. 

 

 

3. Results 

3.1. Particle characterisation 

In order to assess the antibacterial activity of four compounds, graphite, GO, 

AgGO and ZnOGO, the compounds and hybrid molecules were firstly obtained 

or synthesized, then characterised and then tested using well-established 

antibacterial assays. The XRD patterns relating to the graphite powder produced 

the expected characteristic diffraction peaks at 2q¼ 26.6, 44.7 and 54.6, 

corresponding to the (002), (101) and (004) diffraction peaks of graphite powder 

respectively (Fig. 1a and a0). XRD (Fig. 1 a0) plotted over a narrower 2q range 

and with a finer counts scale, showed some disordered material as evidenced by 

the wide peak between ca. 7 and 17 and by a characteristic ‘sharp’ peak was 

evident at 2q ¼ 11.8 (Fig. 1b). The composition of the GO sample was confirmed 

as corresponding to the (002) diffraction peak of disordered GO. Application of 

the Bragg equation to the reflection peak angles, revealed that the interplanar 

distance increased from 0.35 nm in graphite to 0.75 nm in graphene oxide. For 

the latter, EDX gave 54.6 wt% C and 45.3 wt% O (O/C ratio ¼ 0.83), whilst the 

former (graphite) had an oxygen content of only 8.9 wt%, with all of the 

remainder being carbon (Table 1). 
The ZnOGO was confirmed by XRD to have a high concentration of ZnO 

(Fig. 1c). Diffraction peaks were evident at 2q¼ 32.2, 34.8, 36.7, 48.0, 57.0, 

63.3, 66.8, 69.5 and 72.9 which corresponded to the (100), (002), (101), (102), 

(110), (103), (112), (201) and (004) crystalline planes of ZnO, respectively 

(Liu et al., 2012). EDX revealed that the ZnOGO contained C (8.60 wt%), O 

(18.75 wt%) and Zn (72.65 wt%). Due to the low level of carbon in ZnOGO, 

the (002) reflection for GO (centred at ca. 10) (Fig. 1c0) was very weak. The 

ZnOGO was light grey in colour thus confirming the presence of carbon in the 

sample. 
Following analysis of the AgGO, the diffraction peaks occurred at 2q ¼ 

38.7, 44.9, 65.0 and 77.9 (Fig. 1d). These peaks corresponded to the (111), 

(200), (220) and (311) crystallographic planes of face-centred cubic silver. A 

small amount of Ag2O was present as evidenced by the corresponding (110) 

and (111) reflections at 28.4 and 3332.8 respectively. The (002) reflection of 

the GO was significantly attenuated (Fig. 1d) and shifted from 11.8 to 10 (d(002) 

¼ 0.86 nm). There was also a broad reflection peak over the range 12 and 18, 

with two small peaks centred at 15 and 20 (Fig. 1d0) whereby corresponding 

d values were 0.60 nm and 0.44 nm, respectively, indicating the presence of 

disordered structures. 
Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 

was used to further characterise the compounds. Overlaid DRIFTS spectra of 

the 4000 cm1e2000 cm1 region for the graphite, GO and AgGO demonstrated 

that the DRIFTS spectrum of graphite (Fig. 2a) was largely featureless as 

expected, though there was a small and negative hydrogen bonded OH 

stretching peak which was due to there being slightly more moisture in the 

background than the sample. The size and position of this band did not hinder 

interpretation of this spectral region for GO or AgGO. Graphene oxide (Fig. 

2b) showed the expected broad envelope of hydrogen bonded OH stretching 

vibrations from 3700 cm1 to 2500 cm1, together with some OH bands at 3650 

cm1 that appeared to be much less involved in hydrogen bonding. Interaction 

of the GO with the silver (Fig. 2c) appeared to remove the latter OH stretching 

band and generally attenuated the hydrogen bonded OH stretching within the 

region above 3350 cm1. There were some small aliphatic C-H stretching 

vibrations at 2946 cm1 (asymmetric) and 2877 cm1 (symmetric). The 2000 cm1 

to 400 cm1 region of the same three samples demonstrated that the graphite 

spectrum (Fig. 3a) was again featureless apart from a small negative peak at 

1650 cm1 which could be assigned to an O-H bend of water, indicating again 
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that there was slightly more moisture in the background than the sample; this 

peak did not interfere with interpretation. The GO featured all the expected 

peaks (Fig. 3b); carbonyl stretching (1738 cm1); skeletal aromatic C¼C 

vibrations (1615 cm1); C-OH stretching (1356 cm1); C-O-C stretching (1225 

cm1); C-O stretching (1056 cm1); aromatic C-H bending 

Table 1 
EDX analysis demonstrating the elemental percentage weight of the compounds. 

 C O Ag Zn 

Graphite 91.12 ± 0.13 8.88 ± 0.13 N/A N/A 
GO 54.15 ± 0.79 45.85 ± 0.79 N/A N/A 
ZnOGO 8.60 ± 0.04 18.75 ± 0.17 N/A 72.65 ± 0.13 
AgGO 14.50 ± 1.50 15.74 ± 1.03 69.77 ± 2.53 N/A 

N/A Not applicable for elemental analysis. 

(849 cm1). The AgGO (Fig. 3c) also featured the same absorption bands but 

with the following significant differences: carbonyl stretching, skeletal 

aromatic C¼C vibrations and C-O-C stretching vibrations were all red-shifted 

by 10 cm1, 29 cm1 and 5 cm1, respectively. Furthermore, the C-O vibration 

was split and consisted of a blue shifted component (1078 cm1) and a red 

shifted component (1037 cm1) (Table 2). 
Overlaid spectra of the synthesised ZnO and ZnOGO demonstrated in 

both spectra, carbon dioxide absorption at 2350 cm1 (Fig. 4) and carbonate 

absorptions at ca. 1580 cm1 and 1380 cm1 (Fig. 5). SEM showed that the 

compounds were heterogeneous and irregular in size (Table 3) and shape (Fig. 

6). Graphite (Fig. 6a) had a flattened, irregular, random orientation, fractured, 

sheet like morphology with sharp, cleaved edges (0.10 mme25.7 mm). 

Graphene oxide (Fig. 6b) was composed of aggregated creased platelets 

 

Fig. 2. DRIFTS spectra (4000 cm1 to 2000 cm1) of (a) graphite, (b) graphene oxide (GO) and (c) 

silver e graphene oxide hybrid (AgGO). 

 

Fig.1. X-Ray Diffraction patterns for; (a) graphite, (b) graphene oxide (GO), (c) zinc oxide e graphene oxide hybrid (ZnOGO) and (d) silver e graphene oxide hybrid (AgGO). Note the individual peak 

heights e patterns have been compressed to fit. In the right hand stack, patterns a0 to d0 correspond to those in the left stack but are plotted over a narrower 2q range on common counts scale (with Y-

shifting for presentation purposes). ZnOGO and AgGO have 50 x boosted counts and are Y-shifted for presentation purposes. 



 K.A. Whitehead et al. / International Biodeterioration & Biodegradation 123 (2017) 182e190 186 

 

(0.20 mme20.0 mm). The ZnOGO (Fig. 6c) consisted of numerous aggregated 

nanoparticles and/or nanoparticles covering micron- 

 

Fig. 3. DRIFTS spectra (2000 cm1 to 500 cm1) of (a) graphite, (b) graphene oxide (GO) and (c) silver 

e graphene oxide hybrid (AgGO). 

sized particles (0.05 mme30.0 mm). AgGO (Fig. 6d) was similar to GO in 

appearance; creased aggregated platelets with a random scattering of 

nanoparticles (possibly silver and/or silver oxide) (0.01 mm- 13.0 mm). 

3.2. Microbiological analysis 

Zones of inhibition assays were carried out against Gramnegative E. coli and 

K. pneumoniae and Gram-positive S. aureus and Enterococcus faecium (Fig. 7). 

Following the zone of inhibition assays, all the compounds demonstrated 

antimicrobial activity against E. coli and all the GO-containing compounds 

demonstrated antimicrobial activity against S. aureus. Graphite was only 

effective against E. coli and thus demonstrated a significantly greater 

antimicrobial efficacy than GO or ZnOGO against this bacteria (p > 0.05). The 

most effective antimicrobial overall against the bacteria using zones of inhibition 

was AgGO which provided the greatest zones of inhibition against E. coli (4.48 

mm) and S. aureus (4.50 mm). 
The MIC results demonstrated that against E. coli all the compounds were 

effective at concentrations of 0.125 mg mL1. Against S. aureus, graphene oxide 

was the most effective (0.125 mg mL1) whilst AgGO was the most effective 

against Enterococcus faecium (0.125 mg mL1). K. pneumoniae was again the 

most difficult bacteria to inhibit. However, the ZnOGO and AgGO compounds 

demonstrated statistically significant inhibitory effects compared to the graphite 

and GO compounds against K. pneumoniae at concentrations of 0.25 mg mL1 (p 

> 0.05). MBCs demonstrated that against E. coli, ZnOGO and AgGO were the 

most effective at 0.125 mg mL1. GO, ZnOGO and AgGO were all effective 

against 

Table 2 
Effect of silver addition on infrared absorption frequencies. 

 
C¼O 1738 1728 10 
C¼C 1615 1586 29 
C-OH 1356 1363 þ7 
C-O-C 1225 1220 5 

C-O 1056 1078 þ22 
 1037 19 
Aromatic C-H 849 879 þ30 

 

Fig. 4. DRIFTS spectra (4000 cm1 to 2000 cm1) of (a) synthesised zinc oxide (ZnO), (b) synthesised 

zinc oxide e graphene oxide hybrid (ZnOGO). 

 

Fig. 5. DRIFTS spectra (2000 cm1 to 400 cm1) of (a) synthesised zinc oxide (ZnO), (b) synthesised 

zinc oxide e graphene oxide hybrid (ZnOGO). 

Table 3 
Minimum to maximum size range of the particles. 

 Smallest size (mm) Greatest size (mm) 

Graphite 0.10 25.7 
Graphene oxide 0.20 20.0 
ZnOGO 0.05 30.0 
AgGO 0.01 13.0 

Group vibration Vibration frequency 
( cm  

1 
) 

Dn (cm  
1 
) 

GO Ag-GO 
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S. aureus at a concentration of 0.25 mg mL1 whilst AgGO was the most 

effective against Enterococcus faecium (0.125 mg mL1) (Fig. 8b). It was 

demonstrated that as with the other assays, K. pneumonia was the most 

difficult bacteria to eradicate, 

graphene oxide hybrid (AgGO). 

 

Fig. 7. Zone of inhibition measurements demonstrating the antimicrobial efficacy of the 

compounds. The silver e graphene oxide hybrid (AgGO) was determined to be the most 

effective antimicrobial using this method. K. pneumoniae and E. faecium did not demonstrate 

inhibition by the compounds using this method. 

demonstrating the greatest MBC values. However, AgGO was the most 

effective hybrid compound against this bacteria at a concentration of 0.25 mg 

mL1. 

 

 

4. Discussion 

4.1. Characterisation of compounds 

The XRD patterns relating to the graphite powder produced the expected 

characteristic diffraction peaks (Peng et al., 2013). The composition of the 

GO sample was confirmed (Chowdhuri et al., 2015) and it was evident that 

the (002) reflection had shifted to a lower angle and was of much lower 

intensity, relative to the same reflection in graphite. These observations are 

well established and indicate the formation of pendent oxygen containing 

functional groups on the top and bottom surfaces of the basal planes that 

increase the interplanar distance; this resulted in the shift of the (002) 

reflection to a lower angle demonstrating significantly decreased stacking 

uniformity (resulting in reduced reflection intensity). This is consistent with 

the DRIFTS data that indicated prolific functionalisation. The XRD also 

demonstrated disruption of the relatively ordered stacking of GO platelets due 

to non-uniform intercalation by the ZnO nanoparticles and/or coverage of the 

ZnO particles by GO, which may have contributed to a reduced intensity of 

the reflection (Chowdhuri et al., 2015). The AgGO peaks corresponded to 

crystallographic planes of face-centred cubic silver (Zhou et al., 2007). A 

small amount of Ag2O was present but as the atomic radius of silver is 0.17 

nm, it is conceivable that individual silver atoms may have intercalated the 

platelets (Dhoondia and Chakraborty, 2012). The attenuation of the (002) 

reflection indicated that the otherwise relatively regular stacking of GO had 

probably been disrupted by non-uniformly sized Ag nanoparticles between 

the GO platelets. It is also plausible that the GO may form a coating on the 

Ag nanoparticles (Oo, 2007; Das et al., 2011; Ma et al., 2011). The level of 

silver (by EDX) in the sample was 57.9 wt%; a mix of GO intercalation by 

Ag nanoparticles and GO coating of Ag nanoparticles may therefore be likely. 

The level of carbon (20.3 wt%) can be accommodated by the proposed 

structures of the hybrid. The oxygen in the Ag2O will have contributed to the 

amount of overall oxygen identified in the sample (21.8 wt %). 
The DRIFTS spectrum of graphite was largely featureless as expected. GO 

showed the expected broad envelope of hydrogen bonded OH stretching 

 

Fig. 6. SEM images demonstrating the morphology and particle sizes of a) graphite, b) graphene oxide (GO), c) zinc oxide e graphene oxide hybrid (ZnOGO) and d) silver e 
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vibrations. AgGO appeared to remove the latter OH stretching band and 

generally attenuated the hydrogen bonded OH stretching. This may be due to the 

interaction of the silver with weakly hydrogen bonded OH groups (phenolic OH 

and other OH) of the GO. The more general attenuation of the hydrogen bonded 

O-H bands, within the region above 3350 cm1, may be related to reduced water 

content in the AgGO and/or interaction of the silver with the hydrogen bonded 

OH groups of the GO. There were some small aliphatic C-H stretching 

vibrations. These may be due to residual ethylene glycol from the compound 

synthesis and to 

inhibitory and bactericidal effect. 

a lesser extent, residual ethanol from washing. The C-O vibration was split and 

consisted of a blue shifted component (1078 cm1) and a red shifted component 

(1037 cm1). These observations indicated a significant interaction of the GO 

platelets with the silver. The latter is further supported by a blue shift in the 

aromatic CH bending and C-OH stretching band. Interaction of the silver with 

carbonyl species and with the residual p-electrons in the GO would lead to the 

observed red shifts as the bond vibration was damped by interaction with the 

electron orbitals of silver atoms. This would also result in shortening of the 

aromatic C-H bonds and phenolic and carboxylic acid C-OH bonds, hence giving 

rise to the observed blue shift. The split in the C-O vibration indicated silver 

interactions having varying effects on the different ether linkages in the GO. It 

may be speculated that the ether groups at the platelet edges would be blue shifted 

and those actually pendant from a platelet surface may be red-shifted due to their 

interaction with the silver atoms. These observations are supported by the XRD 

data which indicated that the usual relatively ordered structure of the GO had 

been destroyed by its interaction with the silver. It may be that the silver 

atoms/particles had intercalated the layers resulting in highly nonuniform 

stacking. This would lead to the significantly attenuated and broadened GO 

related reflections in the XRD data for the AgGO. 
The features observed using the DRIFTS analysis were expected in the ZnO 

that had been synthesised via this route since the carbonate and carbon dioxide 

would be decomposition products of the starting materials (Selim et al., 2015). 

The carbonate would have been converted to CO2 as the annealing temperature 

increased, resulting in the CO2 becoming trapped within the structure. 

Interestingly, the OH stretching bands were more intense in the ZnOGO, and it 

may be that these were related to the GO, though the associated carbonyl and C-

O bands could not be resolved. This may be explained by the strong association 

between the GO and ZnO resulting in attenuation of these vibrations. The GO 

may have coated the surface of the synthesised ZnO particles and/or could have 

become interleaved within the synthesised ZnO structures. In either case, the 

relatively ordered stacking of the GO platelets had become disrupted. The XRD 

data supports the latter proposition. The other area of interest in these spectra was 

the Zn-O bending vibrations at ca. 440 and 520 cm1. In the ZnOGO, the ZnO 

band at 520 cm1 was stronger than in the synthesised ZnO (Fig. 5b). To the 

authors knowledge, such observations have not been reported elsewhere, but it 

may be related to a difference in the chemical environment and possibly due to 

the interactions with the GO. 
SEM demonstrated that the compounds were heterogeneous and irregular in 

size and shape. The ZnOGO particles had the greatest size range (0.05 mme30 

mm), whereas AgGO and ZnOGO had the smallest sized particles (0.01 mm and 

0.05 mm respectively) demonstrating the availability of both nano- and micron 

sized particles. 

4.2. Microbiology 

The zone of inhibition assays demonstrated that none of the compounds 

had any effect against Enterococcus faecium or K. pneumoniae. This may be 

due to the zone of inhibition method being carried out using a semi-solid 

media; this combined with the thick capsule of the K. pneumoniae and the 

insusceptible nature of the Enterococcus faecium may have resulted in the 

reduced antimicrobial effect demonstrated. Further, the bacteria in this 

method were growing on the agar in colonies. These ‘communities’ of bacteria 

may have been more resistant to the antimicrobial effects of the compounds, 

similar to the effects observed when bacteria form biofilms (Gilbert et al., 

2002) rather than what was observed when the bacteria are in planktonic form 

as in the MIC and MBC. 
Work by others has demonstrated the antibacterial activities of graphite 

and graphite oxide towards E. coli and it was found that a GO dispersion 

demonstrated an 89.7% of loss viability at 40 mg mL1 (Liu et al., 2007). In 

our work, we demonstrated an antimicrobial activity of GO at much lower 

concentrations against the four bacterial strains tested (MIC ¼ 0.125 mg 

mL1e0.5 mg mL1; 

MBC ¼ 0.25 mg mL1e0.5 mg mL1). Work by Xie et al. (2011) demonstrated 

the MIC of ZnO nanoparticles for Escherichia coli O157:H7 was found to be 

0.4 mg mL1. In comparison with our work, ZnOGO was the most 

antimicrobial compound against E. coli with an MIC at the lower 

concentration of 0.125 mg mL1. However, the E. coli used in our study was a 

different strain. The ZnOGO was also inhibitory against S. aureus, 

Enterococcus faecium and K. pneumoniae at a MIC of 0.25 mg mL1. GO and 

AgGO were also effective against S. aureus and Enterococcus faecium at 

concentrations of 0.125 mg mL1. Work by others also demonstrated that the 

MIC for ZnO nanoparticles was 1.5 mg mL1 and 3.1 mg mL1 against S. aureus 

and E. coli respectively demonstrating that in some cases our ZnOGO 

compound was more effective than the antimicrobial action of ZnO alone used 

in other studies (Franklin et al., 2007; Azam et al., 2012). The MIC against 

Enterococcus faecium and K. pneumoniae was optimal with the AgGO hybrid 

compound. 
ZnOGO also demonstrated the same MIC as AgGO against 
K. pneumoniae. 

 

Fig. 8. a) MIC and b) MBC of compounds against the four medically relevant bacteria demonstrating that the silver e graphene oxide hybrid (AgGO) demonstrated the greatest 
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Results from the MBC assays demonstrated that K. pneumonia was the most 

difficult bacteria to eradicate. Work by others using MBC assays with 18 nm 

nanoparticles of ZnO demonstrated that the concentration of particles 

required against E. coli was 0.018 mg mL1 and 0.016 mg mL1 against S. 

aureus (Xie et al., 2011). However, in contrast with their results, our 

compounds required greater concentrations in order to obtain the MBC. This 

may be explained by the particle size of our compounds being generally 

larger. It has been suggested that the smaller the size of the compounds, the 

greater the antimicrobial activity of the agent, however contradictory results 

have been reported where size dependent effects were not found to influence 

the antimicrobial activity of ZnO (Chen et al., 2014). 
The antimicrobial activity of the hybrid compounds may be explained in 

part by either the shape of the compound particles or by the percent of active 

facets. The atomic structure of the particle surface will affect its interaction 

with the bacterial cells (Selim et al., 2015). It is expected that the adsorption 

of atoms and molecules as a result of the interaction of the particles with the 

environment will be altered on the different planes, thus the difference in the 

atomic structure of the particles may result in a difference in their surface 

properties that could affect their interaction with the bacteria, leading to 

different antimicrobial efficacies (Pal et al., 2007). It has been suggested that 

high density facets with (111) faces exhibit greater amounts of antimicrobial 

activity (Pal et al., 2007). This is in agreement with our work since the AgGO 

demonstrated the greatest numbers of (111) planes. Combined with the shape 

of the compounds, these crystal structures can influence their mechanism of 

bacterial internalisation of the cell wall (Sirelkhatim et al., 2015). 
Work by Liu et al. (2011) focused on the interactions of GO and graphite 

on bacterial membranes against Escherichia coli. In agreement with our 

results, they showed that a GO dispersion had a greater amount on 

antibacterial activity than graphite. GO and graphite are thought to confer 

antimicrobial activity due to membrane stress on the bacterial cells induced 

by the sharp edges of the compounds (Liu et al., 2011; Chen et al., 2014). An 

interesting fact that was evidenced in this work was that the type of 

antimicrobial assay used produced a range of results and thus it may be 

concluded that the use of one antimicrobial assay to determine the efficacy of 

compounds is not sufficient. Further, the type of antimicrobial assay used 

should be selected in line with the proposed final application of the 

antimicrobials. 
Following each of the antimicrobial tests, AgGO demonstrated the 

greatest overall antimicrobial efficacies. E. coli was the most susceptible to 

the compounds followed by S. aureus, Enterococcus faecium and finally K. 

pneumoniae. This can be explained in part by the nature of the 

microorganisms physiology. The Gram-negative microorganisms E. coli and 

K. pneumoniae are surrounded by an outer and inner cell membrane which 

have between them a thin layer of peptidoglycan. However, K. pneumoniae 

also has a large polysaccharide capsule surrounding the bacterial cell; in 

addition, this capsule acts as a barrier to antimicrobial agents (Highsmith and 

Jarvis, 1985). S. aureus and Enterococcus faecium are Gram-positive bacteria 

that have a cell membrane, chiefly composed of thick peptidoglycan. 

However, Enterococci are intrinsically more resistant to many antibiotics 

since unlike acquired resistance and virulence traits which are usually 

encoded by plasmids or transposon elements, their intrinsic resistance is based 

on chromosomal genes (Huycke et al., 1998). Further, a number of antibiotics 

demonstrate bacteriostatic but not bactericidal activity against Enterococcus 

faecium bacteria (Huycke et al., 1998). Thus, the use of AgGO against these 

two resilient bacteria may be an important step in maintaining the hygienic 

status of areas into which the molecule is applied or incorporated. 

 

 

5. Conclusions 

ZnOGO and AgGO hybrid compounds were successfully produced and 

characterised. AgGO was the most effective antimicrobial and enhanced the 

activity of GO. The effect of the compounds on the bacteria did not relate to the 

Gram-positive or Gramnegative structures of the bacteria but rather, was due to 

their microorganisms overall physiology. GO-metal hybrids have the potential to 

be beneficially utilised as novel antimicrobials or biocides in settings where 

bacteria are becoming increasingly problematic. 
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Infection caused by Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus 

faecium can be difficult to treat. New biocidal products are needed in order to reduce the 

transmission of such bacteria from surfaces to patients. This fundamental study aimed to 

investigate the antimicrobial efficacy of nine metal ion solutions (yttrium, indium, 

niobium, titanium, tantalum, rhodium, ruthenium, zinc and gallium) using zone of 

inhibition (ZoI), minimum inhibitory concentration (MIC) and minimum bactericidal 

concentrations (MBC). Fractional inhibitory concentration (FIC) and fractional 

bactericidal concentration (FBC) assays were used to determine antimicrobial activities 

of various combinations. The rhodium metal ion solution when applied singly 

demonstrated the best antimicrobial efficacies against all the bacteria tested. FICs 

indicated that the rhodium/ruthenium combination was either synergistic or additive 

against all three tested bacteria. This metal ion combination also exhibited synergistic 

activity against E. faecium following in FBCs. Our data presented indicated the potential 

of the rhodium and/or ruthenium metal ions for antisepsis, disinfection and for 

incorporation into hygienic surfaces. 
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1. Introduction 

There has been a rise in the number of multidrug resistant (MDR) bacterial infections in hospital settings leading 

to increased mortality, morbidity, hospitalization and treatment costs (Olar et al., 2010). It is estimated that 9% of 

in-patients in England and Wales suffer from hospital-acquired infections, which is reported to result in around 

5000 deaths and extra care related costs of over £1 billion per year. These infections are caused in part by 

transmission across the wards (Smith and Hunter, 2008). There are a number of pathogens that are demonstrating 

increasing resistance from the biocidal action of antimicrobial agents, producing a new mode of pathogenesis 

(Pendleton et al., 2013). Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus faecium are three 

such bacteria out of the six ‘ESKAPE’ pathogens that are considered to be a leading cause of nosocomial infections 

(Santajit and Indrawattana, 2016). Such bacteria may persist on hospital and biomaterial surfaces including 

catheters, stethoscopes and disinfectant soap dispensers (Smith and Hunter, 2008). Ampicillin and vancomycin 

resistant E. faecium has demonstrated a constant threat in the incidence of health-care infections (Pendleton et al., 

2013). In recent times, K. pneumoniae and A. baumannii have acquired the ability to synthesize a variety of beta-

lactamase enzymes that can destroy the chemical structure of beta-lactam antibiotics, thus making these bacteria 

multidrug resistant (Santajit and Indrawattana, 2016). 

The lack of potential antimicrobial agents against such bacteria is a major cause for concern. Thus, there is a 

need to develop novel approaches to prevent the transmission of bacteria that cause such infections (Santos et al., 

2014). Metals such as molybdenum, titanium and tantalum have been used as biomaterials coatings on implants 

to decrease the bacterial adherence (Ribeiro et al., 2016; Chang et al., 2014; Haenle et al., 2011). Rhodium 

complexes with tetraaza macrocyclic and ruthenium (II) carbonyl thiosemicarbazone complexes have been shown 

to have effective antimicrobial efficacy against range of bacteria (Bien et al., 1999; Kannan et al., 2008; 

Jayabalakrishnan and Natarajan, 2002). Gallium and zinc ions co-ordinated with protoporphyrin and 

mesoprotoporphyrin respectively have showed up to 90% antibacterial efficacy against Staphylococcus epidermis 

and Pseudomonas aeruginosa (Ma et al., 2013). Titanium and its alloys have been used in various medical implants 

such as bone screws, dental restorations and artificial joints owing to their biocompatibility and also reputedly due 

to their bactericidal properties (He et al., 2017). This fundamental study investigated the antimicrobial efficacy of 

nine metal ion solutions individually and in combination against K. pneumoniae, A. baumannii and E. faecium to 

determine if they might provide potential biocidal solutions. 

2. Materials and methods 

2.1. Cultures and media 

Enterococcus faecium NCTC 7171 was cultured onto Columbia blood agar (Oxoid, UK) (supplemented with 

20 mL defibrinated horse blood), incubated in 5% CO2 for 24 h at 37 °C in static conditions. K. pneumoniae NCTC 

9633 and A. baumannii NCTC 12156 were cultured onto Nutrient agar (NA) (Oxoid, UK) and incubated for 24 h 

at 37 °C. Brain heart infusion (BHIA) agar (Oxoid, UK) and brain heart infusion broth (BHIB) (Oxoid, UK) (E. 

faecium) and nutrient agar and nutrient broth (NB) (Oxoid, UK) (K. pneumoniae or A. baumannii) were used for 

all subsequent experiments and were incubated as above (Vaidya et al., 2017). 

2.2. Preparation of metal ion solutions 

Standard solutions of 1000 mg L−1 of yttrium (Y2O3 + HNO3), titanium (Ti metal + HNO3), tantalum (Ta metal 

+ HNO3 (HF traces)), indium (In metal + HNO3), niobium (Nb metal + HNO3 (HF traces)), rhodium (RhCl3 + 

HCl), ruthenium (Re metal + HNO3), zinc (Zn metal + HNO3) and gallium (Ga metal + HNO3) (Sigma-Aldrich, 

UK) were used and diluted with sterile water to obtain 500 mg L−1, 100 mg L−1 and 50 mg L−1 metal concentrations. 

2.3. Bacterial preparation 

The appropriate broth was inoculated with a single colony of bacteria and incubated overnight according to the 

aforementioned conditions. Cells were harvested at 567 g for 10 min and washed using sterile distilled water three 
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times for the ZoI test and double strength broth for cells to be used in the MIC/MBC tests. Cells were re-harvested 

by centrifugation for 10 min at 567 g and adjusted using sterile distilled water to an optical density (OD) 1.0 ± 

0.1. The colony forming units per mL (CFU mL−1) were calculated and cell concentrations corresponded to K. 

pneumoniae 2.82 ×108, A. baumanii 1.85 ×108 and E. faecium 3.95 ×108 

2.4. Zone of inhibition (ZoI) assays 

One hundred microliters of prepared cell suspension was spread across the agar and three wells (8 mm diameter) 

were cut from the agar. One hundred microliters of the metal ion solution (at different metal ion solution 

concentrations, 50 mg L−1, 100 mg L−1, 500 mg L−1 and 1000 mg L−1) was added to the well and the plates were 

incubated as specified above. The radius of inhibition was measured in mm to determine the average mean value 

(n =12). 

2.5. Minimum inhibitory concentration (MIC) and minimum bactericidalconcentration (MBC) assays 

(adapted form Vaidya et al., 2017) 

To 9 mL of cell suspension, one mL of triphenyl tetrazolium chloride (TTC) blue metabolic dye (Sigma-

Aldrich, UK), was added. One hundred microliters of bacterial suspension with the TTC dye and the metal ion 

solutions was added to a 96 well flat-bottomed micro titre plate. The first column of was mixed, and subsequent 

100 μL of the sample/ bacterial mix was transferred to sequential wells and repeated until column 10, whereby 

100 μL of the mixture was disposed of. A positive control and a negative control was carried out at the same time. 

The MIC was taken as lowest concentration that inhibited the visible growth of the bacteria, indicated by a change 

of colour to blue. From the first well that showed no growth and the last well that demonstrated growth, 25 μL of 

suspension was pipetted onto agar and incubated. The lowest concentration that showed no bacterial growth was 

determined to be the MBC (n =3). 

2.6. Fractional inhibitory concentrations (FIC) and fractional bactericidalconcentrations (FBC) index 

This method was adapted from Vaidya et al. (2017). In brief, the MIC and MBC metal ion solution synergies 

were determined using FIC and FBC antimicrobial screening respectively. Both metal ion solutions were added 

in a 1:1 ratio to the wells. The FIC and FBC values were calculated using the following formula; ΣFIC or FBC = 

FIC or FBC of antimicrobial A + FIC or FBC of antimicrobial B = [1]  

MIC or MBC of antimicrobial A in combination 

MIC or MBC of antimicrobial A alone 

+ 
MIC or MBC of antimicrobial B in combination 

MIC or MBC of antimicrobial B alone 

 

The antimicrobial interaction was evaluated as≤0.5=synergy,> 

0.5≤1=additivity,>1≤4=autonomy and>4=antagonism (Doern, 2014) (n=3). 

2.7. Statistical analysis 

The average values were used to compare the results and standard error to determine the distributions of the 

data. The intervals at 95% confidence were also determined. 

3. Results 

The nine metal ion solutions showed varying levels of toxicity against the bacteria. The metal ions were in an 

acidic solution and control assays were carried out to determine the effects of the acids on bacterial viability. It 

was found that the acids did not significantly affect the results (data not shown). 
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3.1. Zone of inhibition 

The ZoI results displayed a significant increase in antimicrobial activity with an increase in concentration (p < 

0.05). At a concentration of 1000 mg L−1 the rhodium metal ion solution was the most antimicrobial (11.5 mm, 

12.5 mm and 7 mm K. pneumonia, A. baumannii and E. faecium respectively) followed by ruthenium for K. 

pneumonia (10.66 mm) and A. baumannii (8mm) with antimicrobial efficacy demonstrated for titanium and 

tantalum against E. faecium (both at 5 mm) (Fig. 1). Overall, at low concentrations, the least antimicrobially 

effective metal ion solutions were yttrium and zinc. With the exception of titanium ion solution, all the metal ion 

solutions demonstrated no antimicrobial efficacy at lower concentrations (50 mg L−1 and 100 mg L−1) against E. 

faecium (Fig. 1) (p > 0.05). Thus, Enterococcus faecium was found to be the most resistant at all the metal ion 

solutions tested concentrations. 

3.2. Minimum inhibitory and bactericidal concentrations 

Following the MIC assay, the rhodium and tantalum metal ion solution showed the best antimicrobial efficacy 

against all the tested bacteria (7.81 mg L−1 against the Gram-negative bacteria and 31.25 mg L−1 against E. 

faecium). The ruthenium metal ion solution was also inhibitory against A. baumannii and E. faecium (7.81 mg L−1 

and 31.25 mg L−1 respectively) and the titanium metal ion solution was also inhibitory against E. faecium (31.25 

mg L−1). The zinc ion solution against all three bacteria (31.25 mg L−1 K. pneumoniae and A. baumannii; 125.00 

mg L−1 against E. faecium) and the yttrium ion solution (31.25 mg L−1 and A. baumannii; 125.00 mg L−1 against E. 

faecium) demonstrated the least antimicrobial inhibition (Table 1). 
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Table 1 Minimum inhibitory concentrations in mg/L for nine metal ion solutions against three tested pathogens 

demonstrating the best antimicrobial efficacy for rhodium and titanium ion solutions (n = 3). 

 

Metal ion solutions K. pneumoniae A. baumannii E. 

faecium 

Zinc 31.25 ± 0 31.25 ± 0 125.00 ± 0 

Titanium 15.62 ± 0 15.62 ± 0 31.25 ± 0 

Tantalum 7.81 ± 0 7.81 ± 0 31.25 ± 0 

Indium 15.62 ± 0 15.62 ± 0 62.50 ± 0 

Yttrium 15.62 ± 0 31.25 ± 0 125.00 ± 0 

Rhodium 7.81 ± 0 7.81 ± 0 31.25 ± 0 

Ruthenium 15.62 ± 0 7.81 ± 0 31.25 ± 0 

Gallium 15.62 ± 0 11.75 ± 2.76 62.50 ± 0 

Niobium 15.62 ± 0 15.62 ± 0 62.50 ± 0 

 

 

Fig. 1. The ZoI in millimetre for nine metal ion solutions against a) K. pneumoniae b) A. baumannii and c) E. faecium demonstrated 

the best antimicrobial efficacy for rhodium (n = 12). Y = Yttrium, Ti =titanium, Ta = Tantalum, In = Indium, Nb = Niobium, Rh = 

Rhodium, Ru = Ruthenium, Zn =Zinc and Ga = Gallium. 
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Following the MBC assays, only the rhodium and the ruthenium demonstrated bactericidal activity against all 

thee bacteria (15.62 mg L−1, 7.81 mg L−1 and 62.50 mg L−1 against K. pneumonia, A. baumannii and E. faecium 

respectively). Against K. pneumoniae, titanium, tantalum and gallium demonstrated bactericidal activity (15.62 

mg L−1), and against E. faecium tantalum and gallium also demonstrated bactericidal activity (15.62 mg L−1 and 

62.50 mg L−1 respectively). The least bactericidal solutions were niobium (K. pneumoniae 46.87 mg L−1), zinc, 

indium and yttrium (A. baumannii 15.62 mg L−1) and zinc (E. faecium 250.00 mg L−1) (Table 2). In both of the 

tests, E. faecium was found to be the most resistant bacteria. 

3.3. Fractional inhibitory concentrations and FBC index 

The FIC (Table 3) and FBC was used to determine the synergistic antimicrobial efficacy of the metal ion 

solutions in combination. Following the FIC test, against K. pneumoniae only the rhodium/ruthenium combination 

demonstrated an additive effect (0.74). All the metal ion solution combinations demonstrated additivity effects 

against A. baumannii (0.74–0.99) and E. faecium (0.99). 

Following the FBC synergy assay (Table 4), only the rhodium/ruthenium combination demonstrated a synergistic 

antimicrobial efficacy against Gram-positive E. faecium (FBC =0.48) (Table 4). The titanium/ tantalum (0.75), 

titanium/rhodium (0.75) and titanium/ruthenium (0.56) combinations demonstrated an additive antimicrobial 

effect against E. faecium. Overall, K. pneumoniae was found to the most resistant bacteria for the dual 

combinations tested, whilst E. faecium was found to the most sensitive bacteria in the FIC and FBC assays. 

 

Table 2 Minimum bactericidal concentrations in mg/L for nine metal ion solutions against three tested pathogens 

demonstrating the best antimicrobial efficacy for Ru and Rh ion solutions (n =3). 

 

Metal ion solutions K. pneumoniae A. baumannii E. faecium 

Zinc 31.25 ± 0 31.25 ± 0 250.00 ± 0 

Titanium 15.62 ± 0 15.62 ± 0 125.00 ± 0 

Tantalum 15.62 ± 0 15.62 ± 0 62.50 ± 0 

Indium 31.25 ± 0 31.25 ± 0 125.00 ± 0 

Yttrium 23.43 ± 5.52 31.25 ± 0 125.00 ± 0 

Rhodium 15.62 ± 0 7.81 ± 0 62.50 ± 0 

Ruthenium 15.62 ± 0 7.81 ± 0 62.50 ± 0 

Gallium 15.62 ± 0 15.62 ± 0 62.50 ± 0 

Niobium 46.87 ± 11.04 15.62 ± 0 125.00 ± 0 

 

 

 

 

Table 3 Fractional inhibitory concentration index for six tested metal ion solutions combinations demonstrating combined effects 

for all metal ion solutions against K. pneumoniae, A. baumanii and E. faecium. FIC index = ≤ 0.50 =synergy, >0.50 ≤ 1.00 = 

additivity, > 1.00 ≤4.00 =autonomy and > 4.00 =antagonism. 

 

 Titanium/Tantalum Titanium/Rhodium Titanium/Ruthenium Tantalum/Rhodium Tantalum/Ruthenium Rhodium/Ruthenium 

K. pneumoniae  1.50 1.50 1.00 2.00 3.00 0.74 

A. baumannii 0.74 0.74 0.74 0.99 0.99 0.99 

E. faecium 0.99 0.99 0.99 0.99 0.99 0.99 
 



 

7 
 

 

 

4. Discussion 

The reoccurrence of MDR infections poses a great risk to public health. The development of novel antimicrobial 

agents and biocides to control and prevent the transmission of bacteria associated with hospital-acquired infections 

is in need of exploration (Haenle et al., 2011). This study found that the rhodium ion solution showed the best 

antimicrobial efficacies when tested alone or in combinations. The differences in the antimicrobial efficacies of the 

metal ions antimicrobial action may be due to their mechanisms of action. The antimicrobial activity of metals 

may be due to single or combined mechanisms such as enzyme disruption, cell-membrane/cell-wall degradation, 

deoxyribonucleic acid denaturation, protein dysfunction or oxidative stress (Lemire et al., 2013; Bruins et al., 

2000; Varkey, 2010; Mitchell and Kogure, 2006). It has been suggested that physical contact of metal ions with 

the bacterial cell wall and internalization in the cell might cause oxidization of the cellular components generating 

reactive oxygen species and interruption of the transmembrane electron transport chain (Dizaj et al., 2014; Kolmas 

et al., 2014). The antibacterial activity of the rhodium metal ion solution may be due to its liposolubility, 

electronegativity and initiation of redox reactions (Lemire et al., 2013; Beloglazkina et al., 2016). Rhodium metal 

possesses liposolubility properties, which is suggested to favour its cell permeability aiding in a greater transport 

inside a bacterial cell membrane (Bien et al., 1999). Inside the bacterial cell, the higher electronegativity of 

rhodium (2.28) might demonstrate an increase affinity for amine, phosphate or sulfhydryl groups compared to 

other tested metal ion solutions (for example Y = 1.22 or In =1.78) (Beloglazkina et al., 2016; Varkey, 2010). 

Rhodium being a member of d-block transition metals possesses a tendency to lose electrons and be reduced 

(Greenwood et al., 1998). This redox reaction between rhodium ions and phosphate/amine/sulfhydryl groups may 

possibly affect two vital processes inside the bacterial cell. Firstly, rhodium can bind to the large cavities of the 

ribosome, such as the peptide-conducting tunnel passing through the ribosomal subunit. Secondly, it might hinder 

the translation and transcription process required for the RNA and DNA formation. Thus, this two-way redox 

reaction leads to protein dysfunction and ultimately destruction of bacteria cell (Beloglazkina et al., 2016; Bien et 

al., 1999). 

 

It is known that by adding antimicrobial substances together, a synergistic, additive, indifferent or antagonistic 

result might occur (Doern, 2014). In combination, the most effective metal ion solution was demonstrated to be 

rhodium/ruthenium. In agreement with our results, rhodium complexes with tetraaza macrocyclic and ruthenium 

(II) carbonyl thiosemicarbazone complexes have been shown to have effective antimicrobial efficacy against range 

of bacteria (Bien et al., 1999; Kannan et al., 2008; Jayabalakrishnan and Natarajan, 2002). Further, a rhodium (III) 

ion complex with tetradentate macrocyclic was shown to demonstrate inhibitory efficacy when compared to 

platinum (II) and iridium (II) complexes against E. coli and S. aureus (Chandra et al., 2011). Further studies are 

needed to understand the mode of action of the antimicrobials when used in combination 

This study also demonstrated that tantalum and titanium had some antimicrobial properties. In respect to the 

other metal ion solutions tested, various values have been previously reported, which seem to be dependent on the 

formulation of the antimicrobial compounds. In our work, the antimicrobial activity of titanium metal ion solutions 

was demonstrated. Bis(cyclopentadienyl)titanium (IV) at 1000 ppm has been show to demonstrate greater 

Table 3 Fractional bactericidal concentration index for six tested metal ion solutions combinations demonstrating combined effects 

for all metal ion solutions against K. pneumoniae, A. baumanii and E. faecium. FIC index = ≤ 0.50 =synergy, >0.50 ≤ 1.00 = 

additivity, > 1.00 ≤4.00 =autonomy and > 4.00 =antagonism. 

 

 Titanium/Tantalum Titanium/Rhodium Titanium/Ruthenium Tantalum/Rhodium Tantalum/Ruthenium Rhodium/Ruthenium 

K. pneumoniae 2.00 2.00 2.00 2.00 2.00 1.00 

A. baumannii 1.00 1.12 1.50 1.50 1.50 2.00 

E. faecium 0.75 0.75 0.56 1.00 1.50 0.48 
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antimicrobial efficacy using the ZoI assay (up to 26 mm) than when used without a titanium (IV) complex (up to 

16 mm) against E. coli, S. aureus and Bacillus subtilis (Srivastava et al., 2005; Cai et al., 2012). Surfaces coated 

with 80% titanium have also been shown to have significant antibacterial properties against E. coli in a bacterial 

adhesion test (Seddiki et al., 2014). In work by others, tantalum oxynitride thin films were shown to have little 

antibacterial efficacy unless combined with silver ions using visible light radiation against E. coli (Hsieh et al., 

2010). Gallium and zinc ions co-ordinated with protoporphyrin and mesoprotoporphyrin respectively have showed 

up to 90% antibacterial efficacy against Staphylococcus epidermis and Pseudomonas aeruginosa (Ma et al., 2013). 

However, in our work zinc and gallium were not the most antimicrobial metal ion solutions tested. In contrast to 

our results, indium compounds with curcumin and diacetylcurcumin and yttrium (III) complex with 

phenanthroline (at 0.05 mg L−1) have also been shown to have low MICs (187 μgmL−1 to 23 μgmL−1) against E. 

coli, S. aureus, P. aeruginosa, B. subtilis and S. epidermidis (Tajbakhsh et al., 2008). Our study also showed some 

antimicrobial efficacies for the tantalum metal ion solutions. The addition of niobium to copper (3.8%) has been 

shown to decrease the bacterial count by up to 99% against E. coli using viable bacterial count test (Baena et al., 

2006). However, in our study, the antimicrobial efficacy of the niobium metal ion solutions were not significant in 

the MIC and MBC tests. Overall, E. faecium was the most resistant bacteria in the individual ion metal ions, but 

was the most sensitive bacteria in the FBC assays whereas for K. pneumonia and A. baumannii, the opposite was 

found. 

5. Conclusion 

Overall, the rhodium metal ion solution demonstrated the best antimicrobial efficacy against the three tested 

bacteria. Only the rhodium/ ruthenium combination showed synergism antimicrobial efficacies specifically against 

E. faecium. This fundamental study suggests that specific metal ion combinations used either individually possess 

the potential to be used as antimicrobials/biocides. 
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