Please cite the Published Version

Zhang, Xuegin, Chen, Jiahao, Zhou, Yue, Han, Liangxiu @ and Lin, Jiajun (2019) A Multiple-Layer
Representation Learning Model for Network-Based Attack Detection. IEEE Access, 7. pp. 91992-
92008.

DOI: https://doi.org/10.1109/access.2019.2927465

Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Version: Published Version

Downloaded from: hitps://e-space.mmu.ac.uk/623577/

Usage rights: [c Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article in IEEE Access.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)



https://orcid.org/0000-0003-2491-7473
https://doi.org/10.1109/access.2019.2927465
https://e-space.mmu.ac.uk/623577/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 17, 2019, accepted June 26, 2019, date of publication July 9, 2019, date of current version July 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927465

A Multiple-Layer Representation Learning Model
for Network-Based Attack Detection

XUEQIN ZHANG', JIAHAO CHEN", YUE ZHOU',
LIANGXIU HAN 2, (Member, IEEE), AND JIAJUN LIN'

! College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
2School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester M15 6BH, U.K.

Corresponding author: Xueqin Zhang (zxq@ecust.edu.cn)

ABSTRACT Accurate detection of network-based attacks is crucial to prevent security breaches of infor-
mation systems. The recent application of deep learning approaches for network intrusion detection has
shown promising. However, the challenges remain on how to deal with imbalance data and small samples
as well as reducing false alarm rate (FAR). To address these issues, this work has proposed a multiple-layer
representation learning model for accurate end-to-end network intrusion detection by combining deep
convolutional neural networks (CNN) with gcForest. The contributions of this work lie in 1) a new data
encoding scheme based on P-Zigzag to encode network traffic data into two-dimensional gray-scale images
for representation learning without loss of original information; 2) The combination of gcForest and CNN
allows accurate detection on imbalanced data and small scale data with fewer hyperparamters comparing
to most existing deep learning models, which increase computational efficiency. The proposed approach is
based on a multiple-layer approach consisting of a coarse layer and a fine layer, in which the coarse layer with
the improved CNN model (GoogLeNetNP) focuses on identification of N abnormal classes and a normal
class. While in the fine layer, an improved model based on gcForest (caXGBoost) further classifies the
abnormal classes into N-1 subclasses. This ensures fine-grained detection of various attacks. The proposed
framework has been compared with the existing deep learning models using three real datasets (a new dataset
NBC, a combination of UNSW-NB15 and CICIDS2017 consisting of 101 classes). The experimental results
show that our proposed method outperforms other single deep learning methods (i.e., AlexNet, VGG19,
GoogleNet, InceptionV3, ResNet18) in terms of accuracy, detection rate, and FAR, which demonstrates its
effectiveness in detecting fine-grained attacks and handling imbalanced datasets with high-precision and low
FAR.

INDEX TERMS Network intrusion detection, convolutional neural networks, deep random forests, repre-

sentation learning.

I. INTRODUCTION

Network security attacks have become an increasingly seri-
ous global problem and the endless cybersecurity accidents
are a major threat to social and economic development.
Intrusion detection technology is a security mechanism that
dynamically monitors, prevents, and defends against network
and system intrusion. It is an important component of a
network security defense system. It can detect and report
unauthorized operations or anomalies in the system. The
traditional machine learning based methods for intrusion
detection can be broadly divided into two main steps: feature
extraction and selection and classification [1]. The classical
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feature extraction and selection algorithms such as Principal
Component Analysis (PCA) [2], Correlation-based Feature
Selection method (CFS) [3] etc. were proposed to extract
most discriminative features, while the traditional classifica-
tion models have Support Vector Machine (SVM) [4], Neu-
ral Network [5], Naive Bayes and Decision Trees [6] etc.
were applied for classification of network attacks. However,
one of the limitations faced by traditional machine learning
approaches in intrusion detection is that the classification
mainly relies on features selected based on preprocessing
algorithms rather than the entire raw data [7]. This may lead
to inaccurate intrusion detection due to information loss and
incomplete feature extraction during the feature selection
step. Deep learning is a representative of machine learning
algorithms in recent years and has achieved great success in
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the field of image recognition and speech recognition [8], [9].
One of the reasons for the breakthrough is that deep learn-
ing can automatically learn the nonlinear correlation and
extract features from the raw data to achieve the end-to-end
learning [10]. Such advantages attract an increasing number
of scholars in the security field to pursue deep learning-based
solutions. For instance, Mostafa et al. [11] combined Deep
Belief Network (DBN) with intrusion detection technology
to achieve higher detection accuracy than the ones based on
SVM. Besides, Long short-term memory (LSTM), Recur-
rent Neural Network (RNN) and Convolutional Neural Net-
work (CNN) are also applied in intrusion detection [12], [13].

Despite the existing works are encouraging, there are still
challenges in exploring deep learning approaches for network
intrusion detection. First, the deep learning relies on a large
number of samples for model training. It is still a challenging
task for training a model on a small-scale dataset. Moreover,
the unbalanced data is a generic problem for deep learning.
The unbalanced data will affect the performance of the model,
leading to the high false alarm rate and high false miss rate of
some certain classes with fewer samples. Quamar et al. [14]
evaluated deep learning models such as self-taught learn-
ing(STL) on NSL-KDD, among which U2R attack (user to
root) have fewer samples and the classification performance
is low.

To address the challenges mentioned above, in this work,
we have proposed a new intrusion detection method by com-
bining CNN with deep gcForest. The contributions of this
work include:

1) a novel encoding method based on P-Zigzag has been
proposed which can encode the raw network data into
gray-scaled images for representation learning without infor-
mation loss.

2) a multiple layer approach where the coarse layer of
an improved CNN network based on GoogleNet (called
GoogLeNetNP) can identify N abnormal classes and a nor-
mal class. While in the fine layer, an improved gcForest
(caXGBoost) provides N-1 gcForest models for more sub-
classes. This ensures fine-grained detection of various
attacks.

The rest of this paper is organized as follows. Section II
describes the related work. Section III presents the design and
implementation of the proposed method. Section IV mainly
covers the evaluation methodology and experimental results,
and Section V concludes the work and highlight future works.

Il. RELATED WORK

A. MACHINE LEARNING BASED INTRUSION DETECTION
METHODS

Numerous researches based on machine learning have
been proposed for intrusion detection. Lee et al. [15] pro-
posed a data mining framework to learn rules that accu-
rately identified the behavior of intrusions and normal
activities. Kruegel et al. [16] proposed an event classifica-
tion scheme based on Bayesian networks, which improved
the aggregation of different model outputs, allowing
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one to seamlessly incorporate additional information.
Mukkamal et al. [17] applied neural networks and support
vector machines in intrusion detection to discover useful
patterns. However, these traditional methods are hard to solve
the high false alarm rate and missed alarm rate. Especially,
with the increasing data size and new attacks, accurate and
timely detection becomes more challenging.

As a branch of machine learning, deep learning-based
approaches have been also applied for intrusion detection
due to its successful applications in various domains such
as object detection [18], natural language processing [19].
Shone et al. [20] proposed an asymmetric depth autoencoder
with two layers of NDAE stacked in the detector, using
a random forest to perform classification tasks at the end
of the network with an average accuracy of 97.85% on
KDD99, but fail to perform classification on small sam-
ples. Fiore et al. [21] proposed a semi-supervised learning
method based on discrete-confined Boltzmann machines and
achieved better performance than the one based on DBN.
However, this method had a difficulty in dealing with the
unbalanced data and small samples. Potluri et al. [22] used
DBN for feature extraction, and softmax and SVM for clas-
sification at the end of the network. The detection accu-
racy of categories of attacks on the NSL-KDD dataset was
80-90%, while that of small categories was about 20%.
Yadav et al. [23] proposed a heap auto-encoder to detect
DDoS attacks. The experimental analysis using AL-DDoS
dataset with 8 feature dimensions showed that the algo-
rithm could identify the attacks with an average detec-
tion rate of 98.99%. However, this method is limited in
DDoS detection with only three types of attacks (i.e. request
flooding, session flooding, and asymmetric attack). In 2017,
Yin et al. [24] proposed the RNN cyclic neural network for
intrusion detection based on NSL-KDD. The accuracy, false
negative rate and false positive rate are superior to traditional
machine learning methods. Yuan et al. [25] used LSTM to
perform time series classifier experiments on the ISCX2012
dataset by adding a sliding window on the dataset to get the
three-dimensional data for classifier training. Compared with
GRU, CNNLSTM and other algorithms, LSTM is relatively
better in terms of accuracy and recall rate. Li et al. [26]
proposed to convert the 41-dimensional features of the NSL-
KDD dataset into 8 x 8 images by encoding, which was
trained by GoogLeNet [27] and ResNet50 [28]. The aver-
age detection rate of two test sets of NSL-KDD achieves
80%. Wang et al. [29] encoded the original network traffic
of DARPA 1998 [30] and ISCX2012 [31] directly by one-hot
coding, and then used CNN and CNN-LSTM algorithms
to perform classification respectively. Both studies demon-
strated the effectiveness of the CNN in intrusion detection,
but there is a room for improvement in fine-grained classifi-
cation and unbalanced data.

B. DEEP RANDOM FOREST
gcForest (Multi-grained Cascade Forest) was put forward
by Zhou et al. [32]. This method generates a deep forest
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ensemble with a cascade structure, which enables gcForest
to do representation learning.

Two main components of gcForest include the cascade
structure and the multi-grained scanning. The former one is
inspired by the representation learning in deep neural net-
works, which mostly relies on the layer-by-layer processing
of raw features. Each level is an ensemble of decision tree
forests. The latter one uses sliding windows to scan raw
data, which can further enhance representational learning
ability by multi-grained scanning when the inputs are high
dimensional (like convolution in CNN), potentially enabling
gcForest to be contextual or structural aware. gcForest can
include different types of forests to encourage the diversity,
which is crucial for ensemble construction [33]. The origi-
nal gcForest uses two completely random tree forests and
two random forests [34]. Each completely-random tree forest
contains 500 completely-random trees [35].

There are two main advantages of gcForest including
1) Comparing to deep neural networks, gcForest has far fewer
hyper-parameters and its performance is quite robust [32].
2) Forest classifiers perform better on imbalanced datasets
and small samples. The main reasons are as follow: the
number of cascade levels can be adaptively determined such
that the model complexity can be automatically set, enabling
gcForest to perform well on small-scale data. Besides, gcFor-
est consists of units like random forests and other tree-related
classifiers, whose advantages are to use ensemble learning
to solve the imbalanced data. For instance, random forests,
a typical kind of ensemble learning, are not sensitive to
multicollinearity, leading to the robustness on missing and
imbalanced data and can predict well with up to several
thousand explanatory variables [36].

Inspired by gcForest, more deep forest structures are pro-
posed. Miller et al. [37] proposed FTDRF (Forward Think-
ing Deep Random Forest), which resembles gcForest. The
only different part is the parameters sent between layers.
Zhou et al. also proposed two other structures to handle
different problems, eForest (EncoderForest) [38] for back
propagation decoding and mGBDTs (multi-layered GBDT
forests) [39] for non-differentiable problem.

So far, gcForest has been applied to different domains for
image processing. Li et al. [40] used gcForest for clothes
classification. Ma et al. [41] combined gcForest and multi-
scale fusion for change detection based on SAR images.
Moreover, Liu et al. [42] utilized the advantage of gcForest
on dealing with small sample datasets to diagnose the faults
of rolling bearing, as the labeled image samples of rolling
bearing are few. In this work, for the first time, we extend
gcForest by adding XGBoost as the unit and apply it to
intrusion detection.

ill. THE PROPOSED DETECTION MODEL (DCF-IDS)

A. OVERVIEW OF MULTIPLE-LAYER REPRESENTATION
LEARNING

To overcome the limitations in dealing with small samples
and unbalanced data, we have proposed a multiple-layer
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FIGURE 1. The structure of the proposed multi-layer representation
learning model (DCF-IDS).

framework for accurate intrusion detection, consisting of two
layers. The first layer is used for coarse-grained detection
based on the GoogL.eNetNP, which can identify normal traffic
and the coarse-grained attack classes and reduce the false
miss rate. The second layer is used for fine-grained detection.
To address the issues with the imbalanced data and fewer
samples, the improved deep random forest model is used to
identify attack subclasses and improve detection accuracy.

The basic model framework is shown in Figure 1. The net-
work packet will be encoded into a two-dimensional image,
the features of which are extracted by CNN and gcForest
respectively. At the first layer, there will be only one CNN
model to detect N classes, including normal class. At the sec-
ond layer, there will be N-1 deep forest models for more
subclasses. This model is named DCF-IDS.

B. A P-ZIGZAG ENCODING OF NETWORK TRAFFIC DATA
FOR REPRESENATIVE LEARNING

We have proposed a new data encoding scheme named
‘P-Zigzag’ to encode network traffic data two-dimensional
gray-scale images for feeding the CNN model, which pre-
serves the original information without loss.

Essentially, P-Zigzag scheme consists of three parts: data
conversion, data padding and data encoding.

In the data conversion, the purpose is to convert data to
decimal. The final form of the packet is expressed in hex-
adecimal on the physical layer. Since each bit information is
represented by two hexadecimal numbers, we can convert the
hexadecimal data into decimal data. Then the range of the
value is 0-255, which is equivalent to the range of the image
pixel value, and the data can be transformed into an image.

In the data padding, the purpose is to fill the data into
the matrix as a pixel. The maximum data of each packet is
1518bit. In order to contain all the data part information,
the matrix size can be defined as 64 x 64 for data storage.
Since each packet size is different, the rest of the matrix
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FIGURE 2. The structure of multi-layer representation learning models.

>

FIGURE 3. The result of P-Zigzag and IDCT.

units will be padded with zero. Figure 2 shows an example of
filling data with the form of zigzag, the direction of the arrow
in Figure 2 represents the direction in which the data is filled.
The purpose of such operation is that the data information can
be concentrated in the low frequency part of the frequency
domain, while the high frequency is 0, which resembles the
result of image after discrete cosine transform (DCT) [43],
that is, the gray-scale image is converted into DCT frequency
domain map.

In the data encoding step, to feed the input to the repre-
sentation learning model, we employ inverse discrete cosine
transform (IDCT) to transform frequency domain map to the
gray-scale image, as shown in Figure 3.

Each image has its own specific pattern texture that can be
extracted features by CNN and deep forest models.

In summary, the caught packet data will be filtered to
remove the header, and then the content of the data is trans-
formed by P-Zigzag algorithm to two-dimensional image
data.

C. COARSE-GRAINED DETECTION

As mentioned in Section II, with the support of large-scale
training data, the CNN models can effectively detect anoma-
lies and reduce the false miss rate. In this work, we have
introduced a model called GoogLeNetNP (GoogLeNet for
Network Packet), which was built on the GooglLeNet as the
first layer classifier to implement coarse-grained detection
and improve the model. GoogLeNetNP is a fine-tuning model
structure for the specified attack detection based on Inception
V2 by removing the BN (Batch Normalization) layer [44] and
retaining Inception module.

The Inception structure uses the Network In Network
(NIN) [45] idea to convolve simultaneously on multiple
scales to extract features of different scales of the image.
More feature maps mean more accuracy in the classification.
The Inception structure has four branches. The first branch
performs a 1 x 1 convolution on the input. The second branch
uses a 1 x 1 convolution and then a 3 x 3 convolution. The third
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FIGURE 4. The structure of coarse-grained detection models.

branch uses a 1 x 1 convolution and then a 5 x 5 convolution.
The fourth branch uses a 3 x 3 max-pooling and then uses a
1 x 1 convolution. Each branch introduces a 1 x 1 convolution
kernel, and while lifting the convolution kernel receptive
field, it also performs dimensionality reduction to speed up
network calculation and reduce computational complexity,
so that a layer of feature transformation can be added with
a small amount of computation. The feature cascading layer
connects the convolution results of 1 x 1/3 x 3/5 x 5, which
prevents the demand for computing resources caused by the
increase in the number of layers, and the width and depth
of the network can be expanded. As shown in Figure 4,
in GoogLeNetNP, two 3 x 3 convolution kernels are used
to replace a 5 x 5 convolution to reduce the number of
parameters and mitigate overfitting.

The BN layer plays an important role in many CNN-based
classification tasks. BN handles the colorful image by nor-
malizing the color distribution. In order to prevent the orig-
inal contrast information from destruction, BN adds scale
and shift parameters to offset the normalization effect and
preserve the data nonlinear, but this increases the complexity
and time of training. However, the normalization does not
have much effect on the gray-scale image. Adding BN layer
doesn’t improve the performance of the gray-scale image
classification, for instance, the slow training speed and poor
detection accuracy. This is because the two-dimensional gray-
scale image of the network data is a single-channel for the
CNN model. Moreover, the matrix information after BN
ignores the absolute difference between image pixels (or
features), as the mean is zero and the variance is normalized.
Only relative differences are considered. However, for net-
work data images, each pixel is meaningful not redundant.
The absolute difference between pixels and pixels is still
very important. Therefore, in our case, BN layer has been
removed.

The detailed structure of the improved model is shown
in Table 1.

D. FINE-GRAINED DETECTION

To improve the accuracy, we have proposed to add a new
layer (called a fine-grained layer) on top of the coarse-grained
detection layer to further classify the undetected and/or

91995



IEEE Access

X. Zhang et al.:

Multiple-Layer Representation Learning Model for Network-Based Attack Detection

TABLE 1. The structure of the improved model based on GoogLeNet.

Type Patch size / Stride
Convolution Tx7/2
Max pool 3x3/2
Convolution 3x3/1
Max pool 3x3/2
Inception(3a)
Inception(3b)
Max pool
Inception(4a)
Inception(4b)
Inception(4c)
Inception(4d)
Inception(4e)
Max pool
Inception(5a)
Avg pool
Dropout(40%)
linear
softmax

3x3/2

3x3/2

2x2/1

misclassified attacks from subclasses. However, with fine-
grained classification, some subclasses may contain small
samples and data may be imbalanced. While in practice,
deep learning generally requires large-scale data for train-
ing models in order to achieve good detection results, the
existing CNN-based models are not ideal for the fine-grained
classification of attack subclasses. Inspired by the idea of
gcForest where a deep forest ensemble with a cascade struc-
ture enables gcForest to train models on small sample and
handle imbalanced dataset, we have proposed caXGBoost to
solve the imbalanced datasets and sample size of the sub-
classes. caXGBoost is based on gcForest but only utilizes
its cascade structure. The classification unit of caXGBoost
adopts XGBoost [46] instead of random forests in the original
gcForest. This is because XGBoost supports parallel pro-
gramming without great loss of accuracy. In fact, XGBoost,
namely eXtreme Gradient Boosting, is an integrated learning
method that combines classification regression trees (CART
trees). The XGBoost training process is an additional train-
ing. By optimizing the objective function in steps, the first
tree is first optimized, and the second tree is optimized based
on the optimization result of the first tree until the K tree is
optimized. The objective function of XGBoost is as shown
in (1).

n T
. Alt— 1
0bj©#) = 3 101 5V +fi) +yT + 20 Y Wi+ C
i j=1

ey

where C is a constant, the first term is based on the loss func-
tion of the former t — 1 tree, y; is the label of x;, f; represents
™ tree, )A)E[_l) represents the prediction of the combination
of ¢ tree models, I(y;, y;) is the training loss of x;. The latter
two are regular terms, where T represents the number of leaf
nodes of the ™ tree. The larger y and A are, the greater the
penalty value of 7', which means the simpler model will be.
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The second-order expansion of Taylor is performed on the
above equation to obtain the final objective function of (2).

T
1
Obj* = > > wiyT
j=1
Gj

i T TH i + A @

Obj* indicates how good or bad the structure of the tree is.
The smaller the value is, the better the structure will be. Obj*
is only related to T, regardless of the value of leaf node.

Moreover, using only one-unit classifier can simplify the
model structure and reduce parameter dimensions to improve
efficiency.

The structure of caXGBoost is shown in Figure 5. Suppose
the input data is a 64 x 64 two-dimensional matrix, then it
will be directly expanded into a 4096-dimensional vector as
input data for training in a cascade network.

The output of each layer in the cascade structure is deter-
mined by the primitive input data vector V and the results
of multiplying the number of forests N in each layer and the
category k to be detected. Thus, the input and output vector
dimensions between layers are as shown in (3).

out(I—1)

Vectorin(l) =m+kxN 3)

where m is the input data vector, [ — 1 is the output layer of
the previous layer, and / is the input layer of the current layer.

Supposing the cascade network consists of M layers for-
est structure, the unit classifier of each layer of forest is
XGBoost. Then the input and output vector dimensions
between layers will be 4096 4 k x N. The output of the last
layer is the vector result of k x N. The prediction result is the
maximum value of the average of the vector.

Compared with the gcForest, we removed the multi-grained
scanning part for the simplicity and efficiency of the network
without losing accuracy. The multi-grained scanning process
is divided into two cases. When the input is a sequence vector,
the length of the sampling window is set to K, the step size is
stride and the padding is 0, then the number of subsamples is
shown in (4).

m—K

S = 1 4
stride + @)
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FIGURE 6. The structure of caXGBoost.

where m is the input sequence data vector. We will get several
K -dimensional sampling vectors, the number is S. When the
input a two-dimensional matrix data, a rectangular sampling
window of size K x K is set for sliding sampling, the step
size is stride and there is still no filling operation. Suppose
the input matrix is m x m. Then the number of subsamples is
shown in (5).

A= m_K+1
T stride
S =A? (5)

where A is the result of one-side scanning. We will get.S K xK
sampling vectors. Suppose there are k classes to be detected,
then the output of the multi-grained scanning will be S x k,
which will be sent to the cascaded part.

As shown in Figure 6, we let gcForest take XGBoost as the
unit classifier for the comparison. Suppose the input data is a
64 x 64 two-dimensional matrix, the sliding window of 7 x 7
and 10 x 10 is used to acquire multiple feature information of
the two-dimensional image through multi-granularity scan-
ning, and the step is 1. The input image size is 64 x 64 and
the number of classes to be detected is k. Vector of k x 58 x 58
and k x 45 x 45 can be obtained respectively with XGBoost.
Combining the feature vectors of the multi-grained scanning
yields an k x 5389-dimensional vector as an input to the cas-
caded network. Then the input and output vector dimensions
between layers will be k x 5389 + k x N, which will cost
much more computation on the network. Besides, since the
input data is fixed on 64 x 64 gray-scale image, the multi-
grained scanning will generate redundant data affecting
detection.

Thus, caXGBoost takes the advantage of gcForest on
handling small samples and imbalanced data for the
self-adaptivity and insensitive to multicollinearity, and has
less hyperparameters than existing deep learning methods.
Moreover, compared with gcForest, caXGBoost reduces
the dimension of training data, which can improve the
speed of training and have less effect on the accuracy of
detection.

E. FLOW OF THE DCF-IDS FRAMEWORK
In DCF-IDS, we apply GoogLeNetNP as the first layer
coarse-grained detection and apply caXGBoost as the second

layer fine-grained detection. In summary, the pseudo-code of
the DCF-IDS models is as follows:
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DCF-IDS Algorithm

load GoogLeNetNP model

load caXGBoost model

get network traffic by tcpdump

transfer network data matrix by P-Zigzag

get batch matrix

use GoogLeNetNP to classify batch matrix and get
results array

7. for index in results array:

AN e

8. predict = the classification result of each
network packet

9. if predict == a certain attack class:

10. sub_class_predict = corresponding_
caXGBoost_model.predict(batch_img[index]

11. write log
12.  else:
13. Normal network traffic

IV. EVALUATION AND DISCUSSION

A. EXPERIMENTAL METHODOLOGY

1) EXPERIMENTAL GOALS

The experimental goals are to evaluate the proposed frame-
work DCF-IDS in the following aspects:

e Section B: evaluation of the multiple-layer models.

e Section C: evaluation of data encoding on feature
extraction and dimension reconstruction.

e Section D: evaluation of the coarse-grained detection.

e Section E: evaluation of handling small samples and
imbalance data.

Additionally, the proposed methods, including P-Zigzag,
GoogLeNetNP and caXGBoost, will be tested respectively
to verify their effectiveness and performance.

2) EVALUATION METRICS

Three metrics are used to evaluate the performance of the
multi-cascaded representation learning models: accuracy,
detection rate (DR) and FAR, which are commonly used in
the field of intrusion detection. Accuracy is used to evaluate
the overall of the system. DR is used to evaluate the system’s
performance with respect to its attack detection. FAR is used
to evaluate misclassifications of normal traffic. Their defini-
tions are presented below.

TP + TN
ACC = (6)
TP+ FP+ FN + TN
P
DR= — @)
TP + FN
FP
FAR = —— 8)
FP+ TN

where TP is the number of instances correctly classified
as X, TN is the number of instances correctly classified as
Not-X, FP is the number of instances incorrectly classified
as X, and FN is the number of instances incorrectly classified
as Not-X.
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TABLE 2. The general statistics of NBC.

TABLE 3. The comparison between DCF-IDS and GoogLeNetNP on DoS.

Main Classes S;?ﬁi?s:fs Training Test
Normal / 246689 137248
DoS 21 35302 10887
Exploits 40 73414 28919
Fuzzers 10 24330 6986
Generic 5 9414 1866
Reconnaissance 7 2855 602
Shellcode 11 428 114
Virus 2 202 58
Webattack 4 8139 1338

Destribution of DR

: B
0

90%-100% 80%6-90%

60%-80% 0-60%

B GoogLeNetNP mDCF-IDS

FIGURE 7. The distribution of DR between DCF-IDS and GoogLeNetNP.

The accuracy of CNN
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98.10% 090.01% 99.08% 99.32%
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80.00% 73.88%
60.00%
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20.00%
0.00%

AlexNet VGG19 GoogLeNet InceptionV3 ResNetl8 GoogLeNetNP

FIGURE 8. The accuracy of different CNN structures.

3) DATASETS

The dataset used in this paper consists of two open source
datasets, including UNSW-NB15 (Australian Cyber Secu-
rity Center dataset) [47], [48] and CIC-IDS2017 (Canadian
Cyber Security Institute dataset) [49].

The UNSW-NBI15 dataset includes contemporary attacks
on real network activity and synthesis. There are nine types of
attacks for simulated attacks, including Analysis, Backdoors,
DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode,
and Worms. According to the statistics provided by UNSW-
NB15, the nine attack categories can be subdivided into
6,845 attack sub-categories, of which 3,068 are included in
the CVE vulnerability database.
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DCF-IDS GoogLeNetNP
Classes / Subclasses

DR(%) FAR(%) DR(%) FAR(%)

Asterisk 98.69%  0.000%  97.37%  0.001%
Browser 8451%  0.004% 0.00% 0.027%
DCERPC 100.00%  0.000% 0.00% 0.003%
DNS 80.00%  0.001%  40.00%  0.002%
FTP 92.86%  0.001%  3571%  0.005%
HTTP 99.58%  0.001%  9821%  0.003%
IIS Web Server ~ 99.35%  0.001%  98.96%  0.001%
IMAP 100.00%  0.000%  0.00% 0.001%
LDAP 92.86%  0.000%  42.86%  0.002%
I(‘;Ilif?lrc‘;s"ﬁ 94.97%  0.006%  70.15%  0.033%
DoS  Miscellaneous 99.68%  0.018%  98.76%  0.070%
NetBIOSSMB  86.11%  0.002%  25.00%  0.012%
RTSP 100.00%  0.000%  0.00% 0.001%
SIP 100.00%  0.000%  25.00%  0.002%
SMTP 93.33%  0.000%  14.29%  0.004%
SNMP 80.00%  0.000% 0.00% 0.002%
SSL 98.71%  0.000%  100.00%  0.000%
TFTP 75.00%  0.000%  0.00% 0.001%
Telnet 100.00%  0.000%  100.00%  0.000%
VNC 8333%  0.001%  50.00%  0.002%
;‘Q;ﬁ;ﬁ 61.90%  0.002%  0.00% 0.005%

TABLE 4. The average DR and FAR between DCF-IDS and GoogLeNetNP.

DCF-IDS GoogLeNetNP
Classes
DR(%) FAR(%) DR(%) FAR(%)

Normal 99.88% 0.33% 99.93% 0.20%
DoS 91.47% 0.00% 42.68% 0.01%
Exploits 95.07% 0.02% 54.19% 0.02%
Fuzzers 99.26% 0.00% 98.55% 0.00%
Generic 96.05% 0.00% 84.08% 0.01%
Reconnaissance  98.83% 0.00% 69.21% 0.01%
Shellcode 89.46% 0.00% 33.75% 0.00%
Virus 82.05% 0.00% 67.02% 0.00%
Webattack 92.03% 0.00% 53.97% 0.01%

The lack of web-based attacks in UNSW-NB15 will be
complimented by CIC-IDS2017 dataset, which includes both
normal data and the latest web attack data. CIC-IDS2017
uses the B-Profile system proposed by Sharafaldin et al. [50]
to describe the abstract behavior of human interaction
and generate normal background traffic. Attacks imple-
mented by datasets include brute force FTP, brute force
SSH, DoS, Heartbleed, Web attack, infiltration, botnet and
DDoS.
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TABLE 5. The time cost among preprocessing methods.

Converting Training Test Accuracy
Time(s) Time(h) Time(min)
P-Zigzag 86.76 3h 16.01 99.28%
OHE 730.00 17.35h 20.34 74.13%
TABLE 6. Testing results of preprocessing.
P-Zigzag OHE
DR FAR DR FAR
Normal 99.88%  0.32% 76.87%  48.78%
DoS 98.28%  0.11% 83.11%  1.40%
Exploits 99.08%  0.17% 60.95%  8.52%
Fuzzers 97.52%  0.10% 67.15% 1.68%
Generic 95.03%  0.05% 52.52%  0.34%
Reconnaissance  97.06%  0.01% 5.65% 0.40%
Shellcode 87.85%  0.01% 14.04%  0.02%
Virus 72.00%  0.01% 0.00% 0.02%
Webattack 99.46%  0.00% 69.96% 0.14%

Although UNSW-NB15 and CIC-IDS2017 provide raw
traffic data, the normal traffic and attack traffic in the PCAP
file are mixed together. Therefore, the traffic data needs to
be labeled. According to the attack records provided by the
UNSW-NB15 and CIC-IDS2017 datasets, the calibration can
be designed according to the characteristics of the original
traffic and implemented by script code.

In order to meet the demand of the network detection on the
raw traffic, this paper combine both datasets to form the new
dataset called NBC, which has eight attack classes and the
normal type. Each class also has subclasses, the total number
of which is 100, as shown in Table 2. The total numbers of
training set and testing set are 400773 and 188018 respec-
tively. The detailed information and the numbers of training
and test of each sub-classes are shown in AFFIX Table 13.

4) EXPERIMENTAL SETUP

In this research, we have used the most current deep learning
frameworks, Caffe [51] and Tensorflow [52], which are run
on the Ubuntu 18.04 64-bit OS. The experiment is performed
on a server DELL T630 with 32GB of memory and Intel Xeon
ES5-2620 v4. A Nvidia GTX 1080 Ti with 11GB is used as the
accelerator. Python2.7 is the main programming language for
the experiment.

B. MULTIPLE-LAYER MODELS EVALUATION

The purpose of the experiment is to validate the performance
of the proposed framework (DCF-IDS). In this experiment,
we first compared the classification performance between the
proposed DCF-IDS model with the GooLeNetNP only. NBC
was used as a training and test dataset to classify 101 classes.
Figure 7 shows the distribution of DR between DCF-IDS
and GoogLeNetNP. Table 3 shows the comparison between
DCF-IDS and GoogLeNetNP in DoS. Table 4 shows the
average accuracy of both methods. The overall accuracy of
both methods is listed in Affix Table 14.
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FIGURE 9. (a) DR and FAR of DoS subclass detection. (b) DR and FAR of
Exploits subclass detection. (c) DR and FAR of Generic subclass detection.
(d) DR and FAR of Reconnaissance subclass detection. (e) DR and FAR of
Virus and Webattack subclass detection.

91999



IEEE Access

X. Zhang et al.: Multiple-Layer Representation Learning Model for Network-Based Attack Detection

TABLE 7. DR of different CNN structures.

AlexNet VGGI19 GoogLeNet Inception V3 ResNet18 GoogLeNetNP
Normal 99.90% 99.26%  99.86% 99.90% 99.86% 99.92%
DoS 93.52% 10.87%  96.99% 57.34% 97.33% 98.01%
Exploits 98.17% 57.06%  98.48% 79.38% 98.76% 98.88%
Fuzzers 98.64% 19.42%  98.27% 97.04% 97.75% 99.13%
Generic 86.61% 11.26%  92.88% 82.75% 93.20% 94.73%
Reconnaissance  90.97% 0.00% 96.05% 64.74% 96.33% 95.20%
Shellcode 21.50% 3.74% 85.05% 57.94% 88.79% 86.92%
Virus 0.00% 0.00% 52.00% 6.00% 68.00% 66.00%
Webattack 98.33% 0.00% 99.12% 87.17% 99.21% 99.51%
TABLE 8. FAR of different CNN structures.
AlexNet VGGI19 GoogLeNet  Inception V3 ResNet18 GoogLeNetNP
Normal 0.27% 5.01% 0.39% 0.35% 0.38% 0.22%
DoS 0.40% 5.92% 0.19% 2.66% 0.16% 0.12%
Exploits 0.33% 8.20% 0.28% 3.74% 0.23% 0.20%
Fuzzers 0.05% 3.52% 0.07% 0.12% 0.09% 0.03%
Generic 0.13% 1.06% 0.07% 0.18% 0.07% 0.05%
Reconnaissance  0.03% 0.39% 0.01% 0.12% 0.01% 0.02%
Shellcode 0.05% 0.07% 0.01% 0.03% 0.01% 0.01%
Virus 0.03% 0.04% 0.01% 0.03% 0.01% 0.01%
Webattack 0.01% 0.85% 0.01% 0.10% 0.01% 0.00%

TABLE 9. The comparison among three algorithms on Shellcode.

TABLE 10. The comparison among three algorithms on Fuzzers.

caXGBoost gcForest GoogLeNetNP caXGBoost gcForest GoogLeNetNP
Training Time (s) 4.42 11.95 360.00 Training Time (s) 40.83 120.25 3242.00
Detecting Time (s) 0.25 4.11 5.27 Detecting Time (s) 3.08 26.73 42.88
Accuracy 95.79% 95.79% 43.4% Accuracy 99.93% 95.03% 95.00%

From Table 4, we can see that the both average DR and
FAR of DCF-IDS performs better than GoogLeNetNP. Tra-
ditional intrusion detection usually takes only one algorithms
because of the few classes needed to be detected. When the
number of classes increase, the model does not perform well.
For GoogLeNetNP, the overall accuracy is 98.35%. Accord-
ing to Figure 7, there are 68 subclasses doesn’t reach the
90% detection rate and among them, there are 21 subclasses
with 0% detection rates. Thus, the combination of different
representation learning algorithms will improve the feature
extracting, the accuracy, the detection rate and the speed. For
DCEF-IDS, the overall accuracy is 99.24%. Only 22 subclasses
do not achieve the 90% detection rate and the lowest detection
rate is 61.90%, which has much better performance than the
one of GoogLeNetNP.

C. DATA ENCODING EVALUATION
The purpose of the experiment is to evaluate the feature
extraction performance of P-Zigzag on raw data traffic in
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deep neural networks and the cost time on converting, training
and testing. Two comparative experiments have been con-
ducted for evaluation of the effectiveness of the proposed
method, in comparison with the existing encoding method -
OHE (One-hot encoding (OHE plays the same role in prepro-
cessing as P-Zigzag. It converts the raw package into a sparse
matrix).

The first experiment computes the time cost of converting
the raw traffic date (10360 DoS packets) into the matrix. The
preprocessed datasets through two methods (P-Zigzag and
OHE) were trained by the same classifier (GoogLeNetNP)
respectively. The parameters take the default ones, that is,
epoch is 50, learning rate is 0.001, optimizer takes SGD
and batch size is 128. The training time and the testing
time of the model were also recorded. The results of the
experiment are shown in Table 4. The overall accuracy is
listed in Table 5 and the detailed results are shown as below
in Table 6.
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TABLE 11. DR and FAR results of the comparison on Shellcode.

caXGBoost gcForest GoogLeNet

DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%)
BSD 95.45% 0.89% 95.45% 0.88% 86.36% 7.69%
BSDi 100.00% 0.00% 93.75% 0.49% 0.00% 15.09%
Decoders 100.00% 0.00% 94.44% 0.56% 66.67% 8.00%
FreeBSD 100.00% 0.00% 87.50% 0.72% 0.00% 11.76%
Linux 100.00% 0.00% 100.00% 0.00% 10.53% 24.84%
Mac OS X 92.00% 1.16% 96.00% 0.58% 50.00% 15.56%
Multiple OS 90.00% 0.79% 90.00% 0.78% 0.00% 15.09%
NetBSD 87.50% 0.72% 87.50% 0.72% 0.00% 11.76%
OpenBSD 75.00% 0.94% 100.00% 0.00% 0.00% 8.16%
Solaries 83.33% 1.30% 91.67% 0.65% 0.00% 15.09%
Windows 100.00% 0.00% 100.00% 0.00% 86.67% 6.41%

TABLE 12. DR and FAR results of the comparison on Shellcode.
caXGBoost gcForest GoogLeNet

DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%)
BGP 100.00% 0.00% 96.62% 1.40% 95.95% 1.66%
DCERPC 100.00% 0.00% 93.75% 0.10% 0.00% 1.51%
FTP 100.00% 0.00% 54.40% 1.74% 95.24% 0.19%
HTTP 100.00% 0.00% 96.82% 0.99% 100.00% 0.00%
OSPF 100.00% 0.00% 91.92% 0.22% 35.71% 1.62%
PPTP 100.00% 0.00% 96.34% 0.04% 96.97% 0.03%
RIP 98.70% 0.03% 97.40% 0.05% 100.00% 0.00%
SMB 100.00% 0.00% 96.87% 1.92% 98.29% 1.06%
Syslog 99.31% 0.01% 92.36% 0.12% 100.00% 0.00%
TFTP 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

According to the results, P-Zigzag performs much better
than OHE in terms of the speed and precision, that is 3 times
faster on converting, over 5 times faster on training, about
1.2 times faster on testing and the accuracy increased by more
than 25%.

The overall accuracy of P-Zigzag is above 99%; in addition
to the two categories of Shellcode and Virus, the accu-
racy of other categories is above 90%. The main rea-
son for the lower accuracy of Shellcode and Virus is that
data imbalance affects the detection of smaller categories
of samples. The matrix size of OHE image is 256 x
1500, resulting in too much redundant information in the
convolution process, so that will cost much process time
and the memory of the machine and affect the feature
extraction and learning. According to the characteristics of
intrusion detection data, P-Zigzag algorithm concentrates
data report information in a fixed matrix, which reduces
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information redundancy and improves the efficiency of fea-
ture extraction.

D. EVALUATION ON FIRST LAYER DETECTION MODEL
The purpose of this experiment is to compare the performance
comparison between GoogLeNetNP and other commonly
used network structures in convolutional neural networks to
determine the model structure of the first-level attack large
classifier in the cascade framework, including AlexNet [53],
VGG19 [54], GoogLeNet, Inception V3 [55] and ResNet18,
to determine the performance of the first layer classifier.
Figure 8 shows the overall accuracy of different networks and
Table 7 and Table 8 will show DR and FAR respectively. The
parameters take the default ones, that is, epoch is 50, learning
rate is 0.001, optimizer takes SGD and batch size is 128.

By contrast, GoogLeNetNP has a better accuracy than the
ones of other classifiers. The performance of GooglLeNet,
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TABLE 13. The detailed statistics of NBC.

Main Classes Sub-classes Resources Training Test
Asterisk UNSW-NBI5 306 40
Browser UNSW-NB15 284 50

DCERPC UNSW-NBI5 14 5
DNS UNSW_NBI15 20 6
FTP UNSW_NBI15 56 15
HTTP UNSW_NBI15 3362 332
IIS Web Server UNSW_NBI15 1540 150
IMAP UNSW_NBI15 8 2
LDAP UNSW_NBI15 28 6
Microsoft Office UNSW_NBI5 1074 206
DoS Miscellaneous UNSW_NBI5 28010 9974
NetBIOS SMB UNSW_NBI15 144 30
RTSP UNSW_NBI15 8 2
SIP UNSW_NBI15 16 5
SMTP UNSW_NBI15 30 8
SNMP UNSW_NBI15 10 4
SSL UNSW_NBI5 310 32
Telnet UNSW_NBI5 8 2
TFTP UNSW_NB15 8 2
VNC UNSW_NBI5 24 6
Windows Explorer UNSW_NBI5 42 10
Apache UNSW_NBI15 310 126
Backup Appliance UNSW_NBIS5 168 16
Browser UNSW_NBI15 3071 320
Cisco I0S UNSW_NBI15 162 26
Clientside UNSW_NBI15 21930 12690
Dameware UNSW_NBI15 10 4
DCERPC UNSW_NBI5 270 20
DNS UNSW_NBI15 64 16
Evasions UNSW_NBI15 1148 128
FTP UNSW_NBI5 198 26
IDS UNSW_NB15 24 8
IMAP UNSW_NBI5 32 8
Interbase UNSW_NBI15 140 16
LDAP UNSW_NBI15 5450 452
LDP UNSW_NBI5 52 12
Microsoft 1IS UNSW_NBI5 1064 114
Miscellaneous UNSW_NBI15 9501 3064
MSSQL UNSW_NBI5 12 4
NNTP UNSW_NBI5 18 8
Office Document UNSW_NBI15 25529 11267
Oracle UNSW_NBI5 180 20
PHP UNSW_NBI5 60 10
POP3 UNSW_NBI5 18 8
Exploits RADIUS UNSW_NBI5 10 4
RDesktop UNSW_NBI5 10 4
RTSP UNSW_NBI5 36 8
SCADA UNSW_NBI5 276 20
SCCP UNSW_NBI5 14 4
SIP UNSW_NBI5 36 10
SMB UNSW_NBIS5 1454 106
SMTP UNSW_NBI5 136 16
SSH UNSW_NBI15 30 8
SSL UNSW_NBIS 18 8
SunRPC UNSW_NBI15 27 8
Telnet UNSW_NBI5 116 20
TFTP UNSW_NBI5 24 6
VNC UNSW_NBI15 20 6
Web Appliance UNSW_NBI5 1200 252
Webserver UNSW_NBI15 562 66
WINS UNSW_NBI5 34 10
BGP UNSW_NBI15 6739 1975
DCERPC UNSW_NBI15 194 102
FTP UNSW_NBI15 1504 252
HTTP UNSW_NBI5 5668 1596
OSPF UNSW_NBI15 794 168
PPTP UNSW_NBI15 330 66
Fuzzers RIP UNSW_NBI15 925 134
SMB UNSW_NBI5 7534 2575
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TABLE 13. (Continued.) The detailed statistics of NBC.

Syslog UNSW_NBI15 578 106
TFTP UNSW NBI15 64 12
All UNSW_NBI15 2194 474
IXIA UNSW_NBIS5 6410 1298
. SIP UNSW_NBI5 122 20
Generic SMTP UNSW_NBI5 648 64
TFTP UNSW NBIS5 40 10
DNS UNSW_NBI15 12 4
HTTP UNSW_NBI5 563 82
SNMP UNSW_NBIS5 24 8
SunRPC TCP(TCP) UNSW _NBI5 508 186
Reconnaissance SunRPC TCP(UDP) UNSW_NBI5 496 192
SunRPC UDP(TCP) UNSW_NBIS5 622 68
SunRPC UDP(UDP) UNSW NBI15 630 62
BSD UNSW_NBI15 88 18
BSDi UNSW_NBIS5 32 8
Decoders UNSW_NBI5 36 10
FreeBSD UNSW_NBI5 16 6
Linux UNSW_NBIS5 78 16
Mac OS X UNSW_NBI15 50 14
Shellcode Multiple OS UNSW_NBI5 20 8
NetBSD UNSW_NBIS5 16 6
OpenBSD UNSW_NBI15 8 4
Solaries UNSW_NBI5 24 8
Windows UNSW_NBI5 60 16
Virus Backdoors UNSW_NBI15 158 40
Worms UNSW_NBI15 44 18
Webattack Analysis UNSW_NBI5 106 16
BruteForce CIC-IDS2017 6504 1118
Sql Injection CIC-IDS2017 9 4
XSS CIC-IDS2017 1520 200
Normal / UNSW-NBI15 246689 137248

CIC-IDS2017

ResNet18 and GoogLeNetNP are almost identical in detec-
tion accuracy, but in terms of the false alarm rate,
GoogLeNetNP performs the best. The time cost of training
among GoogLeNet, ResNet18 and Googl.eNetNP is 3h, 4h
and 3h respectively. Considering the network model struc-
ture, GoogLeNetNP replaces large convolution with small
convolution kernels, which can speed up the training and
testing process. Thus, the first layer network model uses
GooglLeNetNP as the classifier for the attack class.

E. EVALUATION ON SECOND LAYER DETECTION MODEL
The purpose of the experiment is to compare the detection
performance of caXGBoost, gcForest and GoogLeNetNP on
attack subclasses, including training time, detection time,
overall accuracy, accuracy and FAR. By experimental com-
parison, the model classifiers of the second layer in the overall
algorithm framework will be determined.

Table 9 and Table 10 show the comparison of the detection
performance of caXGBoost, gcForest and GoogleNetNP
based on the Shellcode and Fuzzers attack. Shellcode has
11 subclasses, of which the number of training sets is 428 and
the test set is 114. Fuzzers has 10 subclasses with 24330 train-
ing data and 6986 test data. The number of classifiers set
for XGBoost is 11 and 10 respectively. The parameters take
the default ones, that is, fold validation is 5, learning rate
is 0.1, max layer is 5 and early stop is 3. The number of
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classifiers in each layer is determined by the number of
subclasses.

It can be seen from the Table 9 that the test results of the
two models caXGBoost and gcForest of the deep random
forest network are better than the GoogLeNetNP of the deep
learning network, which demonstrates that deep learning does
not perform as well as deep random forest network on dealing
with small datasets and data imbalances, and gives priority to
deep random forest methods on such problems. Meanwhile,
caXGBoost is superior to gcForest in terms of computing time
for both training and testing or phases, and the detection time
is increased by 16 times. In Table 10, when the amount of data
increases, caXGBoost also performs better than gcForest,
while the performance of deep learning network improves
but still has poor detection in some subclasses because of
the imbalanced data. The detailed results of DR and FAR is
shown in Table 11 and Table 12.

gcForest uses multi-grained scanning to get more dimen-
sions from the matrix, which increase the complexity of the
model calculation and doesn’t help improve the detection
rate on 64 x 64 gray-scale image. The simple structure
of caXGBoost is beneficial to the training and detection
speed of the model, and the detection accuracy of the overall
model has a good performance. It can be seen that the two-
dimensional matrix image of network data conversion from
table 11 and 12 is more suitable for the caXGBoost model
network.
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TABLE 14. The comparison between DCF-IDS and GoogLeNetNP.
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DCF-IDS GoogLeNetNP
Classes / Subclasses
DR(%) FAR(%) DR(%) FAR(%)
Normal 99.88% 0.332% 99.93% 0.197%
Asterisk 98.69% 0.000% 97.37% 0.001%
Browser 84.51% 0.004% 0.00% 0.027%
DCERPC 100.00% 0.000% 0.00% 0.003%
DNS 80.00% 0.001% 40.00% 0.002%
FTP 92.86% 0.001% 35.71% 0.005%
HTTP 99.58% 0.001% 98.21% 0.003%
IIS Web Server 99.35% 0.001% 98.96% 0.001%
IMAP 100.00% 0.000% 0.00% 0.001%
LDAP 92.86% 0.000% 42.86% 0.002%
Microsoft Office 94.97% 0.006% 70.15% 0.033%
DoS Miscellaneous 99.68% 0.018% 98.76% 0.070%
NetBIOS SMB 86.11% 0.002% 25.00% 0.012%
RTSP 100.00% 0.000% 0.00% 0.001%
SIP 100.00% 0.000% 25.00% 0.002%
SMTP 93.33% 0.000% 14.29% 0.004%
SNMP 80.00% 0.000% 0.00% 0.002%
SSL 98.71% 0.000% 100.00% 0.000%
TFTP 75.00% 0.000% 0.00% 0.001%
Telnet 100.00% 0.000% 100.00% 0.000%
VNC 83.33% 0.001% 50.00% 0.002%
Windows Explorer 61.90% 0.002% 0.00% 0.005%
Apache 97.42% 0.002% 85.71% 0.010%
Backup Appliance 96.43% 0.000% 73.81% 0.002%
Browser 98.40% 0.003% 90.49% 0.016%
Cisco 10S 97.53% 0.000% 27.50% 0.010%
Clientside 94.66% 0.387% 97.37% 0.192%
DCERPC 97.04% 0.000% 92.54% 0.000%
DNS 100.00% 0.000% 75.00% 0.003%
Dameware 100.00% 0.000% 50.00% 0.004%
Evasions 97.91% 0.001% 83.97% 0.011%
Exploits
FTP 93.94% 0.001% 49.98% 0.007%
IDS 100.00% 0.000% 50.00% 0.002%
IMAP 87.50% 0.001% 50.00% 0.002%
Interbase 100.00% 0.000% 88.57% 0.001%
LDAP 99.89% 0.000% 99.41% 0.001%
LPD 96.15% 0.000% 38% 0.004%
MSSQL 100.00% 0.000% 0.00% 0.061%
Microsoft IIS 99.25% 0.013% 92.86% 0.119%
Miscellaneous 90.21% 0.000% 96.76% 0.000%
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TABLE 14. (Continued.) The comparison between DCF-IDS and GoogLeNetNP.
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NNTP 100.00% 0.000% 0.00% 0.004%
Office Document 96.62% 0216% 98.59% 0.091%
Oracle 96.67% 0.000% 40.00% 0.006%
PHP 86.67% 0.001% 26.67% 0.004%
POP3 100.00% 0.000% 0.00% 0.004%
RADIUS 100.00% 0.000% 0.00% 0.002%
RDesktop 80.00% 0.000% 0.00% 0.002%
RTSP 88.89% 0.000% 66.67% 0.001%
SCADA 95.65% 0.000% 52.17% 0.005%
sccp 71.43% 0.001% 66.67% 0.001%
SIP 94.44% 0.000% 22.22% 0.004%
SMB 98.35% 0.001% 91.18% 0.005%
SMTP 89.71% 0.001% 35.29% 0.006%
SSH 100.00% 0.000% 85.71% 0.001%
SSL 100.00% 0.000% 0.00% 0.004%
SunRPC 77.78% 0.001% 14.29% 0.004%
TFTP 100.00% 0.000% 16.67% 0.009%
Telnet 98.28% 0.000% 86.21% 0.000%
VNC 90.00% 0.000% 0.00% 0.003%
WINS 100.00% 0.000% 50.00% 0.068%
Web Application 95.00% 0.002% 89.00% 0.004%
Webserver 97.15% 0.000% 84.29% 0.001%
BGP 99.73% 0.003% 97.80% 0.024%
DCERPC 98.97% 0.001% 100.00% 0.000%
FTP 99.07% 0.001% 94.68% 0.007%
HTTP 99.86% 0.001% 99.79% 0.002%
OSPF 100.00% 0.000% 98.99% 0.001%
Fuzzers

PPTP 100.00% 0.000% 95.12% 0.002%
RIP 98.92% 0.001% 100.00% 0.000%
SMB 99.89% 0.001% 99.15% 0.012%
Syslog 99.31% 0.000% 100.00% 0.000%
TFTP 96.88% 0.000% 100.00% 0.000%
All 100.00% 0.000% 100.00% 0.000%
IXIA 98.35% 0.012% 94.82% 0.036%
Generic  SIP 98.36% 0.000% 100.00% 0.000%
SMTP 93.52% 0.002% 55.56% 0.015%
TFTP 90.00% 0.001% 70.00% 0.002%
DNS 100.00% 0.000% 0.00% 0.002%
HTTP 91.83% 0.004% 82.27% 0.008%
SNMP 100.00% 0.000% 66.67% 0.001%
Re";ncn:iss SunRPC TCP(TCP) 100.00% 0.000% 65.35% 0.035%
SunRPC TCP(UDP) 100.00% 0.000% 70.16% 0.031%
SunRPC UDP(TCP) 100.00% 0.000% 100.00% 0.000%
SunRPC UDP(UDP) 100.00% 0.000% 100.00% 0.000%
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TABLE 14. (Continued.) The comparison between DCF-IDS and GoogLeNetNP.

BSD 93.18% 0.001% 63.64% 0.004%
BSDi 100.00% 0.000% 0.00% 0.004%
Decoders 72.22% 0.001% 77.78% 0.001%
FreeBSD 100.00% 0.000% 0.00% 0.003%
Linux 94.87% 0.000% 63.16% 0.003%
Shellcode ~ Mac OS X 88.00% 0.001% 50.00% 0.004%
Multiple OS 90.00% 0.000% 0.00% 0.004%
NetBSD 87.50% 0.000% 0.00% 0.003%
OpenBSD 75.00% 0.001% 0.00% 0.002%
Solaries 83.33% 0.001% 16.67% 0.004%
Windows 100.00% 0.000% 100.00% 0.000%
) Backdoors 82.28% 0.004% 79.49% 0.004%
Virus Worms 81.82% 0.002% 54.55% 0.004%
Analysis 90.57% 0.001% 23.08% 0.007%
BruteForce 99.88% 0.001% 98.83% 0.007%
Webattack
Sql Injection 77.78% 0.000% 0.00% 0.002%
XSS 99.87% 0.000% 93.95% 0.007%

The subclass detection results of the rest classes are shown
in Figure 9. The left vertical represents DR, the right vertical
represents FAR, and the horizon represents subclass name.
The line chart is the value of FAR and the histogram is the
value of DR.

From the statistics of the experiments listed above, among
100 subclasses, there are 87 subclasses with detection rates
exceeding 90% and the rest with detection rates from 50%
to 90%. The worst detection results are Sql injection in
Webattack and SNMP in DoS, whose detection rates are all
50% while the amount of training data is almost the least.
Compared with the subclasses with the largest amount of
training data in their corresponding attack classes (28010 in
DoS and 6504 in Webattack), the extreme imbalanced data
amount is one of the reasons leading to the poor detec-
tion. Besides, when the features of other subclasses are
similar, the lack of training data will amplify the poor
detection.

V. CONCLUSION

Due to the difficulty in feature extraction in the field of intru-
sion detection and the detection of fewer categories in past
studies, we have proposed the DCF-IDS, which combines
deep learning network with gcForest (deep random forest) to
form a multiple-layer representation learning model. To the
best of our knowledge, this is the first multiple-layer rep-
resentation learning model for accurate end-to-end network
intrusion detection by combining deep convolutional neural
network with gcForest.. In addition, a novel encoding algo-
rithm on converting the raw traffic data to gray-scaled images,
P-Zigzag has been also proposed which is more effective and
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faster than the existing encoding method (OHE). The pro-
posed learning model uses improved GoogLeNetNP, as the
first layer classifier to implement coarse-grained detection,
which can identify N classes, including normal class. The sec-
ond layer uses N-1 caXGBoost models, which runs parallelly
for fine-grained detection to identify more subclasses. The
method does not require any of the engineering techniques
used in traditional intrusion detection methods. The experi-
mental results show that the DCF-IDS significantly improves
the accuracy and DR compared to the single algorithm or
model. Furthermore, the DCF-IDS reduces the FAR because
it automatically learns the features of raw traffic data, which
improves the overall performance of the IDS.

In future, we will apply this proposed method to various
datasets and networks for intrusion detection (e.g. IoT).

APPENDIX
See Tables 13 and 14.
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