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Abstract

Typical approaches to wind turbines placement problem take into account the wind distribution and

wake effects to maximise the total aggregate farm’s energy production in a centralised top-down optimisation

problem. An alternative approach, however, is yet to be addressed as the problem can be instead modelled

in a decentralised bottom-up manner emulating a system of self-adaptive agents. The potential advantages

of this is that it offers easier scalability for high dimension problems as well as it enables an easier adaptation

to the complex structure of the design problem. This paper contributes to this and presents an evolutionary

algorithm to model and solve the wind farm layout design problem as a system of interrelated agents. The

framework is applied to problems with different complexities where the quality of the results is examined.

The convergence and scalability of the suggested technique indicate promising results for small to large scale

wind farms, which, in turn, encourage the application of such an evolutionary based algorithm for real world

wind farm design problem.

Keywords: Wind farm layout design; Agent based modelling; Evolutionary algorithm; Self adaptive

agents.

1. Introduction and motivation

The key elements in maximising the energy output of a wind farm are wind variation and turbine in-

teraction. The placement of each wind turbine may adversely affect the performance of other turbines in

the wind farm due to wake formation. The wind farm layout problem is concerned with the design and

development of an efficient wind turbine placement on a farm site considering wind variations, design objec-

tives, technical constraints and wake effects (Herbert-Acero et al., 2014; González et al., 2014). This design

problem is formulated as a constrained optimisation problem where efficiency is defined as to maximise the

total wind farm energy output affected by the wind, land and cost constraints. A comprehensive review
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on these approaches reveals a common perspective in defining the optimisation problem (Chehouri et al.,

2015; Khan & Rehman, 2013). In almost all of the proposed approaches (one may refer to the modelling

formulations presented by Kusiak & Song (2010); Pookpunt & Ongsakul (2013); Chowdhury et al. (2012);

Feng & Shen (2015)), the wind farm energy capture is formulated based on aggregate function of farm’s

power production and single or multiobjetive optimisation search algorithms are exploited to obtain the

wind turbines’ optimal locations. This type of modelling, as a result of a central ordering influence over its

components, is called a centralised top-down approach. Decentralised based modelling, as an alternative,

introduces a bottom-up perspective to system modelling avoiding any commanding influence over its compo-

nents. The components of are self-adaptive agents which use local information to accomplish global goals.

Following the agent-based problem terminologies, in the top-down approaches, the ’best’ solution is defined

as the optimal solution to a single aggregated optimisation problem as opposed to bottom-up methods that

’best’ is defined as the optimal solutions of independent but connected optimisation problems. Further,

in bottom-up approaches, agents have partial information about the whole model and collectively solve a

common task. The potential advantages of using bottom-up techniques are trifold: (1) introducing flexibility

in modelling, (2) enabling easier adaptation to the complex requirements and changing environment, and

(3) offering reduced processing time, robustness, and scalability.

These capabilities have been demonstrated in various applications such as software engineering, traffic

analysis, telecommunications network and resource allocation and management (e.g. look at Forrest (1990);

Erfani & Erfani (2015b,a); Ding et al. (2016)). In literature, however, decentralised modelling has not been

employed for modelling the wind farm for maximising its energy output. This paper applies self-adaptive

agent-based technique to wind farm energy production optimisation problem. In this paper, self-adaptive

agents represent the turbines and they collectively solve a common task of maximising energy production

by communicating with others. An evolutionary algorithm is developed considering this dynamics. For

this, we first explain the wind farm components briefly and build up the optimisation model in Section 2.

Development of the algorithm and the strategies come in Section 3. In Section 4 the proposed algorithm

is applied to numerical problems with different complexities where the results are compared with those

found in literature. Section 4 also investigates the applicability of the algorithm on a real problem in Manjil

wind farm plant in north Iran. In Section 5 the scalability of the proposed algorithm is analysed and its

performance is compared with that of the centralised aggregated optimisation algorithm. Section 6 concludes

the paper with extra discussion for future work.

2. Wind farm modelling

While there are various design factors in wind farm layout problem (such as turbine types and soil load-

bearing capacity (Rahbari et al., 2014)), the most important elements are the wind characteristics and the
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speed loss behind each turbine due to the wake formation (Kusiak & Song, 2010). This section incorporates

these elements into the farm modelling and builds up the mathematical models along with the optimisation

formulation.

2.1. Wake model

In this study, due to its trade-off between simplicity and accuracy, we follow the Jensen wake model

(Jensen, 1983; Mosetti et al., 1994). Let n be the number of wind turbines in a given wind farm with ith

wind turbine location coordinates φi = (xi, yi). The wind speed experienced by downstream turbine i is

reduced as a result of a wake of the upstream wind turbine j and is given by

vij = v0(1− δvij), with, δvij =
2αj

(

1 +
κjdij

R

)2
, (1)

where v0 is the mean wind speed, κj the turbine wake spreading constant, and R and dij respectively

define the rotor radius and wake downstream distance between turbine i and j. αj = 1/2(1−√1− CTi) is

turbine’s induction factor which depends on turbine thrust coefficient CTj . Let Ni be the set of upstream

wind turbines respect to turbine i in wind direction θ. When a turbine is affected by the wakes of multiple

turbines,

vi = v0



1−
√

∑

j∈Nk

(1− vij
v0

)2



 , (2)

is the wind speed vi experienced by turbine i downstream of turbines Ni (Katic et al., 1986).

2.2. Wind model

Two important factors in wind variation modelling for farm layout design are wind speed v and direction

θ. These affect the wake production behind the turbines and therefore an optimal turbine placement within

the farm. Wind speed v is measured as m/s in direction 0 < θ ≤ 360, where (from) north (N) and east (E)

blowing winds are defined as 90◦ and 0◦, respectively. Given the wind data (speed and direction), following

Zhang et al. (2013), multivariate and multimodal wind distribution (MMWD) model is used in this paper

to more realistically approximate the wind variability as a joint probability distribution of the wind speed

and wind direction, pw(v, θ). Reader is referred to Zhang et al. (2013) for additional details.

2.3. Optimisation model

Given the wind variation model, pw(v, θ), and power generation model Pi(v) for turbine i, the wind farm

expected power production ÊP is given by,

ÊP =

n
∑

i=1

∫

θ

∫

v

Pi(v)pw(v, θ)dvdθ (3)
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where summation over i is added to account for the total number of wind turbines n. Pi(v), power generated

by turbine i, is generally proportional to cubic of the wind speed (e.g. look at Manwell et al. (2010)) and

wind model pw(v, θ) is discretised by s wind scenarios. ÊP is, therefore, approximated by,

EP =
n
∑

i=1

EPi,

EP =

n
∑

i=1

s
∑

j=1

Pi(vj)p
j
w(vj , θj).

(4)

As a result of the wake effect due to turbine locations respect to one another, the wind speed is reduced

(look at Equation 2). As a consequence, EP value (as a function of wind speed) varies according to the

turbines layout design. φi = (xi, yi), the coordinate of turbine i, is a continuous variable and its value is

subject to the upper and lower bound on the area of the farm. For a rectangular farm with length l and

width h, 0 ≤ xi ≤ l and 0 ≤ yi ≤ h are realistic bound constraints for turbine locations within the wind

farm. The optimisation problem is to find the best turbines locations in order to maximise the total power

production as formulated by,

max EP

s.t.

0 ≤ xi ≤ l ∀i = 1, . . . , n

0 ≤ yi ≤ h ∀i = 1, . . . , n

(xi − xj)
2 + (yi − yj)

2 ≥ fR2 ∀i, j = 1, . . . , n, i 6= j

(5)

where f is a safety factor that is usually set by turbine’s manufacturer using the rotor radius R to ensure that

the adjacent turbines are sufficiently far from each other for interaction reduction e.g., in wind turbulences,

thus diminishing the hazardous loads on the turbine (Kusiak & Song, 2010).

with f as the safety factor. Inline with the work of Mosetti et al. (1994), in this study, it is assumed

that the cost of the wind farm only depends on the number of wind turbines. Since the number of wind

turbines is given and it is fixed, the cost function is omitted from modelling. This fits for our purpose of

demonstrating the effectiveness of the proposed algorithm.

3. Wind farm optimisation using self-adaptive agents

Let EPi be the expected power production of turbine i defined in Equation 4, and define problem

Ti, i = 1, ..., n for each turbine i as,

maximise
φi

EPi(φ), (Ti)
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with φ = (φ1, . . . , φn) ∈ R
n
+. Each turbine i controls vector φi ∈ R

ni to optimise the objective function

EPi. Let T be the problem formed by all Tis. We find φ by simultaneously solving n optimisation problems

Ti, i = 1, ..., n.

Algorithm 1: Search algorithm for wind turbine placement

1 Set MaxGen convergence tolerance, ǫ, number of turbines (number of population), n, and population

size, m;

2 For each turbine i, [oi]m×1 ← Randomly initialise m coordinates;

3 ∀ i = 1, ..., n, Let popi = (oi, o−i);

4 while η > ǫ and Not MaxGen do

5 for turbine i= 1 to n do

6 for each individual φk
i in popi and k=1 to m do

7 Take wind speed, v0, and wind direction, θ;

8 Set Nk an empty set;

9 for turbine j 6= i do

10 if Turbine j is upstream of k then

11 Nk ← Nk ∪ {j};
12 Calculate dkj and δvkj ;

13 Calculate velocity (vki ) and expected power production (EP k
i ) associated with kth row;

14 [popi]k = [popi]k ∪ φk
j , j ∈ N ;

15 Randomly pick ps1 6= ps2 6= ps3 6= pk from popi;

16 pb ← reproduction (ps1, ps2, ps3);

17 φ∗
i ← The best individual coordinate in popi;

18 ∀ i = 1, ..., n, popi = (oi, ō
∗
−i) ;

19 Update η;

Let φ−i be a vector containing the decision variables of all turbines involved in problem Ti excluding

that of the turbine i. The search Algorithm 1 is described by n different search trajectories performing

simultaneously as follows. Since each turbine i is associated with one problem Ti, the algorithm requires

n number of populations. [oi]m×1 is a vector populated by turbine i’s m different locations ([φ1
i , . . . , φ

m
i ]t)

and [o−i]m× n−1 is a coordinate matrix of other turbines excluding that of turbine i. φk
i is the kth row in

popi for turbine i. Given wind direction θ, for each individuals k (φk
i ) in popi, a neighbourhood set Nk is

formed. Nk defines the set of all upstream turbines of turbine k for wake calculation. For the neighbouring

turbines, the distance d and the retarded speed is computed. In Line 14, popi is updated with regards
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to individual k’s neighbours ([popi]k is the kth row of popi). All individuals in each population i undergo

reproduction in each generation g of searches (Line 15-16) using three mutually exclusive individuals from

the population. The reproduction in Line 16 is differential evolution following the work of Price et al. (2005)

and is explained in next Section. In case of violation, constraint violation techniques are used to treat them

(Line 16). popi is sorted in decreasing order based on the objective value (maximisation), and φ∗
i , the best

individual in popi is stored in the first row of popi (Line 17). At the end of each generation g, all turbines

share their best individuals (coordinate) to form the updated population for next generation g + 1. The

position of each turbine is updated in each generation using its last position in the farm. Turbine’s position

changes in each generation if, compared to its former position, new position contributes more to the power

production function. In Line 18, [ ¯o∗−i]:=1m×1 × [φ∗
1, . . . , φ

∗
i−1, φ

∗
i+1, . . . , φ

∗
n] is a m × n − 1 identical rows

matrix. The rows in ¯o∗−i contain the φ∗
i that migrates to the population of the others and remains fixed

(shown by φ̄∗
i ) for the next generation, and this continues through generation. An example of population

sharing scheme is illustrated in Figure 1 for three turbines a, b and c. For example, in popa, φ
∗
b and φ∗

c are

the best individuals (location) for turbine b and c in previous generation and are fixed in popa shown by φ̄∗
b

and φ̄∗
c . Due to n different search trajectories, the algorithm allows independent search for turbines that,

over successive generation, leads to an optimal solution.

4. Experimental setup, results and discussion

We have tested the proposed algorithm performance on three problems with different complexities. Wind

direction θ is such that for example (from) north (N) and (from) east (E) blowing winds are defined as 90◦

and 0◦, respectively. For convergence, the algorithm uses a variance-based stopping criterion η (Sinha et al.,

2014) defined by,

η =
∑ σ2

Vic

σ2
Vio

,

where σ2
Vic

and σ2
Vio

denotes the variances of agents i’s decision variable φi (coordinate of turbine i) in the

current (c) and original (o) population, respectively. The value of η is restricted between 0 and 1 and upon

convergence it is expected that this value converges to zero. Therefore, if η is less than ǫ then the algorithm

terminates, otherwise, the algorithm continues until MaxGen is reached.

For constraint handling of load safety factor, while other techniques can be easily applied, the constraint

domination technique (Deb, 2000) is adopted. The procedure ranks the feasible individuals based on their

objective values while the infeasible individuals are ranked only based on their extent of constraint violation.

For reproduction stage, as noted earlier, Differential Evolution (DE) (Price et al., 2005) is chosen as it

provides promising results on several test problems (Neri & Tirronen, 2010). In DE, corresponding to each
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Figure 1: Exchanging the best individual values between populations at the end of each generation for three turbines a, b and

c where m = 4. φ∗

a is fixed in first column and all rows of popb and popc, φ∗

b
is fixed in second column and all rows of popa and

popc, and finally φ∗

c is fixed in third column and all rows of popa and popb. The fixing is subject to each individual’s neighbour

N . φ̄∗ shows the best individuals that migrates to the population of the others and remains fixed.
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member of population pk, three individuals ps1, ps2 and ps3 are randomly chosen from oi and new vector pc

is created by adding the weighted difference of ps2 and ps3 to the ps1 given by,

pc = ps1 +MR(ps2 − ps3),

where MR is the mutation rate. pc is accepted as a new vector pb if the following is satisfied

pb =











pc if rand(0, 1) ≤ CR

pk o.w.

(6)

CR is the probability of crossover and rand is pseudo random number between 0 and 1.

The population size for each agent is m = 5, the maximum number of generation is MaxGen = 200

and following Price et al. (2005), mutation and crossover rates within DE are MR = 0.7 and CR = 0.5,

respectively. The convergence is assumed with tolerance of less than ǫ = 10−3. Wind farm efficiency ζ

is calculated for further analysis as the ratio between the optimal EP and maximum power production

in an ideal scenario that the wake interactions among turbines are neglected. To account for variability

of each run and initial locations of each turbine, we randomly initialised each population and solved each

problem 30 times. The coordination, wind farm energy production and the convergence rate results are,

therefore, averaged over 30 runs to show the average location of each turbine, the average of wind farm

energy production and the average of the algorithm convergence rate.

4.1. Numerical problems - cases 1 and 2

The problems in this section are introduced in the literature by Mosetti et al. (1994). The farm site

is stretched 2000m to north and 2000m to east. In the first case, there are 30 wind turbines, the wind is

unidirectional coming from north (θ = 90◦) and has the intensity of v = 12 m/s. In the second case, there

are 39 turbines, the wind is coming from 36 equally ranged direction from 0◦ to 360◦ with equally probable

occurrence and the wind speed is constant at v = 12 m/s. In both cases, the rotor radius R = 20m, thrust

coefficient CT = 0.88 and wake spreading constant κ = 0.1. As a loading safety factor constraint, it is

required that each turbine is separated from the others by at least 5 times the rotor diameter. In both

cases, the power generation for each identical turbine follows EPi = 0.3v3i . We have used the studies of

using genetic algorithm (GA) by Grady et al. (2005) and particle swarm optimisation (PSO) by Pookpunt

& Ongsakul (2013) to examine the quality of the proposed agent based method’s results. Figure 2 shows the

position of each turbine, their power production and the convergence behaviour. The convergence figures

accompanied with Table 1 confirm a promising performance of the proposed agent based method.

4.2. Real world wind farm site layout problem - case 3

To further investigate the applicability of the proposed approach, we use real onshore wind farm layout

problem in Manjil, Iran with a wind farm site area stretched 2500m to the east and 1200m to the north.
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Table 1: Test cases 1 and 2: Farm’s efficiency results of the proposed agent based approach as well as three other methods.

The results are averaged over 30 runs.

Measures Case 1 Case 2

Efficiency ζ

GA (Grady et al., 2005) 92.01% 85.17%

PSO (Pookpunt & Ongsakul, 2013) 92.01% 89.80%

Agent model (current study) 96.72% 89.47%

Output power (kW)

Agent model (current study) 15043.2 18090.57

Ideal 15552 20217.6
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Figure 2: The positions, average power production and convergence behaviours of the numerical problems. The top row are

the results for the first case (n=30 turbines), and bottom row shows the second case results (n=39 turbines).
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Figure 3: Manjil’s wind variation model and its rose plot. Direction indicates the direction from which the wind blows. The

gray dots are the sampled using LHS and used for this study.

The site has 57 identical Prated=500 kW turbines with rotor radius R = 19.5 m, CT = 0.88 and κ = 0.05.

Loading safety factor constraint requires that each turbine is separated from the others by at least five times

the rotor diameter. The cut-in, rated and cut-out speed of each turbines used for energy production model

are 4 m/s, 14 m/s and 25 m/s, respectively1. Using 20 years (1993 - 2014) wind intensity and direction

data from Iran Meteorological Organization 2 for Manjil station, we have exploited the MMWD approach

proposed by Zhang et al. (2013) to model the wind variation. The variation is shown in Figure 3. The

prevalent wind is blowing from north (N) and north-east (NE) direction with the average speed of 13 m/s.

We have implemented Latin Hypercube Sampling (LHS) and have extracted s =46 scenario sample points

(shown as gray circle in Figure 3) to approximate pw(v, θ) in Equation 3.

Having implemented the algorithm, Figure 4.a shows the optimal location of each turbine with its

associated power output. The figure describes that due to the high occurrence probability of wind direction

from NE, the higher power is generated from the wind turbine positioned in NE corner (more than 285 kW

each). As the turbines are moved towards southern part of the farm, due to lower intense wind, their power

production is reduced. Figure 4.c indicates that the convergence is achieved in less than 80 generations with

the total wind farm power production of 15621.62 kW with farm efficiency of 95.45% (ideal farm power

production is 16365.91 kW when wake calculation is not considered).

1Each wind turbine is characterised by its cut-in (vcut−in), rated (vrated) and cut-out (vcut−out) wind speed and its energy

production is modelled accordingly. Reader may refer to Manwell et al. (2010); Marvuglia & Messineo (2012) for details.
2The data are freely available for research purposes and can be accessed from http://www.irimo.ir/eng/index.php
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Figure 5: (a) The position, and (b) algorithm convergence behaviour for 300 wind turbines.

Table 2: The scalability performance analysis of the agent based approach for up to 300 wind turbines. The results are averaged

over 30 runs.

Algorithm kW - Power kW - Ideal efficiency

n Time (s) generation output (st. dev) Power output ζ

10 2.21 11 5184 (0 ) 5184 100.00%

40 28.16 115 19924.17 (9.2 ) 20736 96.08%

80 98.81 145 39391.40 (39.5 ) 41472 94.98%

150 354.22 122 72207.22 (92.3 ) 77760 92.86%

300 1402 148 139555.59 (123.3 ) 155520 89.73%

5. Further consideration

5.1. Scalability to high dimension problem - 300 wind turbines

To test the scalability of the proposed algorithm in higher dimension problems, we use the fixed intensity

unidirectional wind of first test case problem and solve it for n = 10, 40, 80, 150, and n = 300 turbines

(agents). Table 2 suggests a mild exponential trend in computational burden as the number of turbines

(agents) increases. While for n = 10, it takes about 3 seconds on average to solve the problem (with average

number of 11 generation before convergence), the average running time for n = 300 turbines reaches up to

about 1400 seconds with 150 generation on average. Figure 5 shows the position of each turbine and the

convergence behaviour of the algorithm in the largest case, where there are 300 turbines. As indicated in

Table 2, turbine optimal positioning could achieve 90% efficiency with a promising convergence behaviour

shown in Figure 5.
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5.2. Centralised algorithm comparison

To compare the performance of a centralised aggregated optimisation problem, here called central planner

(CP), with the proposed agent based approach, we use the above Manjil farm layout problem. Under CP

approach, farm’s total power production is a single aggregated problem defined by problem in equation

5. The search algorithm is differential evolution (DE) for both CP and agent based approaches with the

identical wind, wake and power generation models introduced earlier. The population size for each turbine in

agent based approach is kept at m = 5 and for CP approach the single population consists of 100 individuals.

We run the algorithm for 200 generations, use η value as the performance metric and record the time taken

for the whole simulation to study the convergence characteristics. Figure 6 shows the convergence behaviour.

As shown, while agent based approach converged smoothly after only 70 generation in about 140 seconds,

CP approach requires more than 150 generation with a substantially slower convergence time. The quick

convergence of the agent based approach is achieved despite the higher number of individuals being evaluated

(57×5=285 individuals for agent based compared to 100 for CP approach). Further, the total wind power

production under CP approach is 15291.87 kW which is about 4% less than 15962.51 kW power produced

using the agent based method.
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Figure 6: The convergence comparisons between centralised approach and decentralised agent based method. The values on

each graph indicate the time taken in seconds to reach the corresponding generation.

6. Conclusion and future work

We modelled the wind farm design layout problem in a bottom-up decentralised way. This may be a

valuable extension of currently used models for wind farm design as it can be easily scaled up for high

dimension problems, and enables easier adaptation to complex wind farm environment. We represented
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the turbines as self-adaptive agents that collectively solve a common task of maximising power production

by communicating with each other while solving their own problem. In the proposed model, agents, here

turbines, directly interact with their local neighbours and indirectly communicate with the others via the

environment. The agents reward themselves by modifying their positions and by contributing to the total

power production of the farm. We developed an evolutionary approach to solve these interrelated optimi-

sation problems simultaneously. The quality of the results is satisfactory. The analysis on scalability of the

algorithm up to 300 wind turbines shows a promising outcome. The performance of the algorithm when

it is compared to a centralised algorithm indicates encouraging results in terms of convergence time and

quality. In the proposed model, the numbers of wind turbines were fixed and the wind turbines were all

identical. As a consequence, no economic or environmental aspects were considered and some parameters

were disregarded such as air density, ground elevation and the height of the wind turbines. Considering

these into the modelling as well as the sensitivity of the algorithm to its parameters are left for future work.
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