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Abstract
One of the hallmarks of ageing is muscle wasting that may be preceded by morphological 

changes, such as capillary rarefaction. Muscle-specific changes in morphology in early ageing 

may differ between locomotor and respiratory muscles. To investigate this, we compared 

capillarization, fiber type composition, fiber cross-sectional area (FCSA) and oxidative 

capacity of individual fibers of the soleus (n=6/5 for 20- and 79 weeks, respectively), extensor 

digitorum longus (EDL: n=3/3) and diaphragm (n=7/5) muscles in 20- (mature) and 79-week-

old (early ageing) CD-1 female mice. There was no significant loss of soleus and EDL mass. 

The FCSA was larger and the capillary density lower at 79 than 20 weeks in the diaphragm, 

while in the EDL the opposite was found (both p ≤ 0.002) with no significant ageing-related 

differences in the soleus. The heterogeneity in capillary spacing, which may negatively impact 

on muscle oxygenation, was highest in muscles from 20-week-old mice, irrespective of muscle 

(p ≤ 0.011). Succinate dehydrogenase activity, indicative of oxidative capacity, and capillary 

to fiber ratio did not significantly change with age in any muscle. At all ages, the capillary 

supply to a fiber was positively related to FCSA in each muscle. We conclude that despite 

previously reported early age-related reductions in specific tension in both locomotor and 

respiratory muscles, morphological changes show a muscle-specific pattern in early ageing 

CD-1 mice. Specifically, early aging was associated with 1) diaphragm hypertrophy 2) and 

fiber atrophy in the EDL that was not accompanied by angiogenesis, capillary rarefaction or 

reductions in oxidative capacity.

Keywords: Aging, Maturation, Capillarization, Oxidative capacity, Skeletal muscle
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Introduction 

With increasing age, mammals progressively lose muscle mass (referred to as sarcopenia) and 

strength. This weakness and loss of muscle mass has been attributed to a loss of fibers, 

preferential type II atrophy and a reduction in specific tension (Andersen 2003; Barnouin et al., 

2017; Degens and Korhonen 2012; Fragala et al., 2015; Larsson et al., 2019; Lexell et al., 1988; 

McPhee et al., 2018). In addition to muscle weakness, older muscle may also suffer from an 

earlier onset of muscle fatigue, particularly during repeated and shortening contractions 

(Allman and Rice 2002; Callahan and Kent-Braun 2011). The consequences of progressive 

weakness are many and varied and together contribute significantly to frailty, reduced mobility 

and quality of life, often leading to the loss of independence and social isolation (McPhee et 

al., 2016). To develop effective countermeasures, it is important to improve understanding of 

the effects of ageing on skeletal muscle. In addition, recognizing early signs of sarcopenia will 

help inform preventative measures.

In previous studies it has been shown that ageing-related muscle weakness in humans is a 

consequence of both loss of muscle mass and a reduction in force or power per muscle cross-

sectional area (McPhee et al., 2018). In mice, an ageing-related reduction in specific tension 

has been reported for both locomotor and diaphragm muscles (Ballak et al., 2014; Chan and 

Head 2010; Hill et al., 2018), in many cases such age related changes occur in the absense of 

muscle (fiber) atrophy. This indicates that a reduction in specific tension may well be an early 

hallmark of ageing. 

Different muscles may show different ageing-related changes. For instance, whilst quadriceps 

strength is reduced by almost 40% between the 2nd and 7th decade of life (Klitgaard et al., 1990; 

McPhee et al., 2018; Young et al., 1985), the strength of the diaphragm is reduced by about 

25% over the same period (Polkey et al., 1997; Tolep et al., 1995). Furthermore, in contrast to 

the locomotor muscles (Allman and Rice 2002; Degens and Alway 2006; Degens and 

Veerkamp 1994), there is some evidence that diaphragm fatigability is unaltered with age in 

humans (Polkey et al., 1997; Tolep et al., 1995) or even elevated, at least during early ageing, 

in mice (Tallis et al., 2014). In addition to different patterns of use related to different functional 

requirements, an increased load on the diaphragm due to the ageing-related increase in chest 

wall stiffness (Teramoto et al., 1995) may offer protection to the diaphragm from the effects of 

disuse and ageing.
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Besides a loss of muscle strength, also other ageing-related changes occur, such an ageing-

related reduction in oxidative capacity that is proportionally larger than the loss of capillaries, 

resulting in a capillarization in relative excess to the oxidative capacity of muscle fibers in the 

soleus and white region of the rat gastrocnemius muscle (Hepple and Vogell 2004). These 

muscles also showed atrophy, while in the red region of the gastrocnemius, where fiber 

hypertrophy occurred, there was no excessive capillarization (Hepple and Vogell 2004). These 

data indicate that the effects of ageing on muscle morphology may differ between muscles, and 

it remains to be seen if excessive capillary supply and loss of oxidative capacity are early 

hallmarks of ageing.

The significance of capillaries for oxygen supply to mitochondria is demonstrated by the fact 

that muscles or muscle regions with a high oxidative capacity have a denser capillary network 

than those with low oxidative capacity (Degens et al., 1992; Larsson et al., 2019). Yet, the 

number of capillaries supplying a fiber is more strongly associated with fiber size than with 

fiber type (Ahmed et al., 1997) or oxidative capacity (Bosutti et al., 2015). This intricate 

interrelationship between size and the capillary supply to a fiber is also indicated by the 

proportional (Green et al., 1999) and similar temporal (Holloway et al., 2018) increase in 

capillary number and fiber size in the quadriceps after 12 weeks resistance training in young 

men, and the similar time course of muscle fiber hypertrophy and capillary proliferation in rat 

models of compensatory hypertrophy (Egginton et al., 2011; Plyley et al., 1998). It has been 

suggested that the ageing-related muscle atrophy may be preceded by capillary loss (Larsson 

et al., 2019).

Although the distribution of capillaries has a significant impact on tissue oxygenation (Degens 

et al., 2006; Degens et al., 1994), it is rarely considered in studies on the effects of ageing on 

muscle capillarization. The absence of any significant changes in the heterogeneity of capillary 

spacing during maturational (Degens et al., 2006) or hypertrophic muscle growth (Degens et 

al., 1992), suggest that the neoformation of capillaries is a controlled process. There is, 

however, some indication that the heterogeneity of the capillary spacing was higher in 5- than 

25-month-old rat plantaris muscle, which was linked to the increased heterogeneity in fiber 

size (Degens et al., 2009). Given that there is a lower heterogeneity in capillary spacing in slow 

oxidative than fast muscles (Egginton et al., 1988), it remains to be seen whether there are any 

muscle-specific effects of early ageing on the heterogeneity of capillary spacing in slow-

oxidative and fast-glycolytic limb muscles, and the diaphragm.



5

Another part of the ageing-related decrement in specific tension is attributable to intermuscular 

fat infiltration (Delmonico et al., 2009; Hogrel et al., 2015). Also, intramyocellular lipid 

(IMCL) content may increase (Rahemi et al., 2015; Schwenzer et al., 2009) and modelling data 

indicate that this would further contribute to the lower specific tension in old age (Rahemi et 

al., 2015). Besides the effect of a larger IMCL content at the expense of myofibrils, apoptosis 

induced by intracellular lipids via elevated oxidative stress (Kob et al., 2015) may further 

contribute to the decreased specific tension. However, information about changes in IMCL 

content during ageing is lacking and may be muscle specific, as suggested by a larger 

accumulation of IMCL after a high fat diet + denervation in mouse soleus than extensor 

digitorum longus (EDL) muscle fibers (Komiya et al., 2017).

The aim of the present study was to investigate the effects of early ageing on skeletal muscle 

morphology and more specifically the relationship between the fiber capillary supply with fiber 

type, size, oxidative capacity and IMCL in a postural slow oxidative muscle (the soleus), a 

muscle that is intermittently active (the fast, more glycolytic EDL) and a muscle that is 

constantly active (the diaphragm, highly oxidative with a mixed fiber type composition). It was 

hypothesized that early-ageing-related changes in muscle morphology occur in the absence of 

significant atrophy and are more pronounced in locomotor muscles than in the diaphragm.

Materials and methods

Animals

The effects of early ageing on skeletal muscle may be masked by maturational changes when 

using not fully-matured animals as the control group. An example of this masking of ageing 

effects is the absence of a difference in force generating capacity between the plantaris muscles 

from 5- and 25-month-old rats, while there was a significant reduction between the age of 13 

and 25 months (Degens et al., 1993a). Since the mass of the extensor digitorum longus muscle 

(EDL) was higher in 30- than 10-week-old CD-1 mice and specific tension lower (Tallis et al., 

2014), we have chosen 20-week-old CD-1 mice in the present study as the fully matured young-

adult group to minimize bias of maturation and 79-week-old mice representing early ageing, 

as they already show a reduction in specific tension, but without loss of muscle mass (Hill et 

al., 2018).  CD-1 mice were selected as it is outbred enough to display a genetic heterogeneity 

similar to that found in humans (Aldinger et al., 2009; Rice and Obrien 1980), thus replicating 
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the genetic heterogeneity found in humans more closely than inbred strains as the C57BL/6J 

mouse.

Fifty-nine female CD-1 mice (Charles River Ltd., Harlan, UK), housed 8-10 per cage at 

Coventry University, were maintained on a 12/12 h light/dark cycle at 20-22°C. They were fed 

ad libitum a low-fat standard chow diet (CRM(P); SDS/Dietex International Ltd, Whitham, 

UK; calories provided by protein 17.49%, fat 7.42%, carbohydrate, 75.09%; gross energy 3.52 

kcal/g; metabolizable energy 2.57 kcal/g). At the age 20 or 79 weeks, animals were weighed, 

sacrificed by cervical dislocation [in accordance with British Home Office Animals (Scientific 

Procedures) Act 1986, Schedule 1] and then snout-to-anus length was determined using digital 

callipers (Fisher ScientificTM 3417, Fisher Scientific, Loughborough, UK) to calculate the body 

mass index (BMI) as body mass (kg) divided by snout-to-anus length (cm) squared (Hill et al., 

2019; Sjogren et al., 2001). All experimental procedures were carried out in compliance with 

the local ethical review board of Coventry University.

The removal of the soleus (20 w: n = 6; 79 w: n = 5), extensor digitorum longus (EDL; 20w: n 

= 3; 79w: n = 3) and right part of the diaphragm (20 w: n = 7; 79 w: n = 5) muscles were 

performed as outlined by (Tallis et al., 2017). After excision, the muscles were blotted dry and 

weighed (except the diaphragm, as only strips were excised), embedded in Tissue-Tek optimal 

cutting temperature freezing medium (Leica Biosystems, Nußloch, Germany), frozen in liquid-

nitrogen-cooled isopentane (Sigma Aldrich, Steinheim, Germany) and stored at -80°C until 

use.

Histological analysis and microscopy

Serial 10-µm thick cross-sections of the soleus, EDL and diaphragm muscles were cut with a 

cryostat (CM3050S; Leica, Nußloch, Germany) at -21°C and collected on Superfrost Plus 

microscope slides. Serial sections were stained for intramyocellular lipid (IMCL), myosin 

heavy chain (MHC), capillaries, or succinate dehydrogenase (SDH).

Intramyocellular fat. Sudan Black B was used to stain IMCL. The Sudan Black B dye stains 

mainly neutral lipids (mainly triglycerides) with a blue-black tint. Briefly, air-dried sections 

were fixed in 10% formalin for 10 min. Sections were then washed three times for 1 min in 

distilled water before incubation in propylene glycol for 3 min. Sections were then incubated 

in the Sudan Black B solution (preheated at 60°C) for 7 min, differentiated in 85% propylene 
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glycol for 3 min and subsequently washed three times for 1 min in distilled water. Sections 

were cover‐slipped using glycerol gelatin.

Fiber typing. Serial sections were immunohistochemically stained for type I, IIa, IIx or IIb 

MHC using mouse monoclonal primary antibodies BA-D5 (1 µg·mL-1), SC-71 (1 µg·mL-1), 

6H1 (10 µg·mL-1) and BF-F3 (5 µg·mL-1), respectively (Development Studies Hybridoma 

Bank, Iowa, USA). One section was co-stained for type I, IIa and IIx MHC and a serial section 

for type IIb MHC.

Sections were fixed with ice-cold acetone for 15 min and then blocked for 45 min with 10% 

goat serum in phosphate-buffered saline (PBS) at room temperature. Following a wash with 

PBS, the sections were incubated with the primary antibody for 90 min in a humid chamber. 

The sections were subsequently washed in PBS and incubated in the dark for 60 min with Alexa 

350 IgG anti-mouse (2 µg·mL-1, Invitrogen, UK) or Alexa 488 IgG anti-mouse (2 µg·mL-1, 

Invitrogen, UK) for type I and IIa fibers, respectively and Alexa 555 IgG anti-mouse (2 µg·mL-1 

Invitrogen, UK) for type IIx and IIb fibers.  Sections were washed, dried and mounted using 

Prolong Diamond antifade mounting medium (Life Technologies, UK). Sections without the 

primary antibodies served as negative controls.  Images were taken with a Carl Zeiss AxioMRc 

Camera (Gottingen, Germany) on a Zeiss fluorescence microscope (10x objective). 

Succinate dehydrogenase. The succinate dehydrogenase (SDH) activity was assessed 

according to the protocol described by Wüst et al., (2009). Sections were incubated for SDH 

in 37.5 mM sodium phosphate buffer (pH 7.6), 74 mM sodium succinate and 0.4 mM tetranitro 

blue tetrazolium in the dark at 37°C for 20 min. The reaction was stopped with 0.01 N HCl for 

10 s. The slides were then washed with two changes of distilled water, mounted in glycerol 

gelatin and stored in the dark until measurement of the staining intensity within two days. All 

samples were processed simultaneously in the same incubation solution, ensuring that all 

samples were subjected to the same conditions. 

Figure 1 Capillary staining. Capillaries were visualized using lectin as described previously (Ballak et 

al., 2016). Briefly, air-dried sections were fixed with ice-cold acetone for 15 min, and blocked 

with 0.1% bovine serum albumin (BSA) diluted in 2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl] 

ethanesulfonic acid (HEPES) for 60 min. Subsequently, the sections were treated with a 

peroxide solution for 30 min and incubated with biotinylated Griffonia (Bandeira) simplicifolia 

lectin (GSL I; Vector Laboratories, Peterborough, UK; 50 µg·mL-1 diluted in 1% BSA/HEPES) 

for 60 min. A 5-min wash with HEPES was conducted between each step. Sections were then 
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treated with avidin-biotinylated horseradish peroxidase (Vectastain ABCkit, Vector 

Laboratories) for 60 min, washed with HEPES, and incubated with Horse Radish Peroxidase 

Substrate Diaminobenzidine (Vectastain DAB kit, Vector Laboratories) for 5 min. After a wash 

in distilled water, the sections were mounted in glycerol gelatin (Sigma-Aldrich, UK). 

Characteristic staining of diaphragm in old mouse is shown in Figure 1.  

Morphometry

Stained sections were photographed with a digital camera (Carl Zeiss) on a light microscope 

(Carl Zeiss, Germany). Two images per muscle cross-section were taken and 200 ± 85 (soleus, 

186 ± 81; EDL, 194 ± 61; diaphragm, 216 ± 99) complete fibers were analyzed per sample.

Intramyocellular lipid. The IMCL content of individual fibers was determined using a 

microscope (Carl Zeiss, Germany) with a 20× objective and bright field settings. Images were 

digitally captured using a black and white AxioCam ICMI camera (Carl Zeiss) and analyzed 

with ImageJ (National Institutes of Health, USA, https://imagej.nih.gov/ij/). The fiber of 

interest was outlined, and the grey levels were converted to optical density (OD) using a 

calibration curve constructed from a series of filters of known OD. For each section, a separate 

calibration curve was constructed, and all images were taken at the same exposure with the 

same microscope settings. The OD of the Sudan Black B stain was determined in individual 

fibers and the background OD for each fiber was subtracted from the OD measured; the higher 

the OD for the Sudan Black B stain, the higher the IMCL content of the fiber.

Fiber type composition and fiber size. The fiber outlines and capillary centers were collected 

with a digitizing program (Btablet, BaLoH Software, Ooij, the Netherlands) and the data 

analyzed with AnaTis (BaLoH Software, http://www.baloh.nl). The fiber-type composition 

was expressed as number percentage. The fiber cross-sectional area (FCSA) was calculated for 

each fiber. An increased variation in fiber size may be an early hallmark of ageing, where small 

fibers might be atrophied as a consequence of denervation following motor neuron loss, and 

larger fibers may reflect compensatory hypertrophy. To investigate this, we also compared the 

standard deviation of the FCSA between the three muscles and the 20- and 79-week-old mice. 

Succinate dehydrogenase. Photomicrographs of sections stained for SDH were taken on a light 

microscope with a 660-nm interference filter and a black and white AxioCam ICMI camera 

(Göttingen, Germany). All images were taken at the same exposure with the same microscope 

https://imagej.nih.gov/ij/
http://www.baloh.nl
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settings. Images were analyzed using ImageJ (National Institutes of Health, USA). To measure 

the optical density (OD) of a given fiber, the outline of the fiber was drawn, and the background 

OD subtracted. For each session, a separate calibration curve was made with filters of known 

OD (A660). The calibration curve was used to convert the absorbance values of the SDH staining 

into OD values. It has been shown in single muscle cells that the intensity of the staining is 

linearly related to the maximal oxygen consumption of the fiber (van der Laarse et al., 1989).

To assess the SDH activity (SDH-OD), the OD (A660) was converted to the rate of staining and 

expressed as the increase in absorbance at 660 nm (A660) per µm section thickness per second 

of incubation time (ΔA660·µm−1·s−1). The SDH-OD multiplied by the FCSA yielded the 

integrated SDH activity (SDH-INT in ΔA660·μm s−1):

SDH-INT= SDH-OD X FCSA

Capillarization. The capillarization in the muscles was determined with the method of capillary 

domains as described previously (Degens et al., 2006; Degens et al., 1992; Hoofd et al., 1985) 

with AnaTis. In short, a capillary domain is defined as the area of a muscle cross-section 

surrounding an individual capillary delineated by equidistant boundaries from adjacent 

capillaries. The capillary domain provides a good estimate of the capillary oxygen supply area, 

even in muscles with mixed fiber type composition (Al-Shammari et al., 2014). In addition to 

the overall parameters of muscle capillarization, including capillary density (CD; number of 

capillaries per mm2) and the capillary to fiber ratio (C:F), this method allows to define the 

capillary supply to individual fibers even when they lack direct capillary contact. The local 

capillary to fiber ratio (LCFR), the sum of the fractions of the capillary domains overlapping a 

particular fiber, provides a continuous, rather than a discrete value of the capillary supply to a 

fiber and takes into consideration that a capillary supplies more than one fiber (Barnouin et al., 

2017). The ratio of LCFR to the FCSA provides the capillary density for a given fiber, defined 

as the capillary fiber density (CFD).

The radius (R) of a domain, calculated from a circle with the same surface area, provides an 

indication of the maximal diffusion distance from the capillary to the edge of its domain. R 

shows a lognormal distribution, and thus the LogRSD (logarithmic standard deviation of the 

domain radius) is a measure of the heterogeneity of capillary spacing, where a larger value 

indicates a larger variability in the capillary domain sizes, and hence a less homogeneous 

distribution of the capillaries in the tissue. Model calculations have shown that increasing the 
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heterogeneity of capillary spacing results in poorer muscle oxygenation (Degens et al., 2006; 

Hoofd et al., 1985).

Statistical analysis

All statistical analyses were performed using IBM SPSS version 25. The Shapiro-Wilk test 

showed that all data were normally distributed. Where appropriate, a three-way (factors: age, 

muscle and fiber type) or two-way (factors: age and muscle) ANOVA was applied. Three-way 

interactions were excluded. If a main effect of age, muscle, fiber type or interactions was found, 

LSD post-hoc tests were performed to locate the differences. To assess the extent the capillary 

supply to a fiber was determined by the oxidative capacity of the fiber (SDH-OD), FCSA, fiber 

type, muscle of origin and/or age, a stepwise regression was performed. Statistical significance 

was accepted as p < 0.05. Data are expressed as mean±SD.

RESULTS

Table 1 Mice characteristics. The body mass was greater in 79- than 20-week-old mice (p < 0.001; 

Table 1), but the BMI was lower in 20- than 79-week-old mice (p = 0.002; Table 1). The mass 

of the soleus and EDL did not differ significantly between mice of different ages (Table 1). 

The MM/BM of the soleus and EDL were lower in 79- compared to 20-week-old mice (p = 

0.002; Table 1).

Figure 2 Muscle fiber type composition and fiber cross-sectional areas (Fig. 2). 

Fiber type composition. Figure 2 shows the fiber type composition in the soleus (Fig. 2A), EDL 

(Fig. 2C) and diaphragm (Fig. 2E) in 20- and 79-week-old mice. The proportion of hybrid 

fibers was smaller than 5% in any of the muscles and hybrid fibers were therefore excluded 

from statistical analyses.

Type IIxb and type IIb fibers were only observed in the EDL. The proportion of type I fibers 

was higher in the soleus than in the diaphragm and EDL (p < 0.001), while for type IIx fibers 

the opposite was found (p < 0.001). The percentage of type IIa fibers was larger in the 

diaphragm than in the soleus and EDL (p < 0.001).
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The proportion of type I, IIx and IIb fibers did not change significantly with age in any of the 

muscles. The muscle x age interaction (p = 0.015) for the type IIa fiber type proportion was 

reflected by a lower proportion of type IIa fibers in the soleus of 79- compared to 20- week-

old mice (p = 0.014) and no significant age-related differences in the EDL and diaphragm. 

Fiber cross-sectional area (FCSA). Figure 2B, D and F show the FCSA in soleus, EDL and 

diaphragm fibers, respectively. In the diaphragm and EDL type I and IIa fibers were smaller 

than type IIx and IIb fibers (p ≤ 0.002), while in the soleus type I fibers were larger than type 

IIa and IIx fibers (p ≤ 0.032).

The muscle x age interaction for FCSA (p = 0.002) was reflected by larger fibers in 79- than 

20- week old mice in the diaphragm (p < 0.001), while in the EDL the opposite was found (p 

= 0.001). There was no significant effect of age on the FCSA in the soleus. 

Variation in fiber size (SD FCSA) (Table 2). There was an effect of muscle on the SD FCSA 

(p = 0.003), but also a muscle * age interaction (p = 0.044; Table 2) that was reflected by a 

larger SD FCSA in the diaphragm than in the soleus and EDL in 20-week-old mice (p < 0.001), 

but no significant difference in SD FCSA between the muscles in the 79-week-old mice. The 

SD FCSA was larger in the EDL of 20- than 79-week-old mice (p = 0.044), with no significant 

age-related difference in the SD FCSA in the soleus and diaphragm.

Figure 3 Intramyocellular lipid (IMCL) levels (Fig. 3)

The IMCL content was higher in the diaphragm than in the soleus and EDL (p < 0.001), but 

there were no fiber type or ageing-related differences in IMCL levels in any of the muscles.

Figure 4 Succinate dehydrogenase (SDH) activity (SDH-OD) (Fig. 4).

The SDH-OD decreased in the following order: IIa>I,IIx>IIb (p ≤ 0.027). The SDH-OD of 

fibers in the diaphragm was higher than that in the soleus and EDL (p < 0.001). The SDH-OD 

in muscle fibers did not differ significantly between 20- and 79-week-old animals. 

The SDH-INT of muscle fibers was higher in the diaphragm and soleus than in the EDL (p ≤ 

0.035). While the SDH-INT was lower in the diaphragm of 20- than 79-week-old mice (p = 

0.046), in the EDL the opposite was found (p = 0.010) with no significant age-related difference 

in the SDH-INT in the soleus.

Figure 5, 6 Muscle capillarization (Fig. 5 & Fig. 6).
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Table 2 Indices of global capillary supply. The C:F was soleus>diaphragm>EDL (p ≤ 0.002) (Table 2). 

The C:F did not differ between age groups for any muscle. The CD was higher in the diaphragm 

than in the soleus and EDL (p ≤ 0.001). The CD was lower in the diaphragm of 79- than 20-

week-old mice (p = 0.027), while in the EDL the opposite was found (p = 0.012) with no 

significant age-related differences in the soleus.

The heterogeneity of capillary spacing, indicated by the LogRSD was EDL>soleus>diaphragm 

(p ≤ 0.043) (Figure 5A). The LogRSD was higher in muscles of 20- than 79-week-old mice, 

irrespective of muscle (p ≤ 0.011). The LogRSD in the muscles was positively corrected with 

the SD FCSA (p = 0.030; Figure 5B).

Local capillary to fiber ratio (LCFR). Figure 6 A, C and E show the LCFR. The LCFR of type 

I fibers was soleus>diaphragm>EDL (p < 0.001) and that of type IIa fibers was higher in the 

soleus than in the diaphragm and EDL (p < 0.001). The LCFR of type IIx fibers was larger in 

the diaphragm and soleus than in the EDL (p < 0.034). The LCFR of all fibers pooled was 

larger in the soleus than in the diaphragm and EDL (p ≤ 0.002). Overall, there were no 

significant age-related differences in LCFR in any of the muscles.  

Capillary fiber density (CFD). Figure 6 B, D and F show the CFD. Overall, the CFD of type 

IIb was smaller than that of type IIx, IIa and type I fibers (p ≤ 0.002). There was a significant 

muscle x age interaction (p < 0.001). At 20 weeks of age, the CFD was larger in the diaphragm 

than in the soleus and EDL (p < 0.001). In the diaphragm, the CFD was lower in 79- than in 

20-week-old mice (p < 0.001), while in the EDL the opposite was found (p < 0.002) with no 

significant difference in CFD in the soleus and EDL. 

Figure 7, 8 Determinants of fiber capillary supply (Fig. 7 & 8)

To assess differences between muscles, fiber types and age in the matching of oxygen supply 

(LCFR) and demand (SDH-INT) of a fiber, the LCFR/SDH-INT was calculated as a measure 

of the supply:demand ratio. The LCFR/SDH-INT was higher in type IIb fibers in comparison 

to all other fiber types (p<0.001). There was a significant age x muscle interaction (p = 0.001), 

which was reflected by a higher LCFR/SDH-INT in the EDL of 79- than in 20-week-old mice 

(p ≤ 0.006), while in the diaphragm the LCFR/SDH-INT the opposite was found (p = 0.019).

It appeared that the LCFR was primarily determined by FCSA (adjusted R2  = 0.550; p < 0.001) 

and a small contribution of muscle of origin that increased the adjusted R2 to 0.731 (p < 0.001) 

(Fig. 8). We also performed the analysis on all individual fibers (n = 4663), and this gave 
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essentially the same outcome: FCSA was the main determinant (adjusted R2 = 0.423; p < 

0.001), and muscle of origin increased the adjusted R2 to 0.533 (p < 0.001). There were no 

significant contributions of age or SDH-OD, suggesting that the qualitative and quantitative 

relationships between size and oxidative capacity of fiber with capillary supply do not change 

during early ageing. 

DISCUSSION

The main observations of the present study were that in mice, early ageing (between 20 and 79 

weeks), characterized by an absence of a significant loss of hind limb muscle mass, was 

associated with hypertrophy in the diaphragm. This hypertrophy resulted in a reduction in the 

capillary supply to a fiber relative to oxidative capacity that was already lower in the diaphragm 

than the extensor digitorum longus (EDL) and soleus muscle. The capillary supply to a fiber 

relative to the oxidative capacity did increase in the EDL, indicative for a capillary supply in 

relative excess of oxidative capacity. These changes were almost entirely explicable by fiber 

hypertrophy in the diaphragm and fiber atrophy in the EDL, while no changes in morphology 

were seen in the soleus. Combined with previous observations in CD-1 mice these data indicate 

that in addition to a reduction in specific tension (Hill et al., 2018; Tallis et al., 2014) 1) 

diaphragm hypertrophy is a hallmark of early ageing, 2) fiber atrophy is not necessarily 

preceded by capillary rarefaction and reductions in oxidative capacity, and 3) different muscles 

undergo different patterns of ageing.

Morphological differences between muscles

In line with previous studies (Greising et al., 2013; Omairi et al., 2016), we found that, 

irrespective of age, the mouse soleus contains mostly type I and IIa fibers, whereas the EDL is 

predominantly composed of type IIb fibers and the diaphragm has primarily type IIa and type 

IIx fibers. Overall, the mouse soleus had the largest and the diaphragm the smallest fibers. 

Larger fibers in the soleus than the EDL have been observed previously in mice (Omairi et al., 

2016). Irrespective of fiber type, the oxidative capacity of fibers was higher in diaphragm 

compared to those in the soleus and EDL, something also seen in rats (Smith et al., 1988). Part 

of the explanation of the higher oxidative capacity and IMCL content in fibers of the diaphragm 

may be that it is continuously active and comparable to a trained muscle that has higher IMCL 

stores and fatty acid oxidative capacity (van der Vusse and Reneman 1996). Whatever the 
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cause, these observations indicate that the properties of the fibers of a given type are dependent 

on the muscle of origin.

In agreement with a previous study on muscle capillarization (Murakami et al., 2010), we found 

that the capillary to fiber ratio (C:F) was higher in soleus compared with EDL and diaphragm. 

The CD was, however, highest in the diaphragm. The heterogeneity of capillary spacing, 

reflected by the logarithmic standard deviation of the capillary supply radius (LogRSD) 

(Barnouin et al., 2017; Degens et al., 1993b; Hoofd et al., 1985) has a significant effect on 

tissue oxygenation (Degens et al., 2006; Degens et al., 1994; Goldman et al., 2006) and was in 

20-week-old mice smaller in the diaphragm than the soleus and EDL, and may be related to 

the higher oxidative capacity of the diaphragm requiring a more homogeneous oxygen tension 

in this than the other two muscles.

Early ageing

In contrast to the average life expectancy of 26.7 months (115.7 weeks) of C57BL/6 mice 

(Ballak et al., 2014), the 50% survival of female CD-1 mice is 78-80 weeks (Navarro et al., 

2002). However, it has been found that the specific tension and power output normalized to 

muscle mass of the EDL and diaphragm is lower in 30- and 50- than 10-week-old mice, but 

without significant differences in maximal tetanic force or muscle atrophy (Hill et al., 2018; 

Tallis et al., 2014). The absence of significant differences in the mass of the soleus and EDL 

from 20- and 79-week-old mice in our study suggests that the observed reductions in specific 

tension are early signs of muscle ageing.

With ageing, selective type II atrophy is common in both human (Barnouin et al., 2017; Lexell 

et al., 1988; McPhee et al., 2018) and mouse muscles (Brooks and Faulkner 1988). At first 

glance, the atrophy of the EDL muscle fibers without significant atrophy of fibers in the 

diaphragm and soleus between 20 and 79 weeks of age seems to support this idea. However, 

within the EDL atrophy was not limited to type IIb fibers, as type I and IIa fibers also atrophied. 

Furthermore, in the diaphragm, in contrast to Greising et al. (2013), we observed an increase 

in the size of type IIx fibers. The discrepancy may be due to the comparison of different age 

groups of rodents, where we compared 20- with 79-week-old mice and Greising et al. (2013) 

compared 20- with 100-week-old mice, suggesting that diaphragm hypertrophy during early 

ageing is followed by diaphragm atrophy at an advanced age. The initial hypertrophy of the 

diaphragm during ageing may be an adaptation to the increased cost of breathing as a 
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consequence of an ageing-related reduction in lung compliance (Sharma and Goodwin 2006). 

Although another explanation for the discrepancy might be the use of C57BL/6 x 129 mice by 

Greising et al. (2013), where we used CD-1 mice with a shorter life span (Navarro et al., 2002), 

one would expect more pronounced atrophy in the diaphragm of our mice. Overall, it appears 

that the increase in fiber size during ageing in the respiratory muscles is opposite to the 

decreases in fast limb muscles, and the changes in muscle morphology during early ageing are 

more related to functional demands on the muscle than fiber type composition.

The oxidative capacity of the fibers in the soleus and the diaphragm did not change between 

20 and 79 weeks. In the EDL muscle, the age-related decrease of the integrated SDH activity 

per fiber is explicable by both a reduction (though not significant) in the mass-specific 

oxidative capacity (SDH-OD) and fiber cross-sectional area. The increase in fiber size in the 

diaphragm during early ageing was not accompanied by an increase in mitochondria, as 

indicated by the similar integrated SDH, a measure of the total number of mitochondria in a 

cell.

It has been found previously in mice of similar ages that during early ageing the specific tension 

and power normalized to muscle mass of the EDL and soleus was reduced (Hill et al., 2018). 

In older obese mice there was a reduction in specific tension and power of the diaphragm (Hill 

et al., 2019), something also reported for the vastus lateralis muscle in older obese adults where 

this was associated with intramyocellular fat accumulation (Choi et al., 2016). We found, 

however, no age-related increase in IMCL content in any of the three muscles, corresponding 

with their largely unchanged oxidative capacity.

It has been suggested that capillary loss may precede the age-related fiber atrophy (Larsson et 

al., 2019). However, the absence of an age-related difference in C:F in any of the muscles, as 

also reported by others in humans (Snijders et al., 2017), suggests this is not the case, and in 

the EDL the CD was even increased during early ageing. This increased CD in the EDL was 

explicable by a decrease in the FCSA, while in the diaphragm the reduced CD was attributable 

to an increase in FCSA during early ageing, without any indications of angiogenesis or 

capillary rarefaction, respectively.

In contrast to previous observations in rats (Degens et al., 2009), we found that the 

heterogeneity of capillary spacing did, if anything, decrease during early ageing, suggesting a 

more homogeneous distribution of capillaries. It should be noted, however, that the increased 

heterogeneity occurred in rats that were at a relatively more advanced age than our oldest mice, 
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and was associated with an increased variation in fiber sizes in the muscle (Degens et al., 2009). 

While here we also showed that the heterogeneity of capillary spacing increased with an 

increase in the variation in fiber size (Fig. 5B), there was no significant change in the variation 

in fiber size during early ageing in the muscles of our mice. Overall, this corresponds with the 

suggestion that 1) the constraint of capillary positioning at the periphery of a fiber is one 

determinant of the heterogeneity of capillary spacing (Degens et al., 2009), and 2) that the 

location of capillaries is not random but controlled (Degens et al., 2006), at least up to early 

ageing, to maintain sufficient muscle oxygenation. 

These data indicate that the ageing-related changes in muscle morphology differ markedly 

between muscles; there is fiber hypertrophy (~30%) in the diaphragm and fiber atrophy (~30%) 

in the EDL. Such changes during early ageing may be masked if the young control group has 

not yet fully developed muscles and this emphasizes the importance of selecting appropriate 

age groups when using rodent models to study (early pre-sarcopenic) muscle ageing (Ballak et 

al., 2014).

Determinants of fiber capillary supply

In line with others (Barnouin et al., 2017; Bosutti et al., 2015; Degens et al., 1992), we found 

that the main determinant of the number of capillaries supplying a fiber (LCFR) was fiber size. 

This relationship differed somewhat between muscles, as reflected by the higher CFD in the 

diaphragm than the soleus and EDL, suggesting that the relationship between fiber size and 

capillary supply to a fiber is somewhat modulated by the metabolic surrounding of the fiber. 

In contrast to common assumptions, we have previously reported that the capillary supply to a 

fiber is not determined by the oxidative capacity of the fiber itself (Barnouin et al., 2017; 

Bosutti et al., 2015). Similarly, in the present study, the oxidative capacity did not significantly 

contribute to the capillary supply of a fiber. To investigate the relationship between supply and 

demand further we estimated the maximal oxygen demand of a fiber as the integrated SDH 

activity (FCSA * SDH-OD) and calculated the capillary supply (LCFR) to demand ratio 

(LCFR/SDH-INT) for each fiber. In contrast to expectations, the diaphragm had the lowest and 

the EDL the highest supply to demand ratio. Similar to hypertrophied hearts (Des Tombe et al., 

2002), the lower supply to demand ratio in the diaphragm may indicate that oxygen supply may 

be at risk of being compromised in maximally working diaphragm, and less so in soleus and 

EDL muscles, which becomes even more compromised during ageing, as reflected by the lower 

ratio in the diaphragm of 79- than 20-week-old mice. On the other hand, the higher supply to 
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demand ratio in the EDL than in the soleus and diaphragm suggests that there is an excessive 

capillary supply in the EDL in relation to its oxidative capacity. 

During early ageing, the capillary supply to demand ratio increased in the soleus, but not in the 

diaphragm, suggesting that, as seen in ageing rat muscle (Hepple and Vogell 2004), the 

capillary supply becomes even more in excess to oxidative capacity, particularly in the soleus 

muscle. This again supports the notion that the oxidative capacity is not the main determinant 

of the capillary supply to a fiber, but other functions, such as removal of heat and waste 

products, and substrate delivery are more important. It is even possible that the capillary supply 

limits for these reasons fiber size, rather than fiber size determining the capillary supply 

(Hendrickse and Degens 2019; Larsson et al., 2019).  

Conclusion

The current study showed that in mouse muscles during early ageing, characterized by an 

absence of significant loss of muscle mass in the hind limb muscles, the EDL fibers had 

atrophied, and interestingly, the diaphragm hypertrophied without changes in the number of 

capillaries supplying a fiber or their oxidative capacity. It, therefore, appears that early ageing 

exerts differing effects in respiratory and limb muscles, where atrophy is not necessarily 

accompanied with, or preceded by, capillary rarefaction. Nevertheless, at any age and in all 

muscles the fiber size was the main determinant of capillary supply to a fiber, with no 

significant contribution of oxidative capacity.

Disclosure The authors declare no conflict of interest.
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Table 1. Body and muscle mass in 20- and 79-week-old female CD-1 mice.

20 weeks (n = 29) 79 weeks (n = 30)

BM (g) 38.5 (4.9) 47.2 (8.6)1

BMI (kg·m-2) 3.04 (0.34) 3.37 (0.41)1

Soleus (mg) 10.1 (1.6) (n =10) 9.4 (1.4) (n =10)

Soleus MM/BM (mg·g-1) 0.26 (0.04) (n =10) 0.20 (0.04)1 (n =10)

EDL (mg) 10.0 (2.1) (n =10) 10.6 (1.8) (n =10)

EDL MM/BM (mg·g-1) 0.28 (0.06) (n =10) 0.24 (0.05)1 (n =10)
BM: Body mass; BMI: body mass index (body mass divided by snout-to-anus length squared); EDL: 
extensor digitorum longus muscle; MM/BM: muscle mass divided by BM. 1 different from 20 weeks 
at p ≤ 0.002. Data are mean ± SD.

Table 2. Indices of capillary supply in mouse soleus, extensor digitorum longus (EDL) and diaphragm

 Soleus EDL Diaphragm Effect                              
(p-values)

Interaction            
(p values)

 
20w            

(n = 6)
79w            

(n = 5)
20w            

(n =3)
79w           

(n = 3)
20w            

(n = 7)
79w            

(n = 5) Age Muscle A x M

C:F  ratio 2.89d,e              
(0.20) 

2.89 e 
(0.59)

1.80s,d    

(0.29)
1.73s 
(0.23)

2.45s,e     

(0.32)
2.31 

(0.37) 0.633 < 0.001 0.966

CD  (mm-2) 951d     

(106)
1066    
(220)

625d    
(65)

11931     
(213)

1659s,e      
(322)

12451    
(173) 0.302 < 0.001 0.001

SD FCSA 
pooled

814d 
(146)

977 
(404)

965d 
(132)

5721 
(194)

443s,e 
(104)

612 
(246) 0.821 0.003 0.044

A x M, age × muscle interaction; Inter., interaction; w = weeks; CD, numerical capillary density; C:F ratio, ratio between the number of 
capillaries and number of fibers; values between brackets indicate standard deviation; FCSA, fiber cross-sectional area. Data are presented as 
mean ± SD. s different from soleus at p ≤ 0.002; d different from diaphragm at p < 0.001; e different from EDL at p ≤ 0.001; 1 different from 
20 weeks at p < 0.05.
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FIGURE LEGENDS

Figure 1. Serial sections of diaphragm from a 79-week-old mouse stained for (A) 

intramyocellular fat, (B) myosin heavy chain (MHC), (C) capillaries and (D) succinate 

dehydrogenase (SDH) activity. Note that type IIa fibers (green) had a higher SDH activity than 

type I (blue) and type IIx (red) fibers. *: indicates same fiber in the four panels. Arrows indicate 

examples of capillaries. Scale bar = 100 µm.

Figure 2. Fiber type composition (A, C and E) and fiber cross-sectional area (FCSA) (B, 

D and F) in the (A-B) soleus, (C-D) extensor digitorum longus (EDL) and (E-F) diaphragm 

muscles of 20- and 79-week-old mice. Values are means ± SD (n = 3-7). s different from soleus; 
d different from diaphragm; e different from EDL at p < 0.001;  i different from type I fibers at 

p ≤ 0.032; a different from type IIa at p ≤ 0.002; 1 different from 20 weeks at p ≤ 0.014.

Figure 3. Intramyocellular lipid levels in the A) soleus, B) extensor digitorum longus (EDL) 

and C) diaphragm muscles of 20- and 79-week-old mice. Values are means ± SD (n = 3-7). s 

different from soleus; d different from diaphragm; e different from EDL at p < 0.001.

Figure 4. Succinate dehydrogenase (SDH) optical density (A, C and E) and integrated 

succinate dehydrogenase activity (SDH-INT) (B, D and F) in the (A-B) soleus, (C-D) 

extensor digitorum longus (EDL) and (E-F) diaphragm muscles of  20- and 79- week-old mice. 

Values are means ± SD (n = 3-7). s different from soleus; d different from diaphragm; e different 

from EDL at p ≤ 0.035;  i different from type I fibers at p ≤ 0.027 ; a different from type IIa  at 

p < 0.001; x different from type IIx fibers at p < 0.001; 1 different from 20 weeks at p < 0.046.

Figure 5. Heterogeneity of capillary spacing (LogRSD) (A) and relationship between 

LogRSD variation in fiber size (SD FCSA) (B) in the soleus, extensor digitorum longus 

(EDL) and diaphragm muscles of 20- and 79-week-old mice. Values are means ± SD (n = 3-

7). s different from soleus at p ≤ 0.043; d different from diaphragm at p ≤ 0.043; e different from 

EDL at p < 0.001. 1 different from 20 weeks at p ≤ 0.011.



24

Figure 6. Local capillary to fiber ratio (LCFR) (A, C and E) and capillary fiber density 

(CFD) (B, D and F) in the (A-B) soleus, (C-D) extensor digitorum longus (EDL) and (E-F) 

diaphragm muscles of 20- and 79-week-old mice. Values are means ± SD (n = 3-7). s different 

from soleus; d different from diaphragm; e different from EDL at p ≤ 0.002; i different from 

type I fibers; a different from type IIa; x different from type IIx fibers; b different from type IIb 

fibers at p ≤ 0.036; 1 different from 20 weeks at p ≤ 0.002.

Figure 7. Local capillary to fiber ratio (LCFR):integrated succinate dehydrogenase 

activity (SDH-INT) in the (A) soleus, (B) extensor digitorum longus (EDL) and (C) 

diaphragm muscles of 20- and 79-week-old mice. Values are means ± SD (n = 3-7). s different 

from soleus; d different from diaphragm; e different from EDL at p ≤ 0.022;  i different from 

type I fibers; a different from type IIa; x different from type IIx at p < 0.001; 1 different from 

20 weeks at p < 0.02.

Figure 8. Relationship between the local capillary-to-fiber ratio (LCFR) and the fiber 

cross-sectional area (FCSA) in from soleus (A), EDL (B) and diaphragm (C) muscles of 20- 

and 79-week-old mice. The FCSA and the LCFR was significantly correlated (soleus, n = 1663; 

EDL, n = 981; diaphragm, n = 2015). Each data point comes from an individual fiber. 
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Figure 1
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