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Abstract 

This study presents a cohesive zone model combining mechanical and thermal effects. Thermal 

stress was added to the Helmholtz free energy density in order to derive a new approach to 

incremental damage which included the effect of temperature. The developed damage model 

has been implemented in ABAQUS using the UMAT subroutine and applied of two different 

specimens; a three-point bending specimen and a Double Cantilever Beam. The effectiveness 

of the new method was tested for the given specimens at different temperatures. The simulation 

results revealed that the total energy of the interface element of high strength carbon fiber 

reinforced plastic increased as its temperature decreased. It is demonstrated that the load-

displacement curves obtained from the numerical model for both test specimens were in good 

agreement with experimental data available in literature. 

 

Keywords:  Cohesive zone model; Thermal stress; Total energy; UMAT subroutine. 
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1. Introduction 

Composite materials offer many advantages compared to metals and metal-alloys due to their 

superior mechanical performance, especially where high strength and stiffness to weight ratios 

are concerned. Thus, advanced composite structures have been widely used in several industrial 

sectors such as aerospace, rotor blades in wind-energy systems, sport equipment, automotive 

parts, pressure vessels, among many other applications. However, static, dynamic or thermal 

load conditions may induce different forms of damage in composite structures which may then 

exhibit brittle behaviour. This can seriously degrade the stiffness of the component which then 

provides little damage resistance. And, of course, the load-carrying capability of composite 

materials decreases if internal damage is present. Modelling the progressive damage of 

composite materials under different load conditions is an important area, especially with, say, 

the rotor blades in wind-energy systems where barely visible impact damage can be a critical 

issue. The demand for high-performance laminated composite materials, especially with regard 

to long fatigue life, complex geometries and low temperature processing, requires the 

development of modelling tools that can reliably predict progressive damage, including 

damage occurring from a range of physical mechanisms (Shi et al. 2012) and (Reinoso et al. 

2017).  

(Reed and Golda 1994) investigated the effect of cryogenic temperature (-196oC) on 

unidirectional CFRP laminates. Their experiments were performed under tensile and 

compressive loads, and the results indicated that the elastic modulus of CFRP increased by 

about 10%  at a temperature of -196oC. It was also noted that the tensile strength was enhanced 

at this low temperature.  

 (Rio et al. 2005) carried out low impact velocity tests on square carbon fibre /epoxy (CFRP) 

laminates with different stacking sequences (e.g. unidirectional, woven and cross ply) at 

temperatures ranging from room temperature down to -150oC. The specimens were tested using 

a drop weight tower device. The experimental results showed that there was a clear damage 

dependency on temperature and laminate type.  

(Boominathan et al. 2014) used unidirectional and cross-ply (0/90) carbon/epoxy laminates 

subject to impacts with energy of 2.17 J at temperatures 30oC, 55oC, 75oC and 90oC. They 

found the percentage reduction in flexural strength for both cross ply and unidirectional 

laminates impacted at high temperature is lower than those tested at room temperature.  
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(Amaro et al. 2016) tested CFRP subject to single and multiple impact events. Two impact 

energies were used (1 J and 3 J) and the experiments were carried out at three different 

temperatures. It was observed that the temperature had a strong effect on matrix properties 

(stiffness and strength) and on the impact bending stiffness when low energy impacts were 

used, but that at the higher impact energy, the influence of temperature vanished. The number 

of impacts to failure remained constant at about four for impact energy of 3 J, but decreased 

with increase in temperature for impact energy of 1 J, from about twenty at room temperature 

to about fourteen at 90oC.  

(Jia et al. 2018) studied the influence of temperature on the mechanical properties of CFRP 

using the three-point bending test. The experiments were performed under static and dynamic 

loads over the temperature range -100oC to 100oC. Experimental findings showed relatively 

poor performance when unidirectional laminated composite were tested at the high 

temperature, but that the mechanical properties (e.g. energy absorption, flexural strength and 

maxi mum deflection) were significantly enhanced at the low temperature.  

(Wang et al. 2018) performed an experimental investigation of the behaviour of woven carbon 

fabric/polyphenylene sulfide (CF/PPS) laminates impacted at room temperature and 95°C and 

125°C. The results showed that stiffness and degree of energy based damage for this material 

decreased with increase in temperature as the impact behaviour transformed from brittle to 

ductile.  

The effects of fiber bridging on delamination behaviour in multidirectional laminates were 

investigated by (Gong et al. 2017) and (Riccio et al. 2017). They proposed delamination 

propagation criterion taking account of real variation on the critical fracture energy associated 

with the fibre bridging failure. The presented results demonstrated the pronounced effects of 

fibre bridging on the delamination growth.  

A literature review has confirmed that many researchers have experimentally investigated the 

effect of temperatures on the behavioural response of laminated composites. However, very 

few studies have simulated damage under different thermal conditions. This paper addresses 

that deficiency and presents a new approach of assessing incremental damage and takes into 

account thermal stress effect on delamination growth.     
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 2. Interface constitutive model without temperature dependency  

Cohesive zone models are used to describe progressive damage in composite materials. Based 

on interfacial fracture mechanics, the fracture process zone ahead of a crack tip is illustrated as 

shown in Figure 1. In composite laminates the crack tip can be represented by a cohesive zone 

which depends on the separation displacement between two substrates. The required stress to 

resist this separation is determined as a function of the separation displacement using, for 

example, the bi-linear traction-separation constitutive law, see Figure 2, which is the most 

widely used to describe fracture behaviour in an interface element (Jousset and Rachik 2014). 

 

 

 

 

Figure 1 (a) Fracture process zone, and (b) Equivalent cohesive zone (Jousset and Rachik 

2014) 

 

Figure 2 Bi-linear traction-separation law under tension and compression (a) Mode I and (b) 

Mode II (Zhang et al. 2017) 

The three active components of traction are Mode I, normal stress which is in a through 

thickness direction, and two shear tractions; Mode II and Mode III governed by separation 

displacement given by the traction-separation law. The elastic behaviour of the cohesive zone 

can be described as Equation 1; 

                           [

𝜏𝑛

𝜏𝑠

𝜏𝑡

] = [

𝑘𝑛𝑛 0 0
0 𝑘𝑠𝑠 0
0 0 𝑘𝑡𝑡

] [

𝛿𝑛

𝛿𝑠

𝛿𝑡

]                                                                   (1) 

𝜏𝑛𝑐 

τ 
𝜏𝑠,𝑡𝑐 

τ 

δ δ 𝛿𝑛
0 𝛿𝑠,𝑡

0  𝛿𝑠,𝑡
𝑓

 𝛿𝑛
𝑓
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where 𝜏𝑛 , 𝜏𝑠 , 𝜏𝑡 are the normal, shear and tear stresses respectively, and 𝛿 and k are the 

separation displacement and the initial stiffness of the interface of each mode, respectively.  

As shown in Figure 2, the bi-linear traction-separation law under typical pure modes initially 

assumes a linear elastic behaviour followed by the initiation and evolution of damage. The 

softening initiation displacements are calculated as ; 

𝛿𝑛
0 =

 𝜏𝑛𝑐
𝑘𝑛𝑛

⁄ ,    𝛿𝑠
0 =

 𝜏𝑠𝑐
𝑘𝑠𝑠

⁄ ,   𝛿𝑡
0 =

 𝜏𝑡𝑐
𝑘𝑡𝑡

⁄  

The final separation or complete debonding is defined as ; 

 𝛿𝑛
f =

2𝐺𝐼𝐶

 𝜏𝑛𝑐
 ,    𝛿𝑠

f =
2𝐺𝐼𝐼𝐶

 𝜏𝑠𝑐
 ,  𝛿𝑡

f =
2𝐺𝐼𝐼𝐼𝐶

 𝜏𝑡𝑐
 

where GIC, GIIC and GIIIC are the critical fracture energies of Modes I, II and III. 

 

2.1 Prediction of onset of mixed mode softening  

The damage onset of the cohesive element under pure Mode I, II or III loading, can be 

determined in a straightforward manner using a maximum traction stress criterion for each 

mode, obtained by comparing the traction components with allowable stress. However, when 

using this criterion to determine damage onset under mixed-mode loading poor results are 

obtained, because softening behaviour may appear before any stress components. Therefore, 

the interactions between stress components of each mode should be taken into account to 

determine initiation of delamination damage. 

The quadratic nominal stress criterion to predict the delamination onset under mixed mode 

loading, is one of the most frequently adopted failure criteria (Camanho et al. 2003). This 

criterion has been successfully utilized by many researchers, and is written as; 

               (
〈𝜏𝑛〉

𝜏𝑛𝑐
)

2

+ (
𝜏𝑠

𝜏𝑠𝑐
)

2

+ (
𝜏𝑡

𝜏𝑡𝑐
)

2

≥ 1                                                                      (2) 

Figure 3 illustrates the mixed-mode bi-linear traction-separation law for the interface element. 

The effective relative displacement, 𝛿𝑚, is defined as; 

               𝛿𝑚 = √〈𝛿𝑛〉2 + 𝛿𝑠
2 + 𝛿𝑡

2                                                                          (3) 

Equation 3 can also be written as; 
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                𝛿𝑚 = √〈𝛿𝑛〉2 + 𝛿𝑠ℎ𝑒𝑎𝑟
2                               (where  𝛿𝑠ℎ𝑒𝑎𝑟

2 = 𝛿𝑠
2 + 𝛿𝑡

2 )                 (4) 

where the operator 〈𝑥〉 is defined as;  

〈𝑥〉 = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

                                                                                                     (5) 

Using the same interface stiffness for Modes I, II and III and a quadratic nominal stress 

criterion, the onset of softening displacement under tension mixed-mode conditions (𝛿𝑛 > 0), 

see Figure 2, is obtained as (Zhang et al. 2017); 

𝛿𝑚
0 = 𝛿𝑛

0𝛿𝑠ℎ𝑒𝑎𝑟
0  √

1−(𝛿𝑠ℎ𝑒𝑎𝑟 𝛿𝑛⁄ )2

(𝛿𝑠ℎ𝑒𝑎𝑟
0 )

2
+(𝛿𝑠ℎ𝑒𝑎𝑟 𝛿𝑛⁄ )2(𝛿𝑛

0)
2                𝛿1 > 0                                            (6) 

 

In Equation (6), the pure Mode I can be obtained by setting 𝛿𝑠ℎ𝑒𝑎𝑟 𝛿𝑛⁄ = 0, (i.e., 𝛿𝑚
0 = 𝛿𝑛

0). 

The mixed-mode is reduced to the shear model when the shear displacement (𝛿𝑠ℎ𝑒𝑎𝑟) is much 

larger than the normal displacement, i.e. 𝛿𝑠ℎ𝑒𝑎𝑟 𝛿𝑛⁄ ⇒ ∞.  

When the cohesive zone undergoes a through-thickness compression, the stiffness degradation 

of the interface element will occur only in a shear mode (Mode II or Mode III), whereas there 

is no damage initiation and propagation of Mode I, see Figure 2. Therefore, the onset of damage 

under mixed a mode occurs if  𝛿𝑛 < 0  is 𝛿𝑠ℎ𝑒𝑎𝑟
0 .  

 

 

 

 

 

 

 

 

Figure 3 Mixed-mode bi-linear traction-separation law of interface element (Camanho et al. 

2003) 
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2.2 Damage propagation prediction 

Damage growth prediction under mixed-mode loading is predicted using the energy release 

rate during loading and unloading, and fracture toughness.  

The power law criterion is most widely used to predict damage growth under mixed-mode 

loading. This criteria is based on the concept of interaction between the energy release rates 

(Camanho et al. 2003), and is written as;  

(
𝐺𝐼

𝐺𝐼𝐶
)

𝛽

+ (
𝐺𝐼𝐼

𝐺𝐼𝐼𝐶
)

𝛽

≥ 1                                                                               (7) 

where 𝛽 = 1. 𝐺𝐼 and 𝐺𝐼𝐼 are energy release rate of Modes I, II respectively.  

The effective displacement at complete failure (𝛿𝑚
𝑓

) of a mixed mode is obtained based on a 

quadratic nominal stress criterion and the power interaction law of energy (Equation 7). 

Therefore, the final displacement of a mixed-mode under tension (𝛿𝑛 > 0) is expressed as; 

𝛿𝑚
𝑓

=
2(1+(𝛿𝑠ℎ𝑒𝑎𝑟 𝛿n⁄ )2) 𝑘 𝛿𝑚

0⁄

√(1 𝐺𝐼𝐶⁄ )2+((𝛿𝑠ℎ𝑒𝑎𝑟 𝛿n⁄ )2 𝐺𝐼𝐼𝐶⁄ )2
                                                                  (8) 

where k is the initial stiffness, GIC, and GIIC  are the critical fracture energies of Modes I, II. 

Under through-thickness compression (𝛿𝑛 < 0), the effective displacement at complete failure 

(𝛿𝑚
𝑓

) is; 

 𝛿𝑚
𝑓

= √(𝛿s
𝑓

)
2

+ (𝛿t
𝑓

)
2
                                                                                  (9) 

 

3. Thermal stress effect  

When a mechanical force acts on the composite materials concurrent with a temperature 

change, the nominal strain contribution due to the temperature change should be added to the 

nominal strain due to the internal stress. An incremental damage evolution law will be 

developed to take into consideration the mechanical effects of change in temperature of an 

interface element. Based on the Helmholtz free energy density, the free potential energy (𝜓) is 

a function of the cohesive zone displacements, evolution of damage, and the effect of 

temperature across the interface (∆𝑇), and can be written as; 

𝜓(𝛿𝑖, 𝐷, ∆𝑇) =
1

2
(1 − 𝐷)𝑘𝑖(𝛿𝑖 − 𝛼∆𝑇)2                                                                   (10) 
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Where (𝑖 = 𝑛, 𝑠, 𝑡), 𝛼 is thermal expansion coefficient, and D is damage parameter which is 

calculated as;  

𝐷 =
𝛿𝑚

𝑓 (𝛿𝑚−𝛿𝑚
𝑜 )

𝛿𝑚(𝛿𝑚
𝑓

−𝛿𝑚
𝑜 )

                                                                                                                   (11) 

The traction components are obtained by differentiating the potential energy relative to 

interface displacement as; 

𝜏𝑖 =
𝜕𝜓

𝜕𝛿𝑖
=  (1 − 𝐷)𝑘𝑖(𝛿𝑖 − 𝛼∆𝑇)                                                                             (12) 

and the thermodynamic conjugate force  is derived relative to damage variable (D); 

ℂ = −
𝜕𝜓

𝜕𝐷
=

1

2
𝑘𝑖(𝛿𝑖 − 𝛼∆𝑇)2                                                                                     (13) 

The damage function is defined as: 

ℱ(ℂ, 𝐷) = ℂ − ℛ(𝐷)                                                                                                 (14) 

 

The function ℛ(𝐷)  is the resistance to the crack propagation, and written as; 

ℛ(𝐷) =
1

2
(1 − 𝐷)𝑘𝑖(𝛿𝑖 − 𝛼∆𝑇)2                                                                            (15) 

 The incremental damage evolution law is calculated using the consistency condition ℱ̇ = 0;  

𝜕ℂ

𝜕𝛿𝑖
𝜕𝛿𝑖 −

𝜕ℛ(𝐷)

𝜕𝐷
𝜕𝐷 = 0                                                                                            (16) 

Therefore, the new incremental damage including the effect of temperature change is given by; 

𝜕𝐷 =
∑ 𝑘𝑖(𝛿𝑖−𝛼∆𝑇) 3

𝑖=1

∑
1

2
𝑘𝑖(𝛿𝑖−𝛼∆𝑇)2 3

𝑖=1

𝜕𝛿𝑖                                                                                         (17) 

 

4. The effectiveness of new approach  

4.1. Three-point bending specimen 

(Jia et al. 2018) carried out static three-point bending tests on high strength carbon fibre 

reinforced plastic using MTS mechanical tests with a 1 kN load cell. The tests were performed 

on specimens with length along the longitudinal fibre of 101.6 mm, across the specimen 12.7 
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mm  and height of 1.5 mm, see Figure 4. The material properties of high strength carbon fibres 

reinforced polymer at room temperature are listed in Table 1. 

 

 

 

 

Figure 4 Specimen dimensions (Jia et al. 2018) 

 

Table 1 The material properties of high strength carbon fibres reinforced polymer (Jia et al. 

2018)  

Modulus (Pa) 227 × 109 

Tensile strength (Pa) 2.8 × 109 

Poisson’s ratio 0.3 

Linear thermal expansion coefficient, 

× 10−6/ oC 
4 

 

(Jia et al. 2018) performed mechanical experiments over a temperature range from 60oC to -

60oC in an environmental chamber with temperature accurate to ±1oC. Five specimens were 

examined and held for 20 minutes in the chamber to reach a uniform temperature prior to the 

experimental tests. A quasi-static test was conducted on all specimens with a constant strain 

rate of 0.01, at the middle of the span along the specimen’s length. The force-displacement 

responses of the three-point bending tests conducted at the various temperatures were 

measured. These results are used below to validate the predictions of the model being 

developed. 

Numerical simulation  

In this section, the experimental tests of (Jia et al. 2018) are simulated to validate the new 

incremental damage evolution law for interface elements. The incremental damage model 

developed was implemented in ABAQUS/Standard software using a user-defined material 

model via the UMAT subroutine. 
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The specimen was divided into two sub-laminates, each 0.75 mm thick, and connected to each 

other by a cohesive element via a ‘Tie’ interaction. The materials properties of interfacing 

element, used in simulation, are listed in Table 2. According to (Zou and Hameed 2018), an 

interface stiffness of 1x1014 N/m3 was adopted in the finite element model. The element type 

adopted for the layers was the 4-node bilinear, CPS4, and for the adhesive layer the 4-node 

cohesive element COH2D4 was used. For all elements, the size was 0.1 mm. The finite element 

model is illustrated in Figure 5.  

Table 2 Material properties of the interface element (Shi et al. 2012) 

nc  

(MPa) 

sc = tc  

(MPa) 

GIC 

(J/m2) 

GIIC= GIIIC 

(J/m2) 

62.3 92.3 280 790 

 

 

 

 

Figure 5 Finite element model of three-point bending specimen 

When the specimen was tested under different temperature conditions, the total traction stress 

of the interface element was a combination of thermal stress and normal /shear stress for each 

mode. The damage initiation stress was updated based on; 𝜏𝑖𝑛𝑒𝑤 = 𝜏𝑖 − 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙, so that 

𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑘𝛼∆𝑇. Thus if the temperature changed resulting in a change in traction stress, the 

fracture energy was also affected.  

Figure 6 is a schematic of the bilinear traction separation law at low and room temperature. It 

is clear that the traction at onset of damage increased when the specimen was at a low 

temperature. The fracture energy increased by  ∆𝐺 =
1

2
𝛿𝑓𝛿𝑐 [(

𝜏𝑐
𝑛𝑒𝑤

𝜏𝑐
)

2

− 1].  

Load 

Support 
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In addition, the damage initiation displacement and final failure displacement increased to  

𝛿𝑛𝑒𝑤
𝑐 = (𝜏𝑐

𝑛𝑒𝑤 𝜏𝑐)⁄ 𝛿𝑐, and 𝛿𝑛𝑒𝑤
𝑓

= (𝜏𝑐
𝑛𝑒𝑤 𝜏𝑐)⁄ 𝛿𝑓, respectively. The energy absorption is the 

area below the traction-separation curve. Thus, according to the traction separation law the 

energy absorbed is less at a higher temperature due to the cohesive behaviour. This is shown 

as ∆𝐺 in the figure. 

  

 

 

  

 

 

 

  

Figure 6 Schematic traction-separation law  

 

Figure 7 shows the force-displacement curves for all the specimens under three different 

thermal conditions (i.e. 600C, -200C and -600C). It can clearly be observed that the load-

displacement response behaviour using this new approach is similar to the experimental data 

and both sets of curves have a linear elastic section followed by a force drop. 

𝛿𝑛𝑒𝑤
𝑓

 𝛿𝑓 

𝜏𝑐 

𝜏𝑐
𝑛𝑒𝑤 

𝛿𝑐 𝛿𝑛𝑒𝑤
𝑐  

∆𝐺 

𝐺𝑐 
at room temperature 

Increasing of energy at ice 

condition temperature 
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Figure 7 Force-displacement curve of three-point bending specimen 

 

4.2 Double Cantilever Beam (DCB) 

Inter-laminar damage in composite structures is a frequent failure mode which has a significant 

effect on strength, stiffness and structural integrity. Thus, the understanding of resistance to 

delamination fracture in composite materials is particularly important. The critical fracture 

energy of Mode I can be measured experimentally using a double cantilever beam (DCB). This 

energy will change when the composite material is determined under different environmental 

conditions, i.e. different temperatures.  

Many researchers have experimentally measured fracture toughness of unidirectional 

laminated composites at room and other temperatures, but temperature effects on inter-laminar 

damage have not been fully investigated numerically.  

(Kim HS 1999) investigated the fracture energy of Carbon/Epoxy composites at -100oC, room 

temperature and 150°C, using a DCB with pre-cracked interface, [012//012]. A schematic of the 

DCB specimen, including dimensions and delamination between sub-laminates, is shown in 

Figure 8. The authors performed the tests using a servo-hydraulic machine to provide 

displacement control, and a thermostatic chamber which could accurately maintain the 

temperature at any temperature between -180°C and 320°C. The specimens were kept for one 
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hour in the thermostatic chamber to reach a homogeneous distribution of temperature before 

the tensile testing. 

 

 

 

 

 

 

 

 

Figure 8 DCB specimen dimensions 

The morphologies of the fracture surface when using the DCB specimen type [0//0] were 

reported by (Kim HS 1999), and are shown in Figure 9. It is clearly seen that at a temperature 

of -100oC, the fiber breakage and fiber bridging happened at onset and propagation of damage, 

while the fiber bridging occurred just at the initiation, see Figure 9a.  When the specimens were 

examined at a high temperature (150oC), the damage started in the matrix followed by fiber 

bridging which has a significant effect on the inter-laminar damage growth as shown in Figure 

9b. Therefore, the failure occurred at a smaller fracture energy because the matrix critical 

energy is relatively low. This explains why the fracture toughness at room temperatures is 

lower than at cryogenic temperatures.  

 

120 mm Crack =37 mm 3
.3

 m
m

 

Force 

Force 
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Figure 9 Images of fracture surfaces for unidirectional specimen (Kim HS 1999) 

 

In the simulation model, the new approach was applied to investigate fracture energy and 

response behaviour of DCB at various temperatures. The numerical model was built in 

ABAQUS and again used element type COH2D4 for the interface elements, and element type 

CPS4 for the sub-laminates, both types had element size 0.1 mm. The interface stiffness used 

in the modelling was 1 x 1014 N/m3.  

The force-displacement curves obtained for high (150oC) and low (-100oC) temperatures are 

presented in Figures 10 and 11. It was recognized that the change in temperature had a 

noticeable effect on damage initiation and propagation. The predicted force required for failure 

in the unidirectional specimen at the higher temperature was 52 N, less than the 60 N required 

at the lower temperature. At 150oC, the predicted displacement at which the peak force occurs 

is very close to the measured value; both 1.6 mm. The predicted results compared well with 

Kim’s measured data. 

 

(a) 

(b) 

Initiation Propagation 

(-100oC) 

(150oC) 
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Figure 10 Force-displacement curve at high temperature (150oC)  

 

Figure 11 Force-displacement curve at low temperature (-100oC)  

The peaks move in the same direction as the temperature decreases to -100oC, and agreement 

remains good; 2.0 mm for the predicted and 1.75 mm for the measured. We see that predicted 

values and experimental results reported by (Kim HS 1999) are in good agreement.  
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5. Conclusions  

The objective of this research was and remains to develop a damage model that includes the 

effect of temperature on the unidirectional laminated composite response. The numerically 

predicted results were in a good agreement with experimental data and revealed the underlying 

toughening mechanisms as an increase in the damage initiation stress at cryogenic temperatures 

by 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑘𝛼∆𝑇, which enhanced the fracture energy by  ∆𝐺 =
1

2
𝛿𝑓𝛿𝑐 [(

𝜏𝑐
𝑛𝑒𝑤

𝜏𝑐
)

2

− 1].  In 

addition, the damage onset and final failure displacement were changed with the embrittlement 

of the matrix in unidirectional composite materials at temperatures greater than room 

temperature, together with the inter-laminar thermal stresses generated in the interface element 

facilitate the initiation and propagation of damage. 
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