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Abstract 

 

 

The effects of old age on musculoskeletal structure and function have been 

characterised in the literature through cross-sectional studies, comparing data from 

young and older adults in an attempt to uncover the mechanisms behind decreases in 

muscle mass and function. However, such work is prone to potential bias associated 

with differences in changes in lifestyle and genotype during human ageing. 

Longitudinal studies can overcome such bias, though these are of in the minority and 

generally outline relatively simple measures in larger epidemiological studies.     

The overall aim of the work described in this thesis was to assess longitudinal changes 

in muscle mass and function, and how these influenced the ability to perform daily life 

activities over a 5-year period in older individuals. Characterising a more robust model 

of ageing than its cross-sectional counterparts in more detail than previously reported. 

This aim was addressed through several objectives that are described across the 

Chapters. 

In Chapter 2, we highlight that the use of dual-energy X-ray absorptiometry (DXA) to 

track changes in muscle mass is a viable method when compared to magnetic 

resonance imaging (MRI), though DXA exhibited a positive intercept with MRI and 

therefore consistently overestimated muscle volume.  

It was reported in Chapter 2 that over the 5-year period there might be an accelerated 

decline in muscle mass, with no difference in relative rate of muscle loss between 

genders or baseline muscle mass. Loss of muscle mass in ageing is related to deficits 

in functional capacity, in Chapter 3 the contribution of reduced voluntary activation, 



4 
 

fibre atrophy and fibre loss to muscle weakness are investigated. Muscle quality, 

measured by patella tendon specific force was found to contribute significantly to the 

loss of age-related muscle weakness in early ageing, though loss of muscle mass was 

found to be the main cause.    

The objective of Chapter 4 was to investigate the influence of muscle weakness on 

mobility performance. Significant decreases in 6-min walk and timed up and go were 

noted, with changes in muscle power being the key contributor to this change. Rather 

than the intrinsic slowing of the muscle seen in early ageing, power loss was primarily 

due to reductions in maximal voluntary contraction. 

The main conclusion of this work was that free-living septuagenarian’s show an 

accelerated decline in muscle mass and functional performance over a 5-year period 

compared to cross sectional data previously reported, suggesting upon reaching the 

eighth decade humans neuromuscular system ages at an faster rate than preceding 

decades. The preferential atrophy of type II and loss of fibres are the key contributors 

to this loss of mass. These findings highlight the need for septuagenarians in relatively 

good health to have appropriate interventions designed to mitigate these age-related 

changes.  
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‘The Spirit that seeks to triumph in adversity and arms a man against the shock of 

battle is called Morale. The Moral of an individual or group is not necessity a 

measure of happiness or contentment; it is a measure of the cohesion and power of 

that individual’s or group’s resolve to pursue it object come what may.’ 

 

General Sir Rupert Smith  

 

 

‘A moth-eaten rag on a worm eaten pole, It does not look likely to stir a man’s soul, 

‘Tis the deeds that were done ‘neath the moth eaten rag, When the pole was a staff, 

and the rag was a flag.’ 

 

General Sir Edward Bruce Hamley  
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1.1 General introduction  

Skeletal muscle contributes around 40% of total body mass and serves out many 

different roles in the body, most notably the production of force which allows humans 

to execute movement, as well as thermoregulation, energy metabolism, endocrine and 

paracrine functions (Pedersen, 2009). As humans age, skeletal muscle mass declines 

progressively into later life. This process is known as muscle atrophy and it is a major 

cause of muscle weakness. This muscle weakness is associated with an impaired 

mobility that in turn has a negative impact on the quality of life and ultimately 

contributes to an inability to live independently (Goodpaster et al., 2006, Doherty, 

2003a). The ageing-related degenerative loss of muscle mass and function has been 

termed Sarcopenia (Greek, meaning “poverty of the flesh”), however this umbrella 

term does not do justice to complex and multi-faceted nature of muscle related 

changes seen with ageing. Understanding this process is crucial as modern society 

has an increased proportion of older individuals, due to improved healthcare and living 

conditions. 

The declining muscle mass with advancing older age is in part due to older people 

slowing down and moving less which causes a type of “disuse” atrophy. But, this is not 

the only cause because muscle mass, strength and other indices of muscular 

performance decline even in athletic older people from their fourth decade of life 

(Berthelot et al., 2012, Rittweger et al., 2009), which is very similar to the patterns 

seen in the general population (Janssen et al., 2000c). The declines are gradual, 

meaning that a substantial amount of muscle tissue and maximal function can be lost 

over several decades before it begins to interfere with a person’s ability to perform 

essential daily tasks. Ultimately, a “disability threshold” is crossed and beyond this the 

functional capacity of muscle function is impaired to such an extent that it impacts 
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negatively on daily life activities (Mithal et al., 2013, McPhee et al., 2016, Degens and 

McPhee, 2013). By this point, the risk of frailty, social isolation and morbidity are high 

(Jette and Jette, 1997). These issues highlight the importance of maintaining muscle 

force and velocity in old age to extend quality of life (Degens and Korhonen, 2012). 

Much research has focused on cross-sectional changes in muscle function with age, 

which typically compares observations made in young adult with those made in older 

adults. Far fewer studies have assessed the longitudinal changes in muscle seen in 

ageing, and those studies that did determine longitudinal changes tend to be of 

epidemiology designs that cannot provide a detailed analysis. Longitudinal studies can 

circumvent bias related to genetic and/or environmental differences between people 

in cross-sectional studies.   

1.2 Skeletal Muscle  

Deliberate movement is a key function of skeletal muscle, alongside breathing and 

retaining posture (Pedersen, 2009). Skeletal muscle can be understood and studied 

in terms of its structure and function that enable force and power generation.   

Structure  

Skeletal muscle is made up of serial bundles of elongated, multinucleated cells also 

known as myofibres. The main proteins in muscle fibres are the two contractile 

proteins; actin (forming the thin filament) and myosin (forming the thick filament). The 

regular arrangement of the filaments along the length of the muscle fibre gives skeletal 

muscle a banded, or striated look (Jones and Round, 1990). Myosin can be broken 

down in to a globular head which combines with actin, the tail which combines with 

other myosin proteins to form thick filaments and the flexible region known as the S2 

portion. Myosin filaments are attached to the Z line by the protein titin. Actin filaments 
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connect to the Z line structure via α-actinin. The other component of the thin filament 

is tropomyosin, which blocks the myosin binding sites until calcium binds to troponin 

C (Jones et al., 2004). These elements form the myofilaments, which are arranged in 

regular formations throughout the myofilament, constructing a series of sarcomeres. 

Myofilaments are aligned serially to form a myofibril. Each myofibril is surrounded by 

transverse tubules (T tubules) and the sarcoplasmic reticulum, with around 2000 

myofilaments forming a myofibril (Jones and Round, 1990). Myofibril then form muscle 

fibres, which aligned serially as bundles form the whole muscle, which connect via 

tendons to the bone. Each individual muscle fibre has one single connection and the 

neuromuscular junction to a motor neuron of the nervous system. Instructions 

transmitted along the nervous system to the muscle lead to muscle fibre contractions 

and thus force generation to cause movement of skeletal elements relative to each 

other. 

Mechanics of contraction 

The functional unit of skeletal muscle is the motor unit, which consists of the motor 

neuron in the spinal cord, its axon that extends towards the target muscle, and the 

muscle fibres it innervates (Sherrington, 1925). Each motor neuron innervates a 

number of muscle fibres of the same phenotype (slow or fast) distributed throughout 

the target muscle, ensuring even force distribution throughout the muscle and avoids 

localised intense activation (Edström and Larsson, 1987). The number of fibres 

innervated by each motor unit is dependent on the type of movement required (finer 

movement require smaller motor units, while large and powerful movements require 

large motor units) and the size of the muscle (Jones and Round, 1990). Where the 

motor neuron meets the muscle fibre there is a synaptic connection known as the 
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neuromuscular junction.  When action potentials from the motor neuron reach the 

neuromuscular junction, the voltage sensitive channels open and calcium enters into 

the synapse. This in turn releases acetyl choline (ACh) into the synaptic cleft, 

increasing permeability to Na+ of the postsynaptic membrane which leads to a rapid 

depolarisation of the muscle membrane. The action potential then propagates over the 

muscle membrane and reaches the interior of the fibres via the invaginations of the 

plasma membrane, called T tubules. Consequently ryanodine receptors (calcium 

channels) open on the sarcoplasmic reticulum following the conformation change of 

the voltage-gated dihydropiridine receptors (Huang et al., 2011). Calcium diffuses to 

the myofilaments, where it binds to troponin C and induces a conformational change 

in tropomyosin exposing the myosin binding sites. The myosin head then binds to 

actin, the bond is strengthened through the release of inorganic phosphate and during 

the release of adenosine di-phosphate the power stroke occurs, causing the filaments 

to ‘slide’ along each other, resulting in shortening of the muscle fibre and production 

of force. Myosin detaches from actin when adenosine tri-phosphate binds, which is 

then hydrolysed to adenosine di-phosphate and inorganic phosphate, returning the 

myosin head to its original position. This process is known as cross bridge cycle and 

the entire process is identified as excitation contraction coupling (Huxley, 1957).   

Power Generation 

When cross bridge cycling occurs, the muscle produces force and shortens (at a 

variable velocity), though isometric muscle contractions occur without appreciable 

shortening between insertion and origin. Force multiplied by velocity equals power, 

and this production of power allows movement of the skeletal system. This relationship 

is outlined by the Hill equation (Hill, 1938). 



20 
 

(P + a) * (V + b) = (P0 + a) * b 

where P0 is the maximal isometric force, and a and b are constants, V the velocity of 

shortening as a proportion of the maximal shortening velocity (Vmax) and P the force 

as a proportion of P0. Therefore the product of force (N) and velocity (m·s-1) during 

contraction gives power (N·m·s-1) (Degens, 2018). Production of muscle force is 

proportional to its cross-sectional area, while velocity of shortening is proportional to 

the length of the muscle (although differences occur across different fibre types). 

Therefore, a muscle that is thin and long will shorten quickly but yield low force, while 

the opposite is true for thick and short muscles (Jones et al., 2004).   

Fibre Type 

The fibre type composition is an important determinant of the activation time and 

relaxation time. There are three pure fibre types in human skeletal muscle: type I, type 

IIa and type IIx. Additionally, some fibres are hybrid fibres containing more than one 

myosin heavy chain (MHC) isoform. The difference in MHC isoforms defines the 

contractile properties of each fibre type (Harridge et al., 1996), though other contractile 

proteins, such as tropomyosin have also been shown to have fast and slow isoforms 

(Tajsharghi, 2008). Type IIa/IIx are both more powerful but fatigue more easily due to 

greater anaerobic respiration, while type I are more resistant to fatigue with the cost 

of being relatively slow (Jones et al., 2004). The maximal shortening velocity is as 

much as 7x higher in fast than slow fibres (Bottinelli et al., 1996, Widrick et al., 1996, 

Gilliver et al., 2009, Degens and Larsson, 2007).  

Muscle architecture 

Muscle architecture is key to the understanding of mechanical properties of muscle, 

giving further insight into the force-velocity and length force relationship. The 
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physiological cross-sectional area (PCSA) was first outlined by Haxton (1944) and is 

the cross section of the muscle perpendicular to its fibres, allowing an estimation of 

force proportional to the number of fibres. The addition of muscle and joint architecture 

allow the influence of external torque to be accounted for and allows for better 

estimates of muscle quality and is known as specific force, this then allows for the 

force velocity characteristics of the muscle to be obtained (Degens et al., 2009b).  

1.3 Changes in muscle with age 

The ageing process is associated with a general reduction of skeletal muscle mass, 

termed sarcopenia (Rosenberg, 1989a). The loss of muscle mass is associated with 

weakness, reduced mobility, balance and neuromuscular control, causing older 

individuals to suffer a decreased quality of life, progressing from an independent to 

dependant lifestyle (Russ et al., 2012). These consequences of muscle wasting can 

be detected even in healthy older people and can lead to a reduced quality of life 

(Doherty, 2003a) also manifesting itself with increased incidence in physical disability 

and mortality (Hairi et al., 2010a, Janssen et al., 2002).  

As the percentage of people older than 65 years in Western societies continues to 

increase, it is becoming ever more important to design effective strategies to temper 

or even reverse the decline in muscle function associated with ageing. The much cited 

cost of this age related decline into disability is estimated to cost the United States 

health service around $18.5 billion in 2000 (Janssen et al., 2004). More recent work 

showed individuals defined with low skeletal muscle mass index consistently having 

higher associated costs in a wide range of settings whether these be direct or indirect 

healthcare costs (Norman and Otten, 2018). A cohort of older people (71-80 years) in 

the UK classified with muscle weakness was shown to cost £4592 per annum 
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compared to £1885 per annum in those without muscle weakness, therefore the 

financial cost to the UK is currently estimated at £2.5 billion (Pinedo-Villanueva et al., 

2019). With the cost to the United States health service now estimated to be $40.4 

billion (Goates et al., 2019). The global proportion of older individuals continues to 

grow, the financial burden will continue to rise as the direct and indirect health care 

costs of sarcopenia increase (United-Nations, 2012, McPhee et al., 2016, Norman and 

Otten, 2018).  There are many factors that contribute to sarcopenia including altered 

hormonal status, inflammation, oxidative stress, altered protein intake and anabolic 

resistance, all have an effect on how humans age, leading to issues with these 

confounding factors particularly in cross-sectional studies (Narici and Maffulli, 2010, 

Degens, 2007, Larsson et al., 2019). There is evidence that the decrease in muscle 

function with age is proportionally more than the loss of muscle mass, leading to the 

suggestion that there is a lower ‘quality’ of remaining muscle tissue in old age (Degens 

et al., 2009a, Canepari et al., 2010, Morse et al., 2005a). We must also consider that 

those in old age represent many specific cohorts (good health/poor health), all with 

differing rates of ageing due to multiple factors and it is important that we are able to 

characterise such phenomena within these cohorts.  

Age-related changes in Muscle Mass 

Whole body muscle mass loss between the ages of 18 and 88 is around 27% (Janssen 

et al., 2000c). This loss of mass can mainly be attributed to a decline in numbers of 

muscle fibres and to atrophy of remaining fibres, particularly the type 2 fibres (Lexell 

et al., 1988). It has also been reported that muscle mass loss is not uniformly spread 

throughout the body, with the upper body seemingly less affected from losses than the 

leg muscles (Janssen et al., 2000c). It would also seem that the four muscles of the 

quadriceps are more affected than other muscles of the legs (Maden-Wilkinson et al., 
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2013b, Abe et al., 2014b). In fact, extensor muscles in general seem to suffer from 

more atrophy than flexors (Candow and Chilibeck, 2005, Abe et al., 2014a), with the 

quadriceps possibly losing up to 40% of its volume by the ninth decade (Macaluso et 

al., 2002, Young et al., 1984). This loss of muscle mass seemingly starts after the age 

of 30 years (Gallagher et al., 1997) and constant progressive losses are seen when 

entering the sixth decade of life (Janssen et al., 2000c, Doherty, 2003a, Deschenes, 

2004). 

Men have larger muscles that produce higher forces than women (1.5-2 times higher) 

(Goodpaster et al., 2001, Miller et al., 1993), though whether the rate of atrophy is 

greater is up for debate with it thought to be similar (Frontera et al., 2000a, Koster et 

al., 2011) or faster in men (Delmonico et al., 2009a, Hughes et al., 2001b). While it is 

unequivocal that in absolute terms men’s muscle mass declines at a faster rate, 

because of an initial larger muscle mass they will reach the disability threshold later 

than women will. Therefore, older women may be more susceptible to mobility issues 

and an increased likelihood of sarcopenia (Degens and McPhee, 2013, Narici and 

Maffulli, 2010). 

When looking at the loss of muscle mass, there is a particular interest in the knee 

extensor muscles, due to their function in movement and functional limitation has been 

reported to be related with a small quadriceps mass (Buford et al., 2012). The use of 

Magnetic resonance imaging (MRI) allows for the thigh to be separated into its 

constituent muscles (Buford et al., 2012, Narici et al., 1992, Ogawa et al., 2012).  MRI 

has allowed for differential changes in these muscles to be observed, such as a faster 

rate of atrophy of the quadriceps muscle with a relative maintenance of the hamstrings 

and adductors muscle mass during ageing (Janssen et al., 2000c, Macaluso et al., 

2002, Ogawa et al., 2012)       
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Power loss 

It seems that the age-related changes in muscle power begin earlier than the observed 

changes in muscle mass. When power decreases below a certain level it will impact 

on the ability of to perform tasks of daily life (McPhee et al., 2016, Degens and 

McPhee, 2013) and even in healthy older people. Reductions in chair rise time and 

walking speed are reported, that can partly be attributed to a loss of muscle power but 

not loss of muscle mass (Maden-Wilkinson et al., 2015). The rate of loss of power 

appears similar in men and women (Maden-Wilkinson et al., 2015, Runge et al., 2004). 

Figure 1.1 illustrates how age-related decrements in force and velocity both contribute 

to the loss of power with age. Since both force and velocity determine the power 

generated, it is understandable that muscle power is more strongly correlated with 

performance of daily life activities than muscle force or mass (Maden-Wilkinson et al., 

2015, Reid and Fielding, 2012). Whether these observations actually precede 

detectable changes in electrophysiological or morphological measures is debatable, 

as these may be missed due to lack of sensitivity and precision in these measures at 

this point (Larsson et al., 2019).  
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Figure 1.1. Illustration of the force (solid lines) and power (dashed lines) velocity relationships in young 
(blue lines) and old (red lines) muscles, where the maximal velocity of shortening and force are set at 
100% in young muscles. For the illustration, a 25% lower maximal force and a 40% lower maximal 
shortening velocity in old than young muscles are assumed, while the curvature is kept constant. This 
resulted in a 53% lower maximal power and a lower velocity at which maximal power is generated, 
illustrated by arrow A. Arrow B illustrates that to generate the same force, older muscles must contract 
slower. Both effects most likely contribute to some extent, but not solely, to the slowing of movement in 
old age (Degens, 2018). 

 

Force, power and velocity of shortening decrease with age (Edstrom and Larsson, 

1987, Degens et al., 1998, Cotter et al., 1989), independent of protein composition of 

the fibre (Degens and Larsson, 2007). However, it has been shown that there is a 

disparate change in muscle force and power generating capacity on the one hand and 

size on the other hand, suggesting that not only do muscles atrophy but the contractile 

properties are also compromised (Degens et al., 2009b).  

Fibre type and size 

It is generally considered that there is no shift in numerical muscle fibre proportions 

with ageing, but that there is increased areal proportion of type I fibres, due to 

preferential atrophy of type II fibres (Andersen, 2003, Barnouin et al., 2017b). This 
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preferential type II atrophy also leads to whole muscle atrophy and will undoubtedly 

also contribute to the age-related loss of power, as type II fibres are more powerful 

than type I fibres (Gilliver et al., 2009). However, the decrease in the areal proportion 

of type II fibres (e.g. from 57.5 at 24 years to 51.5% at 70 years) is not large (Barnouin 

et al., 2017b) and the changes in fibre type composition thus contributes a small part 

to the loss of muscle power seen with ageing (Degens, 2018).  

Architecture 

During ageing the muscle architecture changes as a consequence of the muscle fibre 

atrophy and loss of fibres. The most obvious consequence is a reduction in the cross-

sectional area of the muscle, but also the pennation angle of the fascicles decreases. 

This reduction in pennation angle will attenuate some of the age-related reduction in 

force and power generating capacity of the muscle as the fascicles are more aligned 

with the line of pull (Degens et al., 2009b). Older muscles will also have a larger 

proportion of fat infiltration that contributes to the lower specific tension often observed 

in older than younger muscles (Degens and McPhee, 2013, Delmonico et al., 2009a, 

Goodpaster et al., 2001, Power et al., 2014). 

Specific force reduction 

The fact that muscle maximal force declines more than muscle mass in old age has 

led to considerable interest in the concept of “muscle quality”, meaning the force 

generated per unit muscle mass. In whole muscle, this has been termed “specific 

force”. Various explanations have been proposed, including an increase in fat 

infiltration of the muscle as well as a reduction in specific force of single muscle fibres, 

known as the specific tension (Canepari et al., 2010, Larsson et al., 1997, D'Antona et 

al., 2007). There is evidence that a reduced specific tension is due to oxidative-
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damage causing alterations to the myosin head (Lowe et al., 2004, Lowe et al., 2001) 

and an age-related decrease in the myosin concentration in muscle fibres (D'Antona 

et al., 2003). One type of post-translational modification may be myosin glycation that 

has been reported in muscles of older individuals and in diabetes patients (Syrovy and 

Hodny, 1992). Indeed, glycation of myosin results in a reduced ability of myosin to 

propel actin in an in vitro motility assay  (Ramamurthy et al., 2001). It remains to be 

seen whether myosin glycation is indeed a factor that contributes to the age-related 

muscle slowing. 

Neural regulation 

Another potential cause of the age-related reduction in specific force is a lower ability 

to voluntary activate a muscle (Morse et al., 2004). In addition, some fibres may not 

be activated at all, as they may have become denervated due to motor neuron loss. 

In a rodent study, this explained an 11% reduction in specific tension in old compared 

to young rats (Urbanchek et al., 2001). The good news is that most denervated fibres 

will eventually be re-innervated by sprouting from axons from surviving motor neurons, 

but this process is incomplete, resulting in a decrease in motor units and an increase 

in remaining motor unit size (Piasecki et al., 2018b, Piasecki et al., 2016b). 

Causes of muscle weakness 

Part of the age-related decrease in muscle mass may be caused by the progressive 

decrease in levels of physical activity as humans age (Ingram, 2000, Degens and 

Alway, 2006). In fact, one of the most intriguing properties of skeletal muscle is its 

enormous plasticity, reflected by the ability to respond to altered functional demands 

(Larsson et al., 2019). For instance, muscle adapts to endurance training with 

increased fatigue resistance and aerobic capacity, while repeated overloading causing 
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increased muscle strength and size (Jones et al., 1989, Salmons and Henriksson, 

1981). On the other hand, disuse leads to atrophy and weakness. 

Older muscles may have a compromised ability to maintain muscle mass, with 

reduced myofibrillar protein synthesis rate leading to reduced quality and quantity of 

motor protein due to disuse in older age (Larsson et al., 2019). This is part of a the 

larger issue of anabolic resistance shown with ageing, occurring from a blunting of the 

response from anabolic stimuli, these being the ingestion of amino acids and 

contractile loading of skeletal muscle (Breen and Phillips, 2013). Though it has been 

reported that increasing the volume of exercise at either 40% or 75% of one repetition 

max is able to overcome anabolic resistance to some extent (Kumar et al., 2012), with 

it being consistently shown that older individuals do respond with hypertrophy to 

resistance exercise (Fiatarone et al., 1990, Harridge et al., 1998). Not only force, but 

also the maximal shortening velocity of a muscle may be influenced by physical activity 

levels, where a high level of activity has also been linked to higher shortening velocity 

and specific tension in single muscle fibres (D'Antona et al., 2007). Undoubtedly, 

reduced levels of physical activity do contribute to the apparent age-related loss of 

muscle mass and strength. However, it is not the whole story as even masters athletes 

exhibit similar percentage annual loss in performance in a wide range of athletic events 

(Ganse et al., 2018) and the fibre type shift is opposite to that seen in disuse (Degens 

and Alway, 2006).   

Besides lower physical activity levels, other factors must contribute to muscle ageing 

leading to the reduction in muscle quality observed. One of those, the ongoing 

denervation/re-innervation process due to motor neuron loss, is already described. It 

is, however, unclear what causes this loss of motor neurons. Fat and fibrotic infiltration 

during ageing with ageing is thought to decrease muscle quality, through the 
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impairment of force generation (particularly the lateral transfer of force) (Ramaswamy 

et al., 2011). Muscle architecture in ageing is influenced by dysregulated muscle 

remodelling, with myogenic progenitor cells switching to a fibrotic outcome (Shefer et 

al., 2006), possibly signifying intramuscular fat and fibrotic deposits are due to 

changes in satellite cell signalling (Vertino et al., 2005). Low-grade systemic 

inflammation in old age may be such a factor and has been suggested to play an 

important role in the ageing-related muscle wasting (Degens, 2010). Some of these 

circulating factors seem indeed to be linked to muscle weakness such as interleukin 6 

(IL-6) and tumour necrosis factor α (TNFα) (Visser et al., 2002). Satellite cells key in 

muscle regeneration may have reduced ability to self-renew during ageing (Shefer et 

al., 2006). Possibly leading to apoptosis or senescence, due to an increase in 

proliferation (Chakkalakal et al., 2012, Sousa-Victor et al., 2014). Contributing to 

impaired regeneration of muscle with ageing, alongside a possible contribution to 

neuromuscular degeneration, leading to decreases in muscle quality (Carlson et al., 

2001, Liu et al., 2017).  It is also important to consider changes in reactive oxygen 

species (ROS) and leading to alterations in antioxidant defence systems seen with 

ageing. Part of the loss of the regeneration capacity of satellite cells could be the 

increase in ROS seen in older subjects, leading to damage of cellular macromolecules, 

suggesting redox balance plays an important role in muscle ageing (Minet and Gaster, 

2012). In skeletal muscle, the antioxidant defence system has been shown to be 

upregulated during ageing (Sullivan-Gunn and Lewandowski, 2013). However, there 

is no further increase in antioxidant enzyme activities normally elicited from muscle 

contraction in older muscle, leading to a potential increase in oxidative damage to 

muscle cells (Vasilaki et al., 2006). The increase in ROS and attenuated antioxidant 

defences is thought to contribute to mitochondrial dysfunction. The increase in ROS 



30 
 

lead to mutations in mitochondrial DNA, impairing the electron transport chain due to 

the production of dysfunctional components, which in turn leads to a further increase 

in ROS (Miquel et al., 1980). Exacerbating the damage to muscle cells in ageing, 

leading to muscle atrophy in humans (Bua et al., 2006). During ageing there is also a 

decrease in hormones, such as a reduction in insulin-like growth factor-I (IGF-I), that 

may lead to a reduced anabolic environment (Lamberts et al., 1997). In addition, the 

reduction in sex hormones have been linked with muscle weakness in both older men 

and women (Van Vliet et al., 2005, Phillips et al., 1993). These alterations in the profile 

of circulating hormones may well contribute to the anabolic resistance seen in older 

individuals (Rennie, 2009), with studies showing a need for an increased protein 

consumption for a positive effect on lean mass in undernourished older individuals 

(Park et al., 2018).  

1.4 Quantification of Body Composition in Humans 

In the past four decades there have been considerable advancements in the study of 

body composition (BC). It is now possible to measure body organs, tissues and cells 

in very high detail (Malina, 2007). BC allows for accurate assessment of organs, 

tissues and cellular compartments for clinical diagnosis and to identify where 

intervention may be needed (Lee and Gallagher, 2008). Different techniques of 

assessments are available and they each have their merits and their weaknesses. A 

five-level framework can describe whole body, tissue, molecular, and atomic aspects 

of the human body. Often BC is represented in terms of protein, lipids, carbohydrate 

(usually dismissed due to small amounts held), minerals and water. To estimate body 

mass from these, the following equation is used: 

 

Body mass = water + protein + mineral + lipids (Malina, 2007) 



31 
 

 

Generally, a two-compartment model is the preferred method of partitioning body 

mass: fat mass (FM) and fat free mass (FFM). Some models separate FFM into 

muscle, bone mineral and connective tissue. Of these components FM, and muscle 

are the most readily influenced by diet and activity (Malina, 2007). Clinicians and 

researchers are interested in finding an optimal balance between FFM, FM and total 

body mass to achieve health in the general population. This information can help in 

the design of interventions to keep older individuals physically independent and more 

robust as they age. The age related alterations in BC, especially the loss of muscle 

mass, not only leads to muscle weakness as discussed above, but can also cause 

metabolic problems (Tzankoff and Norris, 1977). BC is also an indicator of nutritional 

status and provides information on possible instances of malnutrition. Therefore, the 

accurate tracking of body composition throughout the lifespan is imperative to help 

achieve better health outcomes within populations. This can only be achieved through 

the use of a consistent and accurate method of BC estimation.    

Computer tomography (CT) and MRI offer the greatest level of detail when assessing 

BC, providing an estimate of muscle volume, through the analysis of muscle cross-

sectional slices, which can then be used to construct the full volume of the muscle. CT 

and MRI have also been used to quantify subcutaneous and intramuscular fat 

infiltration. CT and MRI are considered the “gold standard” to estimate skeletal muscle 

size and body composition in populations including children (de Ridder et al., 1992), 

healthy adults (Ross et al., 1996) and the elderly (Baumgartner et al., 1992). However, 

the acquisition of data from MRI and CT scanning is an expensive and time-consuming 

process. DXA is a quicker technique, but provides a 2-dimensional estimate of lean 

body mass, fat mass and bone mineral content. In all three modalities aforementioned, 
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there could also be issues with scanning larger individuals and it may be difficult to 

define water and intramuscular lipids. 

Dual-Energy X-Ray Absorptiometry  

The principle of DXA is that X-rays are absorbed to a different extent by different 

tissues. To perform the measurement a low and high pseudomonoenergetic beam is 

produced by a high-speed fan beam scanner X-ray tube and the absorption of the X-

ray measured (Andreoli et al., 2009). DXA was initially used for the assessment of 

bone mineral density and diagnosing osteoporosis and osteopenia. It has now become 

clear that it can also be used to collect whole or regional data on body composition 

and because of its relative ease it has become a popular modality. However, there are 

some issues with the use of DXA to assess body composition, as the algorithms may 

be valid for young people, but not directly transferred for older people, due e.g. to an 

age-related increase in connective tissue, intramuscular fat and subcutaneous tissue. 

DXA sees non-adipose components of fat tissue, connective tissue (Wang et al., 1996) 

and non-mineral components of bone (Heymsfield et al., 1990) as FFM. It must also 

be noted that DXA measurements assume that the hydration status of FFM is 73%, 

but this can vary from 67-85% dependent on hydration status (Pietrobelli et al., 1998). 

This bias is likely to be small as it has been reported that no significant effect was seen 

on total fat percentage when hydration ranged from 68% - 78% (Kelly et al., 1998). 

DXA scans are much more accessible, easier to use and interpret, as well as having 

considerably lower costs than MRI scanners. However, DXA may overestimate fat and 

mineral content, is unsuitable to distinguish separate muscle groups and lacks 

therefore the ability to asses muscle quality (Shaw et al., 2007). There is also an 

exposure to radiation when conducting DXA (ranging from 0.04 – 0.86 mrem), 

dependent on the make and model of the scanner and the dimensions of the patient 
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(Lee and Gallagher, 2008). However, this dose is much lower than normal daily 

exposure (1.69 mrem). 

The first studies looking into the validity of DXA used the measure of whole body 

potassium to correlate against DXA measurements, as whole body potassium 

indicates the lean mass of a person (Womersley et al., 1972). It was found that 

appendicular lean mass was strongly correlated to total body potassium (r=0.94) 

(Heymsfield et al., 1990), though DXA was found to overestimate muscle mass when 

compared to measures by CT, with this overestimation increasing with increasing 

muscle mass (Heymsfield et al., 1990). It has been suggested that the overestimate 

of lean mass by DXA is due to assumptions made for protein or other material in 

adipose tissue and bone, therefore skewing the measure of lean mass (Heymsfield et 

al., 1990, Loenneke et al., 2016, Abe et al., 2015). However, adjustments to account 

for fat infiltration, none-bone mineral content and connective tissue do no remove this 

bias (Heymsfield et al., 1990, Kent-Braun et al., 2000) 

Magnetic Resonance Imaging  

MRI is considered the ‘gold standard’ of body composition measures alongside CT. 

Through the use of multiple image slices a 3D model of volume can be estimated 

(Narici et al., 1992, Erskine et al., 2009), which can be used to measure bone 

(Woodhead et al., 2001), adipose tissue (Kullberg et al., 2009), skeletal muscle mass 

(Baumgartner et al., 1992, Narici et al., 1992) and connective tissue within the target 

area. MRI measurements are based on the high-water content, and hence proton 

content of body tissue. The magnetic field aligns the spin axis of the protons that is 

disturbed by radio frequency waves. Cessation of the wave leads to realignment of the 

proton spins, and the speed at which this realignment occurs is dependent on the 

position of the protons in the molecules. The receiver coils collect the radio frequency 
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waves emitted by the protons when spin orientation is manipulated. The differing 

frequencies received indicate the type of tissue: light grey being muscle, dark grey 

connective tissue and white adipose tissue.  

MRI as a modality is extremely accurate and reproducible and this is one of its main 

strengths. It can track small changes in mass over time as well as the ability to discern 

the individual muscles in a larger muscle group. MRI also does not emit radiation like 

CT or DXA scanning procedures, therefore making it an ideal candidate for repeated 

procedures in individuals. However, MRI machines and maintenance costs are high, 

and the scanning process and assessment of images takes skill and time, while some 

larger individuals may not be able to be scanner, all factors that lead to limited 

availability of this equipment. 

1.5 Mobility and Function measurements  

Six-minute walk test 

The assessment of functional capacity in terms of everyday living is essential for the 

diagnosis of functional limitation in the elderly and especially the frail elderly. While 

this can be done through self-reported measures, they carry the risk of over and under-

reporting. Therefore, more objective measures should be used, such as a shuttle walk 

test or 12-minute walk test. More commonly used is the 6-minute walk test (6MWT) 

(Enright, 2003) that is an inexpensive, valid measurement, with good levels of 

reproducibility (Pollentier et al., 2010, Costa et al., 2018). The 6MWT has also been 

reported to correlate with an individual’s peak oxygen uptake and is widely used to 

measure the response to therapeutic interventions (Enright, 2003).   
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Timed Up-and-Go 

The timed-up-and-go (TUG) test is a useful functional measure because it includes 

rising from a seated position, a short walk and negotiating a turn. Originally a ‘Get-Up 

and Go’ Test was developed (Mathias et al., 1986) to assess these factors of functional 

mobility, which was modified to enable an integrated measure of balance, gait speed 

and functional capacity (Podsiadlo and Richardson, 1991). This test has been found 

to be reproducible over time and between assessors, alongside fulfilling the criteria of 

a functional measurement (Solomon, 1988).   

Balance 

Nearly every neuromuscular disorder results in degeneration of balance control, with 

this loss of balance comes an increase in the chance of falls and in the elderly this 

often leads to death (Winter et al., 1990). It is important that individual’s neural control 

is able to handle many of the perturbations that occur during phases of locomotion 

and therefore improve fall outcomes in older individuals (Winter et al., 1990). Thus, 

the measurement of balance allows further assessment in the neuromuscular changes 

that occur during the ageing process.    

Muscle power 

The assessment of muscle power is most commonly measured through the counter 

movement jump, which can feedback data such as jump height, peak power, and peak 

velocity. Therefore, helping determine an individual’s neuromuscular status, the use 

of counter movement jump without arm swing has be shown to be a reliable 

performance measure when average values are taken (Claudino et al., 2017). Though 

it does appear that jumping mechanics do change with ageing, partly due to a 
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simultaneous coordination of muscle activation with advanced age (Haguenauer et al., 

2005).     

Isometric maximal voluntary contraction torque 

Isometric strength tests are those where a force is produced with the lengths of muscle 

remaining relatively fixed.  Lower limbs are usually assessed by asking an individual 

to push or pull against bar or cuff attached to a strain gauge. The use of such measures 

enables the assessment of maximal voluntary activation, giving insights into changes 

of maximal voluntary activation in such target populations (i.e. sarcopenic) (Bergamin 

et al., 2017, Nuzzo et al., 2018). It is important that such functional tests use best 

practice and are repeatable and reliable, isometric strength tests tend to be free of 

systematic bias and a have good test-retest reliability in healthy older adults (Bergamin 

et al., 2017, Nuzzo et al., 2018). The method used within this thesis to test contractile 

properties of human quadriceps longitudinally was shown to have excellent 

reproducibility (Appendix 1). 

Voluntary activation 

The use of electrical stimulation to assess human muscle contractile properties has 

been well established (Gerrits et al., 2001, Chan et al., 1999, Hunter et al., 1999, 

Degens et al., 2005, Morse et al., 2007b, Wust et al., 2008). To assess the voluntary 

activation an electrical evoked twitch is superimposed on the maximal voluntary 

contraction and the amount of extra force, when compared to an electrically-evoked 

twitch preceding the voluntary contraction, gives a measure of the degree of voluntary 

activation. 

Besides the assessment of voluntary activation, electrical stimulation allows the 

determination of muscle contractile indices such as the force frequency relationship, 



37 
 

fatigue resistance, maximum rate of contraction and relaxation while avoiding possible 

motivational bias. The contractile properties determined in this way appear to correlate 

with a variety of molecular or histochemical muscle features (Harridge et al., 1998).  

When performing repeated measures, it is important to know how reproducible the 

measurements are. This is particularly important when one wants to know the impact 

of an intervention on the contractile properties of the muscle, especially when one 

considers how muscle adapts to changes in functional demands (Baar and 

Hargreaves, 2011, Koopman and van Loon, 2009, Nuzzo et al., 2018).  

1.6 Longitudinal observations  

Large cross sectional studies which have been well-designed through the use of 

multiple methods of imaging, functional and questionnaire data, do provide sound 

measure of variability between young and old, that highlight a general downward trend 

in muscle mass (Mitchell et al., 2012). However, there is always the risk that systematic 

influences may skew the results, such as intergenerational differences for example, 

those born during rationing. Longitudinal studies overcome such systematic issues 

and are able to track estimates of muscle mass in the same population over a time, 

giving a more accurate and robust model of ageing. However, the current literature 

describing muscle mass changes longitudinally is limited, due to the inherent difficulty 

of collecting data over extended timescales.  

Frontera et al. (2000a) conducted a 12-year follow up study, using computed 

tomography, which alongside MRI is seen as the gold standard in body composition 

measurements. Thigh cross sectional area was calculated and then separated into 

anterior and posterior thigh muscles and the changes were reported for a small cohort 

(n=7, 65.4 ± 4.2 yr) of healthy sedentary men transitioning from their seventh decade 
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to eighth. A 1% annual decline in thigh CSA was reported, which outlined the 

accelerated loss of mass postulated to occur during this period, describing a larger 

loss than the estimated 0.5% annual decline reported by Maden-Wilkinson et al. 

(2014) in a cross sectional study of the same muscle group between young (early 

twenties) and old (early seventies) independent living adults. No differential rate of 

loss between extensor and flexor muscles was found, whereas an increased loss of 

extensor muscles compared to flexor muscle between young and old was reported by 

Maden-Wilkinson et al. (2014).  

Conversely, Hughes et al. (2002) reported losses of 0.2% in a larger sample size, 

describing individuals through their seventh decade, which is markedly lower than that 

reported by Frontera et al. (2000a) and even lower than reported in a cross-sectional 

study (Maden-Wilkinson et al., 2014). Similar losses were then reported by Dey et al. 

(2009) in an older cohort (75-80yrs) with an annual loss of 0.18%. Both of these studies 

reported changes in fat free mass, using hydro-densiometry and bioelectrical 

impedance to estimate the muscle changes. These methods may lack the sensitivity 

and specificity required to track changes in the muscle during ageing and therefore 

should be interpreted with caution.  

Larger-scale work as part of the Health, Ageing and Body Composition study was 

conducted. This work described the changes in much larger sample sizes, with 

Delmonico et al. (2009a) describing changes over a 5-year period using computed 

tomography and Koster et al. (2011) using DXA over a 7-year follow up in well-

functioning (reported no physical limitations and were not currently undergoing 

treatment for cancer) men and women during their eighth decade. The findings from 

Delmonico et al. (2009a) reported 0.98% annual thigh losses in men which is similar 

to the values published by Frontera et al. (2000a) which also used computed 
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tomography to assess muscle mass. However, Koster et al. (2011) found a lower 

annual loss of muscle mass over 7-years in men (0.8%), this may be due to differences 

in methodology. For example, previous work suggests an overestimation of muscle 

mass with the use of DXA (Maden-Wilkinson et al., 2013b, Visser et al., 1999, Levine 

et al., 2000, Shih et al., 2000). Men suffered from larger age-related loss of muscle 

mass than women in both the Health, Ageing and Body Composition reports (Koster 

et al., 2011, Delmonico et al., 2009a), with women reporting an annual decline of 

0.64% (Delmonico et al., 2009a) and 0.7% (Koster et al., 2011). Suggesting there is 

disparity between how men and women age which has also been suggested in other 

studies (Iannuzzi-Sucich et al., 2002, Castillo et al., 2003, Janssen et al., 2000c).  

Of the longitudinal studies conducted currently, both Koster et al. (2011) and 

Delmonico et al. (2009a) represent the most reliable data in free-living older adults, 

though these still lack the detail to fully characterise age-related loss in muscle mass.  

1.7 Summary of current research 

The majority of our knowledge of effects of old age on musculoskeletal structure and 

function come from cross-sectional studies that compared data from young with data 

from older adults to try to understand mechanisms behind the decrease in muscle 

mass with ageing and the larger proportional loss of function. However, there is always 

the potential bias related to differences in genotype and changes in life-style over the 

decades that human ageing takes that may cause unintended bias in cross-sectional 

studies. Such bias can be overcome in longitudinal studies of changes in muscle size 

and function with ageing. Such studies are the minority, often only covering relatively 

simple assessments that can be carried out easily and cost effectively as part of large 

epidemiological studies or health assessments. They have not had an integrated 
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approach of structural and functional changes in skeletal muscle and their impact on 

the ability to perform activities of daily life. Which can only be achieved with multiple 

validated testing procedures on a cohort. In addition, many studies investigating the 

impact of ageing on muscle mass have used DXA with little consideration of the 

possible over- or underestimation of muscle mass by this technique. It is therefore key 

that these factors are uncovered and described in detail to give a clearer view of 

ageing into the eighth decade, especially as humans are now living longer though 

towards the end of their lifespan not necessarily in good health. The maintenance of 

mobility and health into old age a key current challenge, with the development of 

mobility impairments of leading to a decrease in quality of life. Consequently bringing 

to the forefront and encouraging the implementation of interventions that can attenuate 

such changes. 

1.7 Unresolved issues 

There are still a number of unresolved issues when it comes to muscle ageing: 

- Whether DXA measurements are appropriate and accurate to track 

changes in muscle mass longitudinally in older adults.  

- What the underlying causes of the increased proportional loss of force is 

ageing  

- Whether there is an accelerated decline in muscle mass seen in healthy free 

living septuagenarians during later ageing, compared to the linear decline 

described in cross sectional studies  

- How functional capacity in healthy individuals entering their 8th decade 

alters, in comparison to relative changes seen over prior decades 
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1.8 Aim of the Thesis  

The overall aim of the work in this thesis was to track and characterise longitudinal 

changes in muscle size and function and how this impacts on the ability to perform 

activities of daily life over a 5-year period, in healthy free-living septuagenarians. 

Which is of particular interest and importance due to the increasing proportion of the 

population over 60 years of age. It is estimated this population will more than triple 

within 50 years to over 2 billion by 2050 (WHO, 2018). The participants in this work 

were part of a larger European-wide cross-sectional study (MYO AGE) to describe the 

aforementioned characteristics. The objectives of the work presented in this thesis 

were: 

1) To assess the reliability of DXA measurements against MRI to assess longitudinal 

changes in muscle mass in older populations. 

2) To uncover the gross functional basis of the age-related changes in mobility seen 

in older individuals. 

3) To describe the influence of fibre atrophy, fibre loss, in situ specific force, and 

voluntary activation to muscle weakness seen with ageing.  

 

The following work presents novel data to address each of the above objectives. 

 

This work was proceeded by a larger project known as “Myoage” (nr: 223576), funded 

from the European Commission, alongside the Medical Research Council as part of 

the Life Long Health and Wellbeing initiative (MR/K/025252/1) and is entirely the work 

of James Cameron.  
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Chapter 2 

 

 

Five-year longitudinal changes in thigh muscle mass of 

septuagenarian men and women assessed with both DXA and MRI 
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2.1 Abstract 

Magnetic resonance imaging (MRI) and dual-energy absorptiometry (DXA) were used 

to assess changes in thigh lean mass in septuagenarian men and women during a 5-

year longitudinal study. Twenty-four older individuals participated in the study (10 men; 

71.6±4.1 y: 14 women; 71.3±3.2 y at baseline). Thigh MRI and whole-body DXA scans 

were used to estimate changes in thigh lean mass. Both MRI and DXA showed that 

thigh lean mass was reduced by approximately 5% over the 5-year period in both men 

and women (P=0.001).The percentage loss of muscle mass determined with MRI and 

DXA showed moderate correlation (R²=0.466; p<0.001). However, DXA over-

estimated thigh lean mass at both baseline and follow-up by 0.86 and 0.82 kg, 

respectively. Bland Altman analysis showed that the average atrophy over five years 

of follow-up measured by DXA was only 0.18% greater than MRI, where the limits of 

agreement between DXA and MRI were ±10.4%. Baseline thigh lean mass did not 

predict the percentage loss of thigh lean mass over the 5-year period (R²=0.003; 

P=0.397), but a higher baseline body fat percentage was associated with a larger loss 

of thigh muscle mass in men (R²=0.677; P<0.003) but not women (R²=0.073; 

P<0.176). In conclusion, 1) DXA and MRI showed a similar percentage loss of muscle 

mass over a 5-year period in septuagenarian men and women that 2) was independent 

of baseline muscle mass, but 3) increased with higher baseline body fat content in 

men. 
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2.2 Introduction 

Ageing is accompanied by changes in muscle mass that are thought to contribute to 

reduced physical function and vigour, and the eventual loss of independence in old 

age (Doherty, 2003a). This loss of  muscle mass and physical function has been 

described as sarcopenia (Rosenberg, 1989b). By the 8th decade, muscle mass has 

declined by around 30% from peak values, with these losses principally coming from 

the atrophy of type II fibres (Barnouin et al., 2017b) and loss of muscle fibres (McPhee 

et al., 2018). The loss of myofibers seen in ageing is thought to be a consequence of 

motor neuron death and it has been reported that up to 50% of motor units are lost by 

the 8th decade (Piasecki et al., 2018a). It should also be noted that there might be a 

differential rate of age-related loss of muscle mass between men and women, with 

men thought to suffer to a greater degree (Iannuzzi-Sucich et al., 2002, Castillo et al., 

2003, Janssen et al., 2000c). With increased adipose tissue also thought play a role 

in the rate of age-related loss of muscle mass (Newman et al., 2003). 

The major problem with most studies of human ageing is that they are cross-sectional 

and it is important to develop and validate methods to assess changes in muscle bulk 

in longitudinal studies. Muscle imaging techniques allow the non-invasive evaluation 

of skeletal muscle size and architecture (Lee et al., 2013) and include bio-electrical 

impedance (BIA), CT, DXA and MRI (Heymsfield et al., 1990, Narici et al., 1992, Wang 

et al., 1996, Visser et al., 1999). CT and MRI are generally considered the gold 

standard, allowing the accurate assessment of muscle cross-sectional area, muscle 

mass and intramuscular adipose tissue content. Nonetheless, these techniques are 

expensive and consequently DXA (Baumgartner et al., 1998) and BIA (Janssen et al., 

2000a) are frequently used to identify sarcopenia.  
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Previously, good correlations have been found between muscle size estimations with 

CT, DXA and MRI in similar groups of individuals (Fuller et al., 1999, Visser et al., 

1999, Levine et al., 2000, Segal et al., 2009, Maden-Wilkinson et al., 2013b). However, 

despite a strong correlation (R²=0.90 young, R²=0.83 old) in a large cross-sectional 

cohort study, thigh muscle mass was over-estimated by DXA as the slope of the DXA-

MRI relationship was steeper than 1 and had an intercept of approximately 0.4 kg 

(Maden-Wilkinson et al., 2013b). In addition, DXA underestimated the percentage 

difference in muscle mass between young-adults and older people (Maden-Wilkinson 

et al., 2013b), suggesting that DXA underestimates the age-related loss of muscle 

mass. It remains to be seen, however, whether longitudinal changes in skeletal muscle 

mass of older people can indeed be determined with DXA, or that this method also 

underestimates the loss of muscle mass beyond the age of 70 as a consequence of 

the increased fraction of the intercept of the whole signal. 

Therefore, the purpose of the present study was to compare changes in muscle bulk 

as measured by DXA and MRI in a 5-year longitudinal study of men and women in 

their 8th decade. It was hypothesised that DXA underestimates the loss of muscle 

mass when compared with MRI. In addition, we studied whether the rate of muscle 

loss is 1) negatively related to baseline muscle mass and/or 2) positively related to 

baseline body fatness. 
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2.3 Methods  

Participants and ethical approval 

The participants are a subgroup from the cross-sectional MYOAGE study 

(www.myoage.eu) (McPhee et al., 2013). The participants were recruited from the 

local community (Manchester, UK) and were asked 5 years later to return for a follow-

up study. Data presented in this report are from the twenty-four older participants that 

returned (10 men, 14 women), with a drop-out rate of 74% from the original cohort of 

66 men and women. Written informed consent was obtained from each participant 

before partaking in both the first and the follow-up study. The studies conformed to the 

Declaration of Helsinki and were approved by the local ethics committee of the 

Manchester Metropolitan University. Participant characteristics are presented in Table 

2.1. All individuals were community dwelling, socially active and classed as healthy. 

Exclusion criteria were: known musculoskeletal or cardiovascular diseases, any limb 

fractures within 5 years of testing, hip or knee replacement in the previous 2 years, 

immobilised for greater than 1 week 3 months prior to testing, institutionalisation, 

unable to walk 250 m unassisted, chronic pain syndrome, metabolic disease, chronic 

obstructive pulmonary disease, or neurological disorders (e.g. Parkinson’s).  

Anthropometry 

While wearing light indoor clothing, body mass was recorded on a digital scale to the 

nearest 0.1 kg. Standing height was measured using a stadiometer to the nearest 1 

mm. Body mass index (BMI) was calculated as body mass (kg)/(height (m)²).   

Duel Energy X-ray absorptiometry  

Participants lay supine on the scanning bed wearing a medical gown. A total body 

DXA (Lunar Prodigy Advance, GE Healthcare, Chicago, USA) scan was performed to 

http://www.myoage.eu/
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measure total body composition and bone mineral density. Estimations of total lean 

mass and fat mass were obtained using Prodigy, Encore 2006 v10.50.086 software 

(GE Healthcare). To estimate the fat mass, bone mineral content and lean mass in the 

thigh of the dominant leg, the thigh was demarcated by one border proximally and 

parallel to the greater trochanter and another through the knee joint line, as described 

previously (Segal et al., 2009, Maden-Wilkinson et al., 2013b) (Fig. 2.1A). All DXA 

analyses were completed by the same investigator. Each standard total body scan 

took 295 s with an estimated skin entrance dose of 0.4 µGy (GE Healthcare, Lunar 

encore, Safety and Specification Manual). Typically, the estimates of lean mass by 

DXA software packages include connective tissue, non-mineral components of bone 

and non-adipose components of fat tissue alongside muscle mass. As the contribution 

of these factors is unclear and possible changes of these components with aging 

unknown, we did not correct for these potential confounders. The system was 

calibrated with the same whole-body phantom at baseline and at 5 years follow up 

before each scan. 

Magnetic Resonance Imaging  

In six of the participants, thigh volume was measured using a 0.25-T MRI scanner (G-

Scan, Esaote, Genova, Italy). The participant was in a supine position in the scanner 

and multiple 3.1 mm thick serial transverse sections were acquired every 25 mm from 

the proximal to the distal heads of the femur of the dominant leg using a turbo 3D T1-

weighted protocol (matrix 256 x 256, TR 40 ms, TE 16 ms). The cross-sectional area 

of the four quadriceps muscles and other thigh muscles (hamstrings, abductors and 

adductors) in each slice (Fig. 2.1B) were determined using computer imaging software 

(OsiriX medical imaging software, OsiriX, Atlanta, USA). Visible fat and connective 

tissue were not included in the measurement region, with all muscles measured three 
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times with the average recorded. Estimated total thigh volume was calculated through 

the summation of the cross-sectional area of each head of the individual quadriceps 

muscles and other muscles in each slice, multiplied by the distance between slices. It 

was not possible to measure the rectus femoris (RF) beyond the head of the femur, 

due to limitations of coil size. Therefore RF volume for the proximal 10% was 

calculated assuming conical volume from the last transverse section to the origin of 

the muscle, identified using ultrasound (Esformes et al., 2002). MRI volumes were 

converted to mass by multiplying by the density of muscle tissue 1.04 g.cm-3 (Snyder 

et al., 1975), aiding the comparison between measures. It has previously been shown 

that thigh muscle volume can be calculated from a single scan (Morse et al., 2007a, 

McPhee et al., 2009). In a subset of  six subjects, a good correlation was found 

between the measured and the calculated thigh muscle volume (R² = 0.89; p=0.007) 

also in this cohort. Consequently, in the remaining 18 participants, thigh volume was 

estimated from a single scan taken at 60% of the length from distal-to-proximal femur 

(Morse et al., 2007a). 
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Figure 2.1. (A) Example of dual energy X-ray absorptiometry (DXA) image showing regions of interest 

of the thigh. (B) Magnetic resonance imaging (MRI) image of the thigh muscles. VI: vastus intermedius; 

VL: vastus lateralis; VM: vastus medialis; RF: rectus femoris; OM: other muscles. 

 

Statistics 

Data were analysed using SPSS v22 (IBM, 2015). Repeated-measures ANOVA with 

“within subject factor” time (baseline and follow-up) and “between subject factor” 

gender was used. A gender*time interaction indicated that men and women changed 

differently over time. Linear regression analysis was conducted to consider 

correlations between measurements. Statistical significance was accepted as p<0.05. 

Data were expressed as mean ± standard deviation unless stated otherwise. Bland 

Altman analysis (Bland and Altman, 1999) was used to determine the limits of 

agreement between DXA and MRI.  The test-retest variability was given as the 

A BA



50 
 

coefficient of variation (CVp), which was calculated as the SD of the differences 

between MRI and DXA as a proportion of the mean: CVp = √((∑CVᵢ²)/n). 

 

2.4 Results 

Participant Characteristics  

Women were shorter, had lower FFM, appendicular lean mass (ALM), and  bone 

mineral density (BMD) than men (Table 2.1; p<0.001). The participants lost about 1 

cm in stature over the 5-year period as well as having lower FFM and ALM (p≤0.001), 

irrespective of gender. The gender*time interactions for body mass (p=0.029) and BMI 

(p=0.019) were reflected by a decrease in body mass and BMI in women, but not in 

men. There was no significant change in Fat mass and BMD over the 5-year period. 

Table 2.1. Participant characteristics 

  Women  (n=14)   Men        (n=10)   Significant differences  

  Baseline Follow-up % change Baseline Follow-up % change Time  Gender Gender*Time 

Age (years) 71.3±3.2 76.2±3.3   71.6±4.1 76.2±4.4   P=0.000 P=0.923 P=0.193 

Body mass (kg) 65.5±10.4 63.4±10.9 -3.5 83.6±15.2 83.9±15.1 0.5 P=0.079 P=0.000 P=0.029 

Height (m) 1.61±0.07 1.60±0.06 -0.5 1.74±0.08 1.73±0.08 -0.5 P=0.000 P=0.000 P=0.874 

BMI (kg/m²) 25.6±5.47 25.0±5.5 -2.0 27.7±4.4 28.1±4.1 1.5 P=0.798 P=0.123 P=0.019 

FFM (kg) 39.0±3.1 37.7±3.1 -3.5 55.3±8.1 54.5±7.5 -1.5 P=0.001 P=0.000 P=0.378 

FM (kg) 24.1±9.4 23.5±10.3 2.5 25.0±10.4 26.1±10.3 4.5 P=0.580 P=0.604 P=0.075 

FM (%) 37.0±9.2 36.9±9.94 0 30.2±9.2 31.5±8.7 4.5 P=0.236 P=0.056 P=0.172 

ALM (kg) 17.4±1.8 16.7±1.75 -4.0 25.7±4.0 24.6±3.7 -5 P=0.000 P=0.000 P=0.206 

BMD (g/mm²) 1.07±0.10 1.07±0.10 0 1.25±0.12 1.26±0.12 1.0 P=0.352 P=0.000 P=0.519 

 

Data shown as mean ± SD. Abbreviations: BMI: Body Mass Index; FFM: Fat Free Mass; FM: Fat Mass; ALM: Appendicular Lean 

Mass; BMD: Bone Mineral Density.  
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Correlations between MRI and DXA 

 

Figure 2.2. (A) The relationship between thigh lean mass as determined by DXA vs as determined by 

MRI. ■: men and ●: women at baseline, and □: men and ○: women at follow-up. ---: line of identity; ---: 

regression line at baseline; ···: regression line at follow-up. Equations – left: baseline; right: follow-up. 

(B) Bland-Altman plot to show the absolute agreement between MRI and DXA; ■: men and □: women. 

Horizontal dashed lines represent 1.96 standard deviation above and below the average difference 

between methods, depicting levels of agreement (+0.54 kg upper level of agreement and -0.37 kg lower 

level of agreement). Solid horizontal line represents the bias between methods (DXA shows a 0.09 kg 

larger loss of muscle mass than MRI over the 5-year period). 
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Both MRI and DXA showed that men had larger muscles than women (Table 2.2; 

p≤0.001). Figure 2.2A shows the correlation between thigh muscle size as measured 

by DXA and MRI for values at baseline (R²=0.857; p<0.001) and at the 5-year follow-

up (follow-up R²=0.818; p<0.001). The regression lines of the two correlations were 

very similar.  
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Figure 2.3. (A) The relationship in men and women between thigh lean mass percentage change as 

determined by DXA vs MRI. ■: men and □: women; ---: line of identity; -·-: regression. (B) Bland-Altman 

plot to show the percentage agreement between MRI and DXA. ■: men and □: women. Horizontal 

dashed lines represent 1.96 standard deviation above and below the average difference between 

methods, depicting levels of agreement (+10.2% upper level of agreement and -10.6% lower level of 

agreement). Solid horizontal line signifies the 0.18% larger decrease in muscle size determined by DXA 

than by MRI. 
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When analysing data showing the changes to muscle size over the 5-year follow-up, 

Bland Altman plots (Fig. 2.2B) showed a 0.09 kg larger loss measured by DXA 

compared with that measured by MRI. Limits of agreement between DXA and MRI 

was ±0.453 kg. The percentage loss of muscle mass determined with MRI and DXA 

showed moderate correlation (R²=0.466; p<0.001; Fig. 2.3A). Bland Altman plots (Fig. 

2.3B) show a 0.18% lower muscle loss measured by MRI compared with DXA and the 

limits of agreement between DXA and MRI was ±10.4%. The overall pooled co-

efficient of variation (pCV) between MRI and DXA over 5 years was 0.045%. 

Longitudinal changes in thigh lean mass 

Table 2.2. Measurements of thigh muscle size by dual energy X-ray absorptiometry (DXA) and 
magnetic resonance imaging (MRI). 

            

   Women (n=14) Men (n=10) Significant differences   

   Baseline Follow-up % change Baseline Follow-up % change Time  Gender Gender*Time  

 

MRI Quadriceps muscle 

lean mass (kg)  1.05±0.16 1.01±0.16 -4.5 1.63±0.31 1.48±0.28 -8.8 P=0.001 P=0.001 P=0.61  

 

MRI Other muscle lean 

mass (kg) 1.39±0.15 1.30±0.18 -6.4 1.94±0.34 1.86±0.35 -3.8 P=0.001 P=0.001 P=0.756  

 

Quadriceps:other muscle 

ratio 0.76±0.08 0.78±0.11 0.00 0.85±0.15 0.81±0.13 -0.05 P=0.517 P=0.224 P=0.078  

 

MRI Total thigh lean mass 

(kg) 2.44±0.29 2.31±0.31 -5.5 3.56±0.57 3.35±0.57 -6.1 P=0.001 P=0.001 P=0.228  

 DXA Thigh lean mass (kg) 3.89±0.36 3.59±0.40 -8.0 5.55±0.98 5.34±0.93 -4.0 P=0.001 P=0.001 P=0.529  

 MRI:DXA (ratio) 0.65±0.07 0.67±0.06 2.48 0.67±0.07 0.66±0.09 -2.32 P=0.967 P=0.904 P=0.039  

            
Data shown as mean ± SD. 

 

MRI showed a similar percentage decrease in thigh muscle size in men and women 

(Table 2.2). The percentage rate of loss of thigh lean mass did not differ significantly 

between DXA and MRI (p=0.841), as indicated by similar MRI:DXA ratios (Table 2.2) 

for thigh muscle size at baseline and 5-year follow up (p=0.967). 
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It is possible to distinguish the quadriceps and other muscles in the thigh with MRI to 

investigate possible differential atrophy between thigh muscles. The ratio of 

quadriceps to other muscles was similar in both genders at baseline (Table 2.2; 

p=0.224) and the absence of a significant age-related change in this ratio (Table 2.2; 

p=0.517) indicated that the atrophy was similar in both muscle compartments. 
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Figure 2.4. (A) The association between baseline thigh muscle volume and % change of thigh muscle 

volume at follow up in magnetic resonance imaging (MRI) (B) Association between baseline thigh 

muscle volume and % change of thigh muscle volume at follow up in dual energy X-ray absorptiometry 

(DXA). ■: men and □: women; ---: regression line.  
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Figure 2.5. (A) Baseline body fat % association with the percentage change in muscle volume on follow 

up, as measured by magnetic resonance imaging (MRI) and (B) dual energy X-ray absorptiometry 

(DXA). ■: men and □: women; -- regression line men; -·- regression line women; Equations – left: men; 

right: women.   
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There was no significant correlation between baseline thigh muscle volume and the 

percentage decline over the 5-year period in either men or women when measured by 

either MRI (Fig. 2.4A; R²=0.003; p=0.397) or DXA (Fig. 2.4B; DXA: R²=0.009; 

p=0.326). However, baseline body fat percentage was associated with a larger 

percentage decrease in muscle volume following the 5-year period in men (Fig 2.5A 

MRI: R²=0.677; p=0.003; Fig 2.5B DXA: R²=0.308; p=0.048), but not in women (Fig 

2.5A MRI: R²=0.073; p=0.176; Fig 2.5B DXA: R²=0.024; p=0.298). 

2.5 Discussion 

It has previously shown that DXA provides higher values for thigh muscle mass than 

MRI measurements and that, when comparing young and old, MRI measurements 

suggest a greater age-related decline in muscle mass than that obtained from DXA 

measurements (Maden-Wilkinson et al., 2013b). DXA is a convenient method to 

assess body composition and muscle mass but our previous cross-sectional 

observations raised concerns about its suitability for use in longitudinal studies of 

changes in muscle mass and progression of sarcopenia. In the present study it was 

confirmed that DXA gives higher values for thigh muscle mass than MRI and this was 

extended to show that the percentage loss of muscle mass over a 5-year period was 

similar for DXA and MRI.  We also showed that the percentage loss of muscle mass 

in the 5-year period was similar in 1) quadriceps and hamstring muscles, 2) 

recreationally active healthy older men and women, 3) was independent of baseline 

muscle mass, 4) was greater in men with a higher baseline body fat percentage, and 

5) that the rate of muscle decline was higher than that estimated from cross-sectional 

comparisons of people aged in their 20s compared with those in their 70s. 
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DXA vs. MRI 

MRI total volume measurements are widely regarded as the gold standard though 

these measurements are both time consuming and costly. The cost and time can be 

reduced significantly by calculating muscle volume from a single MRI scan. Here we 

show that this is not only possible in young men (Morse et al., 2007a) and older men 

and women (Maden-Wilkinson et al., 2014), but that even the percentage decrease in 

thigh muscle cross-sectional area over a 5-year period correlated strongly with the 

percentage decrease in thigh muscle volume (y=1.03x–0.04; R²=0.875; p=0.003). This 

indicates that estimating changes in muscle size from single MRI transverse sections 

taken at 60% of femur length is sufficient to assess changes in muscle volume 

longitudinally. 

While the use of a single MRI scan already saves considerable time, and hence cost, 

MRI and CT are not commonly available. DXA has become a popular modality to 

assess body composition and muscle mass in large cohort studies, due to its wider 

availability and ease of use (Ellis, 2000, Visser et al., 2003, Goodpaster et al., 2006, 

Zhong et al., 2012, Santanasto et al., 2017). Although a good correlation was found 

between the thigh muscle mass determined by DXA and MRI in both men and women 

at both baseline and follow-up, DXA consistently overestimated the muscle mass due 

to a positive intercept and a slope of the regression line greater than 1. Such a positive 

intercept has been seen before in young adults and older people (Visser et al., 1999, 

Levine et al., 2000, Shih et al., 2000). This is also in line with previous work shown in 

a large cohort study reporting a positive intercept and a slope steeper than 1 (Maden-

Wilkinson et al., 2013b). It has been suggested that protein or other material in adipose 

tissue may contribute to this over estimation of muscle mass by DXA (Abe et al., 2015, 

Loenneke et al., 2016). However, in our previous study, adjustments to account for 
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connective tissue, fat infiltration and none-bone mineral content of bones (Heymsfield 

et al., 1990, Kent-Braun et al., 2000) did not remove this bias. 

In practice, and when following changes over a relatively short time scale of 5 years, 

the difference between the two methods (MRI and DXA) is small. Bland Altman 

analysis showed a discrepancy between the change in muscle mass as determined 

by MRI and DXA in absolute terms of 0.09 kg and in percentage terms of 0.18% over 

the 5-year period. This suggests that DXA is an acceptable method for longitudinal 

tracking of muscle mass in older people. 

Longitudinal age-related decline in muscle mass in older people 

Ageing is associated with an overall reduction in skeletal muscle mass that contributes 

significantly to the loss of muscle strength (McPhee et al., 2018). This loss of strength 

and concomitant slowing of the muscle (Simunic et al., 2018) result in an age-related 

reduction in muscle power that is associated with a reduced performance in the timed-

up-and-go and 6-minute-walking test (Maden-Wilkinson et al., 2015). As the proportion 

of older people is rising in the western world, it is important to understand sarcopenia 

and its progression towards frailty in the older person (McPhee et al., 2016). Here, we 

found with both DXA and MRI that over the relatively short time period of 5 years, 

muscle mass decreases by ~5% in people in their seventies. This is relatively more 

than the 25% lower muscle mass seen in a cross-sectional comparison of 

recreationally active people in their seventies and their 50 years younger counterparts 

in their twenties (Maden-Wilkinson et al., 2014). It indicates that the age-related rate 

of muscle decline is possibly accelerated during the eighth decade of human ageing  

(Degens and Korhonen, 2012, Ganse et al., 2018), and/or that the rate of loss of 

muscle mass before age 70 only starts beyond e.g. the age of 45 (Janssen et al., 
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2000c). Thus halving the period of atrophy between the twenties and seventies. It is 

important that we are able to distinguish the differing phases of ageing, so we are able 

to describe changes in the loss of muscle mass seen at various points during the 

human lifespan.  

Some studies report that the age-related loss of muscle mass is larger in men than in 

women (Iannuzzi-Sucich et al., 2002, Castillo et al., 2003, Janssen et al., 2000c), while 

others show similar losses for both genders (Janssen et al., 2002). Part of the 

discrepancy may be due to the way changes in muscle mass are reported. In absolute 

terms men lose more mass than women because men have a larger muscle mass to 

start with, but in percentage terms the decrease is similar for men and women, as we 

observed in the present 5-year longitudinal study. In line with this, we found that while 

baseline muscle mass was, if anything, associated with a larger loss of muscle mass, 

it did not correlate with the percentage age-related decline in muscle mass. It has been 

reported that a lower muscle mass is associated with functional impairment and 

physical disability (Janssen et al., 2002). Though in absolute terms, as there was no 

difference in the relative rate, the decrease in muscle mass occurs at a faster rate in 

those with larger muscles, they will reach the disability threshold later, illustrating that 

it is in the long run beneficial to have a larger muscle mass (Degens, 2018, Degens 

and McPhee, 2013)  

Previous cross-sectional studies have shown that increased levels of adipose tissue 

may accelerate the age-related loss of muscle mass and strength in both men and 

women (Newman et al., 2003, Koster et al., 2011, Tomlinson et al., 2014, de Carvalho 

et al., 2018). In the present study the percentage muscle loss over 5 years was 

positively related to the percentage body fat in men, but this was not the case for 

women. Particularly visceral fat mass is an important source of inflammatory cytokines 
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(Pedersen, 2009) and an increase in the fat mass is likely to contribute to chronic low-

grade systemic inflammation in older people that can cause muscle wasting and 

dysfunction (Degens, 2010). With visceral fat being shown to accelerate the loss of 

muscle mass in older individuals in particular (Kim et al., 2014). These observations 

stress the benefit of a low body fat percentage for skeletal muscle health in old age 

and hence the importance of a healthy diet and regular physical activity (McPhee et 

al., 2016, Mithal et al., 2013).  

Previously, it has been observed in a cross-sectional study that there appears to be a 

differential rate of atrophy between extensors and flexors seen in ageing, with the 

quadriceps muscles declining by 30% and the other muscles in the thigh only declining 

18% in older people in their seventies, compared to young-adults in their twenties 

(Maden-Wilkinson et al., 2013b). Here we did not see a differential rate in loss of 

muscle mass over the 5-year period. It remains to be seen whether there is indeed a 

differential rate of atrophy in these muscles during early ageing, followed by a similar 

rate of age-related atrophy in old age. 

Conclusion 

Both DXA and MRI showed a similar percentage atrophy over a 5-year period in 

septuagenarians. The rate of atrophy was independent of the muscle mass at baseline 

and similar for men and women. A high percentage body fat was, however, associated 

with a faster rate of muscle decline in men. These data indicate that 1) DXA can be 

used to assess longitudinal changes in muscle mass in older people, 2) a 

proportionally larger decline of muscle mass than the 25% difference between people 

in their twenties and seventies (Maden-Wilkinson et al., 2013b), 3) a low muscle mass 
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is not indicative of a higher rate of age-related muscle wasting and 4) increased body 

fatness was associated with an greater rate of age-related muscle loss in men. 
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Chapter 3 

 

 

The Contributions of Fibre Atrophy, Fibre Loss, In Situ Specific 

Force, and Voluntary Activation to Weakness in Sarcopenia 
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3.1 Abstract 

The contributions of fibre atrophy, fibre loss, in situ specific force and voluntary 

activation to weakness in sarcopenia remain unclear. To investigate, forty older (20 

women; age 72±4yrs) and 31 younger adults (15 women, age 22±3yrs) completed 

measurements. The knee extensor maximal voluntary torque (MVC) was measured 

as well as voluntary activation, patella tendon moment arm length, muscle volume and 

fascicle architecture to estimate in situ specific force. Fibre cross-sectional area 

(FCSA), fibre numbers and connective tissue contents were also estimated from 

vastus lateralis biopsies. The MVC, quadriceps volume and specific force were 39%, 

28% and 17% lower, respectively, in old compared with young, but voluntary activation 

was not different. The difference in muscle size was due in almost equal proportions 

to lower type II FCSA and fewer fibres. Five years later (n=23) the MVC, muscle 

volume and voluntary activation in old decreased an additional 12%, 6% and 4%, 

respectively, but there was no further change in specific force. Conclusions: in situ 

specific force declines relatively early in older age and reduced voluntary activation 

occurs later, but the overall weakness in sarcopenia is mainly related to loss of both 

type I and II fibres and type II fibre atrophy. 
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3.2 Introduction 

Skeletal muscle weakness is a key feature of sarcopenia (Cruz-Jentoft et al., 2019)  

and a core component of the physical frailty phenotype (Fried et al., 2001). Weakness 

increases the effort required to complete everyday physical tasks and is associated 

with a higher risk of falling, disability, hospital admission and mortality (Clark and 

Manini, 2010). To develop effective countermeasures, it is important to understand the 

factors contributing to weakness. 

In young adults, a close relationship exists between muscle cross-sectional area and 

the maximal force produced by that muscle (Bamman et al., 2000, Maughan et al., 

1983). During ageing the muscle mass declines in part due to type II fibre atrophy 

(Andersen, 2003, Barnouin et al., 2017a), which contributes to muscle weakness. 

Fibre losses may also contribute to low muscle mass, although there is surprisingly 

little data on this matter and conflicting reports with one suggesting fibres are lost with 

ageing (Lexell et al., 1988) and another stating they are not (Nilwik et al., 2013). 

Irrespective of the reasons why muscle mass declines, recent reports argue that the 

relationship between muscle mass and maximal force is weak in older adults 

(Senechal et al., 2015, Clark and Manini, 2008). This viewpoint is based on the 

apparent disparity in the age-related changes of maximal force and lean mass seen in 

cross-sectional studies (Chen et al., 2013, Lynch et al., 1999) and longitudinal studies 

where a three-fold greater decline of maximal force compared to appendicular lean 

mass has been reported (e.g. (Goodpaster et al., 2006, Hughes et al., 2001a)). It might 

be concluded, therefore, that low muscle mass is not the primary cause of weakness 

in older age and this has led to interest in possible changes in “muscle quality”, 

measured as maximal force per unit muscle mass (e.g. see (Goodpaster et al., 2006, 

McGregor et al., 2014, Hairi et al., 2010b, Lynch et al., 1999, Moore et al., 2014)). 
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However, this literature has two important limitations. First, it is strongly influenced by 

studies using DXA to estimate the muscle size. Additionally, previous work did not 

consider potentially important physiological and anatomical contributions to force 

production, including activation of the motor unit pool, muscle architecture and joint 

structures. 

To understand the causes of weakness in older age, it is necessary to take account of 

several factors. First, the maximal muscle force depends on all available motor units 

of the agonist muscles being fully activated (Clark and Taylor, 2011). Secondly, 

muscle force is proportional to the number of fibres (or, sarcomeres) in parallel, 

represented by the physiological cross-sectional area (PCSA), rather than the 

anatomical cross-sectional area (CSA), of the agonist muscles (Degens et al., 2009b). 

Thirdly, muscle and joint architecture influence the external torque because the tendon 

force decreases in proportion to the cosine of the fibre pennation angle, while external 

torque increases proportionately with the tendon moment arm (Degens et al., 2009b). 

Considering all of these factors together gives a better estimate of muscle quality than 

just normalising maximal force to lean mass derived from DXA, and is referred to here 

as in situ specific force. Previous studies showed lower in situ specific force of plantar 

flexors (Morse et al., 2005b) and voluntary activation of knee extensors (Clark and 

Taylor, 2011) in old compared with young. However, there is currently limited 

information about specific force and voluntary activation of sarcopenic muscle and no 

information about longitudinal changes in specific force for older adults. 

The aim of the present study was to estimate the contributions of muscle size and 

specific force to the maximal external muscle torque in young and older adults. The 

hypothesis was that low muscle mass as well as reduced voluntary activation and in 

situ specific force contribute to weakness in sarcopenia. Following on from this, we 
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aimed to estimate the contributions of muscle fibre atrophy and muscle fibre loss to 

the overall quadriceps muscle atrophy with ageing. These aims were addressed 

through comparison of results from young and older adults and a longitudinal 

examination of older adults. 

3.3 Methods 

Ethical approval and research participants 

The Local Research Ethics Committee approved the study. All volunteers provided 

written informed consent. Volunteers were excluded if they were involved in any 

competitive sports (recreational sports were allowed) or had cardiovascular (controlled 

hypertension was allowed), metabolic, musculoskeletal, neurological or mental 

conditions, or body mass index <18 or >32 kg·m-2.  

Participants arrived at the research facility between 9am and 10am. DXA and MRI 

images were collected, followed by the grip strength, timed-up-and-go and 6-minute 

walk tests. A light snack and drink were provided and after a 30 minute break, the 

assessments of knee extensor voluntary activation and architecture were completed. 

For longitudinal studies, the older participants were invited to complete the same 

assessments 5 years later. Participant characteristics are shown in Table 1, including 

results for the basic functional assessments of 6 minute walk test (walking as far as 

possible in 6 min around cones placed 20 m apart), maximal grip strength (Jamar 

dynamometer performed twice on each hand and the maximum value taken) and 

timed up and go (TUG: starting from a seated position, stand and walk around a cone 

placed 3 m in front and then return to the original seated position), which were all 

performed following standardised procedures described previously (McPhee et al., 

2013). 
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Musculoskeletal imaging 

Participants were scanned by DXA (Lunar prodigy advance, GE Healthcare, Chalfont 

St Giles, UK) after an overnight fast in the supine position whilst wearing a light cotton 

robe. Off-line analysis (encore 2006 v 10.50.086) identified whole body lean mass and 

body fat percentage, arm and leg lean mass and bone mineral content (McPhee et al., 

2013). ALM was calculated as: [(lean mass of legs + lean mass of arms) – (bone 

mineral content of legs + bone mineral content of arms)] (Goodpaster et al., 2006). 

A 0.25-T MRI scanner (G-scan, Esaote Biomedica, Genoa, Italy) was used to collect 

transverse plane sections (Turbo-3D T1-weighted protocol with consecutive 2.8 mm 

thick slices) from the dominant leg tibial tubercle through to the anterior-inferior iliac 

spine with participants in the supine position (Maden-Wilkinson et al., 2013a). Osirix 

imaging software was used to estimate the anatomical cross-sectional areas of each 

of the four heads of the quadriceps muscles from transverse-plane images at 25 mm 

intervals from the distal to the proximal ends of the quadriceps. These cross-sectional 

areas were summed and multiplied by the distance between slices (2.5 cm) to estimate 

quadriceps muscle volume. The patella tendon moment arm was imaged with the leg 

at full extension and estimated from sagittal-plane slices as the distance from the mid-

contact point between the femoral condyles and tibial plateau to the patella tendon. 

The moment arm length was multiplied by 0.99 to adjust for the difference between 

full knee extension to 90° flexion (Baltzopoulos, 1995) (the angle at which MVC was 

measured) and the resulting value was multiplied by 1.14 to adjust for the 14% 

increase in moment arm in transition from rest to MVC (Tsaopoulos et al., 2007). This 

technique has a coefficient of variation of < 4% (Erskine et al., 2009). 
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Grip Strength 

Handgrip strength was measured with all participants instructed to maintain an upright 

standing position, arms down by the side, holding the dynamometer in the dominant 

hand without squeezing the arm against the body. Measurement was to the nearest 

0.1kg using a JAMAR hand dynamometer (Sammons Preston, Inc, Bolingbrook, IL, 

USA). Each participant had the dynamometer adjusted to their hand size, with the 2nd 

phalanx resting against the inner handle.  

Six-Minute Walk Distance 

To assess the 6-minute walk distance two cones were placed 20 m apart. Participants 

were given the verbal instruction to “complete as many circuits as possible without 

running” and received verbal encouragement after each minute of the walk. The total 

distance walked during the six-minute period was recorded (Enright, 2003). Heart rate 

was monitored throughout the test (Polar, USA) and the average heart rate during the 

final 3 minutes of the test was given as the steady state heart rate (S-shr). All 

participants completed the 6-minute walk without the use of a walking aid.  

Timed Up-and-Go  

The TUG test involved getting up from a standardised chair (no arm rests, seat 44 cm 

high) and to walk forward as quickly as they were able, without running, to a cone 3 m 

away and return to the initial sitting position. Participants were familiarised to the 

procedure prior to the execution of the real test. Upon the ‘go’ signal, participants rose 

from the chair and timing was concluded when seated again. The test was conducted 

three times for each participant, with a rest period of 1 min between trials, and the 

quickest of the three trials was recorded. 
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MVC and voluntary activation 

A custom-built isometric dynamometer was used to assess knee extension MVC of 

the dominant leg with participants sitting with the knee and hip angles at 90°. A strap 

was firmly secured across the hip joint and the lower leg securely strapped to the force 

transducer 2 cm above the malleolus. The linear distance from the estimated centre 

of knee rotation to the point of force application (2 cm above the malleolus) was taken 

as the lever length (in m). Torque was estimated as force multiplied by lever length. 

Force signals sampled at 2000 Hz were digitised for real-time visual display and for 

recording on a computer interface running Labview and a customised Matlab script 

(Matlab, the Mathwork Inc., S Natik, MA, USA). Participants were familiarised with the 

knee extension exercise by performing up to five contractions at around 50% of 

maximal effort each lasting 3 s, and another two contractions at around 80% maximal 

effort. After a 2 min rest, participants performed a maximal isometric contraction, 

sustained for 3 s with visual feedback and strong verbal encouragement and this was 

repeated a further two times. The highest recorded torque was taken as MVC. The 

patella tendon force was estimated from the moment equilibrium equation around the 

knee joint (Reeves et al., 2004a) by dividing the MVC torque by the patella tendon 

moment arm length. 

Voluntary activation was assessed using a version of the interpolated twitch technique 

(Rutherford et al., 1986b, McPhee et al., 2014) with stimulating electrodes covering 

the proximal and distal portions of the quadriceps (AmericanImex: Dispersive 

electrode, 4 x 7 inch), connected to a Digitimer DS7AH set at 400 V (Welwyn Garden 

City, UK) and current increased to deliver supramaximal ‘doublet’ (two 200-μs pulses 

separated by 10 ms) stimuli over the quadriceps muscle group. Stimulation was 

applied to the relaxed muscle 1 s prior to a maximal voluntary effort and then again at 
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the highest point of the MVC. In the cross-sectional study, a third doublet was also 

applied 2 s after the MVC. The voluntary activation test was performed twice and the 

result giving the highest voluntary activation was accepted. The percentage voluntary 

activation was calculated as: 

 % voluntary activation = 100 x (1 – t/T) 

Where t was the amplitude of the superimposed doublet (i.e. the size of the additional 

peak) and T the value of the doublet applied to the resting muscle 1 s prior to MVC.  

Physiological cross sectional area and in situ specific force 

PCSA was calculated for each quadriceps muscle as: [muscle volume / fascicle 

length], and the sum taken as quadriceps PCSA (Narici, 1999).  

The fascicle length and pennation angle used in these calculations were estimated 

using real-time B-mode ultrasonography with a 7.5-MHz linear array probe. 

Measurements were collected at the mid belly of each of the four heads of the 

quadriceps muscles in the sagittal plane at the moment of peak force during MVC 

contractions (Erskine et al., 2009). Imaging software (Image J; v1.39b; National 

Institutes of Health, Bethesda; USA) was used to determine muscle fascicle length 

from the superficial to the deep aponeurosis. Pennation angle was determined as the 

angle at which the fascicles intercepted the deep aponeurosis. Thickness was 

measured as the perpendicular distance between the superficial and deep 

aponeurosis.  

For calculations of in situ specific force, the quadriceps PCSA was multiplied by the 

cosine of the fascicle pennation angle to account for the reduction in transmission of 

forces from fibres to aponeurosis to adjust for the angle between the fascicles and the 

line of pull through the patella tendon. Specific force was estimated as: [(external 

torque / moment arm) / (PCSA * pennation angle)] or simplified to: [Patella tendon 
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force / (PCSA * pennation angle)] (Erskine et al., 2009). The external force used in the 

calculation of specific force was the “true MVC”, which is the estimated MVC if full 

voluntary activation was possible: True MVC = MVC immediately prior to the 

superimposed doublet / (1 – t/T). Where t was the amplitude of the superimposed 

doublet (i.e. the size of the additional peak) and T the value of the doublet applied to 

the resting muscle 1 s prior to MVC. 

Muscle morphology 

Muscle biopsies available from young and old participants were taken using a 

conchotome from midway along the length of the right vastus lateralis muscle (VL) 

under aseptic conditions and local anaesthesia (1% lignocaine). The samples were 

placed on cork with fibres running vertically and immediately frozen in liquid nitrogen 

whilst shaking vigorously to avoid freezing artefacts. Muscle sections were stained for 

myosin ATPase activity after preincubation at pH 4.35 to identify type I and type II 

fibres and determination of the fibre cross-sectional areas (FCSA). Serial sections 

were stained with Sirius Red to assess the collagen content and analysed using a 

customised Matlab programme. The total numbers of fibres in the VL PCSA was 

estimated as: [VL PCSA / average FCSA]. Biopsies were not collected in the 

longitudinal follow-up study. 

Statistical analysis 

The Shapiro-Wilk test showed that all data were normally distributed. A two-way 

ANOVA was used to test for age and gender effects of outcome parameters. 

Pearson’s Product Moment Correlations were used to assess the relationship between 

variables. Changes occurring over the 5-year follow-up period were assessed using 

paired samples t-tests. Two stepwise multiple regression models were used to identify 

factors associated with MVC torque: the first for baseline and the second for follow-up 
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changes. Both included quadriceps volume, voluntary activation, VL fascicle 

pennation angle, patella tendon moment arm length, age and gender. The second 

model was adapted to examine predictors of longitudinal changes in MVC torque and 

used the percentage changes in each of these variables. Standardised beta 

coefficients (β) indicate the change in standard deviation of MVC torque per standard 

deviation change in the independent variable. Statistical testing was completed using 

SPSS (IBM v.23. USA) and significance was accepted as P<0.05. Results are reported 

as mean and standard deviation (SD), unless otherwise stated. 
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3.4 Results 

 

Table 3.1. Participant characteristics 

Baseline study of young and older adults Longitudinal study of older adults 

 YM 

(n = 16) 

YW 

(n = 15) 

OM 

(n = 20) 

OW 

(n = 20) 

P value:  

Gender 

P value: 

age 

O vs Y 

(%) 

Baseline 

(n = 23) 

Follow-up  

(n = 23) 

P value: 

 

Change (%) 

Age (yrs) 23 ± 4 22 ± 2 72 ± 5 71 ± 4    71 ± 4 76 ± 4   

Height (m) 1.79 ± 0.06 1.67 ± 0.06 1.74 ± 0.08 1.60 ± 0.07 <0.001 0.001 -3 1.68 ± 0.10 1.67 ± 0.10 0.001 -1 

Body mass (kg) 70.6 ± 8.3 61.2 ± 10.7 78.9 ± 14.4 67.3 ± 12.0 0.008 0.014 11 73.2 ± 14.8 73.4 ± 16.1 0.730 0 

BMI (kg·m-2) 21.3 ± 2.2 21.6 ± 3.6 25.9 ± 2.8 26.3 ± 4.1 0.625 <0.001 19 26.0 ± 4.8 26.4 ± 4.7 0.126 1 

Body fat (%) 16.2 ± 6.6 29.6 ± 8.4 30.2 ± 7.8 39.7 ± 8.3 <0.001 <0.001 47 32.6 ± 10.4 33.5 ± 10.1 0.049 3 

ALM (kg) 24.2 ± 1.9 15.1 ± 1.9 20.9 ± 4.0 13.1 ± 2.1 <0.001 <0.001 -13 19.9 ± 5.0 19.3 ± 4.7 <0.001 -3 

ALM·h-2 (kg·m-2) 7.6 ± 0.6 5.4 ± 0.5 6.9 ± 0.8 5.1 ± 0.7 <0.001 0.005 -8 6.9 ± 1.0 6.8 ± 0.8 0.070 -1 

Grip strength (kg) 48.6 ± 12.1 34.3 ± 6.6 37.6 ± 7.7 25.3 ± 4.5 <0.001 <0.001 -24 32.2 ± 9.0 33.1 ± 7.9 0.799 3 

TUG (s) 3.9 ± 0.4 4.2 ± 0.3 5.1 ± 0.8 5.6 ± 1.0 0.083 <0.001 32 5.2 ± 0.7 6.6 ± 1.2 <0.001 27 

6 min walk (m) 735 ± 40 683 ± 45 562 ± 60 551 ± 87 0.081 <0.001 -21 563 ± 79 507 ± 69 <0.001 -10 

 

Data shown as mean ± SD. Abbreviations: YM: young men; YW; young women; OM: older men; OW: older women. BMI: body mass index; ALM: appendicular lean mass; TUG: timed-up-and-go. 
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Muscle size, strength and specific force 

Table 3.1 provides the data for grip strength, TUG and 6-min walk, as well as ALM 

and ALM/h2 and the data show the older adults to be sarcopenic (Cruz-Jentoft et al., 

2019). There were no significant age x gender interactions for any of the 

measurements, indicating that the effects of age described here apply similarly to men 

and women. 
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Figure 3.1. Knee extensor size and strength measurements in young and older men and women. A) 

knee extensor MCV torque; B) MVC patella tendon force; C) quadriceps physiological cross-sectional 

area (PCSA); D) the relationship between patella tendon force and quadriceps PCSA for young (shaded 

circles, continuous line) and older (filled circles, dashed line) adults. Data shown as mean ± SD (Figs 

3.1A-C) and individual data points (Fig 3.1D). Abbreviations: MVC: maximal voluntary torque; PCSA: 

quadriceps physiological cross sectional area; YM: young men; YW: young women; OM: older men; 

OW: older women. P values indicate the results of a two-way ANOVA; age x gender interactions were 

not significant for any of these measurements. 
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The MVC torque (Figure 3.1A) and peak patella tendon force (Figure 3.1B) in old were 

37% and 39%, respectively, lower than values for young. Quadriceps PCSA was 25% 

lower in old than young (Figure 3.1C) and was positively correlated (R2=0.598; 

P<0.001) with tendon force (Figure 3.1D). The in situ specific force value for old was 

83% of values for young (Figure 3.2; P<0.001). 

 

Figure 3.2. Knee extensor in situ specific force. Data shown as mean ± SD. YM: young men; YW; 

young women; OM: older men; OW: older women. P values indicate the results of a two-way ANOVA; 

there was no significant age x gender interaction. 

 

During the 5 years of follow up, components of sarcopenia including ALMM and 

performance in the TUG and 6-min walk tests all decreased (Table 3.1). The 

percentage decrease from baseline values included 12% (±13) lower MVC torque, 6% 

(±9) lower quadriceps muscle volume, 5% (±9) lower PCSA and 4% (±6) lower 
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voluntary activation (all P<0.05), but the in situ specific force did not change 

significantly (3% (±11); Figure 3.3). 

 

Figure 3.3. Five-year changes to muscle torque, size, activation and specific force. Data from older 

adults only and shown as mean ± SD. * indicates significant change from baseline 

 

Predictors of MVC torque 

The regression model based on data from young and old explained 83% of the 

variation in external torque. The majority was due to quadriceps volume (adjusted 

R2=0.765; β=0.727; P<0.001) and a small contribution of age (adjusted R2=0.057; β=-

0.286; P<0.001). Gender, pennation angle, voluntary activation and moment arm 

length did not contribute significantly to the model. A similar result was found if 

quadriceps PCSA was used in the model rather than quadriceps muscle volume. The 

remaining 17% of the variation in external torque not explained by any variables in this 

model includes the contribution of muscle specific force. 
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The regression model based on longitudinal data explained 72% of the change in 

external torque, with the main factor being change in quadriceps volume (adjusted 

R2=0.510; β=0.730; P<0.001) and a contribution of change in voluntary activation 

(adjusted R2=0.210; β=-0.460; P=0.001). Gender, age, pennation angle and moment 

arm length did not contribute significantly to the model. 

Muscle fibre cross sectional area and estimated fibre numbers per PCSA 

Since the results comparing young with old and the longitudinal study point towards 

loss of muscle mass being the main determinant of low MVC in older age, additional 

analysis was completed to determine the relative contributions of fibre atrophy and 

fibre loss to the difference between young and old in VL PCSA. 

The relative area occupied by type I and type II fibres did not differ significantly 

between young and old (P=0.423) or between men and women (P=0.726) (type I: 

young men: 38.8 ± 11.7; young women: 37.3 ± 8.8; older men: 42.0 ± 12.8; older 

women: 40.8 ± 7.4%).  
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Table 4.2. Skeletal muscle characteristics 

 

Data shown as mean ± SD. Abbreviations: YM: young men; YW; young women; OM: older men; OW: older women; 

FCSA: fibre cross-sectional area (available from 13 young men, 8 young women, 20 older men and 10 older 

women); VL: vastus lateralis; VI: vastus intermedius; RF: rectus femoris; VM: vastus medialis. 

 

 

 

 

 

 

 YM 

(n = 16) 

YW 

(n = 15) 

OM 

(n = 20) 

OW 

(n = 20) 

P value:  

Gender 

P value: 

age 

O vs Y (%) 

Voluntary activation (%) 90.1± 3.7 92.2 ± 3.8 88.5 ± 5.9 90.9 ± 5.1 0.073 0.252 -1 

Moment arm (cm) 4.0 ± 0.2 3.3 ± 0.3 4.0 ± 0.3 3.4 ± 0.3 <0.001 0.447 3 

R. leg lean mass (kg) 10.3 ± 1.0 6.5 ± 0.8 8.8 ± 1.6 5.6 ± 0.8 <0.001 <0.001 -14 

R. Quads mass (kg) 2.2 ± 0.3 1.4 ± 0.2 1.6 ± 0.3 1.1 ± 0.2 <0.001 <0.001 -28 

VL fascicle length (mm) 

VL Pennation angle (deg) 

VL Thickness (mm) 

90.6 ± 11.3 

15.3 ± 2.9 

25.2 ± 3.2 

86.6 ± 12.0 

13.8 ± 1.8 

19.9 ± 2.9 

95.0 ± 13.9 

12.3 ± 2.1 

20.4 ± 3.5 

88.4 ± 10.1 

11.9 ± 1.4 

17.9 ± 2.8 

0.073 

0.061 

<0.001 

0.290 

<0.001 

<0.001 

4 

-17 

-15 

VI fascicle length (mm) 

VI Pennation angle (deg) 

VI Thickness (mm) 

100.5 ± 11.0 

12.0 ± 2.5 

21.1 ± 4.9 

92.5 ± 10.5 

10.9 ± 2.0 

18.2 ± 4.0 

93.3 ± 12.6 

11.9 ± 2.7 

19.0 ± 3.1 

87.4 ± 11.2 

10.5 ± 1.7 

15.9 ± 3.6 

0.014 

0.025 

0.002 

0.028 

0.699 

0.026 

-6 

-2 

-11 

RF fascicle length (mm) 

RF Pennation angle (deg) 

RF Thickness (mm) 

76.7 ± 16.0 

19.2 ± 4.0 

23.6 ± 4.2 

70.7 ± 10.8 

18.0 ± 2.4 

19.9 ± 4.0 

78.3 ± 20.0 

15.6 ± 3.1 

20.4 ± 4.3 

71.9 ± 19.7 

14.9 ± 2.7 

17.8 ± 5.0 

0.150 

0.084 

0.005 

0.738 

<0.001 

0.015 

2 

-20 

-12 

VM fascicle length (mm) 

VM Pennation angle (deg) 

VM Thickness (mm) 

94.7 ± 13.1 

20.8 ± 4.3 

31.3 ± 5.1 

74.1 ± 15.9 

19.5 ± 7.2 

21.5 ± 3.4 

87.5 ± 12.0 

19.6 ± 3.2 

26.6 ± 4.2 

74.9 ± 17.7 

15.3 ± 2.7 

19.3 ± 4.8 

<0.001 

0.011 

<0.001 

0.375 

0.014 

0.002 

-4 

-13 

-13 

Type I FCSA (µm2)  

Type II FCSA (µm2) 

4880 ± 690 

6110 ± 1330 

4180 ± 920 

4600 ± 650 

5230 ± 1940 

5000 ± 1440 

4160 ± 1190 

2960 ± 500 

0.708 

<0.001 

0.487 

<0.001 

4 

-26 
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There was no significant difference between young and old in type I FCSA (P=0.487), 

but type II fibres had 26% lower FCSA in old (P<0.001; Table 3.2). Considering the 

type I and type II fibres together, the overall FCSA was 15% lower in old than young, 

which would give approximately 9.5 cm2 smaller VL PCSA in old than young. However, 

the actual VL PCSA was 17.5 cm2 (28%) smaller in old than young, suggesting that 

fibre atrophy alone accounts for approximately 54% of the overall muscle atrophy and 

the remainder (46%) is due to old having fewer fibres than young. The estimated 

numbers of muscle fibres per VL PCSA (PCSA divided by FCSA) was 1.22 million in 

young and 1.03 million (15% fewer) in old. The old had a higher proportion of 

connective tissue than young (11.3 ± 1.0% in young and 14.2 ± 1.4% in old). Taking 

into account this 3% difference reduces the estimated number of fibres per VL PCSA 

to 1 million in old, which is 18% fewer than the young. 
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3.5 Discussion 

We have considered muscle quantity, quality and activation to understand the causes 

of muscular weakness (sometimes referred to as dynapenia, from the Greek for 

poverty of strength) in sarcopenia. The results show that 28% lower muscle mass was 

the main cause of weakness in old compared with young and a further decrease in 

muscle mass was the main predictor of progressing weakness over the follow-up 

period. In situ specific force was 17% lower in old compared with young and did not 

decrease further during the follow-up period. Voluntary activation was similar for young 

and old, but the 4% decrease over five years of follow-up contributed to the declining 

MVC torque. The lower muscle mass in older age was due in about equal proportions 

to fibre atrophy and loss of fibres. 

Knee extensor torque and size 

Low muscle mass is the criterion measurement for sarcopenia and can be estimated 

as ALM/h2. The average ALM/h2 of 6.9 kg/m2 for older men and 5.1 kg/m2 for older 

women at baseline were below the recommended sarcopenia cut-off values of 7.26 

kg/m2 for men and 5.5 kg/m2 for women (Cruz-Jentoft et al., 2019) . Components of 

sarcopenia further declined at follow-up (Table 4.1). In the results comparing young 

with older adults there was a 26-28% lower muscle size (PCSA and volume, 

respectively) and 37% lower MVC torque. If we assume muscle declines begin from 

age 30 years (Janssen et al., 2000b, Moore et al., 2014, Lynch et al., 1999, Silva et 

al., 2010), the rate of change is estimated to be 0.9, 0.7 and 0.4% per year, 

respectively, for MVC torque, quadriceps size and in situ specific force. A further 12% 

decline in MVC was observed over the 5 years follow-up of the older adults. This rate 

of decline is more than twice that estimated for the previous 40 years and is generally 
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in agreement with the literature highlighting accelerated deterioration with advancing 

older age (Mitchell et al., 2012).  

Our results suggest that the cause of muscle weakness during ageing to around age 

70 years is due to loss of muscle mass and, to a lesser extent, specific force. An 

important novel finding of the present study was that the further weakening into the 

late 70s is primarily attributable to continued decline of muscle mass and a lower 

voluntary activation. 

In situ specific force 

Recent reports suggest that muscle quality is the major determinant of strength in older 

age (Senechal et al., 2015, Clark and Manini, 2008). This literature is largely based on 

DXA studies to estimate lean mass, where only weak relationships are seen with MVC 

torque or force (Senechal et al., 2015, Clark and Manini, 2008, Lynch et al., 1999). 

These studies using DXA do not measure the agonist muscle size and in this respect, 

the MRI is the criterion technique and CT is also preferable to DXA (Lustgarten and 

Fielding, 2011). Our results using MRI do not support the literature stating a large 

discordance between muscle mass and strength in older adults. Rather, a positive 

relationship exists between quadriceps PCSA and patella tendon force in young and 

old (Figure 4.1), which is in keeping with the long-standing literature from MRI and CT 

imaging (Hakkinen and Hakkinen, 1991, Maughan et al., 1983, Young et al., 1984, 

Overend et al., 1992, Rutherford and Jones, 1992, Bamman et al., 2000).  

A large-scale longitudinal observation of muscle quality that included an accurate (CT) 

measurement of muscle size showed around 5% loss of thigh muscle CSA and 16% 

decrease in MVC force over 5 years in older men and women (Delmonico et al., 

2009b). This disproportionate loss of strength compared to mass was interpreted as 

reduced muscle quality being the decisive factor for weakness (Delmonico et al., 



85 
 

2009b). However, without a measurement of the neural activation, these findings alone 

should not be interpreted in this way. Because strength can decline due to subjects 

being less willing to perform a maximum contraction or less able to activate the motor 

unit pool, as has been demonstrated in our results and others have previously shown 

(Clark and Taylor, 2011, Harridge et al., 1999). We calculated voluntary activation 

using the superimposed doublet normalized to the pre-MVC doublet, based on the 

assumption that the superimposed stimulus activates motor units (muscle fibres) not 

recruited during the voluntary effort. Other studies normalized the superimposed 

stimulus to a stimulus applied 2 s after the MVC when the muscle response can be 

potentiated. Our cross-sectional study dataset includes both the “pre-stimulus” and the 

“post-stimulus” so we were able to compare the results. The average voluntary 

activation calculated for all participants pooled was 90.4% and 90.8% (p<0.001) when 

using the “pre-stimulus” and the “post-stimulus”, respectively. It therefore made no 

difference to results if the pre- or the post- stimulus was used to normalize the 

superimposed stimulus. 

The best estimate of the muscle quality comes from measurement of the in-situ 

specific force, which takes into account the agonist muscle size, architecture, 

activation of the motor unit pool and the patella tendon moment arm length. Our results 

show 17% lower specific force in old compared with young, which is similar to the 

findings of a previous study normalizing knee extensor isokinetic MVC to quadriceps 

anatomical cross-sectional area (Jubrias et al., 1997). We observed no significant 

change in specific force over the 5-year follow-up in older adults. This is the first 

longitudinal study of in situ specific force accounting for patella tendon force, PCSA 

and muscle architecture. One previous study measured specific force in a similar way 

to us, but comparing young and older plantar flexors. They reported that a 37% lower 
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Achilles tendon force in older muscle was mostly due to a lower (30%) specific force 

(Morse et al., 2005b). Their conclusion that muscle quality changes are more important 

than muscle quantity differs from our own, but closer inspection of the published 

results (Morse et al., 2005b) also reveals 28% lower muscle volume (Morse et al., 

2005b), which is in fact in agreement with our own findings that changes in muscle 

quantity are playing the largest role in age-related weakness. 

The results of the present and a previous publication (Erskine et al., 2009) reveal that 

the force / anatomical cross-sectional area (ACSA) gives a very similar age-related 

difference as the more comprehensively measured in situ specific force. In situ specific 

force is calculated as: [Patella tendon force / (PCSA * pennation angle)], where the 

patella tendon force is the force that could be produced if full voluntary activation was 

possible. Since the moment arm and the voluntary activation did not differ between 

young and old, the tendon force decreased proportional to that of torque. Furthermore, 

the lower PCSA in old was mainly due to a change in muscle volume because the 

fascicle length was similar for old and young and age-dependent differences in 

pennation angle have minimal influence on force transmission to the tendon. Thus, the 

age-dependent differences for in situ specific force are reasonably estimated from 

force / ACSA. 

In mice (Ballak et al., 2014), connective tissue accumulation was associated with lower 

specific force. The small increase in connective tissue in old compared with young in 

our study explains at best just 3% of the difference between young and old in specific 

force, since connective tissue makes up a relatively small proportion of the overall 

muscle. The lower specific force is likely due to lower specific tension of individual 

muscle fibres in old compared with young (D'Antona et al., 2003, Frontera et al., 

2000b, Brocca et al., 2017). We recently reported 16% lower single fibre specific 
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tension in old compared with young (Brocca et al., 2017) and this matches the 

estimates of the in situ specific force made in the present study. 

The age-dependent muscle atrophy 

Our results are consistent with previous reports that type II fibres are highly susceptible 

to age-related atrophy, while type I FCSA is well preserved (e.g. see (Barnouin et al., 

2017a, Andersen, 2003, Nilwik et al., 2013, Lexell and Taylor, 1991)). However, 

surprisingly little information is available about muscle fibre numbers in humans and 

the scarcity of information limits current understanding of the contributions of muscle 

fibre changes underpinning the overall atrophy. In the present study, fibre atrophy 

accounted for 54% of the difference between the PCSA of young and old. The 

remaining 46% is presumably due to fibre losses and we estimate that the old had 

around 200,000 fewer fibres than young in the VL cross section. Despite the selective 

type II atrophy, the relative area occupied by type I and type II fibres did not differ 

between young and old, which must mean that a greater number of type I fibres than 

type II is lost to balance the reduction in type II FCSA. These findings are in general 

agreement with data from autopsy examinations of the VL muscle, suggesting that 

loss of fibres and type II fibre atrophy both contribute to the loss of VL muscle mass 

with ageing, although the autopsy studies indicate similar proportional losses of type I 

and type II fibres (Lexell et al., 1988, Lexell and Taylor, 1991). 

A different conclusion was reached by Nilwick et al (2013), who reported that young 

and old men had similar fibre numbers and that loss of muscle mass with ageing was 

due to type II fibre atrophy only. Notably, Nilwick et al’s (2013) older subjects were not 

sarcopenic and thus had much larger quadriceps anatomical cross-sectional area 

(QACSA: 59 cm2 in our subjects and approximately 68 cm2 in Nilwik et al. (2013)), but 

similar FCSA and therefore higher fibre numbers than our older, sarcopenic 
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participants. These differences between studies may reflect differences between 

sarcopenic and non-sarcopenic old, or differences in the ageing process due to 

lifestyle and habitual activity patterns. 

Our estimate of 200,000 fewer fibres in the VL cross-section of old compared to young 

is similar to Lexell et al (1988) who estimated about 264,000 fewer fibres in 

septuagenarians compared with young adults. Lexell’s (1988) data show fibre 

numbers decline after age 30 years, which is the same age that muscle mass begins 

to decrease (Janssen et al., 2000b, Moore et al., 2014, Lynch et al., 1999, Silva et al., 

2010). It is highly likely that the other quadriceps muscles age in a similar way based 

on the fact that the different quadriceps muscles experience the same degree of 

atrophy (Maden-Wilkinson et al., 2013a) and undergo similar motor unit remodelling 

(Piasecki et al., 2016a, Ling et al., 2009). Given that the VL accounts for about 30% 

of the quadriceps mass, it can be estimated that 20,000 fibres are lost in each 

quadriceps muscle per year, or 40,000 fibres across both quadriceps muscles per 

year, from age 30 years, assuming linear progressive declines. The loss of fibres may 

be linked to declining numbers of motor units, as old have 30-50% fewer leg motor 

neurons than young adults (Tomlinson and Irving, 1977, Piasecki et al., 2016a). A 

resistance training programme will help to recover the type II fibre atrophy (Nilwik et 

al., 2013, Doherty, 2003b) and improve specific force (Reeves et al., 2004a), but is 

unlikely to recover lost fibres or motor units. 

Conclusions  

The in situ specific force declines relatively early during ageing and reduced voluntary 

activation of muscle occurs later, but the overall weakness in sarcopenia is mainly 

related to loss of both type I and type II muscle fibres and type II fibre atrophy. 
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Chapter 4 

 

 

Decrements of mobility and power in septuagenarians related to loss 

of force, but not slowing of the muscle; a 5-year longitudinal study  
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4.1 Abstract  

Previous work has found that the lower 6-minute walk distance (6MWD) was primarily 

due to intrinsic slowing of the muscle between young and old (Maden-Wilkinson et al., 

2015). Here we investigated the ageing-related reductions in mobility over a 5-year 

period in septuagenarians. We measured muscle power by a countermovement jump, 

MVC, quadriceps muscle size by MRI in 17 older women (71.1±2.8 y) and 17 older 

men (71.3±4.1y). 6MWD and TUG were used as indicators of ability to perform daily 

life tasks. Performance in TUG and 6MWD were reduced in both genders (P<0.001). 

TUG and 6MWD correlated with power at both baseline and follow up (R≥0.53; 

P≤0.001). Of the components of power, jump take-off velocity (VCMJ) correlated with 

6MWD and TUG (R≥0.54; P≤0.001). However, the relationship between ‘body mass: 

maximal force ratio’ with VCMJ was not significantly changed, the lower VCMJ was 

attributable to the muscles working at a higher relative load, hence a lower part of the 

force-velocity relationship, due to a reduction in MVC rather than slowing of the 

muscle. In conclusion, the additional decrement in 6MWD & TUG in older people is 

due to a loss of strength rather than further slowing of the muscle.  
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4.2 Introduction 

Globally, the proportion of people aged over 60 years is now growing rapidly.  In 2012 

there were already an estimated 810 million people over the age of 60, which is 

expected to rise to 2 billion by 2050 (United-Nations, 2012). A large proportion of older 

people suffer from limited mobility and loss of independence, placing a strain on 

healthcare resources. The ageing-related reductions in musculoskeletal function 

(dynapenia) and mass (sarcopenia) contribute to decreased mobility, and may 

ultimately lead to loss of independence and quality of life (McPhee et al., 2016). 

Counteracting or slowing musculoskeletal ageing might thus help to ease the burden. 

There are suggestions that the rate of ageing differs between people (Belsky et al., 

2015, Pollock et al., 2015), possibly due to differences in genotype, physical activity, 

lifestyle and diet (Degens and Korhonen, 2012), which raises the possibility of an 

optimal model of ageing. 

Athletic prowess (force and velocity) are thought to peak during the mid-20’s 

(Rittweger et al., 2009, Berthelot et al., 2012). Upon entering the 4th decade there is a 

noticeable and constant decline in performance and strength (Janssen et al., 2000c) 

with a possible accelerated decline after the age of 70 (Hughes et al., 2001b, Ganse 

et al., 2018, Nikolaidis, 2018). Close associations between declining muscle mass and 

functional performance have been widely reported (e.g. (Bijlsma et al., 2014, Janssen 

et al., 2002), suggesting a causal relationship. However, changes in muscle mass may 

not be the entire explanation since muscle force and power has been reported to 

decline proportionally more than muscle size with age (Morse et al., 2005a, Degens 

et al., 2009b, McPhee et al., 2018). Indeed, previous studies have shown that muscle 

force and power are much more closely related to the ability to perform activities of 
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daily living than muscle mass in older people (Buford et al., 2012, Maden-Wilkinson et 

al., 2015, Bean et al., 2002, Reid and Fielding, 2012). 

In addition to changes in muscle strength or power there are other factors that change 

with age and can affect performance of tasks related to mobility, such as a decline in 

neuromuscular coordination and cardiovascular function. Indeed, it has been shown 

that the performance in a 6MWT is related to the maximal oxygen consumption and 

performed at 80-86% of the measured maximal heart rate (Manttari et al., 2018). The 

ageing-related reduction in maximal heart rate (Tanaka et al., 2001) can thus 

contribute to a reduction in the performance in the 6-minute walk test. 

In 2015 the results of a cross-sectional study of young adults (average age 23 years) 

and older men and women (average age 72 yrs) were published (Maden-Wilkinson et 

al., 2015). In that study there was evidence of an association between the lower power, 

determined from a standing jump, and lower TUG and 6MWD performance, that was 

primarily attributable to intrinsically slower muscles of the old than young-adult people. 

Five years following the end of the aforementioned cross-sectional study, this study 

repeated the measurements on a sample of the original older study population. 

Assessing the changes that had occurred during this five-year period, and to what 

extent any additional reduction in performance of the TUG and 6MWD in recreationally 

active older people is attributable to further slowing and/or weakening of the muscle. 

We hypothesised that 1) the annual rate of decline in TUG, 6MWD and muscle function 

over 5 years in septuagenarians will be larger than that seen between 23 and 72 years 

of age, 2) any additional decrement in performance will be related to a further intrinsic 

slowing of the muscle. In addition, we explored possible effects of ageing-related 

changes in cardiovascular function and balance on these functional measures. 
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4.3 Methodology 

Participants and ethical approval 

The study received approval from the local ethics committee and was performed in 

accordance to the declaration of Helsinki. Participants were recruited from a subgroup 

in the framework of the MYOAGE study (www.myoage.eu) (McPhee et al., 2013). 

Thirty-five participants returned 5 years following the initial cross-sectional study from 

2009-2012 (base line). The follow up study was conducted between May 2015 and 

October 2015. The data of one woman are presented in figures, but not included in 

statistical analyses as her performance in the 6-minute walk and timed-up-and-go 

tests at follow up was more than 3 standard deviations below the average performance 

of the women at follow up (see her performance indicated with arrows in Fig. 1 & 2). 

The characteristics of the included participants are presented in table 1. Written 

informed consent was obtained at base line and for the follow up study from each 

participant. Exclusion criteria were: institutionalisation, unable to complete 250-m 

walking unassisted, co-morbidities such as heart failure, chronic pain syndrome, 

metabolic disease, chronic obstructive pulmonary disease and/or neurological 

disorders (e.g. Parkinson’s). Participants were also excluded if they had undergone 

hip or knee replacement in the previous 2 years, or had been immobilised for greater 

than 1 week 3 months prior to testing. All the participants were community dwelling 

and socially active. Participants were not known to suffer from musculoskeletal or 

cardiovascular disease, any limb fractures within 5 years of testing and were classed 

as healthy.           

 

 

http://www.myoage.eu/
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Anthropometrics   

The standing height of the participants was measured with a portable Stadiometer 

(SECA, Switzerland) to the nearest 0.1 cm. A digital scale (SECA, Switzerland) was 

used to record body mass with participants wearing light indoor clothing. The body 

mass index (BMI) was calculated as body mass divided by height squared. 

DEXA 

Participants wore a medical gown and laid supine on the scanning bed. A total body 

DXA (Lunar Prodigy Advance, GE Healthcare, Chicago, USA) scan was performed to 

measure total body composition. Estimations of FFM and FM mass were obtained 

using Prodigy, Encore 2006 v10.50.086 software (GE Healthcare). Each total body 

scan took 295 s with an estimated skin entrance dose of 0.4 µGy (GE Healthcare, 

Lunar encore, Safety and Specification Manual). The system was calibrated with the 

same phantom at baseline and at 5 years follow up before each scan. All DXA 

analyses were completed by the same investigator. Typically, the estimates of lean 

mass by DXA software packages include connective tissue, non-mineral components 

of bone and non-adipose components of fat tissue alongside muscle mass. As the 

contribution of these factors is uncertain and possible changes of these components 

with aging unknown, we did not correct for these potential confounders. 

Magnetic Resonance Imaging 

Thigh volume was measured using a 0.25-T MRI scanner (G-Scan, Esaote, Genova, 

Italy). The participant was in a supine position in the scanner and multiple 3.1-mm 

thick serial transverse sections were acquired every 25 mm from the proximal to the 

distal heads of the femur of the dominant leg, using a turbo 3D58 T1-weight protocol 

(matrix 256 x 256, TR 40 ms, TE 16 ms). The cross-sectional area of the quadriceps 
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muscle and other thigh muscles (hamstrings, abductors and adductors) in each slice 

were determined using computing imaging software (OsiriX medical imaging software, 

OsiriX, Atlanta, USA). The cross-sectional area of the quadriceps muscle (CSAQuad) 

was estimated using the maximal cross-sectional area from the serial transverse 

sections. Total cross-sectional area of the thigh musculature (CSAthigh) was estimated 

from the maximal cross-sectional area using previously outlined methods (Morse et 

al., 2007a, McPhee et al., 2009). 

Balance 

Balance was determined as described previously (McPhee et al., 2013). Testing 

encompassed two-leg and one-leg trials, firstly with eyes open and then with eyes 

closed. Participants attempted to stand still for a maximum of 30 s or until one of the 

termination criteria was fulfilled. Participants removed shoes and had a visible marker 

placed on a wall 2 m in front of the participant to provide a fixed point during the eyes 

open trials. Two legged trials were completed with arms relaxed and feet together, 

participants were not permitted to use their arms to maintain balance. One-legged 

trials required the contra-lateral leg held to be held 5cm off the ground.  All trails were 

repeated twice unless the participant failed to maintain balance for 30 s, in such cases 

a third trial was performed. Participants were encouraged to take some small steps 

between trials. Here we only report the time (in s) a person could stand on one leg 

with eyes open and eyes closed as a measure of balance. 

Six-Minute Walk Distance 

To assess the 6-minute walk distance two cones were placed 20 m apart. Participants 

were given the verbal instruction to “complete as many circuits as possible without 

running” and received verbal encouragement after each minute of the walk. The total 
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distance walked during the six-minute period was recorded (Enright, 2003). Heart rate 

was monitored throughout the test (Polar, USA) and the average heart rate during the 

final 3 minutes of the test was given as the steady state heart rate (S-shr).  All 

participants completed the 6-minute walk without the use of a walking aid.  

Timed Up-and-Go  

The TUG test involved getting up from a standardised chair (no arm rests, seat 44 cm 

high) and to walk forward as quickly as they were able, without running, to a cone 3 m 

away and return to the initial sitting position. Participants were familiarised to the 

procedure prior to the execution of the real test. Upon the ‘go’ signal, participants rose 

from the chair and timing was concluded when seated again. The test was conducted 

three times for each participant, with a rest period of 1 min between trials, and the 

quickest of the three trials was recorded. 

Cardiac Output Measures 

Blood pressure and heart rate were taken from the left arm, using an upper arm blood 

pressure monitor (M2, Omron, Kyoto, Japan). From the diastolic and systolic blood 

pressures the mean arterial (MAP) and pulse pressure (PP) were calculated.  The 

maximal heart rate (HRmax) was estimated as (Tanaka et al., 2001): 

HRmax = 208 – (0.7 x Age) 

and (resting) stroke volume (SV) was calculated as (de Simone et al., 1999): 

SV = PP x (0.013 x body mass – 0.007 x age – 0.004 x HRrest + 1.307) 

The SV and HRrest allowed us to calculate (resting) cardiac output (CO) and peripheral 

resistance (Rper) (in mmHg·mL-1·min): 

Rper = MAP / CO 
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Maximal Cardiac ouput (COmax in L·min·-1kg-1) was estimated as: HRmax * SV/BM. 

Muscle Power 

A maximal countermovement jump was performed on a force platform (Leonardo, 

Novotec Medical, Pforzheim, Germany) to measure the power of the leg extensor 

muscles. The participant was asked to perform the test three times (hands on the waist 

and no swing), with a 1-min rest between jumps. The best jump was selected for 

further analysis. The vertical component of the ground reaction force was used to 

calculate: jump height (m), maximal force (kN), maximum power of the concentric 

phase (Watts) and take-off velocity during the countermovement jump (VCMJ in m·s-1) 

(Caserotti et al., 2001). Jump velocity at take-off was calculated as: 

v = a ×  tf / 2 

Where ‘a’ is the gravitational acceleration (9.81 m s-2) and ‘tf ‘ the flight time of the 

jump. The flight time was the time from take-off until landing (the point which forces 

were registered on the platform again) (Degens et al., 2019).   

 

Isometric maximal voluntary contraction torque 

Isometric knee extensions were performed with the right leg on a custom-made 

isometric testing dynamometer (Designed by the Department on Physical and Medical 

Technology, VU University, Amsterdam, The Netherlands). Force signals were 

recorded via customised Labview (National Instruments Corporation, Texas, USA) 

and Matlab software (Matlab, the Mathwork Inc, S Natik, MA, USA). All procedures 

were explained to the participants, emphasising the requirement to stay relaxed and 

only to voluntary contract when instructed to do so. The participants were seated on 
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the dynamometer with a knee angle of 90° (full extension being 0°) and 85° hip flexion 

(supine being 0°). The lower leg of the participants was securely fastened to the force 

transducer, 2 cm above the ankle malleolus. The hip joint was firmly held in place via 

a strap. Prior to the measurements, the participants were familiarised to the knee 

extension exercise with three contractions at around 50% of maximal effort lasting 3 s 

each, followed by two further contractions at around 80% maximal effort lasting 3 s 

each. A two-minute rest was given prior to a MVC sustained for around 3 s. Two or 

more maximal contractions were performed until the two highest values were within 

10%, with the highest value taken as MVC. Verbal encouragement and visual 

feedback were conveyed during the testing. This method was tested for reproducibility 

in a validation study (Appendix 1). 

Statistics  

Data was analysed using SPSS v22 (IBM, 2015). A repeated-measures two-way 

ANOVA with as within factor Time (baseline vs. follow up) and between factor Gender 

was used to examine differences over time and between genders. To determine 

relationships between the dependent variables (6MWD & TUG) and independent 

variables linear regression models were used. Data were expressed as mean ± 

standard deviation unless stated otherwise and differences were considered 

significant at P<0.05. 
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4.4 Results 

Participant characteristics and muscle mass 

 Table 4.1 Men were heavier and taller than women (P<0.001). Both men and women 

became around 1 cm shorter over the 5-year period (P<0.001). There was a 

gender*time interaction for BMI (P=0.045) reflected by a decrease in BMI in women 

and an increase in men. Women had a lower FFM (P<0.001) and higher %FM 

(P=0.025) than men. Both genders lost FFM (P≤0.001), but there was no significant 

change in FM or %FM over the 5-year period. Appendicular lean mass, sarcopenia 

index, CSAQuad and CSAthigh all decreased over time (P<0.001), with men losing more 

CSAQuad than women (time * gender interaction, P=0.029). 

Table 4.1. Participant characteristics 

          
  Women (n=17) Men (n=17) Effects 

  Baseline Follow-up  % change Baseline Follow-up  % change Time Gender Gender*Time 

Age (years) 71.1±2.8 75.9±2.6  71.3±4.1 75.9±4.4  P=0.000 P=0.924 P=0.562 

Body mass (kg) 65.8±10.5 64.2±11.3 -2.74 84.2±15.5 84.4±15.4 0.24 P=0.174 P=0.000 P=0.093 

Height (m) 1.61±0.07 1.59±0.06 -1.24 1.75±0.07 1.74±0.07 -0.57 P=0.000 P=0.000 P=0.774 

BMI (kg·m-²) 25.8±5.34 25.5±5.56 -1.16 27.6±4.47 28.0±4.20 1.45 P=0.905 P=0.186 P=0.045 

FFM (kg) 39.0±3.04 37.9±3.20 -2.82 56.2±7.37 55.2±6.91 -1.78 P=0.002 P=0.000 P=0.861 

FM (kg) 24.5±9.60 24.1±10.5 -1.63 24.7±10.5 25.8±10.5 4.45 P=0.376 P=0.798 P=0.107 

FM (%) 37.4±9.34 37.4±10.0 0.00 29.4±8.75 30.8±8.51 4.76 P=0.163 P=0.025 P=0.163 

ALM (kg) 17.4±1.80 16.8±1.76 -3.45 26.2±3.60 25.0±3.29 -4.58 P=0.000 P=0.000 P=0.063 

Sarcopenia index (kg·m-²) 6.70±0.46 6.56±0.41 -2.09 8.58±0.88 8.28±0.68 -3.50 P=0.001 P=0.000 P=0.174 

CSAQuad (cm²) 44.2±6.27 42.8±5.94 -3.17 64.6±9.99 58.7±7.95 -9.13 P=0.000 P=0.000 P=0.029 

CSAthigh (cm2) 94.0±18.8 89.1±17.2 -5.21 125±33.3 118±32.6 -5.60 P=0.000 P=0.005 P=0.294 

          
BMI: Body Mass Index; FFM: Fat Free Mass; FM: Fat Mass; ALM: Appendicular Lean Mass; CSAQuad: cross-sectional area 

quadriceps muscle; CSAthigh: cross-sectional area thigh  
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Balance, TUG and 6MWD  

 Both men and women had a decrease in balance time with eyes open (Table 4.2; 

P<0.001) and eyes closed (Table 4.2; P<0.05). Women needed more time to complete 

the TUG than men (P=0.003), but covered a similar 6MWD. For both men and women, 

the performance in the TUG and 6MWD test decreased over the 5-year period (Table 

4.2; P<0.001). 

Table 4.2. Measures of mobility 

          

  Women (n=17) Men (n=17) Effects 

  Baseline Follow-up  % change Baseline Follow-up  % change Time Gender Gender*Time 

1legEO (s) 25.3±8.03 17.8±10.5 -29.64 24.6±9.20 15.2±10.0 -38.21 P=0.000 P=0.610 P=0.554 

1legEC (s) 6.53±5.34 3.31±1.97 -49.31 5.95±5.21 3.93±1.92 -33.95 P=0.015 P=0.984 P=0.562 

TUG (s) 5.68±0.59 7.07±1.21 24.47 5.11±0.59 6.01±0.85 17.61 P=0.000 P=0.003 P=0.150 

6MWD (m) 533±83 494±69 -7.32 568±59 514±59 -9.51 P=0.000 P=0.226 P=0.434 

S-Shr 119±12 113±11 -5.04 111±17 104±15 -6.31 P=0.000 P=0.106 P=0.759 

6MWD % HRmax 75.7±10 73.2±7.3 -4.4 69.8±11.1 66.6±9.3 -4.58 P=0.001 P=0.086 P=0.665 

          
1legEO: one leg balance eyes open; 1legEC: one leg balance eyes closed; TUG: timed up and go; 6MWD: six-minute walk 

distance; S-Shr; six-minute walk steady state heart rate; 6MWD % HRmax: six-minute walk percentage of maximum 

predicted heart rate  

 

Cardiovascular parameters and Muscle function  

 There was an increase in resting HR (Table 4.3; P=0.006), and decreases in BPdia 

(Table 4.3; P=0.027) and calculated maximal cardiac output (Table 4.3; P=0.004). 

Other cardiovascular parameters did not change significantly over the 5-year period. 

 Standing jump power, VCMJ, standing jump force and MVC of knee extensor muscles 

were all higher in men than in women (Table 4.4; P≤0.001), with both genders showing 

a decrease in power, VCMJ and MVC over the 5-year period (Table 4.4; P≤0.005).  
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Table 4.3. Cardiovascular parameters  

          

  Women (n=17) Men (n=17) Effects 

  Baseline Follow-up  % change Baseline Follow-up  % change Time Gender Gender*Time 

HRrest (bpm) 68.6±7.19 73.6±8.56 7.29 64.6±8.80 67.5±7.71 4.49 P=0.006 P=0.067 P=0.551 

BP Dia (mmHg) 80.7±11.3 74.0±8.73 -8.30 83.0±9.6 82.5±7.8 -0.60 P=0.027 P=0.086 P=0.056 

BP Sys (mmHg) 136±18.1 129±21.0 -5.15 135±17.5 135.±16.2 0.00 P=0.130 P=0.667 P=0.124 

MAP (mmHg) 93.4±27.0 93.3±11.8 -0.11 93.8±26.6 94.1±25.8 0.32 P=0.992 P=0.920 P=0.974 

Pulse Pressure (mmHg 55.6±14.5 55.0±17.1 -1.08 52.3±12.1 52.9±13.1 1.15 P=0.995 P=0.574 P=0.741 

Stroke Volume (mL) 77.7±24.4 72.7±25.3 -6.44 86.7±27.0 85.5±26.1 -1.38 P=0.312 P=0.225 P=0.518 

Cardiac Output (mL/min) 5.29±1.67 5.38±2.14 1.70 5.54±1.79 5.72±1.63 3.25 P=0.576 P=0.637 P=0.842 

Rper (mmHg-min-mL-1) 20.1±5.16 19.1±5.62 -4.98 19.3±4.47 18.8±5.28 -2.69 P=0.364 P=0.752 P=0.792 

COmax (mL·min-1·kg-1) 173±60.3 149±52.9 -13.8 194±64.1 176±55.1 -9.30 P=0.004 P=0.244 P=0.643 

          

          

HRres: Heart rate at rest; BPdia: diastolic blood pressure; BPsys: systolic blood pressure; MAP: mean arterial pressure Rper: peripheral 

resistance COmax: cardiac output maximum 

 

Table 4.4. Muscle function 

          

  Women (n=17) Men (n=17) Effects 

  Baseline Follow-up  %change Baseline Follow-up  % change Time Gender Gender*Time 

Standing Jump Power (W·kg-1) 23.7±5.9 21.6±5.0 -8.86 29.9±4.7 26.7±4.8 -10.70 P=0.000 P=0.003 P=0.277 

VCMJ (m·s-1) 1.94±0.19 1.81±0.18 -6.70 2.22±0.19 2.18±0.26 -1.80 P=0.009 P=0.000 P=0.171 

Standing Jump Force (kN) 1.32±0.32 1.38±0.26 4.55 1.76±0.40 1.82±0.30 3.41 P=0.166 P=0.000 P=0.978 

Knee Extensor MVC (N) 417±72 366±75 -12.23 595±83 518±108 -12.94 P=0.000 P=0.000 P=0.344 

          
VCMJ : take-off velocity during the countermovement jump; MVC: Maximal voluntary torque 

 

Correlations of mobility with cardiac output and muscle function  

In follow up, the S-shr during the 6MWD and the distance covered in the test were 

lower than at baseline (Table 4.2; P≤0.001). The %HRmax during the 6MWD was also 

reduced (Table 4.2; P≤0.001), suggesting that the reduction in maximal heart rate is 

not the sole explanation for the reduction in 6MWD performance. 
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Figure 4.1. The relationship between A-C) 6-minute walking distance (6MWD; m) and D,F) timed up-

and-go (TUG; s), with A,D) power (W/kg), B,E) maximum voluntary torque / body mass (MVC-BM-1; 

Nm·kg-1), C,F)  take-off velocity during the countermovement jump (VCMJ; m·s-1). ■: men and ●: women 

at baseline, and □: men and ○: women at follow up. ---: regression line at baseline; -·-: regression line 

at follow-up. Regression equation left at baseline, right at follow-up. Arrow indicates woman with poor 

performance in follow up. 
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 Figure 4.1 showed only at follow up did balance, in terms of the time standing on one 

leg with eyes closed, correlate with the 6MWD (R=0.47; P=0.002) and TUG (R=0.39; 

P=0.01). Both at baseline (R=0.56; P<0.001) and follow up (R=0.61; P<0.001) the 

6MWD correlated with power (Fig. 4.1A). The performance in the 6MWD did not 

correlate significantly with MVC·BM-1 (Fig. 4.1B), but did correlate with VCMJ (Fig. 4.1C) 

at baseline (R=0.57; P<0.001) and follow up (R=0.57; P<0.001).  

Figure 4.1D shows a positive correlation (indicated by the negative slope) between 

power and performance of TUG at baseline (R=0.67; P<0.001) and follow up (R=0.53; 

P<0.001). The MVC·BM-1 correlated to TUG at both baseline (R=0.30 P=0.041) and 

follow-up (R=0.59 P=0.000) (Fig. 4.1E). The performance of the TUG also correlated 

positively with VCMJ (Fig. 4.1F) at baseline (R=0.71; P<0.001) and follow-up (R=0.543; 

P<0.005).  

Velocity and body mass 

 VCMJ was inversely correlated with the BM·MVC-1 ratio both at baseline and follow-up 

(both R>0.54; P<0.001; Fig. 4.2). The % change in power was not significantly related 

to baseline power (Data not shown; R=0.196 P=0.133). 
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Figure 4.2. Body mass / MVC (kg·Nm-1) with velocity (m·s-1). ■: men and ●: women at baseline, and □: 

men and ○: women at follow up. ---: regression line at baseline; -·-: regression line at follow-up. 

Regression equation left at baseline, right at follow-up. Arrow indicates woman with poor performance 

in follow up. One person performs poorly in both the 6MWD and TUG during follow up (indicated with 

an arrow in all figures)  

 

Note that one person performed poorly in both the 6MWD and TUG during follow up 

(indicated with an arrow in all figures). This person had an S-shr in the normal range 

during the 6MWD, but low power. This low power was attributable to a reduction in the 

force generating capacity and not so much slowing of the muscle as the lower VCMJ 

was as expected from the BM·MVC-1 for this person. 
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4.5 Discussion 

The novel observation in this longitudinal study was that healthy septuagenarians 

suffer from a significant decline in muscle mass/function and mobility over a 5-year 

period, irrespective of gender. The annual decline was larger than that observed in a 

previous cross-sectional study comparing 23- and 72-year-old people (Maden-

Wilkinson et al., 2015), suggesting an accelerated age-related decline beyond the age 

of 70. Muscle power, determined with a countermovement jump, correlated most with 

performance in the 6-minute walk and timed up-and-go tests, at both baseline and 

follow-up, while balance was associated with performance at follow-up only. The loss 

of power in the septuagenarians was primarily due to a reduction in force generating 

capacity, rather than a further slowing of the muscle. These results suggest that 

muscle power is a key determinant of physical function during relatively long- and 

short-duration physical function tasks and that with advancing older age balance is of 

increasing importance for physical function. 

Decline in muscle function and physical function  

The main defining features of sarcopenia are low muscle mass, weakness and 

reduced physical function (Fried et al., 2001, Cruz-Jentoft et al., 2019). The ALM/h2 

were at baseline and follow-up above the sarcopenia cut-offs for men (7.26 kg·m-2) 

and women (5.5 kg·m-2) (Cruz-Jentoft et al., 2019), suggesting that our participants 

were not sarcopenic according to the accepted cut-points. While an increase in TUG 

time is associated with an amplified risk of a falling, decline in physical function and 

an increase in frailty index (Beauchet et al., 2011, Viccaro et al., 2011, Kojima et al., 

2015), the TUG time at follow up was still (except the woman excluded from analysis) 

well below the 12-s cut-off point for normal mobility (Bischoff et al., 2003), suggesting 

they were neither physically frail. Similarly, the 6MWD is commonly used to assess 
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functional capacity (Enright and Sherrill, 1998, Troosters et al., 1999). As with the TUG 

test, even though performance in the 6MWD decreased over the 5-year period, all 

participants (again except the excluded woman) covered ≥ 400 m at follow up, 

considered the cut-off for mobility limitations (Abellan van Kan et al., 2011). These 

observations thus indicate that the participants in our study were not sarcopenic 

according to the cut-offs for skeletal muscle mass, nor (except one older woman at 

follow-up) physically frail, but rather a population of healthy ageing.  

Accelerated decline 

The annual reduction in 6MWD and TUG performance was larger in the present 

longitudinal study (0.9 & 4.2%, respectively) than that calculated from a previous 

cross-sectional study (0.4 & 0.7%) (Maden-Wilkinson et al., 2015). This and the annual 

decline in jumping power of 0.8% from a previous study (Maden-Wilkinson et al., 2015) 

compared to 2.0% in the present longitudinal study, suggest an accelerated decline in 

functional capacity beyond the age of 70 years. These calculations assume that 

human peak performance occurs early in the third decade, something that has been 

observed in master athletes of several disciplines (Ganse et al., 2018, Berthelot et al., 

2012). Therefore, our findings suggest an accelerated decline in muscle power in the 

8th decade of life cannot solely be due to decreased physical activity levels, since 

similar declines are evident even in athletic populations (McPhee et al., 2018, Frontera 

et al., 2000a, Frontera et al., 2008, Lazarus and Harridge, 2017, Degens, 2012). If that 

decline continues to progress at the same, or even an accelerated, rate it will ultimately 

result in a transition from an independent to a dependent lifestyle, even in our 

population who were non-sarcopenic and free from physical limitations in daily life. It 

is therefore important to uncover the ageing-related changes that elicit these accrued 

deficits in functional capacity. 
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Contribution of aerobic component and balance to the decline in 6MWD and 

TUG 

Part of the poorer performance in the TUG and 6MWD during follow-up was 

associated with an impaired balance, something also reported previously in people > 

70 years (Chen and Chou, 2017). Even before the age of 70, a significant reduction in 

balance occurs (Onambele et al., 2006). However, the absence of significant 

correlations between balance, assessed as the duration one could stand on one leg 

with eyes closed, with 6MWD and TUG performance at baseline suggests that only 

after the balance impairment exceeds a certain threshold it becomes a limiting factor 

for daily life performance.  

The 6MWD clearly requires an aerobic component and it is related to the maximal 

oxygen consumption of healthy young-adults and older people (Manttari et al., 2018). 

The heart rate measured during the 6MWD was decreased over the 5-year period both 

as absolute values and when expressed relative to the estimated age-predicted 

maximum. This reflects both a decrease in cardiovascular function and a decrease in 

the relative effort that the older adults were willing to put in when walking. It is not clear 

why less effort would be applied during the walk and our study methodology cannot 

reveal the reasons in any detail. However, it may be related to concerns over balance 

and the risk of falling. This supports previous studies of people aged > 70 years (Chen 

and Chou, 2017) and suggests that deterioration of balance makes an increasing 

contribution to physical functional declines with advancing age, either directly as 

adjustments are made with each step to control posture, or indirectly through more 

caution due to fear of falling. 
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Contribution of muscle function to the decline in 6MWD and TUG 

Previous studies have shown that the performance in the 6MWD and TUG tests are 

related to muscle mass and function (Song and Geyer, 2018, Maden-Wilkinson et al., 

2015, Bijlsma et al., 2014, Janssen et al., 2002). However, the relationship between 

functional limitation and muscle mass in older people is weak (Lauretani et al., 2003) 

or even absent (Maden-Wilkinson et al., 2015) and we show that power is more 

important. In the previous chapter we found that the ageing-related loss of muscle 

strength during early ageing is due to both a loss of muscle mass and quality, in terms 

of force generating capacity per unit muscle cross-sectional area, while in the 8th 

decade of life it is primarily due to a loss of muscle mass (McPhee et al., 2018). It is 

thus possible that in the oldest-old a low muscle mass becomes an increasingly 

important contributor to reduced functional capacity. Yet, we found neither a significant 

relationship between muscle mass and functional capacity at baseline nor at 5-year 

follow up. This confirms the increasing notion that not so much muscle mass, but rather 

muscle functional capacity is relevant as a determinant of the ability to perform daily 

life activities in the older population, even in people in the 8th decade of life. Given that 

power is the product of force and velocity one can understand that muscle power has 

been reported to better correlate with functional capacity than maximal voluntary 

isometric force in the older population (Reid and Fielding, 2012, Maden-Wilkinson et 

al., 2015). This was confirmed in our longitudinal cohort at both baseline and 5-year 

follow up. 

It has previously been shown that the difference in jump power between young and 

older subjects is in part due a reduction in force generating capacity and in part due to 

slower contractile properties of the muscle. While power increased with force, for a 

given jump force, power was greater in the young subjects (Maden-Wilkinson et al., 
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2015). This was attributed to a reduction in the intrinsic speed of shortening of the 

older muscle, probably a consequence of an ageing-related fast-to-slow transition in 

fibre type composition (Larsson and Ansved, 1995), preferential atrophy of fast fibres 

(Barnouin et al., 2017b) and/or a slowing of type I and type IIa muscle fibres (Larsson 

et al., 1997, Degens et al., 1998). 

However, when we looked further into this apparent slowing over the 5-year period, it 

appeared that there was no significant change in the body mass:maximal force ratio 

(Fig. 4.2). This means that both at baseline and follow-up, at a given ‘body 

mass:maximal force ratio’ the shortening velocity during the countermovement jump 

is the same. Given that body mass was not significantly changed over the 5-year 

period, but force was reduced by about 12%, the slower take-off velocity in the 

countermovement jump must have been the consequence of loss of force generating 

capacity. Thus, the actual culprit behind this apparent slowing of the muscle is that 

they are working at a higher relative load than 5 years prior, and therefore contracting 

more slowly according to the force-velocity relationship. Thus, while intrinsic slowing 

of the contractile properties was the main determinant of the ageing-related reduction 

in jump velocity between 23 to 72 years of age (Maden-Wilkinson et al., 2015), it is the 

loss of force that causes a further decline in power in the ageing septuagenarian. It 

should be noted that with ageing jumping kinematics are influenced, older individuals 

maximal hip, knee and ankle angular velocities are significantly decreased compared 

to young, with jump performance limited by reduced angular range of motion and loss 

of sequential pattern of joint coordination (Haguenauer et al., 2005). It remains to be 

seen if such changes continue to influence jumping kinematics during later ageing (71-

76 years). 
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An interesting pattern therefore arises that during early ageing (23-72 years) 

particularly intrinsic slowing contributes to the loss of power (Maden-Wilkinson et al., 

2015) and that weakening is the result of loss of muscle mass and quality (McPhee et 

al., 2018). On the other hand, during later ageing (71-76 years) loss of force, due to a 

loss of muscle mass and reduced voluntary activation (McPhee et al., 2018), but not 

further loss of muscle quality, is the primary contributor to the ageing-related loss of 

power. 

As previously mentioned this loss of power may eventually lead to a transition from an 

independent to a dependent life style. It has been shown; however, that muscle 

strength is positively related to physical activity levels in the older person (Latorre-

Roman et al., 2016). An increase in physical activity levels may thus reverse the loss 

of strength in the older person and improve functional performance. Indeed, resistance 

exercise is a potent means to improve functional performance, even in the oldest old 

(Fiatarone et al., 1990).  

Conclusion  

In conclusion, the ageing-related reduction in functional capacity over a 5-year period 

in healthy septuagenarians was to some extent attributable to a reduction in maximal 

heart rate and balance. However, a larger proportion of the decline in performance 

during a 6-min walk and timed up-and-go tests was explicable by a decline in muscle 

power. In contrast to the intrinsic slowing of the muscle between 23 and 72 years of 

age (Maden-Wilkinson et al., 2015), the further decrement in power and performance 

of the functional tests between 71 and 76 years of age was primarily attributable to 

loss of strength. This suggest that the process of muscle ageing may change from 
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decrements in both muscle mass and quality during early ageing to principally a 

reduction of muscle mass during later stages of ageing. 
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Chapter 5 
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5.1 Aims and Objectives 

The overall aim of this thesis was to 1) assess longitudinal changes in muscle size 

and function over a 5-year period and 2) how these changes affected the ability to 

perform activities of daily life, in physically-independent older individuals. To achieve 

this the study had the following objectives: 

1) To assess the reliability of DXA measurements to assess longitudinal changes in 

muscle mass in older populations. 

2) To uncover the gross functional basis of the age-related changes in mobility seen 

in older individuals. 

3) To describe the influence of fibre atrophy, fibre loss, in situ specific force, and 

voluntary activation to muscle weakness seen with ageing.  
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5.2 Main observations  

Each of these Objectives was addressed in the studies described in Chapters 2-4, 

respectively. The detailed longitudinal examination of this population was a key part 

of the studies, and is unique where most studies on muscle ageing are cross-sectional. 

In addition, our study population was more homogenous than that in larger 

epidemiological studies of ageing which include a wide-ranging participant base, with 

many disabilities and co-morbidities. The participants in this study exhibited healthful 

ageing, being community dwelling, socially active, with no known musculoskeletal or 

cardiovascular diseases (McPhee et al., 2013). 

Ageing-related changes in muscle mass 

While the measurement of total volume by MRI is considered the gold standard, it is 

time consuming and costly. In Chapter 2, we showed that a single MRI scan at 60% 

of femur length could be used to accurately calculate muscle volume and changes 

therein in septuagenarians, as was previously shown in young men (Morse et al., 

2007a, Maden-Wilkinson et al., 2014). Reducing the time and cost required to perform 

such analysis, making MRI a more viable modality for larger cohort studies, allowing 

much greater detail to be described.  

Even so, MRI is not widely available or easy to use, while DXA is more widely available 

and commonly used in large cohort studies to measure muscle volume (Ellis, 2000, 

Visser et al., 2003, Goodpaster et al., 2006, Zhong et al., 2012, Santanasto et al., 

2017). While in Chapter 2 it was found that in both men and women DXA muscle 

volume measurements correlated well with MRI, DXA displayed a positive intercept 

with MRI and the slope of the regression line was greater than 1. As a consequence 

DXA consistently overestimated muscle volume, as seen in our previous work (Maden-
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Wilkinson et al., 2013b). However, the discrepancy over the 5-year time scale between 

DXA and MRI was relatively small, signifying that DXA is a viable and reliable method 

for tracking muscle mass longitudinal in older people. Extending the ability to identify 

changes in mass which may lead on to functional impair within older populations.    

Chapter 2 described muscle mass decreases of 5% over the 5-year period in 

septuagenarians, suggesting an accelerated decline in these older individuals when 

compared to the 25% change described between individuals in their twenties and 

seventies (Maden-Wilkinson et al., 2014). There was no differential rate of loss 

between quadriceps muscles and other muscles in the thigh, in contrast to what was 

reported in a previous cross-sectional study (Maden-Wilkinson et al., 2013b). We 

demonstrated that the relative rate of muscle mass loss with ageing was not related 

to baseline muscle mass, thus indicating the benefit of having a larger muscle mass 

to start with, as it will delay crossing the disability threshold of muscle mass until later 

in life (Degens, 2018, Degens and McPhee, 2013). While in previous studies the rate 

of muscle wasting was positively related to body fat percentage in women (Tomlinson 

et al., 2014) we observed this relationship in men only. A possible mechanism is that 

fat tissue may lead to muscle wasting due the release by fat of inflammatory cytokines 

resulting in chronic low-grade inflammation (Degens, 2010), which may impair the rate 

of nutrient stimulated muscle protein synthesis rates (Smeuninx et al., 2017). Though 

the influence of circulated inflammatory cytokines linked with obesity may have much 

wider influence on skeletal muscle size, architecture and strength (Erskine et al., 

2017). The contractile component of the total volume of the whole muscle is decreased 

with intramuscular fat infiltration seen with increased body fatness (Rahemi et al., 

2015). This in turn will influence muscle quality and intermuscular adipose tissue may 

be a predictor of muscle function in older populations (Beavers et al., 2013).  
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Ageing-related changes in muscle function 

The loss of muscle mass seen with ageing is inevitably associated with a loss of 

muscle strength, leading to deficits in functional performance. Having described 

changes in muscle mass longitudinally in Chapter 2, the contribution of fibre atrophy, 

fibre loss and reduction in voluntary activation to the muscle weakness was 

investigated in Chapter 3. It was observed that patella tendon specific force was 17% 

lower in old compared to young, but during a 5-year follow-up there was no further 

significant decrement in specific force in the older population. 

Using measurements of muscle volume and muscle architecture, the PCSA was 

calculated. In Chapter 3 it was estimated that 54% of the difference in PCSA between 

young and old was due to fibre atrophy, with fibre losses accounting for the remaining 

46%. The number of fibres lost was an estimated 200,000, and must have been 

preferential loss of type I fibres, due to the lack change seen in the relative area 

occupied in the muscle by type I and type II fibres between young and old in the face 

of preferential type II fibre atrophy. Others (Nilwik et al. (2013) did not find evidence 

for fibre loss, and in their study the age-related atrophy could be entirely explained by 

muscle fibre atrophy. A possible explanation of this discrepancy is that their subjects 

had much larger muscles than our subjects, and they were non-sarcopenic in contrast 

to our subjects. Whatever the explanation for this discrepancy, the loss of fibres in our 

study is thought to be linked to the loss of motor units seen with ageing (30-50% fewer) 

(Piasecki et al., 2016b, Tomlinson and Irving, 1977). Overall, the data suggested that 

loss of muscle mass was the main cause of the age-related muscle weakness, but 

there is also a significant contribution of a loss of muscle quality, defined here as 

specific force (force per PCSA), as also found by others (Morse et al., 2005a). 
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In a murine model, it was shown that part of the lower specific force in old animals was 

due to accumulation of connective tissue (Ballak et al., 2014). In our study this only 

accounted for 3% of the variation seen. In addition, we reported a preferential atrophy 

of type II fibres that may have a 40% higher specific tension than type I fibres (Bottinelli 

et al., 1996), though others report no significant difference in specific force between 

fibre types (Ottenheijm et al., 2005, Degens et al., 2009b). Nevertheless, even if we 

assume such a difference in specific tension, the change in areal fibre type proportion 

is too small to have a significant impact. It is possible that the lower specific force of 

the muscle is primarily due to lower specific tension of individual muscle fibres, which 

has been reported to be 16% lower in old vs young (Brocca et al., 2017, D'Antona et 

al., 2003, Larsson et al., 1997), matching with the data reported here.  

Ageing-related changes in mobility related to changes in muscle function 

Sarcopenia is considered an important factor in frailty in older people (McPhee et al., 

2018, Maden-Wilkinson et al., 2015, McPhee et al., 2016). The aim of Chapter 4 was 

to assess the relationship between changes in muscle function with changes in 

performance of daily life activities in a 5-year longitudinal study of septuagenarians. 

A significant decline was shown in all measurements of physical function and muscle 

function, with the annual decline in muscle force generating capacity being much 

larger than that shown in our previous cross-sectional study between young and older 

individuals (Maden-Wilkinson et al., 2015). More specifically, the 6MWD and TUG 

showed an annual decline of 0.9% and 4.2% over the 5-year period, in comparison to 

a 0.4 and 0.7%, respectively, in the preceding years. The annual decline in jumping 

power was 2.0% compared to the 0.8% suggesting an accelerated decline in muscle 

power in the oldest old (Degens and Korhonen, 2012).  
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Part of the reduced performance in the 6MWD may be due to a decrease in maximal 

heart rate over the 5-year period, as it has been suggested that the walking speed 

occurs at around 83% of maximal heart rate (Manttari et al., 2018). In Chapter 4 it was 

found that older people walked at an even lower percentage of their maximal heart 

rate, suggesting that something else than cardiovascular limitations may diminish 

walking speed, such as limited range of motion and pain. 

Besides the above factors, decrements in muscle mass and function may contribute 

to a reduced performance in daily life activities (McPhee et al., 2016, Reid and 

Fielding, 2012, Larsson et al., 2019). In contrast to previous studies (Bijlsma et al., 

2014, Janssen et al., 2002), we found no relationship between muscle mass and 

functional capacity at both baseline and follow-up. In fact, muscle functional capacity 

is more important in this older population to perform daily life activities than muscle 

mass per se, with power and MVC reported to correlate better in older people (Reid 

and Fielding, 2012, Maden-Wilkinson et al., 2015), something we also observed in our 

work. 

Power appeared to be the strongest predictor of 6MWD and TUG performance. 

Therefore, in Chapter 4 the influence of the two components of muscle power, force 

and velocity, for performance were studied. It was found that the velocity of take-off 

during a counter movement jump was  correlated with functional performance at both 

baseline and follow-up, and it was concluded that this was due to both a loss of force 

and an intrinsic slowing of the contractile properties, as suggested previously (Maden-

Wilkinson et al., 2015, Macaluso and De Vito, 2004). However, in the 5-year follow-up 

study, no significant changes in the body mass:maximal force ratio (Fig. 4.2) were 

found, suggesting that the slower velocity at take-off was due to either an increased 

body mass and/or weakening of the muscle, but no further slowing of the muscle. As 
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there was a 12% reduction in force and no significant change in body mass over the 

5-years, the lower shortening velocity was a consequence of decreased force 

generating capacity. The apparent slowing of the muscle is thus due to the muscles 

working a relatively higher load (due to the loss muscle strength), leading to slower 

contraction according to the force-velocity relationship. The findings in chapter 3 and 

4 allow more targeted exercise interventions in older populations, to help delay the 

onset of mobility issues and transition to a dependent lifestyle.    

5.3 Limitations and directions for future research 

This thesis showed significant loss of muscle mass and function, and functional 

capacity in septuagenarians in as short a period as 5 years. However, a number of 

fundamental questions are still unresolved. This work suggested accelerated ageing 

when individuals reach their eighth decade and in line with previous literature (Mitchell 

et al., 2012, Ganse et al., 2018, Degens and Korhonen, 2012). However, it needs to 

be confirmed through further studies in changes occurring from the fifth decade, 

characterising middle age and more work in those progressing into and past their 

eighth decade to provide insight into when this accelerated period of ageing begins or 

if it is present at all. All participants within the study were living independently and in 

relatively good health, and therefore the model of ageing described here may not be 

representative for wider population. We must consider that even though the model of 

ideal ageing may be linear, the majority of individuals will not follow a linear path. Life 

events such as illness or surgery are likely to have key impacts into how people age 

and changes in musculature and it is important that these changes are characterised 

alongside looking at frail or more severely sarcopenic individuals. It should also be 

noted that investigation of habitual physical activity was not conducted; therefore, it 

cannot be assumed that the loss of muscle mass and function seen within this work 



120 
 

were solely down to the normal ageing process, as they may have been changes in 

habitual physical activity that either accelerated or blunted these processes. It has 

been shown that the maintenance of physical activity is key in older individuals and 

that as little as two weeks reduced step count contributed to reductions of muscle 

mass and perturbations in other key process key in muscle maintenance (Breen et al., 

2013). Such individuals may suffer from varying ailments that may accelerate muscle 

wasting and hence the rate of ageing. Such people, and even healthy older people as 

in our study, may improve their muscle function and quality of life by improving muscle 

function by e.g. aerobic & power training. Indeed, the efficacy of resistance training 

programmes to improve muscle mass and strength has been shown in older people, 

and even those with cancer, joint replacements etc. (Reeves et al., 2004b, Nilwik et 

al., 2013, Doherty, 2003a). However, these benefits do not stop the loss of function 

with ageing, with master athlete’s still experiencing loss in endurance, strength and 

power. The maintenance of physical activity is also not enough to maintain muscle 

mass with ageing , with only an increased load of physical activity able to attenuate 

these changes over and above ‘leisure time’ activity (Mitchell et al., 2003). Resistance 

training is thought to lead to a decrease in catabolic and increase in anabolic pathways 

(Ribeiro et al., 2017). Increasing protein synthesis, tempering anabolic resistance 

(Schulte and Yarasheski, 2001), as well eliciting changes in the neuromuscular system 

(Taaffe et al., 1999), with these factors all lessening the impact of ageing on muscle 

quality and consequently mobility related issues. It is also important to consider the 

benefits of aerobic exercise on ageing muscle, alongside the cardiovascular 

conditioning it provides. Cross sectional area of older human muscle fibres and 

hypertrophy have been reported through the administration of aerobic exercise  

(Konopka et al., 2013). These effects are principally through an increase in 
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mitochondrial biogenesis, with long term aerobic exercise programmes decreasing 

ROS production in older people, alongside the benefit of reduced abdominal fat  

(Konopka et al., 2013, Short et al., 2003). To enhance the benefits of such 

programmes nutrition also needs to be considered in light of the anabolic resistance 

reported in old people (Rennie, 2009, Breen and Phillips, 2013). This may include 

increased protein intake and the supplementation of omega-3 fatty acids that further 

improve muscle mass and decrease fat mass (Park et al., 2018, Smith et al., 2011). It 

has been shown that a low protein diet can be detrimental and is linked with frailty in 

older adults (Coelho-Júnior et al., 2018). Increasing protein intake in older people can 

overcome anabolic resistance in older people, therefore increasing protein synthesis 

and muscle mass (Moore et al., 2015). Essential amino acid (EAA) profile should also 

be considered, as without complete EEA profile maximal protein synthesis cannot be 

achieved, with leucine being the key regulator of protein synthesis from ingested 

proteins (Volpi et al., 2003, Devries et al., 2018). All of which highlight the importance 

of regular physical exercise, healthy diet and low body fat in old age, to maintain 

muscle mass and function (McPhee et al., 2016, Mithal et al., 2013).  

Although it was found that DXA can be used to assess the changes in body mass in 

an older populations, it consistently overestimates the actual muscle mass in 

comparison to the gold standard, MRI (Abe et al., 2015, Loenneke et al., 2016). This 

then will result in an underestimation of the specific force of muscle, which should be 

considered when comparisons are made with other values of specific force in the 

literature. The cause of this overestimate is as yet unknown. 

The use of a single measure of mobility has limited value to identify those who have 

sarcopenia (Looijaard et al., 2018). Indeed, the most widely used criteria to define 

sarcopenia include a battery of measurements, such as functional performance, 
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muscle mass and muscle strength (Fried et al., 2001, Cruz-Jentoft et al., 2019). Also 

in this study more than one functional measure was used (6MWD and TUG) and 

related to muscle function. The strength of our work is that we were able to disentangle 

the contributions of force generating capacity and intrinsic slowing of the muscle to the 

age-related reduction in power, something rarely considered. 

Voluntary activation measurement using twitch interpolation has been shown to have 

good intra-rater reliability (correlation coefficients > 0.80), though we should be aware 

that methodological flaws may cause issues with this measurement, such as resting 

twitch, stimulation location, inadvertent stimulation of antagonists and joint angle 

(Nuzzo et al., 2018).    

5.4 Conclusion  

The thesis’s overall aim was to characterise the relationship between loss of mass and 

function with functional performance measures in UK-based septuagenarian men and 

women during a 5-year longitudinal study. It was found that DXA showed a similar 

percentage atrophy as MRI, demonstrating that DXA can be used to assess 

longitudinal changes in muscle mass in older people. The rate of muscle wasting was 

independent of baseline muscle mass in both sexes, a higher baseline body fatness 

led to a greater rate of muscle wasting in men. The annual percentage decline in 

muscle mass during the 5-year period was larger than that seen between people in 

their twenties and seventies (Maden-Wilkinson et al., 2015). 

Significant decrements in mobility performance were reported in both genders that 

was to some extent attributable to an age-related decline in maximal heart rate and 

balance. The most significant contributor to the decreased performance in the 6-min 

walk and timed up-and-go tests was the age-related decline in muscle power. It 



123 
 

appeared that this loss of power in the 5-year follow-up was primarily due to a 

reduction in MVC rather than intrinsic slowing of the muscle that seemed to play a 

significant role during early ageing (Maden-Wilkinson et al., 2015).  

The loss of force was a consequence of both a reduction in muscle mass and muscle 

quality (specific force; force per muscle cross-sectional area), and a minor contribution 

of a reduced ability to fully activate the muscle. This loss of muscle mass was the 

result of preferential type II atrophy and loss of fibres. The findings within this thesis 

have implications for the design of interventions to mitigate these age-related changes 

even in a septuagenarian population in relatively good health, delaying the transition 

from independent living to dependent living.   
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Appendix 1 
 

Reproducibility of contractile properties of the human quadriceps 

muscle in healthy young subjects 

 

Introduction 

The use of electrical stimulation techniques to assess human muscle contractile 

properties has been well established (Gerrits et al., 2001, Chan et al., 1999, Hunter et 

al., 1999, Degens et al., 2005, Morse et al., 2007b, Wust et al., 2008). Electrical 

stimulation allows the determination of muscle contractile indices such as force 

frequency relationship, fatigue index, maximum rate of contraction and maximum rate 

of relaxation, while avoiding possible motivational bias. The contractile properties 

determined in this way appear to correlate with a variety molecular or histochemical 

muscle features (Harridge et al., 1998).  

When performing repeated measures it is important to know how reproducible the 

measurements are. This is particularly important when one wants to know the impact 

of an intervention on the contractile properties of the muscle, especially when one 

considers muscle may adapt quickly to changes in functional demands (Baar and 

Hargreaves, 2011, Koopman and van Loon, 2009).  

The aim of this study was to assess the reproducibility of the measurement of 

contractile properties by electrically elicited contractions over two testing sessions, 

spaced by 2 weeks.  

 

Methods 

Participants  

Nine individuals (8 men and 1 woman) participated in the study. The study was 

approval by the ethical committee of Manchester Metropolitan University and was 

performed in accordance with the Helsinki Declaration. Descriptive data of the subjects 

is presented in table 3. All subjects were healthy and were recreationally active as 

assessed with health and physical activity questionnaires (Baecke et al., 1982). 
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Exclusion criteria were known cardiovascular, respiratory conditions, neuromuscular 

diseases and lower limb injuries.  

Table 3. Characteristics (mean ± SD) of participants.  

 Age (yrs) Height (m) Mass (Kg) BMI Body Fat % 

N = 9 27.6±3.7 178±5 84.5±7.2 26.8±2.9 18.6±8.6 

 

Procedure 

Isometric knee extensions were performed with the right leg on a custom made 

isometric testing dynamometer (Designed by the Department on Physical and Medical 

Technology, VU University, Amsterdam, The Netherlands). Force signals were 

recorded via a customised Labview (National Instruments Corporation, Texas, USA) 

and Matlab software (Matlab, the Mathwork Inc, S Natik, MA, USA). All procedures 

were explained to the participants, emphasising the requirement to stay relaxed during 

electrically stimulated contractions and only to voluntary contract when instructed. The 

patients were seated on the dynamometer with a knee angle of 90° (Full extension 

being 0°) and 85° hip flexion (Supine being 0°). The lower leg of the participants was 

securely fastened to the force transducer, 2 cm above the ankle malleolus. The hip 

joint was held in place firmly via a strap. Prior to procedures participants were 

familiarised to the knee extension exercise, initially with three contractions around 50% 

of maximal effort lasting 3 seconds, followed by two further contractions around 80% 

maximal effort. A two-minute rest was given prior to a maximal voluntary contraction 

sustaining for around 3 seconds. Two or more maximal effort contractions were 

performed until the two highest values were within 10%, with the highest value taken 

as MVC. Verbal reinforcement and visual feedback were conveyed during the testing.  

Voluntary activation, the ability to voluntarily activate the knee extensor muscles during 

an MVC was assessed with the interpolated twitch technique (Wust et al., 2008, 

Rutherford et al., 1986a, Van Leeuwen et al., 2012). Thereto, stimulation electrodes 

(AmericanImex, CA, USA) were placed on the proximal and distal heads of the 

quadriceps femoris muscles. Muscles were stimulated with 400 V pulses with a width 

of 200 µs (Digitimer DS7AH, Herts, UK). Before the test the current was increased so 

that a stimulation with two pulses separated by 10 ms known as a “doublet” elicited ≥ 
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30% MVC. During the test, the doublet was followed by an MVC and at the peak of 

the MVC another doublet was administered. The voluntary activation (VA) percentage 

was calculated as: 

VA = 100 * (1 – t/T) 

Where T is the value of the resting doublet and t is the amplitude of the superimposed 

doublet (McPhee et al., 2014, Wust et al., 2008). 

To construct the force frequency the muscle was stimulated with 2-second tetani (1, 

10, 15, 20, 30, 50 and 100 Hz) in a random order with a 60 second rest in between. 

The maximal force at each frequency was expressed as a percentage of the force 

evoked at 100 Hz (Figure 1). Contraction rate (delta force/ delta time, max), normalised 

contraction rate (contraction rate/peak force), relaxation rate (delta force/delta time, 

min) and normalised relaxation rate (relaxation rate/peak force) were calculated from 

the 100Hz contraction (Degens et al., 2005, Wust et al., 2008).   

To determine the fatigue resistance of the muscle the muscle was stimulated with 30-

Hz pulse trains 1 s on 1 s off for 4 min. The resistance to fatigue was expressed as a 

fatigue index, which was calculated the 30 Hz force of the last contraction (Fend) as a 

fraction of the 30 Hz force of the first contraction (Fstart) fatigue index = Fend/Fstart 

(McPhee et al., 2014, Degens et al., 2005) 

Statistical Analysis 

A paired samples T-Test was used to assess differences between testing sessions 

using SPSS v21 (IBM, USA). Data are given as mean ± standard deviation (SD). R² 

values were calculated and differences between groups were considered significant 

at P<0.05. Moreover, the test – re-test variability was assessed for the entire group 

using pooled coefficient of variation (CVp), which was calculated as the SD of the 

differences as proportion of the mean.  

CVp = √((∑CVᵢ²)/n) 

(Gerrits et al., 2001) 
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Results 

Table 4. Descriptive statistics and reproducibility of contractile properties of human 

quadriceps muscle in healthy young subjects.  

 

 

Test Mean ± SD CVp R² P 

      

MVC (Nm) Pre 836±110 0.07 0.61 0.317 

 

Post 811±101  

  

      
FI Pre 0.52±0.10 0.08 0.71 0.441 

 

Post 0.53±0.08 

   

      
VA (%) Pre 85.7±11.5 0.06 0.69 0.362 

 

Post 83.6±10.5 

   

      

dF/dt Max 100Hz  

Pre 15.8±0.9 0.08 0.890 0.394 

Post 16.4±1.5 

   

      

dF/dt Min 100Hz  

Pre -14.3±1.2 0.13 0.100 0.832 

Post -13.9±1.7 

   

 

MVC: maximal voluntary contraction, FI: fatigue index, VA: voluntary activation, dF/dt 

max: most force rising ratio, dF/dt min: most force relaxation ratio, CVp: pooled 

coefficient of variation. 
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Figure 5. Force frequency repeatability relationship of contractile properties of human 

quadriceps muscles in healthy young subjects. 

Nine participants completed experimental tests for both testing days, where 6 also 

completed repeat tests for the force frequency relationship, and rates of force rise and 

relaxation. Table 4 shows that the different contractile properties measured in the first 

test correlated well with those in the second test (all R² > 0.6), and did not differ 

significantly. Figure 5 illustrates the excellent level of agreement between test 

sessions for the force frequency relationship.  All bar the maximal rate of relaxation 

returned CVp’s less than 0.09  

Discussion 

The main finding of the present study is that the contractile properties determined with 

electrically elicited contractions are highly reproducible in a period as long as 2 weeks, 

the coefficient of variation was less than 9% for all parameters, except the relaxation 

rate. 

The coefficient of variation in our study for the determination of contractile properties 

with electrically evoked contractions was lower than that reported previously (Gerrits 

et al., 2001, Brass et al., 1996, Chan et al., 1999, Eerbeek and Kernell, 1991). Some 

of the variability in the test-retest measurements could be due to the incomplete 
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stimulation of the muscle via the surface electrodes which leaves some room for 

voluntary contractions interfering with the measurements (Gerrits et al., 2001).  

It must be considered that some of the variation could arise from small differences in 

experimental environment, changes in the condition of the muscle due to previous 

activity, changes in dietary or hydration state. It is also possible that different fibres 

were recruited during the two sessions, though care was taken to position the 

electrodes at exactly the same locations on the muscle and use a current to elicit the 

same absolute force. In theory, muscles may have adapted to some training regime 

that was initiated, but we asked our participants to maintain their normal habitual 

activity levels, therefore we assume no changes.   

In conclusion the current study confirms that in young healthy subjects the contractile 

properties of the quadriceps muscle can be determined with electrically evoked 

contractions via surface electrodes to a high level of reproducibility.  

 


