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Abstract

Glaucoma is a group of eye diseases that have common traits such as high eye

pressure, damage to the Optic Nerve Head (ONH) and gradual vision loss. It affects

the peripheral vision and eventually leads to blindness if left untreated. The current

common methods of diagnosis of glaucoma are performed manually by the clinicians.

Clinicians perform manual image operations such as change of contrast, zooming in

zooming out etc to observe glaucoma related clinical indications. This type of diag-

nostic process is time consuming and subjective. With the advancement of image and

vision computing, by automating steps in the diagnostic process, more patients can be

screened and early treatment can be provided to prevent any or further loss of vision.

The aim of this work is to develop a system called Glaucoma Detection Framework

(GDF), which can automatically determine changes in retinal structures and image-

based pattern associated with glaucoma so as to assist the eye clinicians for glaucoma

diagnosis in a timely and effective manner. In this work, several major contributions

have been made towards the development of the automatic GDF consisting of the

stages of preprocessing, optic disc and cup segmentation and regional image feature

methods for classification between glaucoma and normal images.

Firstly, in the preprocessing step, a retinal area detector based on superpixel clas-

sification model has been developed in order to automatically determine true retinal

area from a Scanning Laser Ophthalmoscope (SLO) image. The retinal area detector

can automatically extract artefacts out from the SLO image while preserving the com-

putational efficiency and avoiding over-segmentation of the artefacts. Localization of

the ONH is one of the important steps towards the glaucoma analysis. A new weighted

feature map approach has been proposed, which can enhance the region of ONH for

accurate localization. For determining vasculature shift, which is one of glaucoma in-

dications, we proposed the ONH cropped image based vasculature classification model

to segment out the vasculature from the ONH cropped image. The ONH cropped



image based vasculature classification model is developed in order to avoid misidenti-

fication of optic disc boundary and Peripapillary Atrophy (PPA) around the ONH of

being a part of the vasculature area.

Secondly, for automatic determination of optic disc and optic cup boundaries, a

Point Edge Model (PEM), a Weighted Point Edge Model (WPEM) and a Region

Classification Model (RCM) have been proposed. The RCM initially determines the

optic disc region using the set of feature maps most suitable for the region classification

whereas the PEM updates the contour using the force field of the feature maps with

strong edge profile. The combination of PEM and RCM entitled Point Edge and

Region Classification Model (PERCM) has significantly increased the accuracy of optic

disc segmentation with respect to clinical annotations around optic disc. On the other

hand, the WPEM determines the force field using the weighted feature maps calculated

by the RCM for optic cup in order to enhance the optic cup region compared to rim

area in the ONH. The combination of WPEM and RCM entitled Weighted Point Edge

and Region Classification Model (WPERCM) can significantly enhance the accuracy

of optic cup segmentation.

Thirdly, this work proposes a Regional Image Features Model (RIFM) which can

automatically perform classification between normal and glaucoma images on the ba-

sis of regional information. Different from the existing methods focusing on global

features information only, our approach after optic disc localization and segmentation

can automatically divide an image into five regions (i.e. optic disc or Optic Nerve

Head (ONH) area, inferior (I), superior(S), nasal(N) and temporal(T)). These regions

are usually used for diagnosis of glaucoma by clinicians through visual observation

only. It then extracts image-based information such as textural, spatial and frequency

based information so as to distinguish between normal and glaucoma images. The

method provides a new way to identify glaucoma symptoms without determining any

geometrical measurement associated with clinical indications glaucoma.

Finally, we have accommodated clinical indications of glaucoma including the CDR,

vasculature shift and neuroretinal rim loss with the RIFM classification and performed

automatic classification between normal and glaucoma images. Since based on the clin-

ical literature, no geometrical measurement is the guaranteed sign of glaucoma, the

accommodation of the RIFM classification results with clinical indications of glaucoma

ii



can lead to more accurate classification between normal and glaucoma images. The

proposed methods in this work have been tested against retinal image databases of

208 fundus images and 102 Scanning Laser Ophthalmoscope (SLO) images. These

databases have been annotated by the clinicians around different anatomical struc-

tures associated with glaucoma as well as annotated with healthy or glaucomatous

images. In fundus images, ONH cropped images have resolution varying from 300 to

900 whereas in SLO images, the resolution is 341 x 341. The accuracy of classification

between normal and glaucoma images on fundus images and the SLO images is 94.93%

and 98.03% respectively.
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Chapter 1

Introduction

1.1 Background

According to the World Health Organization, 285 million people are estimated to be

visually impaired worldwide and half of them are affected by the retinal diseases [110].

These rates are expected to double by year 2020 unless prevention efforts intensify.

Since the vision loss has a significant impact on life, therefore early detection and treat-

ment of eye diseases is critical to avoid vision loss. Some of the most common retinal

diseases are irrevocable but early diagnosis and subsequent treatment at their earliest

stages can prevent blindness. Conventionally, retinal disease identification techniques

are based on manual observations from the imaging modalities used to observe the

retina. Optometrists and ophthalmologists often rely on image operations such as

change of contrast and zooming to interpret these images and diagnose results based

on their own experience and domain knowledge. Such type of diagnostic techniques

are time consuming and sometimes invasive.

With the advancement of digital imaging techniques, digital retinal imaging has be-

come a promising and effective technology to identify patients with retinal diseases in

primary care [133]. Imaging modalities to obtain retinal scan such as fundus camera

or Scanning Laser Ophthalmoscope (SLO) have been widely used by the eye clini-

cians. Retinal imaging with automatic or semi-automatic image analysis algorithms

can provide a great potential to cope with challenges associated with the diagnostic

process [63, 103]. The automated analysis of the retinal images has the potential to

reduce the time which clinicians need to look at the images which implies that more

1
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patients to be screened and more consistent diagnoses can be given time efficiently [55].

In this research, we focus on automating steps for detecting retinal changes asso-

ciated with one of the most common retinal disease i.e. glaucoma [110]. Glaucoma is

a group of eye diseases which is associated with functional failure of the visual field.

It is one of the most common and leading cause of blindness [110] among retinal dis-

eases with 13% of the blindness cases being affected [4]. It is estimated that more

than 500,000 people suffer from glaucoma in England and Wales alone, with more

than 70 million people affected across the world [6]. The changes occur in the retinal

structures, which gradually can lead to peripheral vision loss and eventually causes

blindness if left untreated. As lost capabilities of the optic nerve cannot be recovered,

early detection and subsequent treatment are essential for affected patients to preserve

vision.

1.2 Research Problems

Glaucoma can be diagnosed from 2-Dimensional retinal scan taken from fundus camera

or the SLO. A retinal scan obtained from the SLO has the artefacts (e.g. eyelids or

eyelashes) imaged alongwith the retina. Therefore, it is a challenging task to determine

true retinal area in SLO images for disease analysis. Most of the clinical indications

associated with glaucoma are related to changes in the Optic Nerve Head (ONH)

structure. Hence, the accurate automatic localization of the ONH is quite critical for

determining the ONH cropped image (image with the ONH area as the main object).

An ONH cropped image is required for the automatic determination of glaucoma

related features.

There are several clinical signs associated with glaucoma. These include Cup to

Disc Ratio (CDR), vasculature shift, neuroretinal rim loss and occurrence of Peripap-

illary Atrophy (PPA) around the ONH. The CDR is the ratio of diameter of optic

cup to the diameter of optic disc. The value is usually high in case of glaucoma due

to large size of optic cup. The increase in optic cup size result in diminishing of the

area between optic cup and optic disc boundary known as neuroretinal rim. This phe-

nomenon is called neuroretinal rim loss. Both the CDR and neuroretinal rim loss can

be calculated by segmenting out optic disc and optic cup. In case of glaucoma, the
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retinal vasculature area which converge at optic disc centre is shifted away from the

centre. This phenomenon is called vasculature shift. The PPA is observed as a rough

texture around optic disc (refer Chapter 2 for details). These indications reflect the

changes in terms of geometry, shape, texture, etc. Also, the accurate segmentation of

vasculature is quite critical in determining vasculature shift.

There are several issues associated with determination of geometrical and textural

indications associated with glaucoma. Firstly, there are a limited number of public

available datasets for glaucoma with limited numbers of annotations around glaucoma

related retinal structures. Therefore a benchmark database is required so as to evaluate

our algorithms. Secondly, there are little or no clinical annotations for the PPA to

determine the segmentation accuracy. The PPA refers to textural change around

the ONH due to glaucoma (Chapter 2). Due to this reason we need to find the new

method which can represent the presence of PPA due to glaucoma. Thirdly, no clinical

indications is the guaranteed sign of glaucoma when observed individually.

The above discussion motivates the following research problems:

1. What is the efficient way of determining the true retinal area while avoiding

over-segmentation of artefacts?

2. How to accurately localize and segment out the ONH related structures such as

optic disc, optic cup, vasculature structure for determining geometrical indica-

tions e.g. Cup to Disc Ratio (CDR), vasculature shift etc?

3. How to detect the PPA with the CDR and vasculature shift for classification

between normal and glaucoma images?

4. How can the performance of the algorithms related to glaucoma analysis be

evaluated ?

1.3 Thesis Contributions

This project is concerned with the development of an automatic Glaucoma Detection

Framework (GDF). The framework involves development of reliable and robust algo-

rithms for automatic determination of changes in retinal structures and image-based
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patterns associated with glaucoma which would assist diagnosis in a timely manner

and feasibly necessary treatment to prevent blindness. In this work, several major

contributions have been made towards the development of the automatic GDF con-

sisting of the stages of preprocessing, optic disc and cup segmentations and regional

image feature methods for classification between glaucoma and normal images. These

contributions have addressed the research questions mentioned in the previous section.

The specific contributions of this project include:

1. Preprocessing Stage

• Development of a superpixel-based retinal area detector to determine the

true retinal area from the SLO images while preserving computational effi-

ciency and avoiding over-segmentation of artefacts.

• Determination of a new weighted feature map approach which can enhance

the ONH region for more accurate localization.

• Development of the ONH cropped image based vasculature classification

model to segment out vasculature while avoiding misidentification of the

ONH boundary being a part of vasculature structure.

2. Development of the models for optic disc and optic cup segmentation including:

• Region Classification Model (RCM) which initially determines the optic

disc/cup region using selected feature maps.

• Point Edge Model (PEM) which updates the contour using force fields of

the selected feature maps.

• Weight Point Edge Model (WPEM) which determines the force field using

the weighted feature maps calculated by the RCM for optic cup in order to

enhance the optic cup region compared to rim area in the ONH.

The combination of RCM and PEM is called Point Edge and Region Classifi-

cation Model (PERCM) for optic disc segmentation whereas the combination of

WPEM and RCM is called Weighted Point Edge and Region Classification Model

(WPERCM) for optic cup segmentation.
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3. Development of Regional Image Features Model (RIFM) for classification between

normal and glaucoma images using image-based information from different re-

gions of the ONH image. These regions are clinically observed for analyzing

glaucoma related indications especially the PPA. The results of the model can

also represent the presence of PPA due to glaucoma.

4. Accommodation of geometrical indication calculated by optic disc, optic cup and

vasculature segmentation (e.g. CDR, vasculature shift) with results of the RIFM

to perform classification between normal and glaucoma images.

The accuracy and robustness of the methods have been evaluated against the ref-

erence image database composed of retinal images annotated by professional ophthal-

mologists. The performance of the algorithms has been determined by comparing

their results with those obtained from clinical annotations. The database includes the

SLO images obtained from Optos (also called Optomaps) as well as publicly available

fundus retinal images related to glaucoma.

1.4 Thesis Outline

The remainder of the thesis is composed of the following chapters.

Chapter 2: Glaucoma Disease and Its Clinical Diagnosis. This chapter

presents the physiological structure of a human eye, gives description of glaucoma as

a retinal disease, changes in retinal structures associated with glaucoma and current

clinical methods for glaucoma diagnosis.

Chapter 3: Automatic Detection of Glaucoma Related Features - Sur-

vey. This chapters reviews reported methods related to automatic detection of fea-

tures associated with glaucoma. Such methods includes both segmentation and non-

segmentation based methods.

Chapter 4: Glaucoma Detection Framework (GDF) - Rationale and

Principles. This chapter outlines the proposed framework of glaucoma detection. It

describes the rationale and principles of the GDF including a system overview, a de-

scription of the reference retinal image database used, image-based feature generation

and selection methods, and evaluation metrics used for comparison with the previous
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methods. The detailed descriptions of each proposed method and step can be found

in Chapter 5,6,7,8 and 9.

Chapter 5: Retinal Image Preprocessing. This chapter discusses the pro-

posed methods for the pre-processing stage. It is composed of three steps:

1. Construction of a novel superpixel-based classification model for determining the

true retinal area in the SLO retinal scans.

2. Determination of a weighted feature-map-based ONH localization method.

3. Development of a classification model to segment out the vasculature structure

from the ONH cropped image.

The determination of the true retinal area is essential for automatic analysis of retinal

diseases. The localization of the ONH is the key step for analysis of the symptoms

associated with glaucoma. These symptoms can be analyzed on the ONH image i.e.

the part of the retinal image with the ONH as the main object. The vasculature shift is

one of the geometrical indications associated with glaucoma which require vasculature

segmentation.

Chapter 6: Optic Disc Segmentation. This chapter presents the combination

of Point Edge Model and Region Classification Model called Point Edge and Region

Classification Model (PERCM) for the determination of an optic disc boundary. It

initially determines the optic disc region on the basis of a Region Classification Model

(RCM). The RCM works on the selected feature set which is best suited for optic disc

region determination without being distracted by the PPA around it or vasculature

occlusion. It then updates the optic disc contour using force-field-based Point Edge

Model (PEM). The a force field is calculated on the feature maps with the strongest gra-

dient at optic disc boundary. The accurate boundary detection of optic disc together

with optic cup segmentation can be used for automatic determination of geometrical

symptoms associated with glaucoma such as Cup-to-disc ratio (CDR), neuroretinal

rim loss etc.

Chapter 7: Optic Cup Segmentation. This chapter presents the combination

of Weighted Point Edge Model and Region Classification Model called Weighted Point

Edge and Region Classification Model (WPERCM) for the accurate segmentation of

another geometrical structure associated with glaucoma analysis i.e. optic cup. In
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contrast to the PERCM, the WPERCM addresses the issue of weak gradient between

optic cup and the ONH rim area. The PEM model determines the force field using the

weighted feature maps whose weights are obtained from the RCM. These classification

weights represent the membership value of belonging to either optic cup or the ONH

rim area.

Chapter 8: Regional Image Features Model for Glaucoma Detection. In

this chapter, we present our Regional Image Features Model (RIFM) for classification

between normal and glaucoma images. We divide the ONH centered image into dif-

ferent regions i.e. the ONH area, inferior (I), superior(S), nasal(N) and temporal(T).

These regions are usually established by the clinicians for the diagnosis of glaucoma.

We perform the classification between normal and glaucoma images using regional

image features.

Chapter 9: Diagnosis of Glaucoma. In this chapter, we develop the classifi-

cation model between normal and glaucoma images using RIFM classification results

and geometrical symptoms associated with glaucoma. The geometrical symptoms can

be determined by the segmentation methods as discussed in Chapters 5,6,7 and RIFM

classification results have been determined in Chapter 8.

Chapter 10: Discussion and Conclusion. This chapter summarizes our con-

tributions in the thesis and proposes future directions.



Chapter 2

Glaucoma Disease and its Clinical

Diagnosis

2.1 Introduction

In this chapter we will discuss the physiological structure of a human eye, a descrip-

tion of glaucoma as a retinal disease, changes in retinal structures associated with

glaucoma and the current clinical methods which are currently practiced for glaucoma

diagnosis. Before carrying out the study of automatic detection of glaucoma related

retinal symptoms, we need to discuss them. Also we need to determine the importance

of automatic detection methods in current clinical practice.

2.2 Structure and Function of the Eye

In the optical sciences, the working of human eye is often compared to that of camera

[130]. Light reflected from an object is focused on the retina after passing through

the cornea, pupil and lens, which is similar to the light passing through the camera

optics to the film or a sensor. In the retina, the incoming information is received by

the photoreceptor cells dedicated for detecting light. From the retina, the information

is further transmitted to the brain via the optic nerve, where the sensation of sight is

produced. During the transmission, the information is processed in the retinal layers.

A cross-section of the eye and the structures involved in the image formation are

presented in Figure 2.1. The camera has three main parts which can be analogous to

8
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human eye i.e. aperture, camera lens and camera sensor. The role of retina same as

that of camera sensor.

Figure 2.1: Cross-sectional view of human eye [2]

Retina is the inner surface of the eye and consists of transparent tissue of several

layers of cells designated to absorb and convert the light into neural signals [53]. The

order of the retinal layers is peculiar since the conversion is carried out by the light

detecting photoreceptor cells on the layer which is in the back of the retina and furthest

from the light. Thus, the light has to travel through the retinal layers before it reaches

the photoreceptor cells. Once the light is detected, converted and the neural signals

collected to the optic nerve, the impulses are finally transmitted to the brain. During

transmission from the photoreceptor cells to the optic nerve the electric impulses are

further processed in the inner layers of the retina.

The detailed central vision is formed in the macula (Figure 2.1 and 2.2) which is a

highly light sensitive area 5 to 6 mm in diameter in the central region of the retina [46].

In the centre of macula is a round shaped area known as fovea, where the cones are

almost exclusively found. The cones are photoreceptor cells selectively sensitive to

different wavelengths of light. Next to the macula is the beginning of Optic Nerve
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Figure 2.2: The retinal image with labeled retinal structures

Head (ONH), from where the main artery and vein (collectively called vasculature

structure) emerge in the retina. The following sections discuss about glaucoma, its

clinical methods for diagnosis and retinal symptoms associated with it.

2.3 Glaucoma and its Clinical Methods for Diag-

nosis

Glaucoma is one of the most common and leading cause of blindness [110] among

retinal diseases with 13% of the blindness cases being affected [4]. The changes occur

in retinal structures gradually leads to peripheral vision loss (see Figure 2.3). The

structural changes are manifested by a slowly diminishing neuroretinal rim indicating

a degeneration of the retinal nerves [92]. There is no cure for glaucoma but its early

diagnosis and treatment at the earlier stage can prevent the vision loss.

Glaucoma is usually realized by a patient after a long time of disease progression.

This is because glaucoma usually damages the outer edge of the eye and works slowly

inwards [12]. Therefore, it is important to have regular eye tests so that any symptoms

can be detected and treated as early as possible. According to UK’s National Institute
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Figure 2.3: Normal vision vs glaucoma vision [5]

of Health and Clinical Excellence (NICE) guidelines [11], the tests which should be

offered for suspecting glaucoma are briefed as follows:

Figure 2.4: Tonometry as clinical example to suspect glaucoma using IOP [5]

• Tonometry uses an instrument called a tonometer to measure Intra Ocular

Pressure (IOP) of the eye. Glaucoma is suspected if IOP value exceeds 21Hg.

There are several techniques for tonometry [21].

• Pachymetry is the test used to determine thickness of cornea.

• Gonioscopy is an examination of the front outer edge of the eye, between the

cornea and the iris. This is the area where the fluid should drain out of the eye.

Gonioscopy can help to determine whether the drainage angle is open or closed

(blocked).
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• Perimetry is a systematic measurement of light sensitivity in the visual field

by detection of targets presented on defined background. It checks for missing

areas of the peripheral vision glaucoma initially affects the peripheral vision loss.

• Ophthalmoscopy involves examination of the retinal area which is the main

retinal structure affected by glaucoma. The clinicians use the imaging instru-

ments which can enhance the retinal area for visual examination [3].

Among these common tests, the tonometry is not an effective screening tool for

glaucoma as high pressures of IOP are not an accurate indication for glaucoma as dif-

ferent patients have different cornea thickness [9,38] and glaucoma can be present with

and without high IOP [26]. Perimetry is likely to miss most patients with early glau-

coma damage as these patients do not have many visual symptoms [22]. It may take

three examinations before an accurate baseline is obtained and moreover long-term

fluctuations in the field tests can often occur. Therefore the accuracy of this method

is still questioned [42, 117]. Assessment of the retinal area using ophthalmoscopy is

more promising and superior to tonometry or perimetry since the changes in retinal

area due to glaucoma precedes vision loss and can be used to detect glaucoma earlier

with higher sensitivity [84]. However, the manual assessment of the retinal area is

subjective and time consuming. There remains a strong need to automate steps in the

ophthalmoscopy so as to diagnose glaucoma in a time efficient manner.

2.4 Glaucoma Assessment by Ophthalmoscopy

Glaucoma can be diagnosed by observing the retinal changes present in the retinal

scan. These changes are observed manually by the eye clinicians using the imaging

instruments which can enhance the retinal area for visual examination. There are two

most common imaging modalities which are used to obtain 2D retinal scan i.e. fundus

camera and Scanning Laser Ophthalmoscope.

2.4.1 Fundus Camera

A typical fundus camera [7] (Figure 2.5(b)) views 30 ◦ to 50 ◦ of retinal area with a

magnification of 2.5 and allows some modification of this relationship through zoom
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(a) (b)

Figure 2.5: Example of (a) fundus image and (b) fundus camera [7]

(a) (b)

Figure 2.6: Example of (a) SLO image and (b) SLO device from Optos [8]

or auxiliary lenses from 15◦ to 140◦ with a wide angle lens. The optical design of

fundus cameras is based on the principle of monocular indirect ophthalmoscopy. The

observation light is focused via a series of lenses before passing through the camera

objective lens and through the cornea onto the retina. When the button is pressed to

take a picture, a mirror interrupts the path of the illumination system allow the light

from the flash bulb to pass into the eye. The reflected light from the retina then forms

the image as shown in Figure 2.5(a).
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2.4.2 Scanning Laser Ophthalmoscopy

The Scanning Laser Ophthalmoscope (SLO) (Figure 2.6(b)) incorporates low-powered

laser wavelengths that scan simultaneously. This allows review of the retinal sub-

structures in their individual laser separations. There are several companies which

are involved in design and manufacturing of SLO devices [8,96,122]. The retinal scan

obtained from SLOs of different companies have different specifications in terms of

resolution, Field-of-View (FOV) and grayscale values. Among existing SLO devices,

the SLOs manufactured by our collaborator, Optos have the largest FOV and becom-

ing popular among retinal imaging devices with one of leading market shares in the

USA [8]. In an SLO image obtained from our collaborator Optos, each image has a

FOV of up to 200 ◦ of the retina at resolution 14 µm. The device captures the retinal

image without dilation, through a small pupil of 2 mm. The image has two channels:

red and green. The green channel (wavelength: 532nm) provides information about

the sensory retina to retinal pigment epithelium whereas the red channel (wavelengh:

633nm) shows deeper structures of the retina towards the choroid. An example image

is shown in Figure 2.6(a).

2.5 Retinal Symptoms of Glaucoma

There are two main types of glaucoma (i) Primary Open Angle Glaucoma (POAG) and

(ii) Angle Closure Glaucoma (ACG). POAG is the most common form of glaucoma

accounting for at least 90% of all glaucoma cases [13]. The Intra-Ocular Pressure

(IOP), which maintains a permanent shape of the human eye and protects it from

deformation, rises because the correct amount of fluid cannot drain out of the eye.

With POAG, the entrances to the drainage canals work properly but a clogging prob-

lem occurs inside the drainage canals [132]. This type of glaucoma develops slowly

and sometimes without noticeable sight loss for many years. It can be treated with

medications if diagnosed at the earlier stage. ACG happens when the drainage canals

get blocked. The iris is not as wide and open as in the normal case. The outer edge

of the iris bunches up over the drainage canals, when the pupil enlarges too much or

too quickly. Treatment of this type of glaucoma usually involves surgery to remove a

small portion of the outer edge of the iris. Here we are mostly concerned with POAG
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and its symptoms.

By observing the retinal scan obtained from fundus camera or SLO, most of the

glaucoma related symptoms are observed in the ONH area. These symptoms are

enlisted and explained as follows:

• Optic nerve head variance

• Neuroretinal rim loss

• Vasculature shift

• Peripapillary atrophy

2.5.1 Optic Nerve Head Variance

The Optic Nerve Head (ONH) or the optic disc is the location where the optic nerve

enters the back of the eye (Figure 2.1). It is also known as blind spot since this

area of retina cannot respond to light stimulation due to lack of photoreceptors. In

a typical 2D retinal image, the ONH is a bright elliptic region with a distinguishable

cup-like area called optic cup surrounded by rest of the area of optic disc, as shown in

Figure 2.7. The ratio of cup measurement to the disc measurement is called Cup to

Disc Ratio (CDR). There are several ways to quantify the CDR [50]. For instance, the

ratio can be defined with respect to area, vertical length and horizontal length of both

optic disc and optic cup. The CDR can be used to compare glaucoma patients with

normal subjects, and it is an important measurement for the diagnosis of glaucoma [50].

When more optic nerve fibers disappear, the optic cup becomes larger with respect to

the optic disc, which corresponds to increase in CDR value as shown in Figure 2.7.

In current clinical practice, the CDR is measured manually by an ophthalmologist.

This process is time consuming and is subjective to inter-observer variability since the

boundary of the optic cup can not be clearly observed in 2-D retinal scan [83].

2.5.2 Neuroretinal Rim Loss

In normal eyes, the neuroretinal rim (area between optic cup and optic disc boundary)

usually follows a characteristic pattern as shown in a retinal image taken from the right

eye in Figure 2.8. It is the broadest in the inferior(I) region followed by the superior(S),
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(a) (b)

Figure 2.7: Comparison of CDR in (a) normal image and (b) glaucoma image [1]. The
glaucoma image has higher CDR

then nasal(N) and finally the temporal(T) regions, which is called the ISNT rule [67].

In case of glaucoma, the neuroretinal rim disobeys the earlier mentioned rule. Although

this is not the case with all glaucoma patients [59], it is still a useful clinical method

to aid in diagnosing glaucoma. For the left eye, the position of temporal and nasal

region will swap each other.

Figure 2.8: Clinical assessment based on the ISNT rule obtained from normal optic
nerves. I,S,N and T represent inferior, superior, nasal and temporal regions respec-
tively. The image is taken from the right eye

2.5.3 Vasculature Shift

In the retina, the vasculature area converges towards the ONH area. Therefore, it can

also be stated as the convergence point of retinal vasculature structure is the centre of

the ONH. In case of glaucoma, the vasculature area is shifted more towards the nasal
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(a) (b)

Figure 2.9: Comparison of vasculature shift in (a) normal image and (b) glaucoma
image. The glaucoma image has vasculature shifted towards nasal area

area due to increase in cup size as shown in Figure 2.9. This phenomenon is known as

vasculature shift.

2.5.4 Peripapillary Atrophy

Peripapillary Atrophy (PPA) is an important risk factor and its progression can lead

to disc haemorrhage and thus glaucoma [64]. It is the degeneration of the retinal

pigment epithelial layer and photoreceptors in the region surrounding the ONH [66].

PPA is divided into two zones namely central β-zone and peripheral α-zone as shown

in Figure 2.10. α-zone is characterized by irregular hypopigmentation, hyperpigmen-

tation and thinning of tissue layer. On its outer side it is adjacent to retina and on

its inner side it is in touch with β-zone characterized by visible crescent like area. In

normal eyes, both α-zone and β-zone are frequently located in the temporal region

followed by inferior region and superior region. In glaucomatous eyes, β-zone occurs

more frequently in the temporal region [41] and its extent correlates with the retinal

nerve fibre layer thinning.

2.6 Conclusion

In this chapter, we mainly discuss about retinal symptoms associated with glaucoma

and current clinical methods for its diagnosis. Among the recommended tests for



18 CHAPTER 2. GLAUCOMA DISEASE AND ITS CLINICAL DIAGNOSIS

Figure 2.10: PPA with α-zone and β-zone [125]. β-zone occurs more frequently in the
temporal region of the right eye

glaucoma diagnosis, the observation of the retinal scan is the promising method for

diagnosis and assessment of glaucoma. These retinal scans can be obtained from the

imaging modalities such as fundus camera or SLO. From the retinal scan, it can be

observed that glaucoma leads to alterations in the ONH, neuroretinal rim loss, vas-

culature shift and degeneration of tissue layer around the ONH called peripapillary

atrophy. These alterations are observed manually using the modalities such as fun-

dus camera or SLO. The observation of these alterations can be made time efficient

and subject to less inter-observer variability by automating steps in determination of

these alterations. Other symptoms associated with glaucoma require retinal tissue ex-

amination from the modalities such as Optical Coherence Tomography, confocal SLO

etc which are available in large hospitals. Nevertheless, their role in detecting any

glaucomatous progression is uncertain. Therefore, our thesis is primarily based on au-

tomatic determination of the glaucoma related symptoms discussed in this chapter and

classification between normal and glaucoma images on the basis of these symptoms

automatically determined. The next chapter discusses the previous efforts towards this

direction; some of them are still at their earlier stage and need to be improved. This

thesis addresses the issues associated with previous efforts by proposing new methods

for automatic determination of glaucoma related symptoms and classification between

normal and glaucoma images on the basis of automatically calculated glaucoma related

symptoms.



Chapter 3

Automatic Detection of Glaucoma

Related Features - Survey

3.1 Introduction

Since the current clinical methods for the diagnosis of glaucoma are mostly based on

manual observations, therefore the use of automatic detection of features related to

glaucoma can aid their diagnosis in a time effective and non-invasive manner. There is

no cure for glaucoma but its diagnosis and treatment at the earlier stage can slow down

the progression of the disease. There are some segmentation (Section 3.2) and non-

segmentation (Section 3.3) based automatic methods used to determine features of the

retinal structures that reflect changes due to glaucoma. Since most of segmentation

based need ONH analysis, therefore, most of the existing methods for analysis of the

glaucoma are related to extraction of ONH and its anatomical structures. The meth-

ods described in this section are classified in terms of image processing techniques and

are mentioned in the form of hierarchy as shown in Figure 3.1. Their results are sum-

marized in Table 3.1 to Table 3.4. The results which were applied on common datasets

are grouped together so as to compare different methods on a common benchmark.

19
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Retinal Image

Optic Nerve Head 
(ONH) Localization

Optic Disc 
Segmentation
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Prior Shape
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Non-Segmentation 
based Methods
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Figure 3.1: A hierarchy of methodologies for automatic feature extraction from digital
retinal images

3.2 Segmentation based Automatic Feature Detec-

tion Methods

3.2.1 Localization of ONH

The localization of the ONH is the initial step in order to locate other anatomical

structures, vessel tracking and registering changes within optic disc region. If any

pixel within the optic disc boundary is located, then it can facilitate the extraction of

the optic disc boundary. We have divided the localization methods of the optic disc

into three categories which are discussed in the following paragraphs and a summary

of the methods is shown in Table 3.1. The table presents the comparison of optic disc

localization accuracy where the colour space represent the channel where the method

was applied. Most of the datasets are publicly available and has been shown with the

respective reference [10,51,118].



3.2. SEGMENTATION BASED AUTOMATIC FEATURE DETECTIONMETHODS21

1) Optic Disc Detection as the Brightest Region

The first category is based on calculating the intensity of pixels in coloured and

grayscale images. Under normal circumstances, the optic disc region is the bright-

est region on the retinal image as shown in Figure 3.2. Therefore it can be detected

by thresholding out the pixels with the intensity values below the certain level [31].

Figure 3.2: Example of optic disc localization as brightest region (a) fundus image (b)
determination of 2% brightest region and (c) optic disc localization [54,131]

Sinthanayothin et al. [114] localized the optic disc using local contrast colour en-

hancement in intensity-hue-saturation space. The variance image after converting back

to RGB space will intensify the optic disc as compared to rest of the image. The algo-

rithm resulted in high accuracy in their local dataset however, others have found its

high failure rate in the images with a large number of white lesions, bright reflections

or strongly visible vessels [85]. The use of pre-processing steps such as image filtering

for removing reflections brighter than the optic disc may result in improvement of the

results. Walter et al. [131] localized the optic disc center with the proposal to select the

brightest two percent of the image pixels to determine a threshold (Figure 3.2). After

thresholding the image, the region with the largest area is likely to be the optic disc

region. The algorithm was applied on a set of 30 retinal images however, it failed on a

low contrast image. Sekhar et al. [112] improved the method by utilizing mathemati-

cal morphology to apply the shade correction on the retinal image. The mathematical

morphology is the process of analyzing the geometrical structures present in the image

by affecting their shape and form [52]. The largest area of the shape corrected retinal

image was considered as optic disc region. The shade correction although improving

the localization accuracy as compared to the previous method, its role in locating the
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optic disc region is uncertain. In order to locate the optic disc automatically, both

methods used a circular Hough transform [107] which aims to find circular patterns

within an image.

In spite of assuming the optic disc as the brightest region of the retinal image is

the straightforward approach to localize the region, the method is unreliable. The

technique usually fails to localize the optic disc in the retinal images having reflections

and the bright lesions in the diseased retina. Moreover, this assumption is not a

guaranteed way to determine the center of the optic disc.

2) Center Localization by Matching of the Optic Disc Template

The second category is based on formation of template representing the optic disc and

matching the template in a test image. The results were comparatively accurate as

compared to first category at the expense of the computational time [79]. Later on,

the computational time was reduced by introducing efficient algorithmic procedure.

An example has been shown in Figure 3.3.

Figure 3.3: Example of optic disc localization using template matching (a) fundus
image (b) optic disc localization (c) the template [54, 79]

Li et al. [79] modeled the optic disc texture using Principal Component Analysis

(PCA). The optic disc in a test image was localized by dividing the test image into

square grid with each square equal to size of the optic disc. The Euclidean distance

from the PCA-model of optic disc was calculated for each grid element. The grid space

with the optic disc at the center will have least Euclidean distance from the PCA

model. According to the author, the results were accurate however no accuracy was

reported. Computational time may be reduced if the image resolution is reduced as less
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Table 3.1: Accuracy of several methods of optic disc detection / center localization

Localization Method Image

Database

Colour Space Image

Dimension

Number of

Test Images

Accuracy Citation

ONH as brightest region

Local Contrast Colour

Enhancement

STARE

[51]

24-bit RGB to

IHS space

605 x 700 81 42% within ONH [54,114]

Thresholding highest

Pixel Intensities

STARE

[51]

24-bit RGB to

HLS space

605 x 700 81 58% within ONH [54,131]

Shade Correction using

Morphology

STARE

[51]

24-bit RGB 605 x 700 17 82.3% within ONH [112]

Shade Correction using

Morphology

DRIVE

[118]

8-bit RGB 768 x 584 38 94.7% within ONH [112]

ONH template matching

Least Squares Regres-

sion Arc Estimation

STARE

[51]

24-bit RGB 605 x 700 81 58% within ONH [54,101]

Pyramidal Decomposi-

tion and Circular Tem-

plate Matching

STARE

[51]

24-bit RGB 605 x 700 81 71.6% within ONH [54,76]

Vasculature Detection

using matched filter

STARE

[51]

24-bit RGB 605 x 700 81 98.7% within 60

pixels

[140]

DRIVE

[118]

8-bit RGB 768 x 584 40 100% within 60

pixels

Principal Component

Analysis

National

University

Hospital

Singapore

24-bit RGB 512 x 512 40 Accuracy not

reported

[79]

Averaging Optic Disc

Region

Bristol Eye

Hospital

24-bit RGB 760 x 570 60 Accuracy not

reported

[101]

Vasculature convergence point

Fuzzy Convergence of

Blood Vessels

STARE

[51]

24-bit RGB 605 x 700 81 89% within 60

pixels

[60]

Mathematical mod-

eling of Vasculature

Structure

STARE

[51]

24-bit RGB 605 x 700 81 98% within ONH [45]

Tensor Voting and

Mean-Shift procedure

STARE

[51]

24-bit RGB 605 x 700 81 92% within ONH [102]

Horizontal and Vertical

Edge Mapping

STARE

[51]

24-bit RGB 605 x 700 81 97% within 60

pixels

[88]

Horizontal and Vertical

Edge Mapping

DRIVE

[118]

8-bit RGB 768 x 584 40 97% within 60

pixels

[88]

Fractal Dimension

Analysis

DRIVE

[118]

8-bit RGB 768 x 584 40 Accuracy not

reported

[139]

Gabor Filter Vessel De-

tection

MESSIDOR

[10]

8-bit RGB to

CIE space

1440 x 960

2240 x

1488 2304

x 1536

1200 98.3% within ONH [141]
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number of pixels will allow to execute the task earlier but consequently, it might skip

some of the textural information resulting in decrease in accuracy of the localization.

Osareh et al. [101] evaluated the normalized correlation coefficient in order to compare

the template image with the region of consideration. The template was generated

after averaging the 16 colour-normalized retinal images. The method only detected

the location based on highest value of normalized correlation coefficient which does

not necessarily mean the optic disc center. They further improved their template by

dividing the optic disc into smaller segments and selecting the largest segment which

is approximate to a half circle and the region is not occluded by blood vessels. The

algorithm followed the iterative procedure for minimizing the error between the set of

pixels in the arc points and the estimated arc. The center of the circular arc is the

approximate location of optic disc center. These template based matching algorithms

were less computationally efficient therefore some pre-processing steps were introduced

in order to improve the computational time.

Lalonde et al. [76] proposed an optic disc center detection method based on Pyra-

midal Decomposition and circular template matching. Pyramidal Decomposition re-

duces the image resolution to one-fourth at each iteration level. At the fifth level,

bright regions of retina other than optic disc were vanished. The localization of the

brightest pixel led to the determination of optic disc area for determining the edges of

anatomical structures. The edge map was thresholded based on the strongest edges in

the retinal image and the circular template was then compared with the pixels having

strong edges. This made the computational time smaller as the template did not need

to be compared pixel by pixel in the retinal image. Then pixel with the lowest degree

of mismatch (Hausdorff distance) with the circular template and the highest confi-

dence value was regarded as optic disc center. The author reported the failure cases

when pyramidal decomposition sometimes localized the brightest pixel very far from

optic disc due to bright reflections in the retinal image, and Hausdorff distance based

circular template matching was failed when optic disc was highly occluded by blood

vessels. As discussed earlier, the use of image filtering e.g. directional Gabor filters

as a preprocessing step can improve the results. Yousiff et al. [140] applied directional

matched filter in order to determine the vasculature structure. Then a window of 9x9

from the test image was compared on the pixels belonging to the vasculature structure
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which can be resized based on size of the image. The pixel with least accumulative

distance was regarded as optic disc center. Yu et al. [141] used binary template to

define the search region of the optic disc. They further applied the directional Ga-

bor filters and calculated the standard deviation of the optic disc pixel candidates.

These pixel candidates were determined after sorting the pixels of the search region

using Pearson’s correlation coefficient. The pixel candidates with maximum standard

deviation was regarded as the optic disc center.

Center localization of the optic disc using template matching proved to be more

accurate as compared to the methods based on assumption of highest pixel intensity

values within optic disc region due to non-uniform illumination in the retinal image.

PCA and circular arc based template matching were the initial steps towards the optic

disc center localization [54,76,79,101]. In spite of they were more accurate as compared

to pixel intensity based techniques, they were still not able to distinguish among bright

reflections across the retinal image. Moreover, the removal of blood vessel occlusion

reduced the quality of template to be compared. Pyramidal decomposition improved

the center detection in terms of computational time however, the misguidance by bright

reflections remained. The use of directional filters for vasculature segmentation were

then introduced which not only reduced the search region for the best candidate of the

optic disc center but also improved the detection accuracy. But the use of directional

filters may be less applicable to the images diseased with glaucoma as the atrophy

around the optic disc would also be segmented out as the part of the vasculature

structure which may affect the detection accuracy based on template matching.

3) ONH center as Convergence Point of Retinal Blood Vessels

The third category of the ONH localization can be regarded as the convergence point

of blood vessels in retina to be the center of the ONH. This assumption avoided mis-

localization of the optic disc as most of the retinal blood vessels converge within the

ONH region. Moreover if the retinal vasculature structure is segmented out accurately,

it can also avoid the detection failure of optic disc center due to template matching.

An example has been shown in Figure 3.4.

Hoover et al. [60] segmented out the blood vessels in order to determine the point of

intersection. A voting process was introduced in order to find out points where a large
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Figure 3.4: Example of optic disc localization using vasculature convergence point
detection (a) fundus image (b) detection of vasculature convergence point (c) optic
disc localization [60]

number of blood vessels combine and the point with maximum votes was regarded as

ONH center. Then, illumination equalization was applied in order to determine the

different region in retinal image since the method was also applied to retinal images

having diseases such as Diabetic Retinopathy (DR) and Age-Related Macular Degen-

eration (AMD) which shows different bright spots on retina. Finally, hypothesis was

developed based on region size and if only one region was classified out, it was con-

sidered as optic disc region. The hypothesis testing might involve parameters other

than region size such as region circularity in order to improve the accuracy. Forac-

chia et al. [45] not only localized the ONH center as the main convergence point of

blood vessels but also approximated the entire vasculature structure by fitting it with

a mathematical model. The algorithm does not require accurate vasculature segmen-

tation although it may not converge in the retinal images with low contrast ONH

regions. Ying et al. [139] differentiated ONH from other bright regions, including exu-

dates and lesions, based on fractal dimension of blood vessels. A fractal dimension is

a ratio providing a statistical index of complexity comparing how detail in a pattern

changes with the scale at which it is measured. The fractal dimension of vasculature

structure within ONH area is approximately 1.7 and it is higher as compared to fractal

dimension of other bright areas. The method was applied on DRIVE database but

no overall accuracy of the method was reported. Besides, the authors suspected the

algorithm failure on low quality images. Park et al. [102] extracted out vasculature

structure based on tensor voting. Tensor voting is the voting process of the expected

candidates based on geometrical features. The image was initially contrast enhanced
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before application of tensor voting process. The optic disc was detected using mean

shift procedure which points towards direction of maximum increase in the density

(convergence point of blood vessels). The algorithm had higher failure rate on dis-

eased images with white lesions. Mahfouz et al. [88] used the horizontal and vertical

edge maps to locate the ONH center. These maps can be used to accurately local-

ize the ONH center based upon a simple observation; the central retinal artery and

vein emerge from the ONH mainly in the vertical direction and then progressively

branch into the main horizontal vessels. The highest projection amplitude along both

directions will result in center localization in a computationally efficient manner. The

accuracy of the method was highly dependent on horizontal localization process.

The determination of convergence point of vasculature structure is the most efficient

way to localize the optic disc in terms of accuracy, robustness and computational time.

The methods can be applied to most of the fundus retinal images. The proved the

high accuracy in case of healthy images however, the algorithms were misguided due to

presence of white lesions. Retinal images diseased with glaucoma may not have white

lesions but the presence PPA may misguide the center detection of optic disc which is

usually required for optic disc and cup segmentation followed by their measurements

for glaucoma diagnosis. Therefore, combining the best features of different vasculature

convergence point based algorithms may improve the center detection accuracy in the

case of diseased images.

3.2.2 Optic Disc Extraction

In our literature survey, we have divided the different methods of optic disc extraction

into non-model-based approaches and model-based approaches. In the non-model-

based approaches, the optic disc is extracted using different image processing algo-

rithms such as morphological operations, pixel clustering etc. In the model-based ap-

proaches, the optic disc boundary is represented in the form of mathematical model.

The model-based approach is further classified into three categories i.e. boundary ap-

proximation modeling, freeform modeling and statistical shape modeling. Boundary

approximation modeling approximate the optic disc boundary with either circular or

elliptical shape. The freeform modeling tend to represent the optic disc boundary

while minimizing the energy constraints of its gradient map. The statistical shape
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modeling represent the optic disc boundary in the ways which are consistent with the

training set. All these approaches have been discussed in the following subsections and

the results of the methods under each category have been summarized in Table 3.2.

1) Non-Model-Based Approaches

For a non-model-based approaches, the optic disc was either segmented out using

different thresholding techniques or morphological operations. Initially, morphological

approach was introduced for optic disc segmentation as it required basic image process-

ing techniques. An example for optic disc and cup segmentation using morphological

operation has been shown in Figure 3.5.

Figure 3.5: Example of optic disc segmentation using morphological operation (a)
fundus image (b) optic disc segmentation (c) optic disc segmentation [99]

Walter and Klein [131] described an approach in which the RGB image was con-

verted to Hue-Luminance-Saturation (HLS) space and a thresholding was applied to

approximately localize the optic disc center in the luminance channel. Then the precise

boundary of the optic disc was determined using the red channel of the RGB image via

the watershed transform [109] involving morphological pre-processing of the gradient

image and region growing image segmentation. After watershed transform, the image

is divided into small regions called superpixels. The red channel was selected as optic

disc boundary is more prominent here. To determine the optic disc, the watershed

transform is constrained by markers derived from a previously calculated optic disc

center. The identification process of the optic disc boundary had some problems due

to blood vessels occlusion. This problem might be solved if the superpixels are gener-

ated using Simple Linear Iterative Clustering (SLIC) [15]. Nayak et al. [99] applied the

morphological operations in the red channel of the RGB image in order to segment out



3.2. SEGMENTATION BASED AUTOMATIC FEATURE DETECTIONMETHODS29

Table 3.2: Results of different methods of optic disc extraction

Localization

Method

Image

Database

Colour Space Image Di-

mension

Number of Test

Images

Accuracy Citation

Non-model-based approach

Morphological Op-

eration

Kasturba

Medical

College

India

8-bit RGB to

Grayscale

560 x 720 24 Normal and

37 Glaucoma

90% Neural Net-

work [116] classifi-

cation

[99]

Fuzzy Histogram Kasturba

Medical

College India

8-bit RGB to

’Lab’ space

560 x 720 30 Normal,

31 Retinopa-

thy and 39

Glaucoma

93.4% Overlapping

Score

[94]

K-Means Cluster-

ing

Aravind Eye

Hospital In-

dia

YUV space 1504 x 1000 20 Normal and

25 Glaucoma

91.7% CDR Corre-

lation Coefficient

[20]

Watershed Trans-

formation

Mines Paris-

Tech

8-bit RGB to

HLS space

640 x 480 30 - [131]

Thresholding STARE [51] 24-bit RGB 605 x 700 81 93% of OD diame-

ter

[75]

Boundary approximation modeling

Circular Hough

Transform on

gradient map

MESSIDOR

[10]

8-bit RGB 1440 x 960

2240 x 1488

2304 x 1536

1200 86% Overlapping

Score

[19]

Genetic Algorithm

for elliptical ap-

proximation

DRION-

DB [27]

8-bit RGB 600 x 400 110 96% images have ≤
5 pixel MAD

[27]

Hough Transform

on Edge Map

DRIVE [118] 8-bit RGB to Y

channel

768 x 584 40 73% Overlapping

Score

[147]

Freeform modeling

Morphological Pre-

processing

NewYork Li-

brary

8-bit RGB to

YIQ space

285 x 400 9 - [90,91]

Morphological Pre-

processing

Bristol Hos-

pital

24-bit RGB to

’Lab’ space

760 x 570 16 90.3% Overlapping

Score

[100]

Circular Hough

Transform Initial-

ization

National

University

Hospital

Singapore

24-bit RGB 512 x 512 100 93% images have ≤
3 pixel MAD

[137]

Level-set Approach Aravind Eye

Hospital In-

dia

8-bit RGB 2896 x 1944 33 Normal and

105 Glaucoma

97% Overlapping

Score

[68]

Fast Level-Set Ap-

proach

MESSIDOR

[10]

8-bit RGB 1440 x 960

2240 x 1488

2304 x 1536

1200 89.5% 1-

(MAD/OD radius)

[141]

Statistical shape modeling

Image Gradient

Based Landmark

Search

National

University

Hospital

Singapore

24-bit RGB 512 x 512 35 82% images have ≤
3 pixel MAD

[80]

RANSAC ap-

proach

Seoul Uni-

versity

Korea

8-bit RGB 2896 x 1944 53 Normal and

30 Glaucoma

84.5% Overlapping

Score

[72]

Minimum Maha-

lanobis distance

Method

ORIGA−light

[145]

8-bit RGB 3072 x 2048 482 Normal

and 168 Glau-

coma

89% Overlapping

Score

[43]

Search Space Re-

striction along Nor-

mal Lines

DRION-

DB [27]

8-bit RGB 600 x 400 110 92% Overlapping

Score

[56]
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optic disc. They then segmented out the optic cup in the green channel and calculated

CDR from the vertical lengths of the segmented areas. Since these algorithms had the

tendency to segment out the pixels other than optic disc therefore it led to shape

approximation of the anatomical structure. Mookiah et al. [94] with their fuzzy his-

togram approach improved the segmentation accuracy which in their local dataset was

even better than model-based Gradient Vector Flow (GVF) technique. The histogram

was then correlated with roughness index to represent optic disc region. The authors

suggested use of more diverse images and appropriate fuzzy membership functions for

increase in accuracy as the algorithm over segmented PPA regions.

In [75], various statistical criteria for thresholding have been employed, such as

1) percentage of higher pixel intensity values; 2) comparative value of pixel intensity

as compared to the total intensity values of the extended background image which is

other than optic disc area. The overall accuracy was determined in terms of measuring

vertical diameter of the optic disc. This method is applicable to both healthy images

and images with AMD. Babu and Shenbagadevi [20] used k-means clustering after

converting the image into YUV colour space (one luma Y and two chrominance UV

components ) based on Commission Internationale de Éclairage (CIE) format. They

calculated the CDR by taking the rectangular area measurements of both the optic disc

and optic cup. The overall accuracy of the method was determined by comparing CDR

values with those obtained from Gold Standard values from the Ophthalmologists.

In the non-model-based approaches for extracting out optic disc, the measures such

as vertical length or horizontal length were used in determining CDR after extracting

out optic cup. CDR, although one of the important aspect in diagnosing glaucoma,

it is not crucial for glaucoma documentation [65] as some of the patients can have

large size of ONH. Therefore it is sufficient to determine other symptoms such as

neuroretinal rim loss, PPA etc which require exact segmentation of optic disc and

optic cup. Therefore, model-based approaches can be used in determining out exact

boundaries of optic disc and are explained in the following sections.

2) Boundary approximation modeling

These methods are concerned with circular or elliptical shape approximation of the

optic disc boundary. These methods might not represent the exact boundary of the
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optic disc but can be quite useful in determining CDR. Zhu et al. [147] applied the

Hough Transform on edge map obtained after applying morphological operations on

the luminance gray scale of the image. The luminance grayscale can be obtained after

normalizing each component of the RGB space. This method is loosely connected

to main convergence point of retinal blood vessels. The authors warned about their

method failure on low quality images as circular hough space might be misguided due

to weak edge information. Aquino et al. [19] approximated the optic disc boundary

using circular Hough transform on the gradient image obtained after removal of blood

vessels. The results were compared with ‘Circular Gold Standards’ (benchmarks)

obtained from the ophthalmologists. They suspected that performance of elliptical

approximation and deformable approaches could outperform circular approximation.

Carmona et al. [27] obtained a set of hypothesis points that represented geometric

properties and intensity levels similar to ONH contour pixels. Then a genetic algorithm

was applied in order to find an ellipse approximating the boundary of ONH. The

method was applied on DRION-DB database and the accuracy was reported in terms

of pixel difference. The authors also reported its computational inefficiency and failure

cases on the images having PPA. It might be improved if the hypothesis also involve

statistical properties such as entropy, homogeneity etc which can be able to distinguish

among PPA and ONH pixels.

3) Freeform Modeling Based Approaches

In the freeform modeling, there is no explicit structure of template except some con-

straints. In this category, Active Contour Modeling (ACM) [70] has been widely inves-

tigated for extraction of optic disc boundaries. ACM is fundamentally a deformable

contour. It changes its shape corresponding to the properties of an image-based con-

tour properties and/or knowledge based constraints. The behavior of classical para-

metric active contours is typically controlled by internal and external energy functions.

The external energies determine the region of the model and could be derived from im-

age features such as edges. Internal energies, such as elasticity and rigidity determine

the curvature of the model and could serve as smoothness constraints to resist any

deformation. The minimization of a total energy function moves the contour towards

the target shape.
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Mendels et al. [90,91] applied morphological operations on retinal images in YIQ(Luminance

In-phase Quadrature) followed by an active contour to segment the optic disc. In the

morphological process, a dilation operator was first applied followed by an erosion

operator in order to retain the disc contour whilst remove the blood vessels. Having

removed the blood vessels crossing the disc boundary, an active contour was initial-

ized as a circle centered inside the optic disc. The contour was fitted to the rim of

the disc using the Gradient Vector Flow (GVF) derived from edge maps [136]. The

final location of the contour was independent of initialization values. This technique

was tested on nine retinal images. The morphological preprocessing has been proven

effective compared to directly use of original grayscale images, however a quantita-

tive comparison was not presented. Osareh et al. [100] applied the same method on

different colour spaces and found the ’Lab’ space to be more suitable for the appli-

cation of ACM. Xu et al. [137] modified the contour energy function by defining the

vector of control points with regards to smoothness, gradient orientation and median

intensity. The contour was initialized using circular Hough transform. Moreover, the

contour points were grouped into edge point clusters and uncertain point clusters using

a weighted k-means algorithm where the position of the contour points were updated

automatically. This operation retains the edge points close to their original positions

and updates the uncertain points to their correct positions. The overall accuracy of

optic disc extraction was high but the authors reported the algorithm failure on the

images having PPA as the energy function did not converge.

Joshi et al. [68] used a level-set approach in which a contour is represented by a

zero-level-set of the Lipschitz function [106]. A good accuracy has been achieved based

on appropriately selected initialization parameters, but the computational efficiency

was low. Yu et al. made its fast implementation on the expense of accuracy by

using region intensity information in level-set module. The method was applied on

MESSIDOR [10] after blood vessel removal by morphological pre-processing.

ACM achieved higher accuracy in segmenting out optic disc as compared to Non-

model-based approaches however, it was prone to error when a testing image involves

any textural changes or atrophy associated with any retinal diseases around the optic

disc boundary [69]. Moreover, since these techniques were applied in their local dataset

therefore their robustness is questionable. Therefore, these techniques need to be
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tested on public available databases in order to improve their generalization.

4) Statistical Shape Modeling Based Approach

Statistical shape modeling involves an offline training process in order to determine

a shape model parameterizing the diverse of characteristics of the shape. In this

category, Active Shape Modeling (ASM) has been explored for the extraction of optic

disc boundary. ASM represents shape approximation of an object using a statistical-

model. The ASM deforms to reflect the boundary shape of the optic disc in ways that

are consistent with shapes presented in the training set.

Li and Chutatape [80] proposed the use of ASM to model the boundary of optic disc.

They differentiated the optic disc edges from other edges on the basis of image gradient.

They compared their results with the landmarks obtained from ophthalmologists using

Mean Distance to the Closest Point (MDCP). Fengshou et al. [43] used minimum

Mahalanobis distance from the mean profile vector to choose the best candidate point

during the local edge search. Gradient information was added as a weight into the

Mahalanobis distance function. They applied their shape deformation procedure on

the image composed of weighted combination of the colour channels and evaluated

their results with the benchmark using other evaluation measures as well along with

MDCP. We constrained the search space by defining the search boundary on the image

gradient for determining the edges of optic disc [56]. Restricting the search space

on the image improved the results as compared to the original ASM. The method

needs to be improved by reducing the blood vessel occlusion. Kim et al. [72] defined

the imaginary circle after selecting ONH as brightest point. The random sample

consensus technique [44] was applied in which the imaginary circle was first warped

into a rectangle and then inversely warped into a circle to find the boundary of ONH.

The shape warping was applied on the thresholded binary image in which boundary

pixels were highly dependent on the thresholding value. The author predicted more

accuracy after adding constraint conditions into the model selection of Random Sample

Consensus (RANSAC).

The reason of Statistical shape modeling of not achieving higher segmentation

accuracy is that there were less number of parameters trained during construction of

training set. Most of the methods of optic disc extraction have been applied on red
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channel. As far as PPA is concerned, it has higher discrimination with optic disc rim

in green channel [97, 98] as well as blue channel [86]. In case of glaucoma, it is a

challenging task to determine optic disc boundary in presence of PPA. Therefore, the

training set of statistical shape modeling might include infomration from both red as

well as green channel so as to distinguish between optic disc rim and the region outside

optic disc including PPA. The information can include statistical measures, and even

contour energy information in order to improve the segmentation accuracy. Moreover,

reducing blood vessel occlusion can also aid to improve segmentation accuracy.

3.2.3 Optic Cup Extraction

Table 3.3: Results of different methods of optic cup extraction

Localization Method Image

Database

Colour Space Image Di-

mension

Number of Test

Images

Accuracy Citation

Morphological approach

Fuzzy C-means Clus-

tering

Aravind

Eye Hospi-

tal India

RGB space 1504 x 1000 20 Normal and

25 Glaucoma

91.7% CDR

Correlation

Coefficient

[20]

Morphological Opera-

tions

Kasturba

Medical

College

India

8-bit RGB

converted to

Grayscale

560 x 720 24 Normal and

37 Glaucoma

90% Neural

Network classi-

fication [116]

[99]

Level-set approach

Vessel Kink Interpola-

tion in 3D

Aravind

Eye Hospi-

tal India

8-bit RGB 2896 x 1944 33 Normal and

105 Glaucoma

82% Overlap-

ping Score

[68]

Gradient Vector Flow

Modeling

ORIGA−light

[145]

8-bit RGB 3072 x 2048 94 Normal and

10 Glaucoma

90.85% CDR

Correlation

Coefficient

[134]

Blood Vessel Kinks

Edge Detection

ORIGA−light

[145]

8-bit RGB 3072 x 2048 17 Normal and

10 Glaucoma

95.2% CDR

Correlation

Coefficient

[135]

After the segmentation of optic disc boundary, the next step is to find out the

boundary of optic cup in order to determine the features such as CDR, neuroretinal

rim loss etc for the diagnosis of glaucoma. Similar to boundary extraction of optic

disc, ACM was used to determine the optic cup boundary and they also incorporated

depth analysis to minimize the energy function with regards to intensity, smoothness

and shape. Automatic extraction of optic cup boundary using 2D fundus image have

also been proposed in the literature discussed as follows.
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1) Morphology based Cup Segmentation

Nayak et al. [99] used morphological operations in the green channel of RGB images

to segment optic cup (Figure 3.5(c)). As mentioned in Section 3.2.2, the results were

used in order to classify between normal and glaucoma images after measuring CDR,

Neuroretinal Rim Loss and vasculature shift. The classification accuracy is shown in

Table 3.3. Babu et al. [20] applied Fuzzy C-means clustering on the Wavelet trans-

formed green plane image after the removal of blood vessels. They compared the CDR

values with those of Gold Standard obtained from the ophthalmologists. In both of

the methods, the segmentation accuracy for the optic cup was not reported.

2) Level-Set Approach for Cup Boundary Detection

Wong et al. [134] proposed a level-set approach to represent the boundary of optic

cup in the form of gradient flow equation. The gradient flow equation was initialized

by a particular threshold value. The threshold value was selected according to higher

66.7% of the normalized cumulative intensity values of the image in green channel

based on the fact that optic cup is more prominent in green channel. The boundary

of the optic cup was smoothened by ellipse fitting. They applied the same approach

on the red channel to obtain the optic disc boundary. Their later studies proposed the

concept of blood vessel kinks at the edge of the optic cup for boundary extraction [135].

They used Canny edge detection and wavelet transform to determine the edges of the

optic cup. The bending of blood vessels at the angle of more than 20 degrees were

empirically determined to be at the edge of optic cup. Joshi et al. [68] used the same

information of blood vessel kinks at the edge of optic cup to determine the optic cup

boundary by interpolating the vessels kinks and the optic cup boundary in the 3rd

dimension using spline interpolation. Clinical knowledge of ophthalmologists obtained

from direct 3D cup examination was utilized to approximate the cup boundary.

Till date, very limited report on optic cup segmentation algorithms are available;

and the results for the existing methods are preliminary. Since the edge between an

optic disc and an optic cup is not usually visible in normal contrast of colour fundus

images, therefore there is need to determine certain parameters which can distinguish

between optic cup and optic disc. optic cup extraction may also require segmenting

out vasculature structure and in-painting with neighborhood for accurate dimension
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measurement.

3.2.4 Peripapillary Atrophy

Table 3.4: Results of different methods of the PPA localization / extraction

Extraction Method Image

Database

Dimensions

Colour Space Image Number of Test

Images

Accuracy Citation

PPA detection

Disc Difference

Method

SCORM

[111]

RGB converted

to HSV space

800 x 800 20 Normal and

20 Glaucoma

95% within PPA [123]

GLCM Based Texture

Analysis

SCORM

[111]

RGB converted

to HSV space

800 x 800 20 Normal and

20 Glaucoma

92.5% within

PPA

[77]

PPA extraction

GLCM Based Texture

Analysis

Gifu Uni-

versity

Hospital

Japan

8-bit RGB 1600 x 1200 26 73% LDA Seg-

mentation Over-

lapping Score

[98]

Region Growing Tech-

nique

Lothian

Birth

Cohort

Scotland

Blue channel of

RGB

not reported 94 93% Overlap-

ping Score

[86]

In this section, we review the automatic PPA detection and segmentation methods

for diagnosing glaucoma discussed as follows:

1) PPA Localization

Tan et al. [123] detected PPA for determining pathological myopia. They proposed

the variational level-set method [93] to extract the PPA boundary. The variational

level-set method is initialized with a horizontal elliptical contour within optic disc

boundary whereas a vertical elliptical contour is initialized outside the boundary. The

horizontal elliptical contour is initialized in order to reduce the influence of the edges

of the retinal vessels and allow the level-set function to grow and seek for the correct

optic disc boundary. Conversely, a vertical elliptical contour is set externally as it best

represents the physiological shape of the optic disc. The difference of these two optic

discs is taken and thresholding in the HSV (Hue Saturation Value) colour space is used

to roughly segment the PPA area. They claimed the PPA localization accuracy was

95% however, they did not consider the cases if PPA is present in both temporal and

nasal sides. Moreover, no PPA segmentation was done. The test images were taken
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from Singapore Cohort study Of the Risk factors for Myopia (SCORM) [111].The same

authors [77] proposed a fusion of two decision methods. Gray Level Covariance Matrix

(GLCM) based texture analysis was used to generate a degree of roughness which is

then compared for the temporal side and nasal side. The higher degree of roughness in

the temporal side compared to nasal side indicates PPA presence. Statistical analysis

around the optic disc boundary, including average intensity and standard deviation

were also used to detect PPA. However, like previous method, no PPA segmentation

was performed.

2) PPA Extraction

Figure 3.6: Example of PPA extraction [97,98]

The statistical textural features, such as contrast, correlation, variance etc were

determined in [97, 98] and a feature vector of 63 features was constructed. The PPA

and non PPA pixel values were classified based on the feature vector. The training set

was based on stereo images which were obtained by taking the retinal pictures of both

normal and glaucoma patients from different angles in order make the 3D projection.

The classification was performed using Linear Discriminant Analysis (LDA) [116]. The

testing dataset consists of 58 glaucoma patients out of which 26 images have moderate

to severe PPA. Lu et al. [86] extracted PPA using region growing on the blue channel

after optic disc segmentation. They achieved the segmentation accuracy of 93%. An

example is shown in Figure 3.6.

The PPA segmentation is an important step not only because it is one of main

indications in glaucoma diagnosis but also it can improve the segmentation accuracy

of optic disc if it is detected first. Therefore textural based properties can be used
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in order to classify among optic disc region, PPA and other retinal areas. Moreover,

there is need to use accurate classification algorithm which can distinguish among

these regions.

3.3 Non-segmentation based Classification between

Normal and Glaucomatous Retinal Images

Table 3.5: Results of different methods of non-segmentation based classification be-
tween normal and glaucomatous retinal images

Extraction Method Image

Database

Colour Space Image Di-

mensions

Number of Test

Images

Accuracy Citation

Glaucoma Risk Index Pattern

Recogni-

tion Lab

Germany

8-bit RGB 1600 x 1216 336 Normal

and 239 Glau-

coma [73]

80% on 5-fold

cross validation

(SVM)

[24]

Wavelet Coefficients Kasturba

Medical

College

India

8-bit RGB 560 x 720 24 Normal and

37 Glaucoma

93% on 10-fold

cross validation

(SMO)

[39]

Although there are few efforts made for the classification between normal and

glaucomatous patients based on features that do not require segmentation of retinal

structures, these methods can serve as prior knowledge for measuring different glau-

comatous symptoms associated with retinal segmentation. Some of those methods are

discussed as follows and their results are summarized in Table 3.5.

In non-segmentation based methods, Bock has made a major contribution [23,

24, 89]. Initially pixel intensity values were used on which PCA was applied [146]

for dimensionality reduction. As a pre-processing step, they corrected illumination

and intensity inhomogeneity then in-painted vasculature area after segmenting them

out. Later on they added features such as image texture, FFT coefficients, histogram

models, B-spline coefficients etc. Based on these features they calculated Glaucoma

Risk Index (GRI). They used classifiers such as naive Bayes classifier, k-nearest neigh-

bor classifier and Support Vector Machines (SVM) [116] to classify between healthy

and glaucomatous images. They found SVM to be less prone to sparsely sampled

feature space. Dua et al. [39] used wavelet-based energy features and compared the
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performance of different classifiers including the previously mentioned classifiers, ran-

dom forests [25] and Sequential Minimal Optimization (SMO) [71]. From SMO they

obtained the maximum classification accuracy.

Unlike segmentation based methods, there are few methods available based on

non-segmentation analysis for the retinal images associated with glaucoma. If they

are used in conjunction with segmentation based methods, they can not only be quite

effective in increasing the classification accuracy among different stages of glaucoma

but also can serve as a benchmark for development of further automatic classification

methods.

3.4 Automatic Retinal Disease Analysis on SLO

Images

Apart from fundus images, some of the previous efforts suggest the automatic retinal

disease analysis on SLO images. There are different types of SLO devices in the

market with each one having its particular specifications in terms of retinal Field of

View (FOV), grayscale value, resolution etc. An SLO image can be quite effective

in determining the glaucoma related symptoms due to their high resolution [122].

Another report suggest the measurement of retinal vessel diameter in semi-automated

analysis of retinal disease [96].

Among existing SLO devices, the SLOs manufactured by our collaborator, Optos

have the largest FOV and becoming popular among retinal imaging devices with one

of leading market shares in the USA [8]. Some of the previous methods for auto-

matic retinal disease analysis have been applied on images of Optos manufactured

SLO. Automatic vasculature segmentation and width measurement methods have also

been applied on these images [104]. Another work suggest the application of post

processing after vasculature segmentation [108] and automatic detection of retinal

capillaries [148]. The retinal vasculature segmentation and width analysis is quite

helpful in automatic analysis of many retinal and cardiovascular disease however, we

need to determine methods for the automatic analysis of glaucoma related indications.
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3.5 Discussion and Conclusion

Glaucoma causes changes in retinal structures which leads to peripheral vision loss

if left untreated. The latest clinical information suggests observation of the ONH

area and the retinal changes around it in order to diagnose glaucoma. Therefore

after IOP measurement, the retinal exam is mostly based on measuring ONH related

measurements such as optic disc size, optic cup size, their ratio, Neuroretinal Rim

observation, PPA etc. It is very difficult to determine the optic cup boundary from

2-D retinal image as there is no sharp edge indicating it. Moreover, the occlusion of

blood vessels make the extraction difficult of not only optic cup but also optic disc

boundary which can become even tougher if PPA is present.

The survey has been categorized into two types of methods i.e. segmentation based

methods and non-segmentation based methods. The methods which were applied on

the same datasets are grouped together so as to present their results on a common

benchmark. As far as segmentation based methods are concerned, they involve series

of steps; each of which can be performed using the specific algorithm. It is important

to observe the overall accuracy of each step from the ONH localization to extraction

of boundaries of optic disc, optic cup and PPA which are needed to be high to ensure

the effectiveness of the overall process maintained at a satisfactory level.

The ONH localization has been the initial step in determination of glaucoma as

well as other retinal diseases such as Diabetic Retinopathy. The reason is that the

ONH has been considered as the brightest region in the retinal image and therefore

can serve as a way to locate other retinal structures. But, the presence of bright

reflections in the retinal image brighter than ONH led to vasculature segmentation as

all the retinal blood vessels converge in the ONH. The vasculature segmentation not

only localized the ONH accurately but also the researchers who worked on optic disc

and optic cup segmentation found comparatively accurate results after segmenting out

retinal blood vessels. However, the accurate segmentation of vasculature structure has

itself been a challenging task.

Current vasculature segmentation methods are mostly applied and therefore quite

efficient on public datasets. These datasets are composed of healthy images and the

images diseased with Diabetic Retinopathy which consists of small lesions and are
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usually observed away of ONH. But they often segmented out PPA as well which is

usually present in the images diseased with glaucoma. Based on our research, textural

analysis could help to distinguish among the PPA and non PPA regions and incorpo-

rating them along with vasculature segmentation methods can increase their efficiency

on glaucoma images. Moreover, accurate in-painting methods by neighborhood pixels

after segmenting out vasculature structure can be used to remove blood vessel occlu-

sion problem which can lead to accurate segmentation of optic disc and optic cup. 3-D

scans obtained from modalities; such as OCT, can simplify the optic cup boundary

detection problem but these modalities are not available in every hospital. Therefore

we have to limit ourselves to 2-D scans.

Apart of image processing and computer vision based techniques, pattern recog-

nition based methods have also been applied in order to locate and extract out the

ONH boundary and optic cup. Statistical based parameters and design of accurate

classifier will not only improve the results in terms of accuracy but also it will make

the algorithms more robust and generalized. Huge diverse training data will signifi-

cantly improve the classification efficiency. Another key issue in pattern recognition

techniques is that there are few available public dataset of glaucoma based retinal

images. Although there are contributions from some hospitals and research labs, there

are not enough number of retinal images diseased with glaucoma as in the case of dia-

betic retinopathy. Since glaucoma progresses slowly and its symptoms occur gradually,

therefore it is required to develop a retinal image database of different stages of glau-

coma with annotations around different retinal structures associated with glaucoma.

The database will serve as a benchmark to test and validate algorithms related to

glaucoma based feature extraction. Since any of the single symptom mentioned earlier

is not the guaranteed sign of glaucoma, the combination of all features is required for

the accurate diagnosis. If the automatic methods are improved in terms of accuracy

and generalization; they will serve as a benchmark for the clinicians to diagnose the

disease based on measurements obtained by using those methods.



Chapter 4

Glaucoma Detection Framework -

Rationale and Principles

4.1 Introduction

In this chapter we will present the overview of proposed Glaucoma Detection Frame-

work (GDF). We will start our discussion with the brief explanation of benchmark

used in this thesis. Then we will discuss about the overview of the GDF (Section 4.3

which involves rationale and principles used for the analysis and evaluation of different

procedures of the GDF. The principles of analysis and evaluation include image-based

feature generation and selection and evaluation metrics used for determination of per-

formance of our algorithms.

4.2 Benchmark Retinal Image Database

To the best of our knowledge, there are a few public datasets are available from

glaucoma patients and they have limited annotations [27, 49, 115]. This is shown in

Table 4.1. According to it, RIM-ONE dataset is more suitable compared to other

datasets but it has some limitations i.e. it does not have optic cup and vasculature

annotations. Therefore the dataset from Pattern Recognition Lab, Erlangen Germany

[74] is used for vasculature training and Drishti-GS is used for training optic cup.

Besides, SLO images are not publicly available. In collaboration with Optos [8], who

provided us images from their SLO, we need to find a way to automatically identify the

42
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(a) (b)

(c) (d)

Figure 4.1: Examples of retinal images from each dataset (a) Pattern Recognition
Lab, Erlangen(b) Drishti-GS (c) RIM-ONE and (d) Optomaps. RIM-ONE is the only
dataset with the ONH images

features of glaucoma from images using the SLO images as well. Our methodology has

been applied on different retinal image datasets; each one has different specifications.

Some examples from each datasets are shown in Figure 4.1. Each database used in

this thesis is discussed as follows:

4.2.1 Pattern Recognition Lab, Erlangen Germany

The public database of Pattern Recognition Lab, Erlangen (PRLE) [74] contains 15

images of healthy patients and 15 images of patients with diabetic retinopathy obtained

using fundus camera. Each image has the FOV of 45◦ and annotated with vasculature

area. Each image has the resolution of 3504 x 2336 pixels. This database has been

used for vasculature segmentation training and validation. An example of ground

truth from the dataset has been shown in Figure 4.2(a).
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(a) (b)

(c) (d)

Figure 4.2: Examples of ground truth from (a) Pattern Recognition Lab, Erlangen on
vasculature area (b) RIM-ONE around optic disc (c) Drishti-GS around optic disc and
(d) Drishti-GS around optic cup. The annotation with different colours represent the
annotations from differennt experts.

Table 4.1: Annotation of retinal image datasets

Annotation Pattern Recog-

nition Lab

RIM-ONE Drishti-GS Optomaps

Vasculature mask X X

Optic Disc Annotation X X X

Optic Cup Annotation X X

Glaucoma vs Healthy X X
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Table 4.2: Inter-observer variability in the dataset

Expert X vs Expert Y All images Normal images Glaucoma

images

1 vs 2 3.71% ± 1.99% 3.92% ± 2.00% 3.48% ± 2.00%

1 vs 3 3.94% ± 1.51% 4.25% ± 1.47% 3.26% ± 1.47%

1 vs 4 2.93% ± 2.09% 3.16% ± 2.27% 2.58% ± 1.60%

1 vs 5 2.40% ± 1.40% 2.45% ± 1.36% 2.38% ± 1.60%

2 vs 3 2.64% ± 1.48% 2.79% ± 1.61% 2.36% ± 1.12%

2 vs 4 5.24% ± 3.43% 5.76% ± 3.69% 4.27% ± 2.45%

2 vs 5 4.46% ± 2.69% 4.71% ± 2.83% 4.02% ± 2.29%

3 vs 4 5.25% ± 2.56% 5.82% ± 2.66% 4.01% ± 1.87%

3 vs 5 4.61% ± 2.04% 4.95% ± 2.11% 3.75% ± 1.64%

4 vs 5 2.69% ± 1.72% 2.95% ± 1.89% 2.08% ± 1.01%

4.2.2 RIM-ONE (An Open Retinal Image Database for Optic

Nerve Evaluation)

RIM-ONE [49] dataset is based on the ONH images. An example has been shown

in Figure 4.1(c). Therefore we don’t need to apply the ONH localization algorithm

on the RIM-ONE dataset images. These retinographs have been captured in the

three hospitals cited before which are located in different Spanish regions. Compiling

images from different medical sources guarantee the acquisition of a representative and

heterogeneous image set. All the retinographs are non-mydriatic retinal photographs

captured with specific flash intensities, thus avoiding saturation. It has 158 images

with 118 normal and 40 glaucoma images. The images have variable resolution ranging

from 300 to 900 both sides. Each image has been annotated around optic disc by 5

experts; 4 ophthalmologists and 1 optometrist. An example ground truth of optic

disc annotation in RIM-ONE is shown in Figure 4.2(b). The average inter-observer

variability among these experts has been shown in Table 4.2. The inter-observer

variability for a particular image has been calculated by determining degree of overlap

of the optic disc mask obtained by annotation from each expert and then performing

the comparison among them. The degree of overlap has been calculated using Dice

Coefficient [37] (explained in Section 4.4.3). The inter-observer variability shows high

similarity among optic disc annotations.
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Table 4.3: Inter-observer variability of optic disc and optic cup

Expert X vs Expert Y Optic disc Optic cup

1 vs 2 1.00% ± 0.39% 1.47% ± 0.83%

1 vs 3 1.87% ± 0.61% 3.07% ± 1.57%

1 vs 4 2.99% ± 1.35% 5.31% ± 2.10%

2 vs 3 0.84% ± 0.27% 1.57% ± 0.94%

2 vs 4 1.96% ± 1.20% 3.81% ± 1.61%

3 vs 4 1.09% ± 1.02% 2.22% ± 1.25%

4.2.3 Drishti-GS

Drishti-GS dataset consists of a total of 50 images [115] (Figure 4.1(b)). The main

purpose of including the dataset in our study is to obtain the optic cup annotations.

All the images have been marked by 4 eye experts with varying clinical experience. All

images are collected at Aravind Eye Hospital, India. Selected patients are between 40-

80 years of age with roughly equal number of males and females. The data collection

protocol is as follows.

• All images are taken centered on optic disc with a field-of-view(FOV) of 30-

degrees and of dimensions 2896 X 1944 pixels and PNG uncompressed image

format.

• Ground truth (Table 4.1) is collected from data experts with varying clinical

experience of 3,5,9 and 20 years respectively.

• For the ground truth collection a dedicated marking tool is created to allow for

precise boundary marking.

The Drishti-GS dataset has high similarity among optic disc as well as optic cup

annotations as shown in Table 4.3. An example around optic disc and cup annotations

has been shown in Figure 4.2 (c) and (d) respectively. The example images has been

shown after cropping out the ONH area.

4.2.4 Optomaps

The Optomaps have been obtained from Optos [8] and are acquired using their ultra-

wide field SLO. Each image has a FOV of up to 200 degrees of the retina at resolution
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14 µm. The device captures the retinal image without dilation, through a small

pupil of 2 mm. The image has two channels: red and green. The green channel

(wavelength: 532nm) provides information about the sensory retina to retinal pigment

epithelium whereas the red channel (wavelengh: 633nm) shows deeper structures of

the retina towards the choroid. Each image has a dimension of 3900 × 3072 and

each pixel is represented by 8-bit on both red and green channels. There are two

datasets of Optomaps. The first dataset is composed of 104 retinal images which are

either healthy or diseased with diabetic retinopathy due to which they have lesions

on the retina. The main purpose of including this dataset is to design retinal area

detection framework (Section 5.2). The second dataset is composed of 51 healthy and

51 diseased retinal images. The diseased retinal images have been obtained from the

diabetes patients with the suspect of glaucoma. The healthy retinal images have been

annotated around optic disc and vasculature structure whereas diseased retinal images

have been annotated around optic disc and optic cup.

4.3 The Glaucoma Detection Framework

The block diagram of the GDF is shown in Figure 4.3. The GDF is initiated by

pre-processing stage needed for the ONH analysis. The pre-processing stage includes

retinal area detection, the ONH localization and vasculature segmentation. Since most

of the retinal symptoms associated with glaucoma are related to the ONH, therefore

the localization of the ONH is the first step towards the automatic analysis of glau-

coma. Although one of the retinal image dataset has ONH localized images, the other

retinal image datasets need to be ONH localized. Vasculature segmentation is in-

cluded in pre-processing stage as its features are calculated required for optic disc and

optic cup segmentation. Also, vasculature segmentation is required for calculating the

vasculature shift. After pre-processing stage, we obtain the ONH image i.e. the image

with the ONH area as the main object. The next step is for optic disc and optic cup

segmentation for calculating changes in the ONH structures associated with glaucoma

such as the CDR, neuroretinal rim loss etc. After segmentation of optic disc and cup,

we calculate regional image features to extract image-based information (e.g. textural,

spatial and frequency based information) of the ONH image. Finally, we performed
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classification between normal and glaucoma images using both regional image feature

information and geometrical measure information.

Fundus Image 
ONH Localized

Fundus Image ONH 
Non-Localized

SLO Image
Retinal Area 

Detection

ONH 
Localization

Vasculature 
Segmentation

Optic Disc and Optic 
Cup Segmentation

Regional Image Features
Geometrical 

Indication 
Measurement

Pre-processing Stage

Glaucoma Classification

Figure 4.3: Block diagram of the Glaucoma Detection Framework (GDF)

4.4 Analysis and Evaluation of the GDF

In this section, we will discuss about analysis and evaluation of different stages of the

GDF. It includes benchmarking, feature generation, feature selection and evaluation.

Therefore, we are discussing following points in the following sections.

• Generation of Image-based Features

• Feature Selection Methods

• Evaluation Metrics

• Machine Used for Experimentation
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4.4.1 Generation of Image-based Features

In this thesis, the retinal scans are analyzed and evaluated using image-based features.

These features are used to distinguish among different retinal structures. In order to

determine the features most relevant to the classification, feature selection techniques

have also been applied (Section 4.4.2). Also the segmentation results obtained after

classification are evaluated against the annotations obtained from the clinicians.

We intend to segment out different retinal structures by differentiating in terms of

textural, regional, grayscale-gradient, Gabor and biologically inspired features. Textu-

ral and regional features can be calculated for the small sub-regions called superpixels

(Section 5.2.4). The gradient, Gabor and biologically inspired features can also be

calculated for each pixel. Textural and gradient based features are calculated from

red and green channels so as to accommodate their image response in the training set

after blurring. For determining features at different smoothing scales, both red and

green channels of images are convolved with the Gaussian at different scales [14] . In

an SLO image, the blue channel is set to zero therefore no feature is calculated for the

blue channel.

1) Textural Features

Texture can be analyzed using Haralick features [58] obtained by Grey Level Co-

occurrence Matrix (GLCM) analysis. GLCM determines how often a pixel of a grey

value i occurs adjacent to a pixel of the grey value j. Four angles are used for ob-

serving the pixel adjacency i.e. θ = 0◦, 45◦, 90◦, 135◦. These directions are shown in

Figure. 4.4(a). GLCM also needs an offset value D which defines pixel adjacency by

certain distance. Figure. 4.4(b) illustrates the process of creating GLCM using the

image I with θ = 0◦ for observing pixel adjacency. As an example, 1 and 1 in image

I are are adjacent to each other at θ = 0◦ only once, therefore the value at GLCM at

position (1,1) is 1. Similarly, 1 and 2 in I occur twice at θ = 0◦, therefore the value

in GLCM at (1,2) is 2. The features, which are calculated using the GLCM matrix

are summarised in Table 4.4. The mean value in each direction was taken for each

Haralick feature and they are calculated from both red and green channels.
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Table 4.4: Textural features extracted using GLCM

Feature Name Equation Definition

Autocorrelation acorr =
∑
i

∑
j

ijp(i, j) Linear dependence in GLCM between same index

Cluster Shade Cshade =
∑
i

∑
j

(i + j − µx −

µy)3p(i, j)

Measure of skewness or non-symmetry

Cluster Prominence Cprom =
∑
i

∑
j

(i + j − µx −

µy)4p(i, j)

Show peak in GLCM around the mean for non-
symmetry

Contrast con =
Ng∑
i=1

Ng∑
j=1

|i− j|2p(i, j) Local variations to show the texture fineness.

Correlation corr =

∑
i

∑
j

(ij)p(i,j)−µxµy

σxσy
Linear dependence in GLCM between different in-
dex

Difference Entropy Hdiff = −
Ng−1∑
i=0

px−ylog(px−y(i)) Higher weight on higher difference of index en-
tropy value

Dissimilarity diss =
∑
i

∑
j

|i− j|p(i, j) Higher weights of GLCM probabilities away from
the diagonal

Energy E =
∑
i

∑
j

p(i, j)2 Returns the sum of squared elements in the
GLCM

Entropy H = −
∑
i

∑
j

p(i, j)log(p(i, j)) Texture randomness producing a low value for an
irregular GLCM

Homogeneity homom =
∑
i

∑
j

1
1+(i−j)2 p(i, j) Closeness of the element distribution in GLCM to

its diagonal

Information Mea-
sures 1

IM1 = (1− exp[−2.0(Hxy −H)])0.5 Entropy measures

Information Mea-
sures 2

IM2 =
Entropy−Hxy2
MAX(Hx,Hy)

Entropy measures

Inverse Difference
Normalized

IDN =
∑
i

∑
j

p(i,j)

1+
|i−j|
Ng

Inverse Contrast Normalized

Inverse Difference
Moment Normalized

IDMN =
∑
i

∑
j

p(i,j)

1+
(i−j)2
Ng

Homogeneity Normalized

Maximum Probabil-
ity

Prmax = MAX
(x,y)

p(i, j) Maximum value of GLCM

Sum average µsum =
2Ng∑
i=2

ipx+y(i) Higher weights to higher index of marginal GLCM

Sum Entropy Hsum = −
2Ng∑
i=2

px+ylog(px+y(i)) Higher weight on higher sum of index entropy
value

Sum of Squares:
Variance

σsos =
∑
i

∑
j

(i− µ)2p(i, j) Higher weights that differ from average value of
GLCM

Sum of Variance σsum =
2Ng∑
i=2

(i−Hsum)px+y(i) Higher weights that differ from entropy value of
marginal GLCM

(i, j) represent rows and columns respectively, Ng is number of distinct grey levels in the quantised image,
µx and µy are mean values of GLCM across x-axis and y-axis respectively, µ is mean of the GLCM matrix,
p(i, j) is the element from normalized GLCM matrix px(i) and py(j) are marginal probabilities of matrix

obtained by summing rows and columns of GLCM respectively i.e. px(i) =
Ng∑
j=1

p(i, j), py(j) =
Ng∑
i=1

p(i, j),

px+y(k) =
Ng∑
i=1

Ng∑
j=1

p(i, j), k = i + j − 1 = 1, 2, 3, ...., 2Ng and px−y(k) =
Ng∑
i=1

Ng∑
j=1

p(i, j), k = |i − j| + 1 =

1, ...., Ng, Hx and Hy and entropies of px and py respectively, Hxy = −
∑
i

∑
j

px(i)py(j)log(px(i)py(j)),

Hxy2 = −
∑
i

∑
j

p(i, j)log(px(i)py(j))
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Figure 4.4: (a) GLCM directions and offset (b) GLCM process using image I [57].

2) Gradient Features

In order to calculate these features, the response from Gaussian filter bank [14] is calcu-

lated. The Gaussian filter bank includes Gaussian N (σ), its two first order derivatives

Nx(σ) and Ny(σ) and three second order derivatives Nxx(σ), Nxy(σ) and Nyy(σ) in

horizontal(x) and vertical(y) directions. Lindeberg and Frangi introduced Gaussian

based features which are mostly applicable for vasculature detection [47, 81]. These

are tabulated in Table 4.5.

3) Gabor Features

Gabor filters serve as frequency based filters and being used for image segmentation

[34]. For extracting features, we applied the following equations:

Gb(x, y, θ, f, σx, σy) = exp(−1

2
(
x̂2

σ2
x

+
ŷ2

σ2
y

)) ∗ exp(i2πfx) (4.1)

x̂ = xcosθ + ysinθ (4.2)

ŷ = ycosθ − xsinθ (4.3)

x and y are image pixel coordinates.

4) Biologically Inspired Features

The biologically inspired features are inspired by the process of visual cortex of human

brain in image recognition tasks. Here the retinal image is filtered in a number of
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Table 4.5: Gaussian based features

Feature Name Equation Explanation

Gamma-normalized
derivative

Lpp,γ−norm = σγ

2
(Nxx + Nyy −√

(Nxx −Nyy)2 + 4Nxy2)

σγ

2
is normalization factor with γ =

3
2

Lqq,γ−norm = σγ

2
(Nyy + Nyy +√

(Nxx −Nyy)2 + 4Nxy2)

σ = [
√

(2), 2, 2
√

(2), 4] are the
Gaussian scale values

Gamma-normalized
absolute principal
curvature

Mγ−norm = max(|Lpp,γ−norm|, |Lqq,γ−norm|)

Vesselness measure ν0= 
0 (λ2 > 0)

exp(−RB
2

2β2 )(1− exp(− S2

2c2
))

(otherwise)

λ1, λ2 are eigen values of H =[
Nxx Nxy

Nyx Nyy

]
RB = λ1

λ2
, β = 0.5

[47], S =
√
Nxx2 +Nyy2 + 2Nxy2

c = max(S)
2

Lindeberg Ridges ML = max(|Lpp|, |Lqq|)
Nγ−norm(L) = (Lpp,γ−norm

2 − Lqq,γ−norm2)

Aγ−norm(L) = (Lpp,γ−norm − Lqq,γ−norm)2

Staal Ridges ρ(Pix, σ) = − 1
2
|sign(5Nx,y(Pix + ~v, σ).~v) −

sign(5Nx,y(Pix− ~v, σ).~v)|
Pix = I(x, y), ~v=eigen vector of
largest eigen value, Nx,y=Gaussian
in x and y directions

Differential Geomet-
ric Edge Definition

Luu = Nxx +Nyy (u, v) are local coordinate system
[81]

Lu,u = Nx2 +Ny2

Luv = Nx2Nxx + 2NxyNxNy +Ny2Nyy

low-level visual ’feature channels’ at multiple spatial scales, for features of colour,

intensity, flicker etc. It consists of 6 feature maps of intensity units I and 12 colour

units representing neuronal working of mammals [62]. The colour units have 4 different

colour channels representing excitation as well as inhibition of colours. The excitation

and inhibition of different colours make two pairs. They are formed as red-green (R-G)

and blue-yellow (B-Y).

By using dyadic Gaussian pyramids [17] convolved on the intensity channel of an

input colour image, nine spatial scales are generated with a ratio from 1:1 (scale 0)

to 1:256 (scale 8). To get intensity feature maps, the centre-surround [121] operation

is performed between centre levels and surround levels. Centre-surround operation

is the absolute difference of an image at centre scale c and surround scale s. The

centre-surround operation at different intensity and colour units has been shown as:

I(c, s) = |I(c)− Interps−cI(s)| (4.4)
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RG(c, s) = |(R(c)−G(c))− Interps−c(R(s)−G(s))| (4.5)

BY (c, s) = |(B(c)− Y (c))− Interps−c(B(s)− Y (s))| (4.6)

where Interps−c represent interpolation to s− c level.

Using centre levels (c=2,3,4) and surround levels (s = c + d with d=3,4), six

feature maps are computed at levels of 2-5, 2-6, 3-6, 3-7, 4-7, and 4-8. Because

scales are different between center levels and surround levels, maps of surround levels

are interpolated to the same size as the corresponding center levels, and then they are

subtracted point-by-point from the corresponding center levels to generate the relevant

feature maps.

5) Regional Features

These features are used to define regional attributes and are applicable when image is

divided into different sub-regions (Section 5.2.4) for analysis. Table 4.6 represents the

features describing regional attributes.

Table 4.6: Regional features

Feature Name Equation Definition

Mean Intensity Iµ =

∑
i

∑
j

Is(i,j)

Ns
Mean value of region

Area Ns Number of pixels in re-

gion

Convex Area Nsc Number of pixels in

convex area of region.

Convex area is the

polygon representing

the region with all

interior angles less

than 180◦

Extent Ext = Ns
Nsb

Ratio of total number

of pixels in the region

to number of pixels in

the bounding box

Orientation θs Region angle with re-

spect to x-axis

Solidity Sol = Ns
Nsc

Ratio of number of pix-

els in the region to con-

vex area
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4.4.2 Feature Selection Method

The main purposes for feature selection are reducing execution time and dimension-

ality reduction by selecting features most relevant to the particular retinal structure

determination. For feature selection, we have selected following approaches:

1) Sequential Feed-forward Selection Approach

In the Sequential Feed-forward Selection (SFS) approach, the interaction among fea-

tures is taken into account. From the available set of features, the feature with the

highest Area Under the Curve (AUC) [113] is selected. The next feature is chosen in

such a way that when it is used along with the first selected feature, it will give the

highest AUC compared to other non-selected features. The process is repeated until

there is little improvement (less than 0.01) or no improvement in the AUC.

2) Filter Approach

In the Filter approach, the features are ranked with respect to their effectiveness in

classification. In order to determine most relevant features, an Independent Evalua-

tion Criterion (IEC) for binary classification is used [82]. In IEC, the classification

performance of each feature is calculated individually according to AUC [113].

3) Filter and SFS Approach

The ‘Filter and SFS’ approach is similar to SFS approach except that it is applied on

the filtered feature set rather than complete feature set.

4.4.3 Evaluation Metrics

1) Dice Coefficient

The Dice Coefficient evaluates the degree of overlap of two regions and is used to

determine the extent to which the segmented objects match. It is defined as:

D(A,B) =
2|A ∩B|
|A ∪B|

, (4.7)

where A and B are the segmented regions surrounded by model boundary and

annotations from the ophthalmologists respectively, ∩ denotes the intersection and ∪
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denotes the union. Its value varies between 0 and 1 where a higher value, indicates an

increased degree of overlap.

2) Receiver Operating Characteristics and Area Under the Curve

A receiver operating characteristic (ROC), or ROC curve, is a graphical plot that

illustrates the performance of a binary classifier system as its discrimination threshold

is varied. The curve is created by plotting the true positive rate against the false

positive rate at various threshold settings. For a binary classifier, true positive rate

(Sensitivity) is the proportion of class-1 test examples (pixels, superpixels or images)

correctly identified. It can be illustrated as:

Sensitivity =
TP

TP + FN
(4.8)

where TP is number of class-1 test examples correctly identified and FN is number

of class-1 test examples misidentified. Similarly false positive rate (Specificity) is the

proportion of class-0 test examples correctly identified. It can be illustrated as:

Specificity =
TN

TN + FP
(4.9)

where TN is number of class-0 test examples correctly identified and FP is number

of class-0 test examples misidentified. The area under th ROC is called Area Under

the Curve or AUC. The overall accuracy [18] can be calculated as

Accuracy =
TN + TP

TN + TP + FN + FP
(4.10)

AUC is measured so as to determine classification power of the classifier.

4.4.4 Machine Used for Experimentation

Our all experimentation has been performed on a PC with Intel Core i7-2600 CPU

with 16GB DDR3-1333 RAM.
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4.5 Conclusion

In this chapter we have outlined the proposed GDF and discussed the rationale and

principles of analysis and evaluation procedures of the GDF. These principles include

feature generation, feature selection and evaluation metrics. These principles would be

followed in the upcoming chapters. In order to evaluate the methods we have proposed

towards the development of GDF, we have the datasets from different fundus and

SLO images. These datasets have been annotated by different eye clinicians around

glaucoma related anatomical structures such as optic disc or optic cup. Based on

our evaluation, there is high inter-observer similarity among different clinicians in

particular dataset. This can also lead to determine the mean of the annotations on the

particular image which can be used to train our algorithms. This has been discussed

in the upcoming chapters.



Chapter 5

Retinal Image Pre-Processing

5.1 Introduction

In this chapter we will discuss the proposed methods for the pre-processing stage

needed to analyze the ONH. This includes determination of true retinal area, ONH

localization, and vasculature segmentation. As shown in Figure 5.1(a), the determi-

nation of true retinal area in fundus images is quite straight forward i.e. we just need

to threshold out dark background. On the other hand, we need to find methods to

classify true retinal area and artefacts present in Optomaps (SLO images). The ONH

localization algorithm can run properly on SLO images only if true retinal area has

been segmented out. After the ONH localization, we need to segment out vasculature

area. Therefore, our discussion will start from retinal area detection in Optomaps

followed by the ONH localization and vasculature area segmentation.

5.2 Retinal Area Detection

The 2D retinal scans obtained from SLO may contain structures other than the retinal

area; collectively regarded as artefacts. Exclusion of artefacts is important as a pre-

processing step before automated detection of features of retinal diseases. In a retinal

scan, extraneous objects such as the eyelashes and eyelids may appear bright and in

focus. Therefore, automatic segmentation of these artefacts from an imaged retina is

not a trivial task. The purpose of performing this study is to develop a method that

can exclude artefacts from the retinal scans so as to improve automatic detection of

57
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disease features from the retinal scans.

The SLO manufactured by Optos [8] produces images of the retina with a width

of up to 200 degrees (measured from the centre of the eye). This compares to 45-60

degrees achievable in a single fundus photograph. Examples of retinal imaging using

fundus camera and SLO are shown in Figure. 5.1. Due to the wide FOV of SLO images,

structures such as eyelashes, eyelids are also imaged along with the retina. The true

retinal area has been outlined in Figure 5.1 (b) with blue colour. The structures outside

the outline are artefacts. If these structures are removed, this will not only facilitate

the effective analysis of the retinal area, but also enable registering multi-view images

into a montage to assist disease diagnosis.

Figure 5.1: An example of (a) a fundus image and (b) an SLO image annotated with
true retinal area and the ONH

In this work, we have constructed a novel framework for the extraction of retinal

area in SLO images. For differentiating between the retinal area and the artefacts, we

have determined different image-based features which reflect grayscale and textural

information at multiple resolutions. Then we have selected the features among the

large feature set which are relevant to classification. The feature selection process

improves the classifier performance in terms of computational time. Finally, we have

constructed the classifier for discriminating between the retinal area and the artefacts.

Our prototype has achieved average classification accuracy of 92% on the dataset

having healthy as well as diseased retinal images.
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5.2.1 Background

In an image obtained from the SLO, the eyelashes show as either dark or bright region

compared to retinal area depending upon how the laser beam is focused as it passes

through the eyelashes. The eyelids show as a region with greater reflectance compared

to the retinal area. Therefore, we need to find features which can differentiate among

true retinal area and the artefacts in SLO retinal scans. After visual observation in

Figure. 5.1(b), the features reflecting the textural and structural difference could have

been the suggested choice. In previous work, these features have been calculated for

different regions in fundus images; mostly for quality analysis [35,36,105,142].

In previous work, the representation of retinal images was performed in terms of

image features such as intensity, skewness, textural analysis, histogram analysis and

sharpness [35, 55, 142]. Dias et al. [36] determined four different classifiers using four

types of features. They were analyzed for the retinal area including colour, focus,

contrast and illumination. The output of these classifiers was concatenated for quality

classification. Apart from calculating image features for a whole image, grid analysis

containing small patches of the image has also been proposed for reducing compu-

tational complexity [35]. For determining image quality, the features of Region of

Interest (ROI) of anatomical structures such as Optic Nerve Head (ONH) and Fovea

have also been analyzed [105]. These features included structural similarity index,

area or visual descriptor. Some of the above mentioned techniques suggest the use of

grid analysis which can be time-effective method since features are generated for each

square in the grid rather than for each pixel. However, grid analysis might not be an

accurate way to represent irregular regions in the image. Therefore, we opted for the

use of superpixels [15, 95, 128, 129] which group pixels into different image dependent

regions depending upon their regional size and compactness.

5.2.2 Retinal Area Detection Method

In the proposed method of the retinal area detector, we will follow the classification

approach as shown in Figure 5.2. The method is based on following steps:

• Gamma adjustment

• Superpixels Generation
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• Ground Truth Determination

• Feature Generation and Selection

• Classifier Construction

Figure 5.2: Block diagram of retina detector framework

5.2.3 Gamma Adjustment

The SLO images are initially of very low contrast to be visualized. Also there might be

variation among different images due to device light exposure variations etc. In order

to visualize the SLO images as well as maintain all the images at same mean intensity,

they are normalized by applying a Gamma (γ) adjustment to bring the mean image

intensity to a target value. γ was calculated using

γ =
log10(µtarget)− log10(255)

log10(µorig)− log10(255)
(5.1)

where µorig is mean intensity of the original image and µtarget is mean intensity of

the target image. For image visualization, µtarget is set to 80 as image contrast below

80 was quite low to image was quite bright beyond this value which might be an issue
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in determining features for distinguishing between artefacts and retinal area. Finally,

the Gamma adjustment of the image is given by Equation (5.2).

Inorm = (
I

255
)γ, (5.2)

5.2.4 Generation of Superpixels

A retinal scan obtained from the SLO has the resolution of 3900 x 3072. Therefore

the calculation of features for each pixel which need the neighborhood information

(e.g. textural features) would be quite computationally inefficient. Therefore, we

propose analyzing the SLO image-based features calculated for a small region in the

retinal image called superpixels. The determination of the feature vector for each

superpixel is computationally efficient as compared to feature vector determination

for each pixel. The superpixels from the images in the training set are assigned the

class of either retinal area or artefacts depending upon the majority of pixels in the

superpixel belonging to the particular class. The classification is performed after

ranking and selection of features in terms of effectiveness in classification.

The superpixel algorithm groups pixels into different regions, which can be used to

calculate image features while reducing the complexity of subsequent image processing

tasks as shown in Figure 5.3. Superpixels capture image redundancy and provide a

convenient primitive image pattern. As far as fundus retinal images are concerned,

the superpixels have been generated for the analysis of anatomical structures [32] and

retinal hemorrhage detection [124]. For retinal hemorrhage detection, the superpixels

were generated using watershed approach [109] but the number of superpixels gener-

ated in our case need to be controlled. The watershed approach sometimes generates

number of superpixels of the artefacts more than desired. The superpixel generation

method used in our retina detector framework is Simple Linear Iterative Clustering

(SLIC) [15], which was shown to be efficient not only in terms of computational time,

but also in terms of region compactness and adherence. The algorithm is initialized by

defining the number of superpixels to be generated. The value was set to 5000 which

showed the best trade-off between computational efficiency and prediction accuracy.
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Figure 5.3: Retinal image divided into superpixels

5.2.5 Ground Truth Determination

Our proposed method for retinal area detection is based on training and testing the

superpixel based features so as to distinguish between retinal area and the artefacts.

For training purpose, we have the dataset of SLO images composed of 104 retinal scans.

Some of the retinal scans have been obtained from diabetic retinopathy patients with

having lesions on their retina. An example can be shown in Figure 5.4. The lesions

can be shown as bright spots on retina. These lesions might be misguided as the part

of artefacts during automatic retinal area detection due to their bright structure and

appearance like actual artefacts in the SLO retinal scan. Therefore, the training set

include the features calculated from superpixels obtained from retinal scans with and

without lesions. As shown in Figure 5.4, the clinical annotation around the retinal

area is taken into account to determine the class of superpixel as either retinal area or

artefacts. The superpixels at the border of the retinal area annotation might contain

pixels from both retinal area and the artefacts. In that case, the superpixel will be

counted as part of retinal area or the artefacts if the majority of pixels in the superpixel

belong to either class. In order to avoid large training set, we randomly selected 28

images for training and cross-validation and 76 images for the testing purpose.
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Figure 5.4: Determination of ground truth using superpixels and clinical annotations

5.2.6 Feature Extraction

After the generation of superpixels, the next step is to determine their features. We

intend to differentiate between the retinal area and artefacts using textural and gra-

dient based features. Textural and gradient based features are calculated from red

and green channels on different Gaussian blurring scales; also known as smoothing

scales [14]. In an SLO image, the blue channel is set to zero therefore no feature is

calculated for the blue channel. The details of these features has been described in

Section 4.4.1.

The image features are calculated for each superpixel of the images present in the

training set and they form a matrix of the form as shown in Equation (5.3).

FM =


AtexR AtexG AgR AgG Are

Btex
R Btex

G Bg
R Bg

G Bre

 (5.3)

where A and B represent class of true retinal area and class of artefacts respectively;

superscripts tex, re, g represent textural features, regional features and gradient based

features; and subscript R and G represent the red and green channel respectively. For

determining features at different smoothing scales, both red and green channels of

images are convolved with the Gaussian [14] at scales σ = 1, 2, 4, 8, 16. The textural

features are calculated at the original scale as well as at five different smoothing scales

so as to accommodate their image response in the training set after blurring. In this

way the total number of columns (scalar values) in both channels of Atex and Btex will
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be 114 making it 228 altogether. The gradient features has 6 columns in each scale

making 30 columns for each channel of Ag and Bg so 60 columns in total for each

superpixel. As far as regional features are concerned, except Iµ, they are independent

of channel variation. Therefore, they are calculated only once for the superpixel so 7

columns for Are and Bre (Iµ is calculated for both red and green channels). In this way,

there are the total number of 295 features in FM calculated for each superpixel of the

image present in the training set. Each column of the feature matrix calculated for the

particular image is normalized using z-score normalization [40]. Z-score normalization

returns the scores of the column with zero mean and unit variance. The normalized

feature matrix can be represented as:

FMZS =
FM − FMµ

FMσ

(5.4)

where, FMµ and FMσ are the mean and standard deviation of FM across the exam-

ples.

5.2.7 Feature Selection

After the generation of feature matrix (FMZS), the next step is to select the features

most relevant towards the classification. One advantage of feature selection procedure

is increase in computational efficiency since we need to calculate only selected num-

ber of features. Another advantage of feature selection procedure is exclusion of the

features which are inhibiting the classification power of the feature matrix.

For feature selection procedure, we have selected SFS approach for feature selection.

The advantage of SFS procedure is that it can determine the features set which is

most relevant towards the classification. This can be shown by comparison of its

performance with other feature selection approaches as well as the feature set with

having all features. The comparison of performance can be shown in Figure 5.5 in

terms of classification power of different feature sets with the help of ROC curves.

The ROC curves are generated using 5-fold cross validation on the training set. The

ROC curves and AUC values reveal that if the features are selected using the SFS

approach, they can have a classification power almost similar to the complete feature

set while reducing the computational time.
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Figure 5.5: (a) Receiver Operating Characteristics on the test sets (b) magnified ver-
sion of (a)

The individual and collective performance of the features selected in the feature

sets from the above mentioned approaches are shown in Figure. 5.6. The x-axis of

each plot has been shown in Table 5.1. As an example, the variables for ’Feature

Index’ (x-axis for Figure. 5.6(a) and (b)) has been shown in the respective column of

Table 5.1 in order. The explanation of each variable can be found in Section 4.4.1. As

an example, in µsumR(16), µsum is the ’Sum average’ taken from the Textural features

of Table 4.4. R subscript denotes the red channel whereas 16 represents the value

of Gaussian scale. Similarly, NyyR(2) is the red channel convolved with second order

gradient in y-axis with gaussian scale 2 (Section 4.4.1 and Table 4.5).

According to Figure 5.6, the results show that the SFS approach performed better

compared to other two approaches despite the fact that the feature set also consists of

those features which ranked low in independent evaluation criterion. We selected 10

features out of 295 features since there was little improvement or no in AUC beyond

it. The SFS is computationally intensive as it requires 5 minutes / feature on filtered

feature set and 30 minutes/feature on complete feature set. Nevertheless, SFS is once

in a lifetime process and the calculation time for calculating 10 features is 25 seconds

per image whereas calculating the complete feature set can take around 10 minutes

per image with comparable performance to the SFS feature set as shown in Figure 5.5.

The Table 5.2 represents the percentage of different types of features selected in each

feature set. The table shows clear dominance of textural features compared to gradient

features and regional features.
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Figure 5.6: (a),(b) Plot of independent evaluation criterion. The axis of ‘Feature
Index’ in Figure. 5.6 (a) and (b) is ordered according to descending independent eval-
uation criterion. The features represented by ‘Feature Index’ and ‘Number of Selected
Features’ are shown in Table 5.1. The features are ranked in descending order of inde-
pendent evaluation criterion value. (a) shows Red dots for ‘Filter and SFS approach’
represent the 10 features selected by applying SFS on ‘Filter approach’ set. By ap-
plying the SFS on complete feature set, 10 out of 295 features have been selected as
shown in (b) ‘SFS approach’. (c) shows plot of increasing classification power (AUC)
value by selecting the features one by one in different feature set. The axis of ‘Number
of Selected Features’ in Figure. 5.6 (c) represents the order with which the features
are selected using the SFS approach.
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Table 5.1: Feature sets obtained usung different feature selection approaches. ‘Fea-
ture Index’ represents the order of highest independent evaluation criterion measure.
‘Number of Selected Features’ represent the sequence of feature selection in the feature
set. R and G subscripts represent Red and Green channel respectively. The detail of
feature symbols can be found in Section 4.4.1

Feature Selection

Method

Feature Symbols

Filter Approach (Fea-

ture Index and Number

of Selected Features)

µsumR(16), σsumR(16), µsumR(8),

NR(16), µsumR(4), σsumR(8), µsumR(2),

µsumR(1), µsumR, σsumR(4), σsumR(2),

NR(8), σsumR(1), acorrR(16), σsosR(16),

σsumR, NR(4), NR(2), NR(1), NyyR(1),

IµR, NxxR(1), acorrR(8), σsosR(8),

acorrR(4), σsosR(4), NyyR(2), acorrR(2),

σsosR(2), acorrR(1), σsosR(1), acorrR,

σsosR

Filter and SFS Ap-

proach (Feature Index)

µsumR(16), σsumR(16), σsumR(8),

µsumR, σsumR(4), σsumR, acorrR(8),

σsosR(8), acorrR(1), σsosR(1)

Filter and SFS Ap-

proach (Number of Se-

lected Features)

µsumR(16), σsosR(1), σsumR(8),

σsosR(8), σsumR(16), µsumR, σsumR,

acorrR(8), acorrR(1), σsumR(4)

SFS Approach (Fea-

ture Index)

µsumR(16), acorrR(8), σsosR(8), σsumG,

acorrG, σsosG, HG(8), NyR(16), HG(1),

HdiffG(1)

SFS Approach (Num-

ber of Selected Fea-

tures)

µsumR(16), σsosG, HG(8), NyR(16),

σsosR(8), HdiffG(1), acorrG, acorrR(8),

σsumG, HG(1)

Table 5.2: Percentage of different types of features across different feature set

Feature Set Textural

Features

Gradient

Features

Regional

Features

SFS approach 90% 10% 0%

Filter approach 72.73% 24.24% 3.03%

Filter and SFS ap-

proach

100% 0% 0%
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5.2.8 Classifier Construction

The classifier is constructed in order to determine the different classes in a test image.

In our case, it is a two class problem: true retinal area and artefacts. We have applied

Artificial Neural Networks (ANN). The ANN is the classification algorithm that is

inspired by human and animal brain. It is composed of many interconnected units

called artificial neurons. ANN takes training samples as input and determines the

model that best fits to the training samples using non-linear regression. Consider

the Figure 5.7 which shows three basic blocks of ANN i.e. input, hidden layer (used

for recoding or providing representation for input) and output layer. More than one

hidden layer can be used but in our case, there is only one hidden layer with 10

neurons. The output of each layer is in the form of matrix of floating values which

can be obtained by sigmoid function as:

hW (x) =
1

1 + exp(−W Tx+ b)
(5.5)

where b is the bias value and W are the weights of input x. These weights can be

determined by backpropagation algorithm which tends to minimize mean square error

value between desired output and actual output as:

err =
1

2
(t− y)2 (5.6)

where t and y represent the target output and actual output of the output layer.

The minimization of Equation (5.6) can be represented as:

∂err

∂Wi

= (y − t)y(1− y)xi (5.7)

Since it is an iterative process therefore weights are updated by delta rule as

∆wi = α(t− y)xi (5.8)

α represents the step size. The weights were updated until 1000 iterations.

After the construction of our classifier, we have compared its performance against

different classifiers in terms of accuracy and computational time. The classifiers have

been applied across different feature sets which are obtained by using different feature

selection procedures as mentioned in Section 4.4.2. The classifiers we have selected for
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Figure 5.7: Artificial Neural Networks Diagram

comparing the performance of our classifier are Support Vector Machines (SVM) and

k Nearest Neighbours (kNN) [40].

The idea behind kNN method is to find out samples whose feature are similar to

the classes to be detected. The function, which we are following in order to determine

the similarity of the features with true retinal area is ‘Euclidean Distance’. SVM finds

a separating hyperplane with the maximal margin in higher dimensional space. In our

comparison study, we are using non-linear SVM with Radial Based Function (RBF)

kernel with default parameter of (number of features)−1 = 0.1 [61].

5.2.9 Experimental Evaluation

In order to determine degree of overlap between the retinal areas obtained from clinical

annotation and automatic segmentation results, we have used Dice Coefficient. Let

RA1 and AR1 represent samples (e.g. Superpixels or pixels) from the retinal area and

the artefact area obtained from the framework respectively and RA2 and AR2 be these

samples from the benchmark. The class of superpixels in the benchmark is decided

based on majority of pixels in the superpixel belonging to particular class. Also,

|RA1|+ |AR1| = |RA2|+ |AR2| = Nsample i.e. total number of samples (superpixels or

pixels) in an image. If we calculate Dice Coefficient for the image, Equation (4.7) can

be deduced as:

DI =
(|RA1 ∩RA2|+ |AR1 ∩ AR2|)

Nsample

(5.9)

The Dice Coefficient for the retinal area DR is given as:

DR =
2|RA1 ∩RA2|
|RA1|+ |RA2|

(5.10)

The results of retinal area detection are shown in Table 5.3. The table shows significant

performance of retinal area detection with accuracy of 92%. Some good examples
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(a) (b)

(c) (d)

Figure 5.8: Superpixel classification result of two examples of the SLO images.
Columns represent different examples of retinal images. Left column are retinal scans
with lesions whereas right column is the retinal scan from healthy subject. Figures (a)
to (b) represent superpixel classification results and Figures (c) to (d) represent the
final output

Model

Feature 
Generation

Automatic 
Annotation

Super-pixel 
Generation

Image Pre-
processing

Superpixel
Classification

1.14 seconds 20 seconds 20 seconds

0.013 secondsTotal Time ~ 40 seconds

Image
Dimension: 
3900 x 3072

Image

Figure 5.9: Block diagram of deployment stage of retinal area detector alongwith
execution time of each block
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of retinal area detection has been shown in Figure 5.8. The Figure 5.8(a) and (c)

show the examples of superpixel classification and retinal area detection on the retinal

scan with disease lesions whereas the same for healthy retinal scan has been shown

in Figure 5.8(b) and (d). The retinal area detection accuracy on these examples of

diseased and healthy retinal scans is 90% and 95% respectively. The accuracy is quite

high in most of the images in the testing set however, there are some false positives in

case of retinal scan with higher visibility of eyelids which should be classified as part

of artefacts. An example has been shown in Figure 5.10. The example shows that a

portion of eyelid has been misclassified as part of retinal area. In this case the retinal

area detection accuracy is 85%.

Table 5.3 compares the performance of ANN with other classifiers. As far as

classification accuracy is concerned there is little difference among the outputs of

different classifiers. The advantage of using ANN is its high computational efficiency

in terms of classification testing time. Compared to SVM, ANN has the advantage

of reduced processing time while processing a batch of images. Although the training

time of ANN is longer compared to its other two counterparts, the training stage is

once in a lifetime process and once the model is deployed, it can process any image.

Figure. 5.9 represents the total time taken by an image to be processed for automatic

annotations.

Table 5.3: Comparison of framework output performance using different classifiers.
The performance is compared with respect to computational time taken during training
and testing and average accuracy. The training time is calculated for 28 images.
Testing time shows the average time taken by the framework

Superpixel
Samples

Pixel
Samples

Classifier Training Time Testing Time DI DR DI DR

ANN 30 minutes 0.013 seconds 90.48% 90.28% 91.93% 91.87%

SVM 12.5 minutes 8.5 seconds 90.93% 90.89% 92.00% 91.94%

kNN 1.45 seconds 2.05 seconds 90.34% 90.17% 91.43% 91.31%
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Figure 5.10: An example of retinal area detection with higher visibility of eyelids

5.3 The ONH Localization

After determination of retinal area, the next step is to localize the ONH. The pur-

pose of localizing the ONH is to determine glaucoma related features which require

segmentation of the ONH related structures. The literature survey suggests several

methods which have been divided into three different categories (Section 3.2.1). Out

of these categories, the category which regards the ONH center as convergence point

of vasculature segmentation has been the most successful. These methods usually not

misguided by the bright spots on retina which are not part of the ONH. However,

the accuracy of these methods depend on vasculature enhancement in the ONH area.

Among different methods under this category, our method is inspired with the method

of horizontal and vertical edge mapping [88] due to its speed and robustness. We have

determined weighted feature maps for the ONH localization which enhance the ONH

region for better accuracy and robustness. The details are discussed as follows:

5.3.1 Weighted Feature maps based ONH Localization Method

In this method, two feature maps are calculated. Their equations are given as follows:
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F1 = (|Ix| − |Iy|)./Y (5.11)

F2 = (|Ix|+ |Iy|). ∗ Y (5.12)

where Ix and Iy are gradients with respect to x and y direction respectively. Y is

the intensity map and .∗ and ./ are pixelwise multiplication and division respectively.

The purpose of F1 is to enhance the vasculature. Since the vasculature converges at

the ONH, therefore we will determine the point along horizontal axis with maximum

vasculature density i.e. the ONH. The red slider shown in Figure 5.11a slides along

the horizontal direction. The width of the slider is equal to the maximum width of

the retinal blood vessel. The slider profile at the particular point is the sum of all the

pixels from the feature map (F1) within the slider region. Since the vasculature region

has the maximum density at the ONH area, therefore the sum would be maximum

compared to other points in the horizontal direction and slider will stop at that point.

On the other hand, the square slider slides on F2 (Figure 5.11b) in the vertical direction

where the rectangular slider in F1 has stopped. F2 map enhances the ONH region,

therefore the square slider will stop at the center of the ONH. The width of the square

slider is equal to the square area in which the ONH can be contained.

The ONH localization using Equation (5.11) and (5.12) has worked in most of the

images in our datasets but it has been misguided sometimes if there are lesions on the

retina which can be mistreated as part of vasculature or if ONH area is blurred. In

order to increase the robustness of the algorithm, we have determined Weight maps of

both feature maps and then performed pixelwise multiplication between feature maps

and the respective weight maps. In the coloured retinal scan, the green channel has

prominent ONH region compared to red or blue channel. Therefore, for determining

weight maps, the green channel of the image is passed through Fast Radial Symmetry

Transform (FRS) [144] and Matched Filtering [30]. FRS transform obtains the posi-

tively affected pixels and negatively pixels along the gradient directions in a predefined

radius. It enhances ONH due to its brightness and strong edges and diminishes the

reflections with weak edges. The matched filter involves convolution of green channel

with Gaussian kernel in 12 directions from 0◦to 360◦and the maximum response from

each filter is taken into consideration. It is one of the oldest technique to segment out
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retinal vasculature structure. Although its not completely accurate, it enhances the

vasculature structure of the retina.

Each of the FRS transformed map and matched filter map is normalized between

0 and 1 and then pixelwise multiplied to F2 and F1 respectively. In this way, the

vasculature structure and ONH area are enhanced more than other retinal areas. We

now have equations as:

F1 = (|Ix| − |Iy|)./Y. ∗MF (I) (5.13)

F2 = (|Ix|+ |Iy|). ∗ Y. ∗ frs(I, rad) (5.14)

where frs and MF are weight maps obtained from Fast Radial Symmetry Trans-

form and Matched Filtering respectively. The frs is initialized with the rad equal

to radius of the optic disc. The feature maps from one image has been shown as an

example in Figure 5.11. The location result in fundus image as well as the SLO image

has been shown in Figures 5.12 and 5.13.

5.3.2 Ground Truth

In order to determine the localization accuracy of the ONH, we have the datasets of

fundus images and the SLO images.

Fundus Images: The fundus image dataset has been obtained from Drishti-GS

[115]. There are 50 images in the training set. Each image in the training set has been

annotated with the centre of the ONH along with the ONH (optic disc) boundary

annotation. The ONH boundary annotation is used to calculate the minimum distance

of the ONH boundary from the centre.

SLO Images: There are 102 SLO images in the dataset. Each dataset has been

annotated around the ONH (optic disc). The centre of the ONH is calculated by

determining the centroid of the annotations of the ONH boundary. The minimum

distance of the ONH boundary from the centre has also been calculated.
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(a) Feature map 1(F1) (b) Feature map 2(F2)

Figure 5.11: Examples of both feature maps with respective sliders. The feature maps
have been enhanced by pixelwise multiplication with matched filter map and FRS
transform map.

5.3.3 Experimental Evaluation

The ONH centre is considered automatically localized if the distance between manually

annotated ONH centre and automatically localized ONH have the distance less than

50% of the minimum distance between the ONH centre and the ONH boundary. The

approach of accuracy measurement has been followed by most of the ONH localization

methods [88], [45]. The results with average accuracy and execution time are shown in

Table 5.6. The ONH localization method achieved the 100% accuracy on the Drishti-

GS images. However, the method is failed on two SLO images as the vasculature area

is not enhanced due to high atrophy area around the ONH. As far as total execution

time is concerned, most of the total execution time is of frs which is 8 seconds for

the Drishti-GS dataset and 12 seconds for the Optomaps. The frs execution time

depends on the image resolution as well as radius of the ONH.

Table 5.4: Accuracy and execution time of ONH localization in different datasets

Image Dataset Accuracy Execution

Time

Image Resolution

Drishti-GS 100% 10 seconds 2896 x 1944

Optomaps 98% 15 seconds 3900 x 3072
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Figure 5.12: Fundus image ONH localization example with slider profile

Figure 5.13: SLO image ONH localization example with slider profile
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5.4 Vasculature Segmentation

After localizing the ONH, the next step is to segment out vasculature structure. As

discussed earlier, there are two main reasons for segmenting out vasculature structure

in our project.

1. The vasculature structure occludes the ONH area. Therefore we need to segment

and remove it for accurate segmentation of the optic disc and the optic cup.

2. The vasculature shift in the ONH area is in itself indication towards glaucoma

[65].

There are several methods reported for retinal blood vessel segmentation [30,47,87].

Most of these methods have been applied on complete retinal area; most of them

misidentified ONH boundary as part of the vasculature structure. Also in case of

glaucoma images, PPA was also misidentified as the part of vasculature area.

5.4.1 Ground Truth

Our proposed vasculature segmentation method has been applied on the ONH cropped

image. The ONH cropped image has been obtained after the ONH localization and

cropping the ONH area. The training has been performed between non-vasculature

area and vasculature area in the ONH cropped image. The method has been applied

on both fundus and the SLO images.

Fundus Images: The fundus images annotated with vasculature area have been

taken from the dataset of Pattern Recognition Lab, Erlangen (PRLE) as the glaucoma

datasets for fundus images (Drishti-GS and RIM-ONE) have not been annotated with

vasculature area. The PRLE dataset has 30 images with each image has the resolution

of 3504 x 2336 pixels however, after the ONH cropping, the resolution is 300 x 300

pixels.

SLO Images: We have 51 images annotated with vasculature area. Each image

has the resolution of 3900 x 3072 pixels however, it becomes 341 x 341 after ONH

localization and cropping the ONH area.
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Figure 5.14: Results of feature selection procedure with (a) Area Under the Curve of
Fundus Images and the SLO images and (b) SFS feature selection procedure. The
x-axis symbols are shown in Table 5.5

5.4.2 Feature Generation and Selection

We perform pixelwise classification between vasculature structure and non-vasculature

area. The reason for not using superpixel in this case is that misclassification of a

superpixel which is a group of pixels can be more expensive for accuracy as compared

to a misclassified pixel. The pixel wise training may account for high computational

time in training and testing stages. Therefore, we have randomly selected 1000 pixels

from each of vasculature area and non-vasculature area in order to avoid large training

sets which might be computationally inefficient for training. The vasculature structure

is more prominent in the green channel, therefore the gradient, Gabor and biologically

inspired features are calculated using the green channel. The textural features would

be computationally inefficient for pixelwise calculation especially in testing stage so

they were not included in the feature set. The final feature matrix is shown as follows:

FM =


AgG AgabG AbioG

Bg
G Bgab

G Bbio
G

 (5.15)

where A and B represent classes of vasculature area and non-vasculature area, super-

scripts g, gab, bio represent gradient based, Gabor and biologically inspired features

respectively and G represents the green channel. For gradient based features, we have

used scales σ =
√

2, 2, 2
√

2, 4. The Gaussian features have 6 columns in each scale

making 24 columns. Also, the maximum responses across the scales of each feature
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shown in Table 4.5 are also calculated. In short, the total gradient based features were

43. In addition, 18 biologically inspired and 32 Gabor features at different directions

and frequencies are selected. In this way, there are the total number of 93 features in

the feature matrix for each pixel of the image present in the training set. Each column

of the feature matrix calculated for the particular image is z-score normalized.

The results of feature selection procedure using the SFS approach are shown in

Figure 5.14b. Like in case of retinal area detection, the SFS continued selecting the

features till the instant when there is little or no improvement. For both fundus images

and the SLO images, 20 features have been selected. The ’Selected Feature Set ’ is

shown in Table 5.5. The AUC has been calculated using 5-fold cross validation in the

training set and is shown in Figure 5.14a.

Table 5.5: Feature sets obtained using SFS approach for vasculature segmentation.
The detail of feature symbols can be found in Section 4.4.1

Datasets Feature Symbols

Fundus Images NxxG(4),BY (2, 5),5IG,NyyG(4), ML(4),BY (4, 8),ML(2
√

2), ν0, NyG(
√

2),

Gb(x, y, 0◦, 2, 1
3
,
√
2

3
), ML(2),Gb(x, y, 0◦, 2, 1

4
,
√
2

4
), NxG(

√
2) ,ρ, I(4, 8), RB ,

Gb(x, y, 90◦, 2, 1
3
,
√
2

3
), Gb(x, y, 90◦, 2, 1
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5.4.3 Experimental Evaluation

For classification between vasculature area and non-vasculature area in the ONH

cropped image, we have used backpropagation ANN with single layer. We have allo-

cated 20 neurons in the hidden layer although good results can be achieved from 10

neurons till 30. The ANN has been trained and validated using 5-fold cross validation.

From the output of the ANN, we can obtain neural weights which determines

the membership value for the particular class. It is quite tricky to classify between

the vasculature structure and the non vasculature area near optic disc. The non-

vasculature area contains pixels from optic disc rim, optic cup, PPA (if present) and

retinal area. Therefore, we segmented out only those pixels which has neural weights

greater than 0.98. Some of the classification results are shown in Figure 5.15. The

segmentation accuracy has been evaluated against the ground truth (Section 5.4.1)
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using dice coefficient as:

Dvas =
2(|vas1 ∩ vas2|)
|vas1|+ vas2|

(5.16)

where vas1 and vas2 are vasculature area obtained from the benchmark and automatic

segmentations respectively. The vasculature segmentation accuracy, AUC values and

execution time are shown in Table 5.6. For testing purpose, the ONH area has been

cropped from PRLE and Optomaps after ONH localization. These results have been

calculated for PRLE and SLO images.

Table 5.6: Accuracy and execution time of vasculature segmentation in different
datasets.

Image Dataset Segmentation

Accuracy

AUC Execution

Time

PRLE 90.77% 0.9493 10 seconds

SLO images 90.21% 0.9297 10 seconds

The results although accuracy greater than 90%, our main task of determining ONH

cropped image vasculature classifier is to avoid edges of the optic disc and PPA while

segmenting vasculature area. Therefore, we have tested our classifier on RIM-ONE

dataset [49] (Section 4.2). The vasculature segmentation classifier for SLO images has

been tested on ONH cropped SLO images. Figure 5.15 shows examples of segmenta-

tion output of the vasculature classifier on both fundus (Figure 5.15(b),(d)) and SLO

images (Figure 5.15(f)). The fundus images have been taken from RIM-ONE dataset.

All these examples show the vasculature segmentation result while avoiding optic disc

boundary to be the part of vasculature area. Figure 5.15(b) shows the vasculature

segmentation results on the image with PPA in Figure 5.15(a). This example shows

that our vasculature classifier is not over-segmenting the PPA to be the part of vascu-

lature area. We can also deduce from visual examples of vasculature segmentation on

RIM-ONE that classifier designed on PRLE images is able to segment out vasculature

area in RIM-ONE. Since we don’t have vasculature annotations on RIM-ONE, there-

fore we have not performed quantitative analysis of vasculature segmentation accuracy

on RIM-ONE. Like RIM-ONE, the classifier can also segment out vasculature area in

Drishti-GS dataset. The total execution time depends on the size of the ONH cropped

image.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Examples of segmentation results on fundus images and the SLO images.
(a) glaucoma fundus image from RIMONE with PPA around it, (b) segmented output
of (a), (c) normal fundus image from RIMONE, (d) segmented output of (c), (e) the
SLO image and (f) segmented output of (e)
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5.5 Conclusion

In this chapter, we discussed about pre-processing steps need to extract the ONH area.

The pre-processing steps include retinal area detection, ONH localization and vascula-

ture segmentation. Distinguishing true retinal area from artefacts in SLO images is a

challenging task, which is also the first important step towards computer-aided disease

diagnosis. In this work, we have proposed a novel framework for automatic detection

of true retinal area in SLO images. We have used superpixels to represent different

irregular regions in a compact way and reduce the computing cost. Feature selection

enables the most significant features to be selected and thus reduces computing cost

too. A classifier has been built based on selected features to extract out the retina

area. It has been compared with other two classifiers and was compatible while saving

the computational time. The experimental evaluation result shows that our proposed

framework can achieve an accuracy of 92% in segmentation of the true retinal area

from an SLO image. The automatic retinal area detection in SLO images can serve

as a first step in automatic analysis of retinal diseases in SLO images while avoiding

bright artefacts to be the part of retinal area. This can be crucial in automatic analysis

of retinal diseases with lesions. However, the segmentation accuracy should be above

90% in order to include important regions of the retina i.e. the ONH, disease lesions

etc. In case of glaucoma, the ONH localization algorithm is able to perform more

accurately after true retinal area detection.

Apart from retinal area detection, we have proposed weighted feature map based

ONH localization method so as to improve the ONH localization accuracy and ro-

bustness. The average ONH localization accuracy on fundus images and SLO images

is 100% and 98% respectively. The vasculature segmentation is a key step to deter-

mine the vasculature shift which is one of the geometrical indication associated with

glaucoma. We proposed the classification model for segmenting out vasculature area

from the ONH image. The average segmentation accuracy achieved on fundus images

and SLO images is 90.77% and 90.21%. The following chapters are based on detailed

analysis of ONH area and segmentation of its different regions so as to determine

structural and geometrical changes associated with glaucoma



Chapter 6

Optic Disc Segmentation

6.1 Introduction

This chapter is concerned with automatic segmentation of the optic disc boundary.

The optic disc boundary can be segmented out if the optic disc centre is accurately

localized since it is used for initialization of the model representing the optic disc

boundary. The segmentation of optic disc is essential for determining glaucoma related

features such as the CDR, neuroretinal rim loss etc. Their automatic determination is

not a trivial task since it involves accurate segmentations of optic disc and optic cup.

There are several methods with respect to optic disc segmentation which have been

discussed in Chapter 2. We have divided those methods into three different categories

i.e. non-model based approaches, boundary approximation modeling, statistical shape

modeling and freeform modeling approaches. Non-model based approaches are based

on morphological operation which are highly dependent on grayscale values. Bound-

ary approximation modeling are the approximate representation of optic disc in terms

of elliptical or circular area. For accurate representation of optic disc boundary, the

statistical shape modeling or freeform modeling could have been the better choice.

However, there were certain issues in the previous methods. Firstly, most of the pre-

vious optic disc extraction methods have been applied on red channel. There can

be certain channels which can have higher classification power to distinguish between

inside and outside of the optic disc. These channels can be determined by feature

generation methods discussed in Section 4.4.1. We can call these channels as feature

83
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maps. Secondly, the statistical shape analysis methods were often misguided by vas-

culature occlusion [56]. Also, statistical shape modeling has always as issue in order

to find optic disc edge. Thirdly, in case of glaucoma, both statistical and freeform

modeling approaches were misguided by the PPA.

In order to address these issues, we propose two models i.e. Point Edge Model

(PEM) and Region Classification Model. The RCM determines the optic disc region

using the set of feature maps suitable for region classification. On the other hand, the

PEM updates the contour obtained from RCM according to the force field equation of

the feature maps with the highest gradient around the optic disc boundary. The main

purpose of PEM is to update the contour according to true edge of the optic disc.

We call the hybridization of these two models as Point Edge and Region Classification

Model.

6.2 Ground Truth

The training and evaluation of the proposed models has been carried out in two types

of datasets i.e. the SLO images and fundus images. As discussed earlier, the feature

sets obtained for both types of datasets are different. The ground truth protocols for

both datasets have been explained as follows:

SLO Images: There are 102 SLO images out of which 51 images have been obtained

from healthy subjects whereas 51 images have been obtained from glaucomatous sus-

pected subjects. Each image has been ONH cropped with resolution of 341 x 341 after

ONH cropping. Each image has been annotated around optic disc by one expert.

Fundus Images: In fundus dataset, we have 50 images from Drishti-GS dataset and

158 images from RIM-ONE. The Drishti-GS images have been ONH cropped with res-

olution of 701 x 701 after ONH cropping. However, there is no disease annotation in

Drishti-GS dataset. Each image has been annotated around optic disc by four experts.

As far as RIM-ONE is concerned, it is composed of ONH cropped images. RIM-ONE

is composed of 118 healthy and 40 glaucomatous images with resolution varying from

300 to 900. Each image has been annotated around optic disc by five experts. For con-

structing training and validation set, we have randomly picked 40 images from Drishti,

40 healthy from RIM-ONE and 40 glaucomatous images from RIM-ONE; making 120
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altogether. The rest of the images have been used for testing the model.

6.3 Point Edge and Region Classification Model

The Point Edge and Region Classification Model (PERCM) for optic disc segmentation

is based on region search as well as edge search. Therefore, we have trained two types

of models. One model will search the optic disc region using the region classification

model which we name as Region Classification Model (RCM). Other model will update

the shape model using edge force. We name this model Point Edge Model (PEM). The

block diagram of the PERCM is shown in Figure 6.1. We will discuss the following

relevant components in detail:

1. Generation and selection of feature maps

2. Region Classification Modeling (RCM)

3. Point Edge Modeling (PEM)

4. The PERCM algorithm

Procrustes 
Alignment

Classifier 
Design

Images
Optic Disc

Annotations

Region 
Classification 

Model

SFS Feature 
Selection

Feature 
Generation

Filter Feature 
Selection

Point Edge 
Model (PEM)

Optic Disc 
Region Search

PEM 
Update

Convergence

Input Image

End

No
Yes

Training 
Stage

Testing 
Stage

Principal 
Component 

Analysis

Feature 
Generation

Edge Force 
Calculation

Figure 6.1: Block diagram of Point Edge and Region Classification Model for optic
disc segmentation
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6.3.1 Generation and Selection of Feature maps

The feature maps are generated by calculating features (Chapter 5) for each pixel

of the image. We use these feature maps to classify between the region outside the

boundary of the optic disc and the region inside the boundary of the optic disc. The

region outside the boundary of optic disc includes the retinal area and the PPA. The

region inside the boundary includes ONH rim and optic cup. Besides, the retinal

vasculature area is also converged inside the ONH area and occluding the optic disc.

Since the vasculature area has been segmented out (Chapter 5), therefore we can re-

move the vasculature by morphological inpainting. Morphological inpainting can be

performed by morphological closing around different directions and retaining the max-

imum response for each vessel pixel. For minimum computational complexity, we have

selected 8 different directions. We have used ‘disk’ element for morphological closing

with radius equal to maximum width of the vasculature area. Since the morphological

inpainting can also affect the optic disc boundary, therefore we have calculated the

feature maps under two situations, i.e. 1) with vasculature removal and 2) without

vasculature removal. The feature matrix can be given as:

FM =


AgN AgabN AbioN AgV AgabV AbioV

Bg
N Bgab

N Bbio
N Bg

V Bgab
V Bbio

V

 (6.1)

The subscript N denotes the feature maps with no-vessel removal and V denotes the

other way round. These features are calculated for red and green channels in both

fundus and SLO images and on different scales i.e. σ = 2, 4, 8, 16. The blue channel

in fundus images has very low histogram range of grayscale value and therefore not

suitable for texture analysis however, it can be used for biologically inspired features

calculation (Section 4.4.1). In SLO images, the blue channel is set to zero. There are

190 feature maps in both vessel removed and non-vessel removed types; making 380

in total. We then normalize the FM using z-score normalization.

As far as feature maps are concerned, we determined two feature sets i.e. one

for RCM model and one for PEM model. The feature set for the RCM model has

been determined using the SFS approach since the RCM model will search the for

the contour representing the optic disc region. The SFS approach will determine the
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Table 6.1: Feature symbols for each feature set obtained using the SFS and Filter
approaches for optic disc region determination. The detail of feature symbols can be
found in Section 4.4.1

Feature Selection

Approaches

Fundus Images SLO Images

SFS Approach LuvRN (16), RGN (4, 7), IN (4, 8), Lu,uRV (16),

SRV (2), NRV (16), Lqq,γ−normGN (8),

NxGV (16), GV , Lqq,γ−normRV (8)

LuvGV (16), LuvGN (16), NyyRV (16),

Lqq,γ−normRV (2), Lpp,γ−normRN (8),

BYV (3, 7), NyyRN (16), NxxRN (16), NRV (16),

RV

Filter Approach LuvRN (16), LuvRV (16), Lqq,γ−normRN (8),

Lqq,γ−normRV (8), NyyRN (4), NyyRV (4),

Lu,uRN (4), Lu,uRV (4), RN , RV

LuvGV (16),Lqq,γ−normGV (8), NyyGV (4),

Lu,uGV (4), GV , GbV (x, y, 90◦, 2, 1
10
,
√
2

10
),

GbV (x, y, 90◦, 2, 1
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,
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features which will have highest classification power in conjunction with previously

selected features (Section 4.4.2). In this way the SFS will select the features regardless

of Individual Evaluation Performance (IEP) of each feature set. For RCM model, the

SFS has selected 10 features beyond which there is little or no improvement as shown

in Figure 6.2 (b) with blue line. The feature sets for both fundus and SLO images are

capable to achieve the classification accuracy above 98%.

On the other hand, the feature set for the PEM model has been determined by

selecting the features using filter approach which ranks these features according to

IEP [82] (Section 4.4.2). The features with high IEP have strong edge profile and are

more suitable for gradient calculation. The filter approach will select these features

for PEM since it needs to update the RCM determined contour on the basis of feature

maps with strong edge profiles. We have included the number of features until the

mean of feature maps gradient around optic disc is the strongest. In our case, we

have selected 10 features as the gradient of the regions other than optic disc would be

enhanced beyond 10 and therefore affect the contour update. The features selected for

both SLO images and fundus images using the SFS and Filter approaches are shown

in Table 6.1.

According to Table 6.1, the selected features for fundus images and SLO images

are different due to difference of gray levels in red and green channels in SLO im-

ages compared to fundus images. Also the blue channel is set to zero in SLO images

which is used for calculation in ’Biologically Inspired Features’. The results of fea-

ture selection process using both SFS and Filter approach are shown in Figure 6.2.
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(a) (b)

(c) (d)

Figure 6.2: Results of feature selection procedures with (a) ROC curves of both fundus
and SLO images for selected features using the SFS, (b) feature selection process using
the SFS (c),(d) IEP of both fundus and SLO images respectively

Figure 6.2(a) represent the ROC curve obtained after 5-fold cross validation whereas

Figure 6.2(b) shows the sequence of features selected during the SFS approach. The

features shown in Table 6.1 selected by the SFS approach for both fundus and the SLO

images represent the x-axis of Figure 6.2(b) whereas features selected by the Filter ap-

proach for fundus images and the SLO represent the x-axis of the Figure 6.2(c) and

(d) respectively. By observing the subscript of features selected for fundus images by

the SFS approach in Table 6.1, we may deduce that feature maps without vasculature

removal perform better than those with vasculature removal in fundus imaging which

is contradictory to what we found in our literature survey. Also there are feature maps

that have a higher classification power compared to the red channel. In SLO images,

we need to determine the feature maps from the green channel with the vasculature

removal for better classification.
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6.3.2 Region Classification Model

The Region Classification Model (RCM) model is generated so as to determine the

optic disc region. The RCM is initialized at the optic disc centre as localized by the

ONH localization method (Section 5.3). The model searches the optic disc boundary

by determining the optimum profile normal to each point. In order to determine

the RCM model, we perform pixelwise training on the feature maps obtained using

the SFS approach. The pixelwise classification can be quite inefficient in terms of

computational time and memory consumption since training and cross-validation sets

will contain more than 30 images while training on fundus images as well as on SLO

images separately. Therefore, we have decided to select 1000 feature map pixels from

both inside and outside of the ONH from each image present in the training set.

In order to determine the classification model, we used backpropagation ANN

which proved to be the fastest in terms of testing time as compared to other classifiers

(Section 5.2.9). We have one hidden layer with 10 neurons in the ANN model for RCM.

Also in contrast to the classification approaches as followed in [120, 126] we trained

only one model for each contour point. This is because the feature map properties

would be quite similar for each contour point as per retinal area and ONH rim.

Figure 6.3: Profile sampling for region determination
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Algorithm 1: Optimum profile search for optic disc region search

Input: (Xold) = {Xoldj |j = 1...m},m is number of contour points in Xold

n2=number of profiles g for contour point Xoldi from Xold center to the image corner.

Each g is sampled with 2n1 points i.e. n1 samples to the left of profile g centre and

n1 samples to the right of the profile g centre. g is sampled on the feature maps

selected using the SFS approach,

Region Classification Model (RCM)

Output: New contour Y which is the optimum boundary of the optic disc as

determined by RCM

for (int j = 1;i≤m;i++) {

for (int i = 1;i≤n2;j++){

neti(g)=RCM(g)

pfi(g) =
∑n1

i=1
neti(g)

n1
+ 1−

∑n1+n1
i=n1+2

neti(g)

n1

}

Yj=min(pf(g))

}

The region search procedure is illustrated in Algorithm 1. According to the algo-

rithm, we sampled the profile of n1 points on the line normal to contour on either sides

i.e. 7 points on the right side and 7 on the left. In this way we determine around n2

profiles by placing the contour point at different positions which are normal to original

position of the contour point. An example of the profile sampling is shown in Fig-

ure 6.3. According to the figure, if the profile at the edge of the optic disc is classified,

the left hand side samples should be classified as part of the retina whereas right hand

side samples should be classified as part of ONH rim. This type of classification is

quite effective in avoiding PPA or vasculature occlusion. Also the output of the neural
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networks is in the form of weights representing relevance to the respective classes. For

example if we treat the ONH area as class 1 and the retinal area as class 0 then the

weights would be in between 0 and 1. In order to determine optimum profile we used

the following formula:

pf(g) = argmin(

∑n1
i=1 neti(g)

n1

+ 1−
∑n1+n1
i=n1+2 neti(g)

n1

) (6.2)

where neti(g) is the neural weight of the respective profile at sample i. The minimiza-

tion of neural weights sum outside the ONH boundary and the maximization of neural

weights sum inside the boundary can result in optimum profile close to the boundary

of the optic disc.

6.3.3 Point Edge Modeling

In order to update the contour obtained from the RCM according to the edge of the

optic disc, we have determined Point Edge Model (PEM). The PEM in conjunction

with the RCM combine to form the iterative procedure of PERCM. The PEM will

initialize the RCM, update the contour obtained from RCM and generate the condition

of iterative procedure of PERCM. The PEM is composed of following steps:

1. Contour Generation for RCM Initialization.

2. PEM Model Update.

3. Generation of Iterative Procedure Condition.

1) Contour Generation for RCM Initialization

In every iteration of PERCM, the contour for RCM is initialized from the previous

iterative step. In first iteration, the contour is initialized by mean of the shapes present

in the training set. In order to calculate the mean of shapes in the training set, we

need to align the shapes using Procrustes alignment [119]. The shape alignment aims

to transform all training set shapes into a common coordinate frame.

In Procrustes alignment, the shape of an optic disc in a two-dimensional (2-D)

image can be described by a set of n landmarks. These landmarks are manually

annotated to describe the disc shape in a retinal image. Each shape can be described

as a vector of n coordinate pairs having 2n elements as mentioned below:
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v = [(x1, y1), (x2, y2), ........, xn, yn]T . (6.3)

The task of shape alignment can be achieved by three transformation steps: cen-

tralization, scaling and orientation. For centralization, the centroid of each landmark

shape is calculated as the average position of all its landmarks, then the shape is trans-

lated to its local origin by subtracting its centroid (see Figure 6.4(b)). The centroid

of the shape can be represented as:

vcent = (x̄, ȳ) = (
1

n

n∑
j=1

xj,
1

n

n∑
j=1

yj). (6.4)

After translation to the origin, we need to normalize all shapes with zero mean

and unit variance of each contour point present in the shape. The shapes can be

normalized (see Figure 6.4(c)) using the Frobenius norm (2-norm) [119] equation as:

vnorm =
vtrans

norm(vtrans)
, (6.5)

where,

vtrans = v− vcent (6.6)

and

norm(v) =
√
x1

2 + y1
2 + ........+ xn2 + yn2 (6.7)

The annotations for the left and the right eyes are usually performed in different

directions, i.e. clockwise and in anti-clockwise directions, we then need to flip the

annotations of the left eye to lie in same direction to that of the right eye in order to

perfectly align them as shown in Figure 6.4(d).

Finally, we obtain the mean of N aligned shapes present in the training set as:

X̄ =
1

N

N∑
i=1

vinorm. (6.8)

2) PEM Model Update

In this model, we have calculated the force field in order to update the model towards

optimum edge. The force field of the image can be represented as:

f = ∇(I(x, y)). (6.9)
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Figure 6.4: Alignment procedure of the optic disc shapes. The shapes are represented
(a) in an original image, (b) after translation to the origin, (c) after normalization and
(d) after flipping the annotations of left eyes so that the annotation direction of both
the eyes would be same

where ∇ is the gradient map of the image. If the image is in the form of binary edge

map (fedge), it can represent the force field of the image as f = fedge. The force field

has been calculated on the feature maps using the filter approach. This is in contrast

to the techniques discussed in literature which have used red channel of the coloured

fundus photograph for optic disc segmentation. In order to determine the edge force of

the optic disc boundary, one could use Gradient Vector Field (GVF) [136]. Although

GVF has a large capture range of detecting edges and ability to capture boundary con-

cavities, it is quite sensitive to noise and has a high computational cost. Therefore we

have decided to use Kernel Vector Field (KVF) which can be calculated by convolving

the image edge map fedge(x, y) with kernel k(x, y) as shown in Equation (6.10). It has

not only a large capture range and the ability to capture boundary concavities but

also has reduced computational cost and a superior robustness to noise [78].

fkvf = fedge(x, y) ∗ k(x, y) (6.10)

Different values of the kernel k(x, y) are optimal for different shapes. In our case,

optic disc has a circular shape. Consider the optic disc centre is at origin (0,0) and
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the distance from the centre along x-axis and y-axis can be stated as (x,y). We can

define radial power kernel using Equation (6.11) (6.12) (6.13):

k(x, y) = m(x, y)n(x, y) (6.11)

where m(x, y) is magnitude of the vector at (x, y) and n(x, y) is unit vector pointing

to the origin (0, 0), defined as:

n(x, y) = [
−x
r
,
−y
r

] (6.12)

where r =
√
x2 + y2, and

m(x, y) = (
√

(x2 + y2) + ε)−γ (6.13)

ε is small positive constant to prevent division by zero whereas γ is determined em-

pirically as 1.5. Lower the value of γ, more influential would be the force field of the

object of interest (in this case it is optic disc). The KVF is noise invariant compared

to GVF which can be illustrated in Figure 6.5. Here a value of r = 150 which is

the estimated value of the radius of optic disc in a 701x701 image. In the edge map

shown in Figure 6.5(b) there are false edges inside the optic disc boundary which are

misguided by GVF. However, force field calculated by KVF is directed towards the

optic disc boundary.

In Equation (6.10), we determined fedge by taking the mean of edge maps obtained

after taking the gradient of feature maps selected from filter approach. It can be

mentioned in the form of equation as:

fedge =

∑n
i=1∇(Λi)

n
(6.14)

where ∇ represent gradient operation, Λi is the ith feature map obtained after ranking

feature maps using filter approach and selecting n features. The filter approach ranks

the features according to strongest edge profiles around the optic disc. We have in-

cluded the number of features n until the mean of feature maps gradient around optic

disc is the strongest. In our case n=10. For a binary edge map, we can apply Canny

edge detector on fedge [52]. So Equation (6.10) can be re-written as:
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(a) (b)

(c) (d)

Figure 6.5: Comparison of GVF and KVF in calculating force field where, (a) colour
fundus image, (b) binary edge map obtained using Canny edge detector, (c) force field
using KVF and (d) shows force field using GVF. The comparison of (c) and (d) shows
fkvf is not misguided by false edge within the optic disc as in case of fgvf in (d).

fkvf =

∑n
i=1∇(Λi)

n
. ∗ k(x, y) (6.15)

where, .∗ represent pixelwise multiplication.

The force field fkvf can be used in PEM for model update. Based on [138,143], the

PEM model can be given as:

X = X ′ + w sign(f(X ′)) exp−|f(X
′)|, (6.16)

where X and X ′ are current and previous contours respectively. w is a step size

value that is empirically selected as 2, . represent multiplication. In our case, f = fkvf .

The Equation (6.16) can be rewritten as:

X = X ′ + w sign(fkvf (X
′)) exp−|fkvf (X′)|, (6.17)
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3) Generation of Iterative Procedure Condition

As far as generation of iterative procedure condition is concerned, the PERCM tend

to keep the contour consistent with the training shapes. Therefore, the iterative pro-

cedure of PERCM will continue until the condition of minimum error between the

contour and the mean of training shapes is achieved. In order to generate the condi-

tion, we have determined eigen values and eigen vector. This can be generated as:

[Φ, λ] = eig(S) (6.18)

where, Φ = (φ1, φ2, ......., φt) is a set of t eigen vectors corresponding to the largest t

values of the covariance matrix of the training shapes S and λ = (λ1, λ2, ......., λt) is

the set of t eigen values. The covariance matrix can be given as:

S =
1

N − 1

N∑
i=1

(vinorm − X̄)(vinorm − X̄)T . (6.19)

In order to generate the iterative procedure condition, we know that statistical shape

modeling is a method for building a model by learning patterns of variability from a

training set of shapes in the form of annotations [33,127]. Using the statistical shape

modeling, the optic disc can be approximated as:

X ≈ X̄ + Φb, (6.20)

where the vector b defines a set of parameters of a deformable model. By varying the

elements of b, we can vary the shape. The Equation (6.20) can be re-written as:

b = Φ(1 : j)T (X − X̄). (6.21)

where j is total number of eigen values and eigen vector used. The iterative procedure

condition can be given as |b| < 3
√
λ1:j, where

∑j
l=1 λj = 0.98 ∗∑t

l=1 λj.

6.3.4 The PERCM Algorithm

The PERCM is an iterative search procedure to update the model in every iteration.

In order to search for the optic disc region, we need to determine the feature maps

selected during the SFS approach. At the start of an iteration, X, which is initially
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X̄ is transformed from zero mean space into the colour space. This can be achieved

by using Equation (6.22):

TXt,Yt,s,θ =


Xt

Yt

 +


s cos θ −s sin θ

s sin θ s cos θ




Xx

Xy

 , (6.22)

where (Xt, Yt)=translational parameters, s=scaling parameter, θ=rotational parame-

ter, Xx and Xy are x-coordinates and y-coordinates of the model respectively. Initially

θ is set to zero whereas s = vtrans
vnorm

from Equation (6.5). X is placed approximately

at the center of the optic disc. The contour points are moved according to RCM

model (Section 6.3.2). The contour is then approximated according to mean shape of

the training set. Then we apply PEM for model update. The test algorithm can be

summarized in Algorithm 2 as:
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Algorithm 2: PERCM Algorithm

1. Calculate feature maps on the basis of SFS and Filter approaches.

2. Initialize X = X̄

3. while |b| ≥ |3
√
λi| {

i Xold = TXt,Yt,s,θ(X).

ii Determine new contour Y on the basis of SFS feature maps, RCM model

and Equation (6.3) (See Algorithm 1).

iii Find the transformation parameters (Xt, Yt, s, θ) which best maps X to Y.

This can be estimated as:

[X̂t, Ŷt, ŝ, θ̂] = argmin[
n∑
i=1

|Y(n)− X̄(n)|2], (6.23)

iv X ′new = TX̂t,Ŷt,ŝ,θ̂(X)

v Update Xnew = X ′new + w sign(fkvf (X
′
new)) exp−|fkvf (X′new)|,

vi Invert the transformation function and use to project Y into model coor-

dinate frame.

y = TX̂t,Ŷt,ŝ,θ̂
−1(Y) (6.24)

vii Update the model parameters to match y

b = ΦT (y − X̄). (6.25)

viii X = TX̂t,Ŷt,ŝ,θ̂
−1(Xnew)

ix [Xt, Yt, s, θ] = [X̂t, Ŷt, ŝ, θ̂] }

4. end
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6.4 Experimental Evaluation

We have performed 5-fold cross validation on both 102 SLO and 120 fundus images

(see Section 6.2 for ground truth). The accuracy of the optic disc segmentation method

has been measured using Dice Coefficient. It can be calculated as:

Dod =
2(|onh1 ∩ onh2|)
|onh1|+ |onh2|

(6.26)

where |onh1| and |onh2| are the ONH pixels obtained from the benchmark and auto-

matic segmentation respectively. Initially, the results are compared across annotation

of different experts in Drishti-GS and RIM-ONE since they have the optic disc an-

notation marked by more than one expert. The results are shown in Table 6.2. The

comparison shows high inter-observer similarity among the experts as well as mean

of all annotations. Therefore, the comparison among different methods is performed

with respect to mean of all the annotations.

Table 6.2: Comparison of results of PERCM among different experts and mean of
annotation of all experts

Datasets Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Mean

RIM-ONE 0.93 ± 0.05 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.07 0.93 ± 0.05 0.94 ± 0.05

Drishti-GS 0.95 ± 0.04 0.96 ± 0.03 0.97 ± 0.02 0.96 ± 0.01 N/A 0.97 ± 0.02

The PERCM results are compared with some popular statistical and freeform mod-

eling approaches i.e. Active Shape Model (ASM) [33], Chan-Vese model [28] and GVF

snake model [70]. The built-in code for these models are available in Mathworks

Central. For these models, we have used the default input parameters however, the

variation of the parameters made little difference. The Chan-Vese and GVF models

have been converged in 1000 iterations. The comparison results are shown in Ta-

ble 6.3. The results show that PERCM has outperformed these models in terms of

segmentation accuracy.

The RIM-ONE and SLO datasets have been annotated with normal and glau-

comatous images. The comparison of segmentation accuracy in terms of normal and

glaucomatous images has been been shown in Table 6.4. The results show that segmen-

tation accuracy in terms of normal images was better compared to glaucoma images.
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If we compare ASM with Chan-Vese model, the Chan-Vese model has performed bet-

ter in case of normal images however, it has been misguided by PPA in glaucomatous

images. Nevertheless, our proposed approach performed significantly especially in case

of RIM-ONE glaucomatous images. As far as SLO images are concerned, the PERCM

is not able to perform that better as it was the case in fundus images. This might be

the case due to low resolution of optic disc area as SLO images cover a large FOV of

retina and optic disc is very small area of it.

Also by observing Figure 6.7, we can visualize the PERCM performs significantly

better than other methods on the ONH image with PPA. Other examples of PERCM

on different images of Drishti-GS, Optomaps and RIM-ONE have been shown in Fig-

ure 6.6. We can deduce that the PERCM has not been misguided by PPA as the part

of optic disc or vasculature occlusion. The PERCM can converge within 3 iterations

on each image with time taken at each iteration is 2 seconds at Intel Core i7-2600

CPU with 16GB DDR3-1333 RAM.

Table 6.3: Comparison of results of PERCM with freeform and statistical shape models

Datasets Active Shape Model Chan-Vese Model GVF Snake Model PERCM

RIM-ONE 0.89 ± 0.06 0.89 ± 0.10 0.87 ± 0.15 0.94 ± 0.05

Drishti-GS 0.91 ± 0.05 0.94 ± 0.04 0.95 ± 0.02 0.97 ± 0.02

SLO images 0.81 ± 0.09 0.73 ± 0.14 0.66 ± 0.14 0.90 ± 0.07

Table 6.4: Comparison of results of PERCM with freeform and statistical shape models
in terms of healthy and glaucomatous images

RIM-ONE Optomaps

Normal Glaucoma Normal Glaucoma

Active Shape Model 0.91 ± 0.06 0.87 ± 0.09 0.82 ± 0.10 0.80 ± 0.08

Chan-Vese Model 0.92 ± 0.06 0.84 ± 0.12 0.75 ± 0.13 0.72 ± 0.15

GVF Snake Model 0.87 ± 0.14 0.87 ± 0.16 0.66 ± 0.14 0.66 ± 0.14

PERCM 0.95 ± 0.03 0.92 ± 0.07 0.91 ± 0.07 0.89 ± 0.07
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Examples of optic disc determination (a),(b) are examples from Drishti-
GS database, (c),(d) are examples from RIM-ONE and (e),(f) are examples from
Optomaps. The red outline shows the original annotation around optic disc whereas
the green outline shows the automatic annotations from the PERCM
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(a) (b)

(c) (d)

Figure 6.7: Visual comparison of the PERCM with other models which were applied
on the ONH images with PPA. The images show the result of (a) PERCM, (b) ASM,
(c) Chan-Vese model and (d) GVF snake contour

6.5 Conclusion

In this chapter we have proposed the combination of Point Edge Model (PEM) and Re-

gion Classification Model (RCM) entitled Point Edge and Region Classification Model

for the determination of optic disc boundary. The PERCM initially determines the

optic disc region on the basis of Region Classification Model (RCM) and then updates

the optic disc contour using force field based Point Edge Model (PEM). The model has

been tested against different databases of SLO and fundus images. The average seg-

mentation accuracy achieved by the model on Drishti-GS, RIM-ONE and Optomaps

is 97%, 94% and 90% respectively. The experimental evaluation indicates that our

method outperforms the previous popular statistical shape and freeform modeling ap-

proaches. Besides, our method has been tested on different datasets which indicates

a high robustness of our method. An accurate segmentation of optic disc is useful
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for accurate segmentation of the optic cup as well as glaucoma related geometrical

symptoms such as the CDR etc.



Chapter 7

Optic Cup Segmentation

7.1 Introduction

In this chapter we will discuss optic cup segmentation which is the next step after

optic disc segmentation. The procedure of optic cup segmentation is similar to that of

optic disc except there are variations in terms of initialization and force calculation.

The reason is that size of the optic cup is too small to run the region search along

normal line profiles. Also the optic cup has no clear gradient compared to that of optic

disc. Therefore it is a challenging task to determine the boundary of the optic cup.

In order to address these issues, we have developed two models. Region Classification

Model (RCM) is proposed for classification between optic cup and the rim area. On

the other hand, Weighted Point Edge Model (WPEM) determines the force field using

the weighted feature maps calculated by the RCM for optic cup in order to enhance

the optic cup region compared to rim area in the ONH.

7.2 Ground Truth

For training and evaluation of the models, we have two datasets:

Fundus Images: For fundus images, we have used Drishti-GS dataset. The

Drishti-GS dataset has been annotated around optic cup by four experts. There are

50 images in the training set with resolution of 701 x 701 of the ONH cropped image.

However, there are no disease annotations in Drishti-GS dataset.

SLO Images: In SLO images, the optic cup has been annotated by one expert

104
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in the retinal scan with the suspected glaucoma patients. Therefore we have 51 SLO

images with optic cup annotation and the resolution of 341 x 341 of the ONH cropped

image.

7.3 Weighted Point Edge and Region Classification

Model

Procrustes 
Alignment

Classifier 
Design

Images
Optic Cup

Annotations
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Classification 
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Figure 7.1: Block diagram of the Weighted Point Edge and Region Classification Model
for optic cup segmentation

In the Weighted Point Edge and Region Classification Model (WPERCM) for optic

cup segmentation, the Weighted Point Edge Model (WPEM) updates the contour

using the force field determined by the weighted feature maps. The weighted feature

maps are obtained by multiplying the IEP selected feature maps by classifier weights

obtained from the RCM of the ONH region classification in order to strengthen the

optic cup region compared to the rim area. The block diagram is shown in Figure 7.1.

In the following subsections, we will discuss the following:

1. Generation and selection of feature maps.

2. Region force calculation.
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3. Testing algorithm.

7.3.1 Generation and Selection of Feature Maps

The feature maps for optic cup segmentation are generated so as to distinguish between

cup area and the ONH rim area. Like optic disc segmentation, we have calculated fea-

ture maps using both approaches, i.e. 1) with vasculature removal and 2) without

vasculature removal. The feature matrix can be given as that in Equation (6.1) which

is the z-score normalized. Also, we have used both filter approach and the SFS ap-

proaches for selecting two types of feature sets which are different for both the SLO

and fundus images. During fundus images training, we have only used features from

Drishti-GS dataset since there are no annotations for optic cup in RIM-ONE dataset.

The features selected for both the SLO images and fundus images using the SFS

and Filter approaches are shown in Table 7.1 and their performance is illustrated in

Figure 7.2

Table 7.1: Feature sets obtained using the SFS and Filter approaches for optic cup
region determination. The detail of feature symbols can be found in Section 4.4.1.

Feature Selection

Approaches

Fundus Images SLO Images

SFS Approach LuvRV (16), NyyRV (2), Lpp,γ−normRV (16),

Lu,uGN (16), Lqq,γ−normGN (2), RGN (4, 7),

Lu,uGV (16), NyyRV (16), BYN (4, 8),

NxyRV (8), IV (4, 8), IV (4, 7), IV (3, 7),

LuvGN (16), LuvRN (16)

Lu,uRN (4), BYN (4, 8), Lpp,γ−normGN (8),

BYV (4, 7), LuuRN (4), NyyRN (16),

BYN (2, 5), LuvGV (2), Lu,uRV (2),

Lqq,γ−normGN (2), Lu,uGN (16), RGV (4, 8),

RGN (4, 8), NyyGV (16), Lqq,γ−normGN (8)

Filter Approach LuvRV (16), Lqq,γ−normRV (8),

NyyRV (4), Lu,uRV (4), RV ,

LuvRN (16), Lqq,γ−normRN (8),√
N 2

xRV (2) +N 2
yRV (2), NyyRN (4),

LuuRN (4),RN , NxRV (2), NxyRV (2),

NxxRV (4), NyRV (4)

Lu,uRN (4), RN , NyyRN (4),

Lqq,γ−normRN (8), NyyRN (2), NxyRN (2),

NxRN (2), LuvRN (16), LuuRN (4),

NxyRN (16), NRN (4), Lpp,γ−normRN (4),

Lu,uRV (4), NyyRV (4), NxxRV (2)

Here we have also selected two types of feature set i.e. feature set for RCM model

and the feature set for WPEM model. The feature set with high classification power,

we selected 15 features for both the SLO and fundus images since there was little

improvement in classification performance beyond that. In case of WPEM model the

first 10 to 15 features ranked by filter approach are sufficient for determining strongest

boundary around optic cup. Keeping the consistency with the number of features

selected for RCM, we have selected 15 features for WPEM model. This accounted for
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Figure 7.2: Results of feature selection procedures with (a) ROC curves of both fundus
and the SLO images for selected features using the SFS, (b) feature selection process
using the SFS (c),(d) IEP of both fundus and the SLO images respectively

the features with IEP greater than 0.9 for fundus images and 0.85 for SLO images.

The subscript of the features in Table 7.1 shows that feature sets are composed of

hybrid combination of red and green channel. This was in contrast to the works in

literature survey which used only green channel for cup segmentation.

7.3.2 Region Force Calculation

1) ONH Region Classification

After the determination of feature sets, the next step is to classify the ONH region into

rim area and cup area. This can be performed using the RCM model by training the

pixelwise classification model on the feature maps obtained using the SFS approach.

We have randomly selected 1000 feature map pixels from each of rim area and cup

area from each image present in the training set so as to avoid large training set for

pixelwise classification. We have then performed classification using neural weights.

After the classification, we obtain the classification map of neural weights (Netc) shown
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in Figure 7.3(b).

2) Region Force Calculation and WPEM Update

Since the gradient is very weak between boundary of the rim and the cup, therefore we

have performed the pixelwise multiplication between classification map(Netc) and the

feature maps selected using filter approach. The purpose of performing the multiplica-

tion is to enhance the gradient for determining optic cup boundary. For determination

of region force, we determined the Kernel Vector Field (KVF) using Equation (7.1)

fkvf = fregion(x, y) ∗ k(x, y) (7.1)

where k(x, y) can be calculated using Equation (6.11), (6.12) and (6.13). For optic

cup, r in Equation (6.12) can be in the range of 20% to 80% to the r of optic disc.

For γ in Equation (6.13), we selected the value 0.5 to make the optic cup force field

more influential since lowering γ value in the equation will increase the magnitude of

the force field. In Equation (7.1), we determined fregion as:

fregion =
n∑
i=1

∇(Λi. ∗Netc) (7.2)

where Λi is the ith feature map obtained after ranking feature maps using filter ap-

proach and selecting n features. In our case n=15. .∗ is the pixelwise multiplication.

So Equation (7.1) can be re-written as:

fkvf =
n∑
i=1

∇(Λi. ∗Net) ∗ k(x, y) (7.3)

The visual result of fkvf are shown in Figure 7.3e. For comparison, we calculated

the force field using the fregion=fedge, where value of fedge is calculated from Equa-

tion (6.14). The region force field fkvf can be used in WPEM for model update. We

can deduce WPEM as:

X = X ′ + w sign(fkvf (X
′)) exp−|fkvf (X′)|, (7.4)

where X and X ′ are current and previous contours respectively. w is the step size

parameter is empirically selected as 5.
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(a) (b)

(c) (d)

(e)

Figure 7.3: An example of determination of classification map and force calculation
with (a) original image, (b) classification map of the neural weights, (c) pixels with
neural membership value greater than 90%. (d) and (e) shows the comparison of force
field calculated for optic cup of (d) feature maps and (e) feature maps multiplied by
neural weights. The feature maps multiplied by neural weights have stronger force
field around optic cup
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Algorithm 3: The WPERCM Algorithm

1. Calculate feature maps on the basis of SFS and Filter approaches using Xold.

2. Initialize X = X̄

3. while |b| ≥ |3
√
λi| {

i Xold = TXt,Yt,s,θ(X).

ii Determination of Netc using RCM model.

iii fregion =
∑n
i=1∇(Λi. ∗Netc)

iv Y = (Netc >= 1.9)

v Find the transformation parameters (Xt, Yt, s, θ) which best maps X to Y.

This can be estimated as

[X̂t, Ŷt, ŝ, θ̂] = argmin[
n∑
i=1

|Y(n)− X̄(n)|2] (7.5)

vi X ′new = TX̂t,Ŷt,ŝ,θ̂(X)

vii Update Xnew = X ′new + w sign(fkvf (X
′
new)) exp−|fkvf (X′new)|,

viii Invert the transformation function and use to project Y into model coor-

dinate frame.

y = TX̂t,Ŷt,ŝ,θ̂
−1(Y) (7.6)

ix Update the model parameters to match y

b = ΦT (y − X̄). (7.7)

x X = TXt,Yt,s,θ
−1(Xnew)

xi [Xt, Yt, s, θ] = [X̂t, Ŷt, ŝ, θ̂]

} end
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7.3.3 The WPERCM Algorithm

The WPERCM starts with the ONH classification between the rim area and cup area.

After classification, we have the classification map of neural weights. In a classification

map, we select only those pixels for which we are 90% sure of being the part of optic

disc. The weights of the classification map are distributed between 1 and 2. We will

select those weights which are having the value greater than 1.9. The final mask will

be used for determining the contour Y . The mask is shown in Figure 7.3(c). The

testing algorithm is mentioned in Algorithm 3.

7.4 Experimental Evaluation

Neither of these datasets have disease annotations. Therefore we have not provided the

comparison of optic cup segmentation accuracy in terms of normal and glaucomatous

images. For determination of optic cup segmentation accuracy, we have cross-validated

across Optomaps and Drishti-GS database using 5-fold cross validation. The segmen-

tation accuracy for optic cup can be calculated using the dice coefficient mentioned as

follows:

Doc =
2(|Rim1 ∩Rim2|+ |OC1 ∩OC2|)

Ntot

(7.8)

where Rim1 and Rim2 are the rim pixels and OC1 and OC2 are the optic cup pixels

obtained from the benchmark and the automatic segmentation respectively. Also,

Ntot = Rim1 + Rim2 + OC1 + OC2. Like in case of optic disc segmentation, we have

determined the segmentation accuracy of optic cup across different experts as well as

mean of all annotations. This can be possible in Drishti-GS dataset since optic cup

in SLO images have been annotated by only one expert. The comparative results of

optic segmentation accuracy across different experts has been shown in Table 7.2. The

comparative results across different experts show low inter-observer variability.

The optic cup segmentation results are shown in Table 7.3. The results are com-

pared with the ASM [33] and Chan-Vese model [28]. Chan-Vese model is the active

contour modeling without edges which is usually used in the cases when the gradient

of the object is not prominent. ASM is the most popular example of statistical shape

modeling. We have used built-in codes for ASM and Chan-Vese model obtained from
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Table 7.2: Optic cup segmentation performance comparison in Drishti-GS by
WPERCM across different experts and mean of annotations of all experts

Datasets Expert 1 Expert 2 Expert 3 Expert 4 Mean

WPERCM 0.84 ± 0.11 0.86 ± 0.10 0.85 ± 0.08 0.81 ± 0.09 0.87 ± 0.09

Active Shape Models 0.71 ± 0.15 0.66 ± 0.16 0.60 ± 0.19 0.50 ± 0.20 0.63 ± 0.17

Chan-Vese 0.81 ± 0.11 0.84 ± 0.09 0.82 ± 0.08 0.81 ± 0.09 0.84 ± 0.08

Mathworks Central with default parameters. The Chan-Vese model is able to converge

within 1000 iterations whereas ASM model has taken 10 iterations to converge. The

Table 7.2 and Table 7.3 show the comparison optic cup segmentation performance

across different methods. Due to inter-observer variability of more than 5% across

different experts in Drishti-GS dataset, the optic cup segmentation performance has

been compared with other models across different experts and mean of all annotations.

The comparison shows that WPERCM has performed significantly better compared

to its other two counterparts. This is also evident in case of SLO images shown in

Table 7.3.

Some examples of visual comparison of these models is shown in Figure 7.5. The

comparison shows that ASM is unstable while modeling the optic cup whereas Chan-

Vese model is often misguided due to weak edge force around small optic cup area.

Some examples of optic cup segmentation has been shown in Figure 7.4. RIM-ONE

does not have optic cup annotations therefore the test results cannot be compared.

However, we have performed optic cup segmentation in RIM-ONE dataset by con-

structing the WPERCM model based on Drishti-GS dataset which has lead to CDR

calculation discussed in Chapter 9. The WPERCM can converge within 3 iterations

on each image with time taken at each iteration is 2 seconds at Intel Core i7-2600

CPU with 16GB DDR3-1333 RAM.

Table 7.3: Comparison of results of the WPERCM with freeform and statistical shape
models. The results show the accuracy in terms of dice coefficient

Datasets Active Shape Model Chan-Vese WPERCM

Drishti-GS 0.63 ± 0.17 0.84 ± 0.08 0.87 ± 0.09

Optomaps 0.73 ± 0.1 0.75 ± 0.09 0.81 ± 0.12
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(a) (b)

(c) (d)

Figure 7.4: Examples of optic cup determination with red outline is the benchmark
and blue outline is the automatic annotation. (a),(b) are the examples from Drishti-GS
database and (c),(d) are the examples from Optomaps

7.5 Conclusion

In this chapter we proposed the new Weighted Point Edge and Region Classification

Model (WPERCM) model for optic cup segmentation method which has been tested

on different datasets. In contrast to PERCM the PEM determines the force field using

the weighted feature maps whose weights are calculated by the RCM. The weighting

of the feature maps is performed due to weak gradient between optic cup and rim

area. The model has been tested for optic cup segmentation on Drishti-GS dataset

and Optomaps and the segmentation accuracy compared to clinical annotations is 87%

and 81% respectively. The proposed method outperformed its counterparts in terms

of segmentation accuracy. This shows that if we weight the ONH area according to its

membership of being the part of either optic cup or rim area, we can have significantly

better performance in terms of optic cup modeling. The accurate segmentation of

optic disc and optic cup is necessary for determination of CDR used for glaucoma

diagnosis.
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(a) (b)

(c)

Figure 7.5: Visual comparison of WPERCM with other models which were applied for
optic cup segmentation. The images show the result of (a) WPERCM, (b) Chan-Vese
model and (c) ASM. Red outline is the benchmark and blue outline is the automatic
annotation



Chapter 8

Regional Image Features Model for

Glaucoma Detection

8.1 Introduction

Glaucoma is normally associated with structural changes such as a slowly diminishing

neuroretinal rim in the ONH [92] or the degeneration of the retinal layer in the region

surrounding the ONH ( also called the Peripapillary Atrophy (PPA)). This can be

indicated by geometrical measures such as higher Cup to Disc Ratio (CDR) or the

detection of rough texture around optic disc as shown in Figure. 8.1. It has been

challenging task to classify between normal and glaucoma images since any of the

geometrical or textural indication is itself not a guaranteed sign of glaucoma [65]. Also,

the automatic calculation of geometrical indications require accurate segmentation of

glaucoma related retinal structures such as optic disc and optic cup.

There are certain efforts which reflect the classification between normal and glau-

coma images without any segmentation. These methods have been discussed in Sec-

tion 3.3. These methods determine global features of the retinal image which can be

used to classify between normal and glaucoma images. However, their accuracy and

robustness is still questionable since they have been applied on a limited set of images.

Our hypothesis is that the classification between normal and glaucoma images can be

improved if the image-based features are calculated for different regions of the ONH

centred image.

In this chapter, we will present our Regional Image Features Model (RIFM) for
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(a) Normal (b) glaucoma

Figure 8.1: Comparison of the ONH area of the (a) normal and (b) glaucomatous
image. The difference is in terms of higher CDR and PPA indication

classification between normal and glaucoma images. This method is in contrast to

previous methods in which the image features were calculated for the whole image

[16,24,39]. In our proposed method, we divide the ONH cropped image into different

regions i.e. the ONH area, inferior (I), superior(S), nasal(N) and temporal(T). These

regions are usually observed by the clinicians for the diagnosis of glaucoma. The PPA

has usually a larger area in T and I regions in case of glaucoma and the global image

features such as wavelet energy, textural information etc. for these regions can be

used to classify between normal and glaucoma images. Also, a large size of optic cup

in the ONH area often has a higher mean grayscale value. The results of the model

can also represent the presence of the PPA due to glaucoma. Since we have developed

accurate method of optic disc segmentation (Chapter 6), this can be quite helpful in

determining different regions of the ONH cropped image so as to calculate regional

features for distinguishing between normal and glaucoma images.

8.2 Ground Truth

For experimental evaluation, we have one dataset for each of fundus and SLO images.

Each of the dataset has been divided into normal and glaucomatous images.

Fundus Images: We have RIM-ONE dataset which has 118 normal and 40 glau-

coma ONH cropped images. Each image has been automatically segmented out optic
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disc by our proposed method in Chapter 6. For training and cross validation, we ran-

domly selected 55 normal and 40 glaucoma images while other 63 normal images have

been used for testing.

SLO images We have 51 normal images and 51 images obtained from diabetes

patient with a suspect of glaucoma. Each image has been automatically ONH localized,

ONH cropped and segmented around optic disc by our proposed PERCM model.

8.3 Regional Image Features

Regional Image Features (RIF) represent the global representation of the region. As

stated earlier, we have divided the ONH centered image into five different regions

i.e. the ONH area, inferior (I), superior(S), nasal(N) and temporal(T) as shown in

Figure 8.2 for the right eye. For the left eye, N and T regions will be reversed. For

generating these regions, we initially segmented out the ONH area (Chapter 6).

We then divide the image into four different quadrants i.e. I,S,N and T. These

regions are adaptable for each image depending upon ONH segmentation. For elabo-

rating the procedure, consider the Figure 8.2. The example is from the ONH centred

image. The ONH boundary and its centroid can be shown in Figure 8.2(b). For the

determination of quadrants, we connect the centroid to each of the corner of the im-

age. As far as naming of the regions are concerned, I and S regions are fixed for each

image. However, the N and T regions interchange their positions depending upon the

left eye or the right eye. In order to determine whether the image is from the right

eye or left eye, we draw a vertical line on the centroid as shown in Figure 8.2(c). Then

we determine the area covered by the vasculature area within the ONH on either side.

The vasculature area is maximum number of pixels within the ONH. In this case,

the vaculature area is higher on the left so this image is considered as left eye image.

Therefore, N and T regions will be on left side and right side respectively. For right

eye image, these regions will interchange their positions. After determining the regions

and the quadrants, we generate the mask excluding the ONH area as the ONH area

is itself the fifth region of the image as shown in Figure 8.2(d). We have calculated

the features of these five features as well as for the whole ONH centered image. The

feature generation and selection procedure is discussed as follows.
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(a) (b)

(c) (d)

Figure 8.2: Different regions of the ONH centred image with (a) image of a left eye
(b) image divided into different quadrants with the ONH boundary represented with
green and centroid with blue colour, (c) vasculature area within the ONH with higher
area on the left side (d) ONH centred image divided into different regions

8.3.1 Feature Generation and Selection

Particularly in the case of the RIF, the regions are larger than compared to superpixels

generated by retinal area detection method (Section 5.2). Therefore, we have decided

to calculate textural features with different offset values ranging from 1 to 10. Apart

from features mentioned in Section 4.4.1, we have also calculated Discrete Wavelet

Transform (DWT) features denoted by ψ [29]. The DWT has been quite effective in

determining global features for classification between normal and glaucoma images [39]

. The DWT features captures both spatial and frequency information of the image.

DWT analyzes the image by decomposing it into a coarse approximation via low-pass

filtering and into detail information via high-pass filtering. Such decomposition is per-

formed recursively on low-pass approximation coefficients obtained at each level. The

image is divided into four bands i.e. A(Top left (LL)), H (Top Right (LH)), V(Bottom

Left (HL)) and D(Bottom Right (HH)). As an example, LH means rows and columns

are filtered with low pass and high pass filter respectively. DWT decomposition is
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calculated using different wavelet families such as db3, rbio3.3 etc [29]. For a partic-

ular region in the ONH centered image, we can calculate two types of features using

these bands i.e. average value of the coefficients (ψAvg) and energy of the coefficients

(ψEnergy). As an example, the average value and average energy of D band are derived

from the wavelet coefficients, as shown below:

ψDAvg =
1

p q

∑
x=p

∑
y=q

|Dband(x, y)| (8.1)

ψDEnergy =
1

p2 q2

∑
x=p

∑
y=q

(Dband(x, y))2 (8.2)

where p and q represents width and height in pixels of the region respectively.

The feature matrix can be given as:

FM =


Awav
RG Abif

RG Atexoff
RG Atexscale

RG Ag
RG

Bwav
RG Bbif

RG Btexoff
RG Btexscale

RG Bg
RG

 (8.3)

where RG represents red and green channel respectively, texoff represents textural

features with variable offset values, texscale represent textural features with variable

scale, bif and g represent biologically inspired features and gradient features respec-

tively. These features are calculated for different regions and for the whole ONH

cropped image. Therefore they are assigned different columns in the feature matrix.

The RIF has been selected using the SFS approach. From the available set of

features, the feature with the best classification performance (AUC) are selected. The

performance of the feature set has been compared with global information of the image

in terms of wavelet, texture, and gradient features. The global features of each feature

group has been calculated for the whole image for comparing with the RIFs. As an

example, in Table 8.2, ’Global Features’ represent the global information in terms of all

groups of features whereas ’Global Wavelet Features’ represent the global information

in terms of wavelet features only. In all of the global feature sets, the features most

relevant to the classification are used.

The different models has been trained and tested on the fundus and the SLO im-

ages. The AUC of the selected feature set for both fundus images and the SLO images

and feature selection procedure are shown in Figure 8.3. For generating the ROCs in
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Figure 8.3: Results of regional image feature selection procedures for classification
between normal and glaucomatous images with (a) ROC curves of both fundus and
the SLO images for selected features using the SFS and (b) feature selection process
using the SFS

Figure 8.4, the cross-validation has been performed using 5-fold cross validation. Ta-

ble 8.1 represents variables along x-axis of Figure 8.3(b). The explanation of variables

related to Haralick features are presented in Table 4.4. As an example, ψ(db3)ODAGEnergy

means wavelet of family db3; OD and A in the superscript represent optic disc region

and A band of wavelet; G and Energy represent the Green channel and Energy of

wavelet coefficients respectively. Also in subscript of acorrODR1 , 1 represent the offset

value and in IM I
2G(8), 8 in the bracket represents the scale. The features shown in

Table 8.1 support our hypothesis that there is an obvious difference between normal

and glaucomatous images in terms of texture and energy of I and T regions as well as

optic disc.

Table 8.1: Feature sets obtained using the SFS approach for classification between
normal and glaucomatous images

Datasets Feature Symbols

fundus Images µIsumR1, HS
G(1), acorrODR1 , ψ(db3)

ODA
GEnergy , conSR2, dissNR1,

NNxG(2), IDNN
R4, IMI

2G(8)

SLO Images σODsumG(16), CNshadeR(1), CTpromR(1), ψ(db3)
IH
RAvg

8.4 Experimental Evaluation

We have constructed the classifier of Regional Image Feature Model (RIFM) using

ANN. For hidden layer, we have selected 10 neurons. The performance of the classifier
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Regional Image Features: AUC=0.93424

Correlation−Based Features: AUC=0.77838

Global Features: AUC=0.85788

Global Wavelet Features: AUC=0.78427

Global Textural Features: AUC=0.86697

Global BIF Features: AUC=0.84991

Global Gradient Features: AUC=0.7715
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Regional Image Features: AUC=0.99231

Correlation−Based Features: AUC=0.97717

Global Features: AUC=0.98889

Global Wavelet Features: AUC=0.99231

Global Textural Features: AUC=0.91682

Global BIF Features: AUC=0.98926

Global Gradient Features: AUC=0.87667

(b)

Figure 8.4: Comparison of ROC curves of different feature sets in fundus and the SLO
images

on the RIF has been compared with different classifiers such as Support Vector Ma-

chines (SVM) and k Nearest Neighbours (kNN). We used both linear as well as kernel

based SVM [61]. For kernel based SVM, we used Radial-based Function with default

parameter of (numberoffeatures)−1. For kNN we have selected k=maximum number

of features in the feature set.

The comparison of the different feature sets has been shown in Table 8.2. According

to the Table, the RIFs outperformed significantly especially in case of fundus images. It

is also evident by comparison of the Receiver Operating Characteristics (ROC) curves

in Figure 8.4. This shows that classification based of features calculated for different

regions has better classification performance compared to the feature sets providing

the global information for the whole image.

As far as feature selection is concerned, we have performed the SFS on both RIFs

and global features. From the superscript of feature symbols shown Table 8.1, it is evi-

dent that neither of the features representing the global information have been selected

in our final feature set. Also the comparison of ’Global Features’ with other global

feature sets calculated for individual feature group make it evident that combination

of features of different feature groups can have better classification performance as

compared to features calculated for individual group. By observing the Tables 8.1 and

8.2, we deduce that textural features are more dominant compared to other groups

due to their higher sensitivity. However, wavelet features can perform better in terms

of specificity. Therefore the combination of selected features of all groups can have

higher classification power which has been further improved by calculating features
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for different regions i.e. the RIFs.

Table 8.3 which shows the performance of the ANN compared to other classifier

models. According to the Table, the linear SVM is the only classifier which is able

to perform closely to the ANN. However, the ANN performed significantly better as

compared to other classifiers. As far as Optomaps are concerned, the retinal changes

associated with diabetes might be more prominent which possibly can be the result of

higher classification performance with little difference across different feature sets and

across different classifiers.

Table 8.2: Comparison of the results of regional image feature set with other feature
sets

Feature Set RIMONE Optomaps

Sensitivity Specificity Overall
Accuracy

Sensitivity Specificity Overall
Accuracy

Regional Image Features 90.00% 93.22% 92.4% 98.03% 98.03% 98.03%

Global Features 65.00% 88.13% 82.27% 98.03% 98.03% 98.03%

Global Wavelet Features 65.00% 81.35% 77.21% 96.07% 96.07% 96.07%

Global Textural Features 77.5% 70.33% 72.15% 96.07% 90.19% 93.13%

Global Biologically Inspired Fea-
tures

65.00% 76.27% 73.41% 94.11% 98.03% 96.07%

Global Gradient Features 62.50% 75.42% 72.15% 92.15% 84.31% 88.23%

Table 8.3: Comparison of the results of different classifiers on the RIF set

Classifier RIMONE Optomaps

Sensitivity Specificity Overall
Accuracy

Sensitivity Specificity Overall
Accuracy

ANN 90.00% 93.22% 92.4% 98.03% 96.07% 97.05%

Linear SVM 90.00% 83.89% 85.44% 94.11% 98.03% 96.07%

Kernel SVM 85.00% 77.11% 79.11% 94.11% 98.03% 96.07%

kNN 75.00% 81.35% 79.74 88.23% 98.03% 93.13%

8.5 Conclusion

In this chapter, we have proposed the Regional Image Features Model (RIFM) for clas-

sification between normal and glaucomatous images. Previously, these features have

been calculated for the whole ONH centered image. In the proposed approach, we have

divided the image into different regions for feature calculation. These regions are usu-

ally analyzed by the clinicians for the diagnosis of glaucoma. The selected features are

then used for classification between normal and glaucoma images. The classification

accuracy on RIM-ONE and Optomaps is 92.4% and 97.05% respectively. The result
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suggests significantly better performance compared to the features calculated for an

ONH cropped image. Using the classification procedure, we determined classification

weights which indicate the degree of membership to either normal or glaucoma im-

ages. These classification weights has been accommodated alongwith the geometrical

indications calculated using segmentation methods discussed in chapter 5,6 and 7.



Chapter 9

Diagnosis of Glaucoma

9.1 Introduction

In this chapter, we will perform the classification between normal and glaucoma im-

ages on the basis of classification results of the RIFM and the clinical indications of

glaucoma. Clinical indications for the glaucoma diagnosis include CDR, vasculature

shift and ISNT rule. On the other hand, the RIFM classification results include the

classification weights which indicate the degree of membership to either normal or

glaucoma. In the following sections, we will describe the automatic calculation of the

clinical indications using segmentation results obtained in chapter 6 and 7. Then we

will describe plain the feature selection procedure, training, testing and evaluation

procedure for classification between normal and glaucoma images.

9.2 Automatic Determination of Clinical Indica-

tions of Glaucoma

9.2.1 Cup to Disc Ratio

Cup to Disc Ratio (CDR) is one of the most common measures which is usually assessed

by the clinicians to diagnose glaucoma (Section 2.5.1). According to clinicians [65], the

CDR can be calculated by taking the ratio of diameter of the cup and the disc in either

vertical or horizontal direction. The reason of including the CDR is that cup becomes

large with respect to optic disc. This can be shown Figure 9.1 in which the size of optic

124
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(a) (b)

Figure 9.1: Comparison of the cup size with respect to the disc in (a) normal image and
(b) glaucoma image. Both optic disc and optic cup boundaries have been automatically
obtained by our proposed methods in Chapter 6 and 7.

cup with respect to optic disc has been compared in normal and glaucoma images. We

calculated both CDRs on automatically identified boundaries of optic disc and cup as

discussed in Chapter 6 and 7. It can be seen from the figure that with respect to optic

disc, the optic cup has larger size in case of glaucoma compared to normal image.

Also based on the automatic annotations obtained for optic disc and optic cup, we

calculated the vertical as well as horizontal CDR of normal and glaucomatous images

in the datasets.

The mean and standard deviation of horizontal and vertical CDR values of both

normal and glaucoma images tested on RIM-ONE and Optomaps has been shown

in Table 9.1. The mean CDR values between normal and glaucoma images have

significant difference especially in the case of RIM-ONE dataset. However by observing

the Figure 9.2, we can deduce that any of the vertical or horizontal CDR value is not

the only sign of glaucoma since some of the normal images can have high CDR values

and vice versa. In case of Optomaps (SLO images), there is not significant difference

between normal and diseased images. This might be due to the fact that diseased

images have been taken from diabetes patient with suspect of glaucoma. Nevertheless,

vertical CDR is one of the authentic geometrical indication associated to glaucoma as

observed in Table 9.1 and Figure 9.2.
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Table 9.1: Mean(µ) and standard deviation(σ) of horizontal and vertical CDR of both
normal and glaucoma images

Images CDR vertical

µ± σ
CDR horizontal

µ± σ

RIM-ONE

Normal 0.45 ± 0.09 0.51 ± 0.09

Glaucoma 0.63 ± 0.10 0.60 ± 0.07

Optomaps

Normal 0.50 ± 0.05 0.52 ± 0.06

Glaucoma 0.55 ± 0.10 0.54 ± 0.10
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Figure 9.2: Comparison of CDR histogram plots between normal and glaucoma images
in RIM-ONE and Optomaps (SLO images) with blue representing normal and red
representing glaucoma. (a) Vertical CDR and (b) horizontal CDR comparison on
RIM-ONE and (c) vertical CDR and (d) horizontal CDR comparison on Optomaps.
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9.2.2 Vasculature Shift

In glaucoma images, the vasculature area with the ONH has a higher vessel density

compared to normal images in the nasal(N) area [48]. This phenomenon is known as

the vasculature shift. The measurement can be used to classify between normal and

glaucoma images. In order to describe the vasculature shift, consider the examples of

normal and glaucoma shown in Figure 9.3. Just to demonstrate that nasal(N) and

temporal(T) region are swapped for left and right eyes, we have shown the normal

image from the right eye and glaucoma image from the left eye. The images are

divided into four quadrants i.e. I,S, N and T (see Section 2.8). We then calculate the

centroid of the vasculature bundle in I,S and N regions of the ONH area (shown with

green asterisks in Figure 9.3). Then the distance from each centroid point is calculated

from the border point of optic cup in the T region which is the farthest from the ONH

center. The distances are then normalized by dividing them with horizontal diameter

of the optic disc which is shown as:

Dvascshift =
3∑

n=1

dccn
ODdiahor

(9.1)

where dcc is the distance from centroid to the cup boundary and ODdiahor is horizontal

diameter of the optic disc. By comparing both examples, it is illustrated that Dvascshift

has higher value in case of glaucoma. The mean(µ) and standard deviation(σ) of

Dvascshift in normal and glaucoma images is shown in Table 9.2.

Like vertical CDR, vasculature shift is another authentic geometrical indication

associated with glaucoma but it can not be the only glaucomatous clinical indication

since histogram curves of normal and glaucoma shown in Figure 9.4 are not placed

clearly further apart.

9.2.3 Neuroretinal Rim Loss (ISNT Rule) Calculation

The ISNT rule states that ONH rim width in I,S,N and T regions usually would be

the greatest in I followed by S,N and T. In short, the rim width of the normal images

follows (I>S>N>T) rule known as ISNT rule (see Section 2.8). The glaucoma images

usually disobeys that rule.
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(a) (b)

(c) (d)

Figure 9.3: Comparison of the vasculature shift in (a) right eye normal image and (b)
right eye glaucoma image (c) left eye normal image and (b) left eye glaucoma image.
In glaucoma images, the vasculature bundle is shifted towards the N region. Green
asterisks represent the centroid of the vasculatrue bundle in I, S and N regions whereas
yellow plus sign represent optic cup border point in T region farthest from the ONH
center. Noting that N and T regions are at right and left side respectively in case of
right eye image. These regions swap their places in case of left eye.

Table 9.2: Mean(µ) and standard deviation(σ) of vasculature shift of both normal and
glaucoma images

Images Vasculature Shift

µ± σ

RIM-ONE

Normal 0.42 ± 0.05

Glaucoma 0.49 ± 0.04

Optomaps

Normal 0.44 ± 0.05

Glaucoma 0.51 ± 0.07
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Figure 9.4: Comparison of vasculature shift histogram plots between normal and glau-
coma images in RIM-ONE and Optomaps (SLO images) with blue representing normal
and red representing glaucoma. (a) comparison on RIM-ONE and (b) comparison on
Optomaps.

9.3 Ground Truth

For experimental evaluation, we have one dataset for each of fundus and SLO images.

Each of the dataset has been divided into normal and glaucomatous images.

Fundus Images: We have RIM-ONE dataset which has 118 normal and 40 glau-

coma ONH cropped images. For training and cross validation, we have randomly

selected 55 normal and 40 glaucoma images while other 63 normal images have been

used for testing.

SLO images We have 51 normal images and 51 images obtained from diabetes

patient with a suspect of glaucoma.

9.4 Experimental Evaluation

Each of the images have been passed through the ONH localization, optic disc and cup

segmentation, ONH area vasculature segmentation as discussed in previous chapters.

We have performed a 5-fold cross validation and performed classification using neural

networks. The five features obtained in the previous section i.e. (Vertical CDR,

Horizontal CDR, Vasculature Shift, ISNT rule and RIF classification weights) have

been accommodated to form a feature matrix and then applied the SFS approach

for feature selection. The SFS approach selected three features for RIM-ONE and

Optomaps i.e. for RIM-ONE = [RIF classification weights, Vertical CDR, Vasculature
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Proposed Feature Set: AUC=0.9706
Vertical CDR: AUC=0.9070
Horizontal CDR: AUC=0.8065
Vasculature Shift: AUC=0.8197
ISNT rule: AUC=0.5376
RIF Classification Weights: AUC=0.9365
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Proposed Feature Set: AUC=1.0000
Vertical CDR: AUC=0.6375
Horizontal CDR: AUC=0.5804
Vasculature Shift: AUC=0.8014
ISNT rule: AUC=0.6757
RIF Classification Weights: AUC=0.9851

(b)

Figure 9.5: Comparison of proposed feature set with different clinical indications of
glaucoma and Regional Image Features (RIF) classification results. The comparison
has been performed on (a) RIM-ONE and (b) Optomaps

Shift] and for Optomaps = [RIF classification weights, Vasculature Shift, ISNT rule].

We have then calculated the sensitivity, specificity and overall accuracy (Section 4.4.3)

on the feature sets proposed for both datasets and compared the performance with

each individual feature as shown in Table 9.3.

The result comparison shows that vertical CDR, vasculature shift and RIF clas-

sification can play a significant role in classification between normal and glaucoma

images in case of RIM-ONE dataset. As far as SLO images are concerned, we have

the diseased images obtained from diabetes patient with the suspect of glaucoma.

The higher accuracy in case of SLO images might be due to the reason of diabetes

symptoms being classified as glaucoma. This needs further study in terms of clinical

annotations.

9.5 Conclusion

In this chapter, we discussed the classification of normal and glaucoma images based

on Regional Image Features and clinical indications. The proposed feature set has

surpassed all methods on RIM-ONE and Optomaps which used only CDR or vascu-

lature shift for classification between normal and glaucoma images. The classification

accuracy achieved on RIM-ONE and Optomaps is 94.93% and 98.03% respectively.

The higher accuracy in case of SLO images might be due to the reason of diabetes

symptoms being classified as glaucoma. This needs further study in terms of clinical
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Table 9.3: Classification power of the features used for glaucoma diagnosis

Features Sensitivity Specificity Overall

Accuracy

RIM-ONE Dataset

RIF Classification Weights 90.00% 93.22% 92.4%

Vertical CDR 80.00% 81.35% 81.01%

Vasculature Shift 75% 86.44% 83.54%

Horizontal CDR 60.00% 83.89% 77.84%

ISNT rule 10.00% 43.22% 34.17%

Proposed Feature Set 92.5% 95.76% 94.93%

Optomaps

RIF Classification Weights 98.03% 96.07% 97.05%

Vertical CDR 43.13% 92.15% 67.64%

Vasculature Shift 70.58% 78.43% 74.51%

Horizontal CDR 29.41% 88.23% 58.82%

ISNT rule 90.19% 37.25% 63.72%

Proposed Feature Set 98.03% 98.03% 98.03%

annotations.
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Discussion and Conclusion

Glaucoma is a group of eye diseases that have common traits such as, high eye pressure,

damage to the Optic Nerve Head (ONH) and gradual vision loss. It affects peripheral

vision and eventually leads to blindness if left untreated. The current common methods

of pre-diagnosis of glaucoma include measurement of Intra-Ocular Pressure (IOP)

using Tonometer, Pachymetry, Gonioscopy; which are performed manually by the

clinicians. These tests are usually followed by the ONH appearance examination for

the confirmed diagnosis of glaucoma. The diagnoses require regular monitoring, which

is costly and time consuming. The accuracy and reliability of diagnosis is limited by

the domain knowledge of different ophthalmologists. Therefore automatic diagnosis of

symptoms associated with glaucoma attracts a lot of attention. In this thesis we have

proposed a novel Glaucoma Detection Framework (GDF) which involves automatic

determination of retinal image patterns associated with glaucoma and classification

between normal and glaucoma images on the basis of these symptoms.

In this work, several major contributions have been made towards the development

of the automatic GDF consisting of the stages of preprocessing, optic disc and cup

segmentations and regional image feature methods for classification between glaucoma

and normal images. The specific contributions of this project include:

1. Preprocessing Stage

• Development of a superpixel-based retinal area detector to determine the

true retinal area from the SLO images while preserving computational effi-

ciency and avoiding over-segmentation of artefacts.
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• Determination of a new weighted feature map approach which can enhance

the ONH region for more accurate localization.

• Development of the ONH cropped image based vasculature classification

model to segment out vasculature while avoiding misidentification of the

ONH boundary being a part of vasculature structure.

2. Development of the models for optic disc and optic cup segmentation including:

• Region Classification Model (RCM) which initially determines the optic

disc/cup region using selected feature maps.

• Point Edge Model (PEM) which updates the contour using force fields of

the selected feature maps.

• Weight Point Edge Model (WPEM) which determines the force field using

the weighted feature maps calculated by the RCM for optic cup in order to

enhance the optic cup region compared to rim area in the ONH.

The combination of RCM and PEM is called Point Edge and Region Classifi-

cation Model (PERCM) for optic disc segmentation whereas the combination of

WPEM and RCM is called Weighted Point Edge and Region Classification Model

(WPERCM) for optic cup segmentation.

3. Development of Regional Image Features Model (RIFM) for classification between

normal and glaucoma images using image-based information from different re-

gions of the ONH image. These regions are clinically observed for analyzing

glaucoma related indications especially the PPA.

4. Accommodation of geometrical indication calculated by optic disc, optic cup and

vasculature segmentation (e.g. CDR, vasculature shift) with results of the RIFM

to perform classification between normal and glaucoma images.

The proposed methodology starts with preprocessing steps needed for retinal im-

age analysis for diagnosing glaucoma. The pre-processing steps include retinal area

detection, ONH localization and vasculature segmentation. Distinguishing true retinal

area from artefacts in SLO images is a challenging task, which is also the first impor-

tant step towards computer-aided disease diagnosis. In this work, we have proposed
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a novel framework for automatic detection of true retinal area in SLO images. We

have used superpixels to represent different irregular regions in a compact way and

reduce the computing cost. Feature selection enables the most significant features to

be selected and thus reduces computing cost too. A classifier has been built based on

selected features to extract out the retina area. It has been compared with other two

classifiers and was compatible while saving the computational time. The experimental

evaluation result shows that our proposed framework can achieve an accuracy of 92%

in segmentation of the true retinal area from an SLO image. Apart from retinal area

detection, we proposed weighted feature map based ONH localization method so as to

improve the ONH localization accuracy and robustness. The average ONH localization

accuracy on fundus images and SLO images is 100% and 98% respectively. The vascu-

lature segmentation is a key step to determine the vasculature shift which is one of the

geometrical indication associated with glaucoma. We proposed the classification model

for segmenting out vasculature area from the ONH image. The average segmentation

accuracy achieved on fundus images and SLO images is 90.77% and 90.21%.

The GDF is proceeded with segmentation of glaucoma associated retinal structures

such as optic disc and optic cup and determination of geometrical measurements used

for diagnosing glaucoma such as Cup to Disc Ratio (CDR). We have proposed a

novel Point Edge and Region Classification Model for the determination of optic disc

boundary. The PERCM initially determines the optic disc region on the basis of Region

Classification Model (RCM) and then updates the optic disc contour using force field

based Point Edge Model (PEM). The model has been tested against different databases

of SLO and fundus images. The average segmentation accuracy achieved by the model

on Drishti-GS, RIM-ONE and Optomaps is 97%, 94% and 90% respectively.

For optic cup segmentation, we proposed the new Weighted Point Edge and Region

Classification Model (WPERCM) model for optic cup segmentation method which has

been tested on different datasets. In contrast to PERCM the PEM determines the force

field using the weighted feature maps whose weights are calculated by the RCM. The

weighting of the feature maps is performed due to weak gradient between optic cup and

rim area. The model has been tested for optic cup segmentation on Drishti-GS dataset

and Optomaps and the segmentation accuracy compared to clinical annotations is 87%

and 81% respectively. This shows that if we weight the ONH area according to its
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membership of being the part of either optic cup or rim area, we can have significantly

better performance in terms of optic cup modeling. However, the method can be

further improved if the vessel kinks at the border of the optic cup are put into account.

Moreover, stereo imaging based training can be quite helpful in improvement in optic

cup segmentation performance.

The GDF is further proceeded by Regional Image Features Model (RIFM) for clas-

sification between normal and glaucomatous images. In the proposed approach, we di-

vided the image into different quadrants and the ONH (segmented out by the PERCM

discussed in chapter 6) for feature calculation. These regions are usually analyzed by

the clinicians for the diagnosis of glaucoma. The selected features are then used for

classification between normal and glaucoma images. The classification accuracy on

RIM-ONE and Optomaps is 92.4% and 97.05% respectively. The result suggests sig-

nificantly better performance compared to those whose textural and wavelet features

were calculated for a whole ONH image.

Finally, we have developed a classification model for the GDF which can classify

between normal and glaucoma images on the basis of geometrical measures and RIFM

results. The geometrical measures, such as CDR, I,S,N,T rule, vasculature shift etc.

related to glaucoma analysis have been calculated using the segmentation methods

discussed in chapter 5,6 and 7. The regional image features classification results have

been obtained from chapter 8. For both RIM-ONE and Optomaps, different feature

set are proposed. RIM-ONE dataset has normal images and images diagnosed with

glaucoma whereas Optomaps has normal images and the images of diabetes with sus-

pected glaucoma. The proposed feature sets of both RIM-ONE and Optomaps has

surpassed all methods on RIM-ONE and Optomaps which used only CDR or vascu-

lature shift for classification between normal and glaucoma images. The classification

accuracy between normal and glaucoma images is 94.93% and 98.03% respectively.

One of the reason of high accuracy of glaucoma classification in case of SLO images

might be due to involvement of diabetes related features. This results can be more

authenticated if the data is collected from the subjects of similar group of people.

Our GDF software is already under trial for Optos SLO devices to automatically

identify patterns associated with glaucoma. This will reduce operational costs for

both the industry and healthcare services and increase the medical industry revenue,
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and thus the economic growth in UK and across the world. Besides, the software is

equally applicable and can be instrumented on fundus cameras as well. Especially in

the UK, National Health Services (NHS) practices are overwhelmed with the number

of patients that must undergo screening as part of the National Screening Programme.

The software has the potential to reduce time which clinicians need to look at the

images which can expect more patients to be screened and more consistent diagnoses

can be given in a time efficient manner; thereby enable higher throughput in practices.

Future work proposes the multiclass classification among normal and different

stages of glaucoma. This can be possible using the large training set of each of the

normal and different glaucoma stages. Also the optic cup segmentation accuracy can

be improved further by determining the model using a pair of stereo retinal images.

The use of stereo retinal images can be used to interpolate the ONH area in 3D.
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