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Abstract 29 

 30 

This paper examines the distribution of 91 modern dinoflagellate cyst taxa from 3636 31 

locations across the world’s oceans. Patterns of distributions among the taxa included bi-32 

polarity, cosmopolitan, northern versus southern hemispheres, and geographically restricted. 33 

Of the 91 taxa, three dominate these 3636 assemblages at the global scale, Brigantedinium 34 

species, Operculodinium centrocarpum sensu Wall and Dale 1966 and some species of 35 

Spiniferites. Whereas Brigantedinium is a true cosmopolitan taxon, with high abundances in 36 

each ocean, Operculodinium centrocarpum sensu Wall and Dale 1966 shows high 37 

abundances in polar to temperate regions in the Northern Hemisphere, and in tropical to 38 

sub-tropical waters in the Southern Hemisphere. Spiniferites species show highest 39 

occurrences in the Southern Hemisphere. This study also highlights three true bi-polar 40 

species, Impagidinium pallidum, Islandinium minutum and Polarella glacialis. Only a few taxa 41 

are strictly endemic, either being relics of ancient seas such as the Paratethys (Spiniferites 42 

cruciformis) or linked to specific environmental conditions. However, recent studies have 43 

shown recent worldwide dispersal of these endemic species possibly due to human 44 

activities. Overall, this compilation has highlighted the progress made since the early 1970s 45 

on our understanding of these important tracers of environmental conditions but also gaps in 46 

our knowledge of their distribution in pelagic regions in the Pacific and Indian Oceans as well 47 

as under Arctic sea ice.  48 

 49 

Key-words: Dinoflagellate cyst; modern distribution; global; bi-polar; endemism 50 

 51 

1. Introduction 52 

 53 

The taxonomy and distribution of modern dinoflagellate cysts (= dinocysts) have been 54 

increasingly studied over the last few decades because they demonstrate significant 55 

potential as tracers of past marine environmental conditions, in particular where other 56 
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microfossils are rare or negatively affected by preservation (e.g., Aksu and Mudie, 1984; de 57 

Vernal and Marret, 2007). The pioneering work of Williams (1971) describing the modern 58 

distribution of cysts in recent North Atlantic sediments first triggered a keen interest in this 59 

group of microfossils, and subsequent studies such as those from Davey and Rogers (1975), 60 

Wall et al. (1977), Williams and Bujak (1977), Harland (1983), Turon (1984), Edwards and 61 

Andrle (1992) and Rochon et al. (1999) have highlighted the relationship between dinocyst 62 

species assemblages and surface water masses of the ocean. Mudie and Harland (1996; 63 

text-fig.6) were the first to attempt a global-scale biogeographic synthesis for modern 64 

dinocyst-acritarch assemblages. Subsequently, a multitude of studies have helped to 65 

improve our knowledge on the biogeography of the dinocyst group from local (e.g., Radi et 66 

al., 2007; Limoges et al., 2010; Price et al. 2016) to global scale (Marret and Zonneveld, 67 

2003; Zonneveld et al., 2013). The latest worldwide atlas published in 2013 illustrates the 68 

distribution of 71 taxa based on 2405 sites. Since 2013, additional studies (Table 1) 69 

investigating the modern distribution of dinoflagellate cysts regionally and worldwide have 70 

helped to refine ecological and biogeographical affinities of dinocyst taxa and confirmed 71 

biogeographical patterns, from endemism to bi-polarity. For example, a recent and regional 72 

atlas of the Black Sea corridor by Mudie et al. (2017) has filled some gaps in our knowledge 73 

of salinity tolerance for many modern taxa. 74 

This paper provides a short overview of the global distribution of 91 modern dinoflagellate 75 

cyst taxa based on a literature review as well as an updated dinocyst database used for 76 

quantitative reconstructions, with a focus on bipolar and endemic species. 77 

  78 

2. Materials and Methods 79 

Global, regional and local cyst distributions were compiled mainly from the available 80 

literature (Table 1) reported since the publication of the worldwide Atlas of Zonneveld et al. 81 

(2013). These include dinocyst data from 21 Arctic Ocean sites not previously published in 82 

detail (Mudie, 1992), and now using up-to-date taxonomy. Where possible, cyst abundances 83 

and percentages were used except for some datasets reporting only the presence of taxa. 84 
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All datasets were normalised (except for the ones with only presence available) and the 85 

relative abundance of each taxon was averaged within 2.5º band of latitude and longitude. 86 

The Tilia software of Grimm (1990) was used to create diagrams. Figure 1 was made using 87 

the software Ocean Data View (https://odv.awi.de/). Three diagrams were produced to 88 

illustrate the cyst taxa distribution against longitude, one with sites located north of 65ºN 89 

(780 sites), one with sites from the Pacific (857 sites), Atlantic (1048 sites) and Indian 90 

Oceans (540 sites) and excluding the Mediterranean, Marmara, Black, Caspian and Aral 91 

Seas, and finally, one illustrating only these five seas (411 sites). 92 

[INSERT TABLE 1 HERE] 93 

Taxonomical identification following Williams et al. (2017) was carefully checked for each 94 

dataset to ensure consistency. For the purpose of this compilation, we did not consider the 95 

type of sample preparation for palynological analysis as the focus of this paper is to depict 96 

distribution patterns. We also did not include species of Alexandrium as preservation issues 97 

and possible confusion with Scrippsiella trifida (Head et al. 2006) could introduce a bias in 98 

observation. A list of the taxa that were included in this compilation can be found in Table 2. 99 

We have also listed the cyst taxa found in recent sediments from studies published post 100 

2013, but they were not included in the diagrams as they may have been previously ignored 101 

or grouped with other types such as round brown spiny cysts or peridinioids. 102 

[INSERT TABLE 2 HERE] 103 

  104 

3. Biogeographical patterns 105 

A total of 3636 assemblages have been compiled for the global map (figure 1) that depicts 106 

the distribution of 91 dinocyst taxa. Figure 2 (a and b) presents the average relative 107 

abundance of each taxon according to a latitudinal gradient with a 2.5°resolution. Figures 3, 108 

4 and 5 show these data against a longitudinal gradient for the Arctic Ocean, Pacific–109 

Atlantic–Indian Oceans, and Mediterranean–Aral Seas, respectively. 110 

The latitudinal and longitudinal distributions have highlighted specific patterns, from 111 

cosmopolitan to bimodal or endemic, all of which are discussed in the following sections. 112 

https://odv.awi.de/
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[INSERT FIGURE 1 HERE]  113 

The number of species per site, which we refer here to diversity, shows great variance 114 

across oceans and seas, with the highest being found in the Atlantic Ocean, around 50 to 115 

30ºN (up to 70 taxa when binned into latitudinal bands, or up to 35 in individual 116 

assemblages), and the lowest in the Caspian/Aral seas (on average 6 taxa) and above 65ºN 117 

(on average 9 taxa). This pattern could be partly due to the number of sites studied in each 118 

ocean (1048 for the Atlantic, 857 for the Pacific and 540 for the Indian, and fewer in other 119 

regions) but also reflecting low temperature and short growing season in the semi-enclosed 120 

Arctic Ocean north of c. 80o N (>100 sites) and low salinity combined with extreme seasonal 121 

temperature change in the land-locked Caspian and Aral seas (49 sites). Most significantly, 122 

this compilation shows that three taxa globally dominate dinocyst assemblages, notably 123 

Brigantedinium spp. which includes all identified species such as Brigantedinium 124 

cariacoense and Brigantedinium simplex, and similar cysts not identified at species level. 125 

Except for some studies, such as Mudie et al. (2017), it was not possible to map the 126 

distribution of species of Brigantedinium as they tend to be grouped together due to difficulty 127 

in the identification. The other two main taxa are Operculodinium centrocarpum sensu Wall 128 

and Dale 1966 and species of Spiniferites except for Spiniferites elongatus (which includes 129 

the formely distinct S. frigidus and R. amphicavata; see Van Nieuwenhove et al., 2018), 130 

Spiniferites sp. granular type and S. cruciformis. It should be noted that Spiniferites spp. 131 

include all Spiniferites species that were only identified at genus level. Overall, the 91 132 

dinocyst taxa can be assigned to five biogeographic groups: cosmopolitan, northern latitude, 133 

southern latitude, bipolar, and those of limited geographical range. 134 

[INSERT FIGURE 2A HERE] 135 

[INSERT FIGURE 3A HERE] 136 

 137 

3.1 Cosmopolitan taxa 138 

Overall, Brigantedinium species are present in all oceans, with maximal occurrence south of 139 

45ºS (Figure 2a) but they are not the dominant taxa in the Mediterranean-Black Sea corridor 140 
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(Figure 5). Although the cysts are characterised as sensitive to degradation (e.g., Zonneveld 141 

et al., 2019), the heterotrophic Brigantedinium species appear to tolerate and thrive in a 142 

large range of environmental conditions, from brackish to high salinity conditions (e.g., Price 143 

et al., 2018), and from pack-ice margins where diatom food supplies are abundant in 144 

summer (e.g., Mudie and Harland, 1996; Harland and Pudsey, 1999) to tropical 145 

temperatures. The second most dominant species, found in both hemispheres is the 146 

autotrophic dinocyst Operculodinium centrocarpum sensu Wall and Dale 1966, although its 147 

relative abundance is higher in temperate to polar regions compared to subtropical and 148 

tropical areas. It also occurs in most oceans and seas except for the low salinity waters (ca. 149 

5 to 17 psu) and the salinas of the inland Caspian and Aral seas, but has major occurrences 150 

in the Pacific and Atlantic Oceans. Spiniferites species, including all unidentified and 151 

recognised taxa, with Spiniferites ramosus being the most common and dominant, are also 152 

mostly present in all oceans and seas, although three of the species are geographically 153 

restricted to the Arctic (Spiniferites elongatus), the Mediterranean and Okhotsk Seas 154 

(Spiniferites sp. granular type) or low salinity epicontinental seas (Spiniferites cruciformis) 155 

(see sections below). Furthermore, a recent overview of Spiniferites taxa distribution in the 156 

Northern Hemisphere has suggested the existence of cryptic species, as illustrated by the 157 

cosmopolitan character and long biostratigraphic record of Spiniferites ramosus (de Vernal 158 

et al., 2018). 159 

[INSERT FIGURE 3 HERE] 160 

Several other less abundant species are also found almost everywhere, such as 161 

Nematosphaeropsis labyrinthus, with maximum occurrences in the South Pacific; however, 162 

this species is rare in the Black Sea and absent in the Caspian and Aral seas. The cyst of 163 

Pentapharsodinium dalei which has been found at all latitudes, is relatively common in the 164 

Pacific and Atlantic Oceans, and very occasional in the Indian Ocean. Its maximum 165 

occurrence is found north of 65ºN. It is worth noting that this taxon is also present in the low-166 

salinity to brackish waters of the Black Sea-Caspian Sea corridor, which suggests also a 167 

large tolerance of environmental conditions. Within the less abundant species, Impagidinium 168 
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taxa are also found almost everywhere seaward of estuarine environments, but again with 169 

two species (Impagidinium caspienense and Impagidinium variaseptum) geographically 170 

restricted (see sections below). Finally, although Lingulodinium machaerophorum has a 171 

quasi-cosmopolitan distribution, it is most abundant in the Mediterranean-Black Sea-Caspian 172 

Corridor and widespread in the Atlantic Ocean. By contrast,  it is sparse in the Pacific Ocean 173 

north of 40ºN in waters with sea surface temperature above 15ºC (e.g., Pospelova et al., 174 

2008) and absent south of latitude 45ºS. This is quite surprising as relatively similar 175 

conditions in which this species thrives can be found in all oceans. 176 

 177 

Overall, this compilation highlights that only few dinocyst taxa are found everywhere, which 178 

could imply their limited use as tracers of past global environmental conditions if used just 179 

individually. However, it is worth noting that their relative abundance is often related to 180 

specific oceanographic conditions as discussed in de Vernal et al. (2011), Zonneveld et al. 181 

(2013), Mudie et al. (2017) and de Vernal et al. (2018). The process morphology of 182 

Operculodinium centrocarpum sensu Wall and Dale 1966 and Lingulodinium 183 

machaerophorum is also very variable and correlates in some basins with temperature 184 

and/or salinity (e.g., Mertens et al., 2009, 2012b; Jansson et al., 2014; Gurdebeke et al., 185 

2018). The case of Operculodinium centrocarpum sensu Wall and Dale 1966 is very 186 

interesting as the relationship between process length and salinity shows strong positive 187 

correlation in the Baltic Sea and the opposite in the North Pacific (Mertens et al. 2009). This 188 

phenomenon can now be explained by cryptic speciation in Protoceratium reticulatum (a 189 

name of the motile stage for Operculodinium centrocarpum sensu Wall and Dale 1966) that 190 

was proposed by Mertens et al. (2012a) and supported by molecular evidence recently 191 

reported by Wang et al. (2019).  Similarly, in low salinity seas, high variability of process 192 

development in Spiniferites cruciformis and the cyst of Gonyaulax baltica may be weakly 193 

correlated with surface salinity (Ellegaard et al. 2002; Mudie et al., 2002). 194 

 195 

3.2 Northern latitude taxa 196 
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This compilation generally confirms previous studies on the distribution of taxa restricted to 197 

the Northern Hemisphere although it also has raised some questions with regards to the true 198 

occurrence of some species. Figure 2 shows that overall there is a greater diversity of 199 

dinocyst taxa in the Northern Hemisphere compared to the Southern Hemisphere, despite 200 

the relatively smaller area encompassed by the northern oceans. However, there is a greater 201 

number of samples in the Northern Hemisphere (3019) compared to the Southern 202 

Hemisphere (617). In both hemispheres, there is a strong decrease in dinocyst diversity 203 

poleward of about 50o latitude, this decline being steepest in the Southern Hemisphere 204 

where it corresponds to the outer margin of the drift ice zone (see Mudie, 1992; text-fig. 5).  205 

Within these northern latitude taxa, only few species occur in relative high abundances north 206 

of 40ºN, such as Echinidinium karaense, cyst of Polykrikos sp. arctic morphology (previously 207 

assigned to Polykrikos quadratus and now excluded from the order Gymnodiniales (Potvin et 208 

al., 2018)), which are observed in most oceans. Islandinium cezare, Echinidinium 209 

zonneveldiae, Trinovantedinium variabile, Spiniferites elongatus, Achomosphaera 210 

andalousiense, Nematosphaeropsis rigida, Spiniferites sp. granular type, Cyst type A 211 

(possibly cyst of Protoperidinium fukuyoi (Mertens et al., 2013)), and cyst of Scrippsiella 212 

trifida can also be characterised as strictly Northern Hemisphere taxa, with no occurrence 213 

south of 15ºN.  214 

Other taxa apparently confined to the Northern Hemisphere may have been previously mis-215 

identified as species with similar morphology or have recently been described and were 216 

possibly overlooked in earlier studies. One of such taxa is the cyst of Protoperidinium nudum 217 

which has only been identified in northern latitude assemblages. It is possible that the cyst of 218 

P. nudum occurs more widely but may have been mis-identified or grouped with 219 

Selenopemphix quanta as they share a very similar morphology. A similar situation may 220 

pertain for the cyst of Polykrikos hartmannii, which has a morphology resembling 221 

Echinidinium granulatum (Zonneveld and Pospelova, 2015). Observations of the thecate 222 

stage of P. hartmanii have been reported for all oceans (e.g., Aktan and Keskin, 2017), 223 

notably along the eastern coast of the US and in the Gulf of Alaska. The only matching 224 
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distribution between the thecate stage and its cyst can be found in the Black Sea. 225 

Trinovantedinium pallidifulvum, which has been recently described in Mertens et al. (2017a), 226 

has probably been identified as Trinovantedinium applanatum in previous studies. 227 

Stelladinium bifurcatum (see Head et al., this issue) and Echinidinium bispiniformum are also 228 

likely to have been mis-identified. 229 

The cyst of Biecheleria baltica has been mapped in the Black Sea (Mudie et al., 2017) but 230 

also occurs in the Baltic Sea, possibly for at least the last 100 years (Kremp et al., 2018); it is 231 

therefore likely that these small transparent cysts have been ignored in previous studies. 232 

Alternatively, this species is a recent immigrant transported in the ballast of ships that travel 233 

canals and rivers linking the low salinity waters from Baltic to Black seas. Other studies have 234 

also reported the presence of Biecheleria cysts, but due to their small size (<15 µm) some 235 

are likely to be lost during processing (e.g., Price and Pospelova, 2011) and therefore not 236 

included in total cyst counts (e.g., Bringué et al., 2013; Heikkilä et al., 2014; Price et al., 237 

2017a; Gurdebeke et al., 2018). Finally, Oblea acanthocysta, revisited by Mertens et al. 238 

(2015), bears some resemblance with Echinidinium species and may have been included in 239 

this group in routine counts. However, it may also be geographically restricted off Japan, 240 

although it has recently been identified in the Izmir Bay (Aydin et al., 2011, 2015a,b) and 241 

British Columbian fjords (Gurdebeke et al., 2018).  242 

 243 

3.3 Southern latitude taxa 244 

Compared with the Northern Hemisphere there are very few dinocysts which have ranges 245 

that are restricted to the Southern Hemisphere. On average, diversity is also lower. Only two 246 

species are restricted south of 35ºS, Selenopemphix antarctica and Cryodinium meridianum. 247 

One other species, Impagidinium variaseptum, has an extended distribution just slightly 248 

above the equator. Dalella chathamense was initially described in the Southern Ocean 249 

(McMinn and Sun, 1994) but has now been found in low occurrences up to 42ºN (Pospelova 250 

et al., 2008; Bonnet et al., 2012), mostly in the Pacific Ocean. 251 
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It is also worth noting that among cosmopolitan taxa, some species seem to have their 252 

highest abundance in the South Pacific Ocean, such as N. labyrinthus and Impagidinium 253 

aculeatum. Spiniferites ramosus show highest occurrences in the eastern region of the 254 

Indian Ocean. 255 

 256 

3.4 Bipolar taxa 257 

Of the 91 taxa compiled here, only two, Impagidinium pallidum and Islandinium minutum, are 258 

present in polar-subpolar regions of both poles. Islandinium minutum does not occur south of 259 

15ºN and north of 40ºS and I. pallidum does not occur south of 25ºN and north of 30ºS. 260 

However, it is worth noting that Polarella glacialis is another true bipolar species, as it has 261 

been first described in Antarctica (Montresor et al., 1999) but was previously identified in 262 

Arctic sediments (Mudie et al., 1992). Subsequently, a phylogenetic study has confirmed that 263 

this species does occur in both polar regions (Montresor et al., 2003). Our data shows that in 264 

the Arctic Ocean, Polarella glacialis is mostly found north of 80o N and is associated with 265 

multiyear sea ice duration over the Nansen Basin, as also reported for Independence Fjord, 266 

NE Greenland by Limoges et al. (2018). However, P. glacialis does not occur under 267 

permanent pack ice on the Canadian Polar Margin which, together with the NW Greenland 268 

Polar Margin, is the coldest sector of the Arctic Ocean (August SST is less than -1.5°C; 269 

https://nsidc.org/). It has also been observed in the subarctic waters of Hudson Bay (Heikkilä 270 

et al., 2014) as well as in plankton net samples from the Labrador Sea (July 2018), Baffin 271 

Bay in 2008 and 2014 (Rochon, unpublished data), and in faecal pellets of Calanus from 272 

Hargrave et al. (2002) North Water Polynya sediment traps (Mudie, unpublished SEM data), 273 

and in Holocene sediment cores from the same region (Limoges and Ribeiro, 2018, 274 

unpublished data). Polarella glacialis, which produces small and fragile cysts, might have 275 

been missed due to sieving mesh and/or preservation issue (see Heikkilä et al., 2014; 276 

Limoges et al., 2018; de Vernal et al., this issue). It has, indeed, rarely been found in 277 

palaeosequences, although it has been detected in late Holocene Antarctic sediments 278 
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through genomic studies (Boere et al., 2009) as well as in a very high sedimentation context 279 

where organic matter was very well preserved (Hartman et al., 2018). 280 

 281 

Impagidinium pallidum: There is one reported occurrence of this species in the 282 

Mediterranean Sea, south of Sicily (Zonneveld et al., 2013), but it is not present in the 283 

Marmara or Black Sea. Maximum occurrence of Impagidinium pallidum is found in the 284 

Northern Hemisphere, in particular in the Greenland Sea, with other large occurrences in the 285 

Norwegian and Barents Seas. In the Southern Hemisphere, it occurs in both coastal and 286 

oceanic locations. In the fossil record, it has been described in assemblages from the Mid 287 

Eocene in the Labrador Sea (Head et al., 1989), the Late Eocene from the Northern Pacific 288 

(Bujak, 1984) and the Pliocene of Alpha Ridge, central Arctic Ocean (Aksu and Mudie, 289 

1984). In the Southern Hemisphere, I. pallidum is recorded for the Early Oligocene offshore 290 

Wilkes Land, Antarctica (Bijl et al., 2018). De Schepper et al. (2011) discuss the possibility 291 

that this species could have crossed the equator during periods of severe global cooling but 292 

it has not been recorded from equatorial Cenozoic sediments. The morphology of the 293 

dinocyst is the same in both hemispheres but the cyst-thecate relationship has yet to be 294 

described, although its phylogeny shows some closeness to Impagidinium 295 

caspienense/Gonyaulax baltica and Spiniferites belerius (Mertens et al., 2017b). 296 

 297 

Islandinium minutum: Its distribution in modern sediments is mainly located in the Northern 298 

Hemisphere with only a couple of occurrences in the Southern Hemisphere. These are the 299 

north-west Weddell Sea (Pieńkowski et al., 2013) where it is found in relatively high 300 

abundances (~90% of some assemblages), and east of New Zealand but in very low relative 301 

abundances (<5%). Aksu and Mudie (1984) reported it (as Multispinula minuta) in 302 

Pleistocene sediments of the Arctic Ocean Alpha Ridge and Bijl et al. (2018) mention 303 

Islandinium sp. in early Miocene sediments from Wilkes Land, Antarctica. Williams et al. 304 

(2017) incorrectly gave a Holocene age for Islandinium minutum.  305 

 306 
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The existence of bipolar species, either in the dinoflagellates or other phytoplanktonic groups 307 

such as Radiolarians (e.g., Boltovskoy and Correa, 2016) is rather challenging to explain. An 308 

early study by Mudie et al. (1990) used records from ocean drilling cores to trace the 309 

migration of I. pallidum from the Pacific to Atlantic Oceans via the Panama gateway before c. 310 

5 Ma and during successive opening of Arctic gateways. However, a mechanism of transport 311 

from the sub-Arctic to Antarctic regions between the Eocene and Oligocene remains 312 

enigmatic. 313 

 314 

3.5 Dinocysts with limited and small geographical ranges 315 

There are very few endemic dinocyst taxa, defined as those belonging to only one 316 

geographic region. Stelladinium robustum is currently limited to the Indian Ocean. Peridinium 317 

ponticum was thought to be restricted to the Black Sea until a recent study has observed this 318 

species on the Iberian margin (García-Moreiras et al., 2018). Two other species that are 319 

strongly associated with the Black Sea region are Spiniferites cruciformis and Pyxidinopsis 320 

psilata. In surface sediments, S. cruciformis is occasionally present in many areas of the 321 

Ponto-Caspian region but also rarely occurs off southern Italy in the Mediterranean Sea. It 322 

also has been reported, apparently with living cytoplasm, in modern freshwater lakes near 323 

the Marmara Sea (e.g., Leroy and Albay, 2010). This species is abundant in the lacustrine 324 

phases of the Pleistocene-early Holocene interval of the Black Sea and was a member of 325 

the Late Miocene Paratethyan basins in Europe, implying that the Mediterranean populations 326 

are relict. P. psilata was previously thought to be endemic to the Black Sea where it is 327 

common and widespread. However, it has been reported in southern Florida and in the east-328 

coast of South America (Zonneveld et al., 2013; unconfirmed identification) and at one site 329 

on the west coast of Northern America (Zonneveld et al., 2013). There are no fossil records 330 

for occurrences of P. psilata outside of the Black Sea Corridor and it is likely that the trans-331 

Atlantic and Pacific populations are recently introduced, transported from the Marmara-Black 332 

Sea region by ships (see Mudie et al., 2017). Two other species were found in the Caspian 333 

Sea (Marret et al., 2004), Impagidinium caspienense and Caspidinium rugosum, and were 334 
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also thought to be endemic to this sea. However, a recent phylogenetic study by Mertens et 335 

al. (2017b) has related I. caspienense to Gonyaulax baltica, a species currently occurring in 336 

the Baltic Sea. A possible Arctic origin of I. caspienense at the end of the Pliocene has been 337 

recently discussed in Richards et al. (2018). Caspidinium rugosum is also thought to be a 338 

Paratethys relic, occurring in the European Pannonian Basin during the late Miocene. It is 339 

worth noting that the cyst of Oblea acanthocysta was initially observed solely off Japan 340 

(Omura Bay, Kawami et al., 2006) but has recently been identified in estuarine waters of 341 

British Columbia (Canada) (Gurdebeke et al. 2018) and the Izmir Bay (Turkey) (Aydin et al. 342 

2011, 2015a,b). This example raises the question of the occurrence of this species in the 343 

eastern Mediterranean Sea, which could be the consequence of long-distance transport due 344 

to human activities or the result of being overlooked or lumped as a spiny brown cyst in other 345 

palynological studies. 346 

Finally, observation of previously thought extinct taxa  suggests that these taxa are probably 347 

extant in modern time as endemic species. This is notably the case of Melitasphaeridium 348 

choanophorum which occurs in recent sediments of the Gulf of Mexico (Limoges et al. 2013; 349 

Price et al., 2017b) and the South China Sea (Li et al., 2017 ), as well as Dapsilidinium 350 

pastielsii found in surface sediments from the Indo-Pacific warm pool region (Mertens et al., 351 

2014). 352 

 353 

4. Discussion 354 

The new biogeographic data we have presented, using 3636 assemblages in modern 355 

sediments of the global oceans and major inland seas, represent the enormous progress 356 

made since the first efforts of Williams in 1971 (with 44 taxa at 35 North Atlantic-Equatorial 357 

sites) and of Mudie and Harland in 1996 (65 taxa, 215 sites world-wide).These earlier 358 

studies also noted the very widespread distributions of most dinocyst species. However, 359 

Williams (1971) singled out four primary palaeoceanographic marker species: 360 

Operculodinium centrocarpum sensu Wall and Dale 1966 (for coastal North America and 361 

northern Atlantic), Impagidinium aculeatum (NW Africa), Spiniferites mirabilis (coastal 362 



14 
 

eastern North Atlantic) and Nematosphaeropsis cf. N. labyrinthus (N. Atlantic Drift). Williams 363 

and Bujak (1977) then used data from 25 North Atlantic well sites and two deep-sea drilling 364 

cores to select O. centrocarpum, L. machaerophorum, Polysphaeridium zoharyi and 365 

Homotryblium floripes as important biogeographical and palaeoenvironmental indicators for  366 

North Atlantic water masses. These studies and the work of Wall et al. (1977) have 367 

subsequently strongly influenced the palaeoenvironmental interpretations assigned to pre-368 

Quaternary dinocyst assemblages. Our new data show that caution is required in assigning 369 

palaeoenvironmental characteristics to assemblages based on single indicator taxa, such as 370 

Polysphaeridium zoharyi or Tuberculodinium vancampoae. The same caution now applies to 371 

the use of the ecofacies and biogeographical provinces delimited by Williams (1971) and 372 

Mudie (1992) using multivariate factor analysis to link assemblages with sea-surface 373 

temperature and salinity, and to relate geographic provinces with ocean circulation and sea-374 

ice margins (Mudie and Harland, 1996) because the analytical methods tend to heavily 375 

weight the ecological characteristics of a dominant species. 376 

  377 

Our new biogeographic data once again raise the question of whether cyst-producing 378 

dinoflagellate species live in/under sea ice within the Arctic Ocean (i.e., the ocean area north 379 

of Europe, Russia, Alaska and Canada), in contrast to the Antarctic where  in-ice 380 

dinoflagellate cyst production has been documented (see Zheng et al., 1992; Stoecker al., 381 

1998). This question was first asked in 1980, at which time only Protoperidinium species 382 

were reported for plankton records from Canadian or West Greenland waters at 80ºN (the 383 

highest latitude with plankton records at that time; Mudie, 1992). Subsequently Okolodkov 384 

(1999) extended this database to 82ºN in the eastern Arctic Ocean and showed the absence 385 

of Protoceratium reticulatum north of ca. 70ºN, and only Protoperidinium spp. further north. 386 

Our new data show that within the Arctic region (figure 3), there is a notable decrease in 387 

dinocyst species diversity eastwards of 0 to 25ºE and westwards of 325ºE. This pattern 388 

appears to reflect the influence of relatively warm inflowing surface Atlantic water mass 389 

through the Fram Strait in the east, and warm Pacific water (Alaskan Coastal Current) 390 
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through the Bering Strait in the west. The cyst diversity distribution pattern is also consistent 391 

with earlier biogeographical studies of theca-stage dinoflagellates (Okolodkov and Dodge, 392 

1996; Okolodkov, 1999). These surveys correlated maximum species diversity with the 393 

Dunbar Line that encloses the Northern Hemisphere region with surface water of mixed 394 

Arctic and sub-Arctic or Boreal origin. Dinoflagellate studies from Antarctic sea ice clearly 395 

demonstrate the capacity of  P. glacialis to bloom within the ice (Zheng et al., 1992; Stoecker 396 

et al., 1998), which suggests that sea ice is not a limiting factor for some species. 397 

 398 

The question of possible long-distance dinocyst transport to sediments beneath the pack-ice 399 

further north requires more research and is of particular importance because the inflow of 400 

warm, saline water of Atlantic origin increases with climate warming (Polyakov et al., 2012). 401 

However, the presence of P. reticulatum and Gonyaulax cf. spinifera as well as numerous 402 

cysts of O. centrocarpum and S. ramosus with cell content in plankton net samples in a 403 

polynya around 76ºN-73ºW suggests in-situ populations in waters south of the Arctic Ocean 404 

and therefore questions this long distance transport for these species (Rochon, unpublished 405 

data). It is possible that recent ice-thinning and/or increased shipping traffic within the Arctic 406 

Ocean will see the northern expansion of dinocyst diversity. There is a need for more data 407 

from moored, year-round Arctic sediment traps to avoid loss of small cysts in plankton nets 408 

and to cover seasons other than the summer ice-minimum interval when ships have access. 409 

A sediment trap sampling bi-monthly intervals that was moored under permanent pack-ice 410 

on the Canadian Polar margin in the Arctic Ocean north of Axel Heiberg in 1989-90 failed to 411 

capture any cysts (Hargrave et al., 1994), although a through-ice vertical plankton sample in 412 

August 1986 recovered Peridiniella catenata, Protoperidinium depressum, P. pallidum and 413 

P. ovata. Cysts of P. catenata were not recovered in the Polar Margin shelf sediments 414 

although they are common in deeper water sediments of the sub-arctic Baltic Sea (Spilling et 415 

al., 2006). Two subarctic sediment traps moored in eastern and western Hudson’s Bay 416 

(Canada) (Heikkilä et al., 2016) documented cyst assemblages at bi-weekly to bi-monthly 417 

intervals from October 2005 to September 2006. These subarctic sites experience 5-7 418 
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months of consolidated sea ice. Over 20 cyst taxa were recorded in the traps, including P. 419 

glacialis, E. karaense and I. minutum. Cyst production was negligible under ice during the 420 

Arctic winter, but ranged from 2700 to 394,800 cysts m-2 day-1 during spring and summer. 421 

 422 

Despite a plethora of phytoplankton studies in the Antarctic region, very few focus only on 423 

dinoflagellates and even fewer on dinoflagellate cysts. The first studies at the beginning of 424 

the 20th century were focused on phytoplankton in general (Karsten, 1905; Mangin, 1915), 425 

with only few dinoflagellate species being described. It is with the work of Enrique Balech in 426 

1974 that the richness in dinoflagellate species was discovered, with many new species 427 

being later described (e.g., Balech, 1975). In 1995, McMinn commented on the absence of 428 

dinoflagellate cysts in recent sediments around Antarctica but later on, several new and 429 

endemic species were discovered, such as Selenopemphix antarctica (Marret and de 430 

Vernal, 1997) and Cryodinium meridianum (Esper and Zonneveld, 2002). A recent study on 431 

dinoflagellate cysts near the Antarctic continent (Hartman et al., 2019) formally describes a 432 

new dinoflagellate cyst genus and species, Nucicla umbiliphora. It is therefore likely that 433 

there are still potentially new discoveries to be made in the southern polar regions. 434 

 435 

 436 

5. Conclusions 437 

This paper gives a brief overview of an updated worldwide distribution of 91 taxa of 438 

dinoflagellate cysts, highlighting the following observations: 439 

- Of the 91 taxa that were studied here, their global distribution shows that only three 440 

modern taxa (Brigantedinium species, Operculodinium centrocarpum sensu Wall and 441 

Dale 1966 and some species of Spiniferites) dominate cyst assemblages worldwide. 442 

We therefore would cautiously recommend to not consider them as key-indicator taxa 443 

as previously done, and to interpret their occurrence in fossil sediments in 444 

combination with the full assemblage. 445 
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- Only a few species are truly restricted geographically, such as Stelladinium robustum 446 

in the Indian Ocean and Peridinium ponticum in the Black Sea-Caspian Sea corridor 447 

(other taxa from this region are relicts of the former pan-Eurasian Paratethyan Sea, 448 

e.g., Impagidinium caspienense, Spiniferites cruciformis), although recent studies 449 

have highlighted recent dispersal possibly linked to human activities. 450 

- Only three true bipolar species were identified — Islandinium minutum, Impagidinium 451 

pallidum and cyst of Polarella glacialis — but recent studies raise questions about 452 

cryptic species and morphological identification issues. Although there is no 453 

ambiguity with regards to the identification of I. pallidum, the recent finding of new 454 

Islandinium and morphologically similar species suggests higher diversity in this 455 

group, which would urge us to proceed with further culture experiment and phylogeny 456 

especially for Antarctic specimens, for which we have little information. 457 

- The global distribution confirms the relatively rich diversity in environments where 458 

other palaeoceanographic tracers are rare or monospecific, in particular in polar 459 

environments or enclosed seas. 460 

- This global overview highlights the need for more information from oceanic sites, in 461 

particular pelagic regions of the Pacific and Indian Oceans. 462 

- Further information on cyst production beneath Arctic sea ice, seasonal and 463 

perennial would help to better understand life history of these important primary 464 

producers. 465 
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Figure Captions 831 

 832 

Figure 1: Location of modern dinoflagellate cyst assemblages compiled from all available 833 

datasets. 834 

 835 

Figure 2: Latitudinal variation in modern dinocyst relative abundance. 2a. Most abundant and 836 

common species. 2b. Uncommon species. Relative abundance for each species was 837 

averaged in a 2.5-degree latitudinal band. Number of taxa (diversity) is plotted against a 2.5° 838 

latitudinal band. Bipolar species are coloured in purple, Southern Ocean species, in light 839 

blue. 840 

 841 

Figure 3: Longitudinal distribution of dinocyst taxa found above 65ºN. Relative abundance 842 

for each taxon was averaged in a 2.5-degree longitudinal band. Number of taxa (diversity) is 843 

plotted against a 2.5° longitudinal band.  844 

 845 

Figure 4: Longitudinal distribution of dinocyst taxa found below 65ºN. Relative abundance for 846 

each taxon was averaged in a 2.5-degree longitudinal band. Number of taxa (diversity) is 847 

plotted against a 2.5° longitudinal band. Colour bands highlight the Pacific Ocean (blue), 848 

Atlantic Ocean (green) and Indian Ocean (orange). 849 

 850 

Figure 5: Longitudinal distribution of dinocyst taxa found from the Marmara Sea to the Aral 851 

Sea. Relative abundance for each taxon was averaged in a 2.5-degree longitudinal band. 852 

Number of taxa (diversity) is plotted against a 2.5° longitudinal band. Colour band highlights 853 

the Caspian and Aral seas. 854 

 855 

Table caption 856 

 857 

Table 1: Location of datasets used for this compilation with type of data and references. 858 
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 859 

Table 2: List of dinoflagellate cyst species (with code name used for the metadata in 860 

supplementary material) with motile stage name included in this compilation and/or observed 861 

in surface sediments from studies listed in Table 1. T is for Trophic habit, with P including 862 

phototrophic and autotrophic species, H for heterotrophic species and M for mixotrophic. P+ 863 

includes species known to be phagotrophic. 864 
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