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Abstract We present a novel reconstruction method for dynamic MR im-
ages from highly under-sampled k-space measurements. The reconstruction
problem is posed as spectrally regularized matrix recovery problem, where
kernel-based low rank constraint is employed to effectively utilize the non-
linear correlations between the images in the dynamic sequence. Unlike other
kernel-based methods, we use a single-step regularized reconstruction approach
to simultaneously learn the kernel basis functions and the weights. The ob-
jective function is optimized using variable splitting and alternating direction
method of multipliers. The framework can seamlessly handle additional spar-
sity constraints such as spatio-temporal total variation. The algorithm perfor-
mance is evaluated on a numerical phantom and in vivo data sets and it shows
significant improvement over the comparison methods.
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1 Introduction

In magnetic resonance imaging (MRI), parts of the body are excited by a radio
frequency pulse, which excites the spins in the 2D slice or a 3D volume of the
body. The excited spins act like radio frequency emitters. For localization of
the excited spins, the frequency and phase of the spins is modified using a
time varying magnetic gradient fields. The magnetization state of the spins is
received by the receiving coil and digitized and saved in the k-space grid. The
frequency and phase-encoding are stored in the x-axis and y-axis respectively.
The order in which the frequency and the phase encoding is carried out defines
the trajectory of the k-space. In Cartesian trajectory, for example, the k-space
is sampled row by row. During the filling of the k-space lines, motion may
take place resulting in various reconstruction artifacts such as blurring. Many
clinical applications require imaging an organ with high temporal resolution
For example, in dynamic contrast enhanced MRI (DCE-MRI), fast imaging is
required to measure the physiological tissue characteristics in the presence of a
contrast agent [19, 21]. Similarly, respiratory motion during abdominal or car-
diovascular imaging is also a major challenge in dynamic MRI [13]. However,
MRI acquisition is a time consuming process because of various physical and
physiological conditions [42]. The reconstructed images thus have a limited
spatial and temporal resolution.

Researchers have looked at many approaches to accelerate the MRI acqui-
sition time. Parallel imaging (PI) [17] is a hardware-based approach, which
accelerates the acquisition time by combining the signals from several receiver
coils to reconstruct the images. Compressed sensing (CS) [9, 25] is a software-
based approach to accelerate MRI acquisition by incoherent k-space under-
sampling and using nonlinear reconstruction techniques. Cartesian trajectory
achieves incoherence by under sampling the y-axis of the k-space and fully
sampling the x-axis. To achieve incoherence in multiple dimensions, radial k-
space trajectories [14] are used. In radial trajectory, the k-space is sampled via
radial lines passing through the center of the k-space. The radial trajectories
are also less sensitive to motion and therefore are standard choice for dynamic
MRI [34]. By acquiring radial profile lines spaced at a constant increment
of 111.250, which is derived from the golden ratio, uniform coverage of the
k-space is insured [48]. By using the aforementioned techniques together, fur-
ther reduction in the acquisition times can be achieved [12, 13, 32]. However,
motion may still take place during the time it takes to sample the k-space and
therefore, different k-space lines may correspond to different motion states. To
avoid this, k-space profile lines are acquired at times synchronized by a gating
signal so that all profile lines correspond to the same motion state [16, 38].
However, such techniques further increase the scan time and hence the pa-
tient discomfort. Self gating techniques avoid timed acquisitions, by using the
k-space data itself to derive a gating signal retrospectively [7, 23]. In radial
trajectories, the magnitude of the center of the k-space can be used as a 1-D
self gating signal [18]. However, the performance of this approach can degrade
when imaging an organ with complex motion, since the assumption of global
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rigid motion is violated. To capture complex organ motion, manifold learning
techniques [4] have been used to generate the self gating signal [35, 44]. [35]
assumes that the images in the dynamic data set come from a low dimensional
manifold. The shape of the manifold is determined by sampling the same loca-
tion of the k-space for each frame. It requires sufficient large number of highly
correlated frames to reliably learn the manifold. In case, when only few frames
are available or the frames vary significantly in the temporal direction (e.g
DCE-MRI), the performance can degrade. Similarly, Chen et. al. [8] employ
locally linear embedding [37] to learn a multidimensional self gating signal di-
rectly from the k-space data, which is then used to group the k-space profiles.
The reconstruction is then performed using non-linear FFT on the grouped
profiles.

Since, the dynamic images are highly correlated, various techniques exploit
the low rank structure of the dynamic image data to constraint the objec-
tive function [15, 20, 22, 26]. These techniques are based on Karhunen-Louve
transform (KLT), which is a linear transform and hence is incapable of cap-
turing non-linear correlations between the temporal frames. Such non-linear
correlations may be quite important when imaging an organ with complex mo-
tion or in case of dynamic contrast enhanced MRI. To exploit non-linearity,
[27, 28] propose a non-linear dictionary-based algorithms. Similarly, in [29, 46],
a kernel-based framework is proposed to incorporate non-linear manifold mod-
els in reconstruction. The algorithm uses a two step approach. The first step
estimates kernel-based temporal basis functions using zero-filled reconstruc-
tion of some central k-space data. The second step enforces the low rank
constraint by projecting the data onto the most significant temporal basis
functions learned in the first step. The projected data is then mapped back
to the original space using preimaging with data consistency constraint. The
second step is repeated until convergence. A sufficient number of central k-
space data is required to obtain a good estimate of the basis functions in the
first step. However increasing the central k-space encodes will result in fewer
high frequency encodes. So the performance is dependent on a fine balance
between the amount of low frequency and high frequency encodes [22]. In this
paper, we propose a single-step regularized reconstruction framework that si-
multaneously learns the temporal basis functions and the spatial weights of
the kernel-induced feature space. This allows for high quality reconstruction
at a range of acceleration rates. The proposed method uses a Gaussian kernel
to map the data to a non-linear feature space, where low rank constraint is
exploited. Our method also provides a systematic way of employing additional
sparsity constraints in addition to the low rank constraint. Our k-space ac-
quisition scheme is based on golden angle radial trajectories which are less
sensitive to motion [12] than the non-uniform Cartesian trajectory employed
in [29].

Contributions: This paper presents a novel single step kernel-based spec-
trally regularized framework to effectively utilize the higher order correlations
between the dynamic image series for better reconstruction. The framework
can seamlessly handle additional sparsity constraints such as total variation



4 Short

and allows for parallel imaging and various k-space acquisition schemes. In this
paper, we use radial golden angle trajectory since it is less sensitive to motion
and is the standard choice for dynamic MRI.The optimization algorithm uses
Alternating direction method of multipliers (ADMM) [6].

The remaining paper is arranged as follows: Section 2 provides a brief de-
scription of various approaches employed in dynamic MRI reconstruction. Sec-
tion 2.1 provides some background of kernel methods. The proposed method is
expained in Section 3 and the results are given in Section 4. Section 5 concludes
the paper.

2 Background

The multi-coil dynamic MRI data Y = [y1, · · · , yn], is modeled as

Y = AX + η, (1)

where A = FC, F and C are the under-sampled Fourier transform and coil
sensitivity maps, X is the Casorati matrix formed by concatenating the vec-
torized images, X = [x1, . . . , xn], and η is the noise. Reconstructing of the
dynamic image matrix X, from the under-sampled MRI k-space data Y is ill-
posed and can only be solved by applying regularization. CS-based methods
use the sparsity of the MR images for reconstruction [25]:

X∗ = argmin
X
‖AX − Y ‖2 + β‖SX‖1, (2)

where S is the sparsity inducing transform with regularization parameter β,
which determines the tradeoff between data consistency and sparsity. This
compressed sensing based formulation can reconstruct the signal even though
the k-space data is acquired under-sampled by solving the l1 minimization
problem in Equation (2). Minimizing l1 norm ensures sparsity. Sparsity can
be applied in both the spatial and temporal domains. The well known sparsity
transform is the finite-difference transform, which measures the sum of abso-
lute variations in the image intensity. To enforce sparsity between images that
are in the same motion state but are temporally far, researchers have looked
at various approaches which either require self gating of repeated sampling of
the k-space location [13, 35, 44].

Equation (2) is also called the analysis formulation of the sparse repre-
sentation. Synthesis model is another sparse representation model, which at-
tempts to reconstruct images using a linear combination of few basis functions
(X = Wα): [11]:

α∗ = argmin
α
‖AWα− Y ‖2 + β‖α‖0, (3)

Equation (3) is non-convex, which is made convex by replacing l0 norm with
the l1 norm. k-t Blast [43] and k-t Sparse [24] employ the synthesis model
to reconstruct images. K-t Blast uses training data to learn the temporal
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basis functions, whereas k-t Sparse employs compressed sensing to improve
the reconstruction. Similar to the synthesis model, low rank of the dynamic
MR images can also be exploited to reconstruct the images:

X∗ = argmin
X
‖AX − Y ‖2 + β rank(X), (4)

The above formulation is used with Karhunen-Louve transform (KLT) [15, 20,
22, 26]. Next section will go over the basics of kernel method.

2.1 Kernel Method Basics

Kernel methods are a widely used class of algorithms for analyzing data. In
kernel methods, data is implicitly mapped to a high dimension feature space
which is more suitable for finding interesting correlations between data points
[3, 30, 39]. Explicit computation of the feature space is avoided by employing
the kernel trick: a kernel is a function k : Rd × Rd → R, which implicitly
defines a mapping φ : Rd → H, where H is a high dimensional feature space
and the following equation holds:

k(xi, xj) = 〈φ(xi), φ(xj)〉. (5)

Equation (5) allows the computation of the inner product between data points
in the feature space through the kernel k. Let K be the kernel matrix, with
values Kij = k(xi, xj). The feature space that satisfies the inner product
property of Equation (5) can be obtained by the eigenvalue decomposition of
kernel matrix K = UΛUT , where U and Λ are eigenvectors and eigenvalues of
the kernel matrix. The feature space embedding satisfying (5) is given by

K = UΛUT = UΛ
1
2 (UΛ

1
2
x )T = ΦTΦ, (6)

where Φ =
√
ΛUT is the feature space matrix q, whose columns contain the

feature space representation of the data points, Φ = [φ(xi), · · · , φ(xn)]. The
mapping of a new text point x to feature space is obtained using the Nyström
approximation method [5]

φ(x) =
1√
Λ
UT kx, (7)

where kx = [k(x, x1), · · · , k(x, xn)]T .

2.1.1 Pre-image Problem

Pre-image problem relates to finding the mapping of a point ψ ∈ H in the
feature space to the point x in the input space, such that φ(x) = ψ. The
exact pre-image might not exist, in genernal. Therefore, the pre-image methods
seek an approximate pre-image satisfying the following optimality criteria:
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x∗ = argmin
x
‖φ(x) − ψ‖2. It is assumed that ψ is a linear combination of

sample points ψ =
∑n
i=1 αiφ(xi). The optimal x is then given by [40]

x =

∑n
i=1 αik(x, xi)xi∑n
i=1 αik(x, xi)

, (8)

leading to the fixed point iteration scheme [40]. The iteration scheme is sus-
ceptible to local minima and sensitive to initialization. Arias et al. [2] propose
a one step alternate to the fixed point iteration scheme. In the alternate meth-
ods, the kernel values are approximated by inverting the Nystrom extension
(Equation (7)):

kx = U
√
Λψ.

The pre-image x of a point ψ in the feature space is obtained by using the
above approximation of the kernel values in Equation (8). In this paper, we
are only interested in finding the low rank pre-image of the sample points xi.
In that case, the pre-image expression can be further simplified as follows:

R =
XUUT

1n1TnUU
T
, (9)

where 1n is a vector of all ones, and the division in (9) is carried out element
wise. In the remainder of the paper, Equation (9) is used for computing the
pre-image.

3 Methodology

Given the under-sampled k-space data, the reconstruction is obtained by solv-
ing the following regularized optimizing problem.

X∗ = argmin
X
‖AX − Y ‖2 + β rank (Φ), (10)

where Φ = [φ(x1), · · · , φ(xn)] is the feature space representation of the dy-
namic image series as obtained from Equation (6). A central assumption here
is that the high dimensionality of the data is superficial and the data may be
described as a function of few underlying parameters. The minimum rank de-
composition of the feature space representation of the data matrix in Equation
(10) is an effective strategy to learn the parameter space of the low-dimensional
manifold. When the kernel used is linear, i.e k(xi, xj) = xTi xj , the optimiza-
tion problem (10) reduces to the one used in [22]. Various non-linear kernels
can be used, such as the Gaussian kernel. To make the problem tractable,
nuclear norm (‖ · ‖∗) is used instead of rank minimization. The nuclear norm
of the matrix Φ is the sum of the singular values of Φ. The singular values
of Φ are equal to the square root of the singular values of the kernel matrix
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K = ΦTΦ, and therefore ‖Φ‖∗ =
∑
i

√
Λii. The relaxed optimization problem

using nuclear norm is as follows:

X∗ = argmin
X
‖AX − Y ‖2 + β‖Φ‖∗. (11)

The unconstrained optimization problem (11) is first converted to an equiv-
alent constrained one using a technique called variable splitting. The idea be-
hind variable splitting is to decouple the minimization of the two functions
in Equation (11) by replacing Φ with an auxiliary variable Ψ ∈ H under the
constraint that Ψ = φ(X).

X∗ = argmin
X,R

‖AX − Y ‖2 + β‖Ψ‖∗

subject to φ(X) = Ψ
(12)

The constraint in Equation (12) is defined in the feature space. To simplify
the optimization, we define an equivalent constraint in the input space. Let R
be the pre-image of Ψ (i.e Φ(R) = Ψ) found using the technique described in
Section 2.1, then Equation (12) becomes

X∗ = argmin
X,R

‖AX − Y ‖2 + β‖R‖∗

subject to X = R.
(13)

The unconstrained form of the function using AL is

L(X,R, λ) = ‖AX − Y ‖2 + β‖R‖∗ + λT (X −R)+
ρ

2
‖X −R‖2

(14)

where ρ is the penalty parameter penalizing the quadratic penalty term. The
AL formulation guarantees convergence to the constraint optimization problem
(13) without requiring high values for penalty parameter ρ [31]. Finally, Equa-
tion (14) is solved using ADMM [6, 10]. In ADMM, X and R are updated
alternatively. Methods based on ADMM are widely used in the compressed
sensing-based reconstruction frameworks [1, 22, 36, 47].

The first sub-problem (Xk+1 := argmin
X

L(X,Rk, λk))

Xk+1 := argmin
X

‖AX − Y ‖2 + λT (X −R) +
ρ

2
‖X −R‖2, (15)

is solved using a few iterations of conjugate gradient descent. Other sparsity
constraints can be easily added in the optimization subproblem. It is often
useful to include the finite-difference sparsifying transform (also known as
total variation regularization) in the objective function [25].

The second sub-problem is

Rk+1 = argmin
Rk

β‖Rk‖∗ +
ρ

2
‖Xk +

λk

ρ
−Rk‖2. (16)
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The equivalent formulation in the feature space is

Ψk+1 = argmin
Ψk

β‖Ψk‖∗ +
ρ

2
‖Φ(Xk +

λk

ρ
)− Ψk‖2. (17)

Equation (17) looks cumbersome, however, the solution to (17) can be ex-
pressed in a closed form [45]

Ψk+1 = Dβ

√
DUT , (18)

where U and D are the eigenvectors and eigenvalues of the kernel matrix K

formed from the data matrix (Xk+ λk

ρ ) and Dβ is diagonal matrix with values

Dβ(i, i) =

{
1− β

ρσi
ifσi >

β
ρ

0 otherwise

where σi are the diagonal elements of D. Compare the feature space embedding
Φ (6) to its low rank embedding Ψ (18). The low rank embedding is obtained
by multiplying the feauture space embedding by Dβ . The pre-image of Ψ can
then be easily computed using Equation (9). Finally, λ is updated by

λk+1 := λk + ρ(Xk+1 −Rk+1) (19)

The whole algorithm is listed in Algorithm 1.

3.1 Implementation

The proposed ADMM-based algorithm was implemented in Matlab on a Ubuntu
workstation with intel core i7-6700K processor. Subproblem (15) was solved
using non-linear conjugate gradient descent with backtracking line search [25].
As mentioned before, few iterations of the CGD were carried out, as ADMM
converges even when sub-problems are approximately solved [6]. The second
sub-problem (16) can be solved analytically. It requires singular value decom-
position of the kernel matrix of size n× n, where n is the number of dynamic
frames to reconstruct. k-t SLR [22], which finds linear correlation between the
dynamic frames in the input space also requires singular value decomposition
of n× n matrix. In this regard, no additional computational effort is required
to obtain non-linear correlations in the feature space. The proposed algorithm
is summarized below. ADMM converges to an acceptable accuracy within few
iterations [6]. In all the experiments in Section 4, we ran at most ten ADMM
iterations to obtain reasonable results.
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Data: dynamic MRI data
Result: Reconstructed Casorati matrix X
Initialize X by the inverse Fourier transform of the gridded k-space measurements;
while stopping criteria not met do

Solve problem (15) by running few iterations of non-linear conjugate gradient
descent;

Compute low-rank approximation (18);
Computer pre-image (9);
Updata λ (19)

end

Algorithm 1: Proposed ADMM-based Optimization Algorithm

4 Results

In this section we compare the reconstruction performance of the proposed
method. The reconstruction error was gauged using the signal to error ratio
(SER), which is defined as:

SER = −10 log10
‖Xrec −Xorig‖2F
‖Xorig‖2F

, (20)

where ‖ · ‖F is the Frobenius norm, Xrec and Xorig are the reconstructed and
the original Casorati matrix. The k-space samples are acquired using golden
angle radial trajectory, where radial profile lines are spaced at a constant incre-
ment of 111.250. This scheme insures that the k-space is uniformly sampled for
any consecutive number of profile lines [48]. We evaluated the proposed method
on both the synthetic and in vivo datasets against the following methods:

k-t SLR [22] k-t SLR poses the recovery of the dynamic image series X as a
low rank matrix recovery problem similar to Equation (18). k-t SLR exploits
linear correlations between the image frames. By enforcing low rank constraint
in the non-linear feature space, our method can learn non-linear correlations
between the data frames and hence better reconstruction of the images. Matlab
code provided by the author was used.

Spatio-Temporal total variation (TV) regularization Total variation regular-
ization exploits the sparsity of the gradients and is often included in the ob-
jective function even when other sparsifying transforms are present [25]. In
dynamic MRI, TV regularization can be applied in both the spatial and tem-
poral domains. The TV regularized objective function is

argmin
X
‖AX − Y ‖2 + β

∥∥∥∥√|DxX|2 + |DyX|2 + |XDt|2
∥∥∥∥
1

whereDx,Dy,Dt are finite difference operators in the spatial (x, y) and tempo-
ral domains. It is also part of the objective function in the k-t SLR framework
and is also included in the proposed framework. Comparing with TV regular-
ization alone will help in gauging the improvement or otherwise brought in
by the additional low rank constraint. The TV regularization is implemented
using [22, 47].
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Gridding All methods are initialized with zero-filled reconstruction of the ra-
dial profile lines.

4.1 Pre-image Computation Comparison

Before proceeding to the results, we provide few experiments in this section
to demonstrate that the use of feature space representation is better able to
capture the correlations in the dynamic MRI data. The vectorized images of
PINCAT numerical phantom [41] are stacked together to obtain the Casorati
matrix X of size 1282 × 50. The data matrix X can be decomposed using
the singular value decomposition X = UΣV H . Such a decomposition is used
in multiple KLT based reconstruction algorithms [15, 20, 22, 26, 33]. The
rows of ΣV H and U can be considered as the temporal basis functions and
the spatial weights respectively. In principal component analysis parlance, the
columns of U are the basis of the transformed space and the columns of ΣV H

are the projections onto the basis functions. Since the dynamic data matrix
X is highly correlated, the pre-image can be computed using the few most
significant singular values. Moreover, by exploiting the correlation in the non-
linear feature space Φ, we expect to require even fewer basis functions. To
demonstrate that, we compute the pre-image using the 15 most significant
singular values. Moreover, the original image is also corrupted by setting few
pixel intensity values to zero. Figures 1(a) and 1(b) show the original and
the corrupted image. The pre-image computed using the KLT and the feature
space representation (9) is shown in Figures 1(a) and 1(d). The figure clearly
shows that the feature space pre-image is better than the linear KLT based
pre-image.

Figure 2 shows the temporal intensity profiles corresponding to the white
line drawn on the left most image. The temporal intensity profiles are sorted
according to the most significant temporal basis function for both the feature
space and KLT representation (middle and right most image respectively). As
a result of sorting, similar temporal profiles are clustered together. The figure
shows that the clustering of the temporal profiles achieved by the feature space
representation is better than the KLT method. The white arrows highlight few
locations where the clustering of the similar intensity profiles produces smooth
overall image as compared to the KLT representation.

4.2 Synthetic Data

We evaluated the proposed method on a physiologically improved non-uniform
cardiac torso (PINCAT) numerical phantom [41], made available from [22].
The data simulates a free breathing first-pass myocardial perfusion dynamics.
The time series data contains 50 frames of spatial size 128× 128.

The proposed method is evaluated at various accelerations and noise levels.
The PINCAT phantom has spatial size of 128× 128. A fully sampled k-space
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(a) (b) (c) (d)

Fig. 1 Pre-image computation using 15 most significant singular values. (a): a frame from
the PINCAT numerical phantom [41] corrupted by setting few pixel intensity values to
zero in (b), (c) Pre-image of the frame using KLT and (d) Pre-image using the feature space
representation (9). The feature space compact representation has been better able to recover
the corrupted signal.

Fig. 2 Temporal intensity profiles sorted according to the most significant temporal basis
function. [Left]: A frame from PINCAT data set. The temporal intensity profiles drawn in
the following images correspond to the white line drawn on the image. [Middle]: temporal
intensity profiles sorted according to the feature space representation. The white arrows
highlight few locations where the clustering of the similar intensity profiles produces a
smooth overall image as compared to the KLT representation. [Right]: KLT representation

data will consists of 128 lines and therefore using for example 24 lines in the
reconstruction will result in the acceleration level of 5.33.

Figure 3 shows the SER versus acceleration plot for various reconstruction
methods. At higher acceleration levels, k-t SLR is not able to effectively utilize
the correlations between the dynamic image series and no significant improve-
ment over TV norm is achieved. The proposed method, by imposing a low
rank structure in the non-linear feature space, out performs other methods at
all acceleration levels. All methods are initialed by the reconstruction obtained
by zero-filled reconstruction (gridding). The SER of gridding reconstruction is
also shown in the figure for reference.

In the second experiment, zero mean Gaussian random noise is added to the
k-space measurement. The standard deviation of the noise is adjusted so that

the signal to noise ratio (SNR = 10 log
σ2
signal

σ2
noise

) varies from 28 to 50 decibels.

The k-space is sampled at 24 profile lines per frame (acceleration of 5.3) for all
noise levels. Figure 4 shows the performance of the proposed and comparison
methods. The proposed algorithm produces reconstructions with higher SER
than the comparison methods at all noise levels. The difference in performance
between the proposed and the comparison methods is more pronounced at
lower SNR. Figure 5 shows a reconstructed frame of the dynamic image series
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Fig. 3 Signal-to-error ratio versus acceleration plot for various reconstruction methods
on PINCAT phantom. The proposed method consistently out performs other comparison
methods.

along with its error map. The error map shows that the the proposed method
produces reconstructions having fewer artifacts than the comparison methods.

4.3 First-Pass Myocardial Perfusion in vivo Data

The in vivo data was obtained from [22]. The data represents the first-pass
myocardial perfusion real time MRI sequence (nx = 190, ny = 90, t = 70). The
proposed and the comparison methods are evaluated at the acceleration level
of 19. All methods are initialized by the zero-filled reconstruction obtained
by interpolating the golden angle radial profile lines to the Cartesian grid
and using the inverse Fourier transform to reconstruct the images. Figure
6(a) shows few fully sampled frames at different contrast enhancement phases.
The white vertical lines in Figure 6(f) represent the location in time of the
frames. Figures 6(b)-6(e) show the reconstructed images using the comparison
and the proposed methods. The regularization parameters for all methods
were fine tuned to obtain maximum SER for fair comparison. The proposed
method obtains the best SER of 18.27. Some of the obvious artifacts are also
highlighted in the figure by using the arrows. The k-t SLR method could not
effectively utilize the low rank structure of the dynamic image data due to
the fast acceleration levels. The temporal intensity profiles corresponding to
the white horizontal line in Figure 6(a) are shown in Figures 6(f)-6(j) of the
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Fig. 4 Signal-to-error ratio versus noise level for various reconstruction methods on PIN-
CAT phantom. The signal-to-noise ratio of k-space measurements is varied from 28 to 50
decibels. The k-space is sampled at 24 profile lines per frame (acceleration of 5.3) for all noise
levels. The proposed algorithm produces reconstructions with higher SER. The difference in
performance is more pronounced at lower SNR
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10
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40

Fig. 5 A reconstructed frame of PINCAT Phantom and its error map. [Images from left
to right]: Gridding reconstruction, TV penalty, k-t SLR [22] and the proposed method. The
proposed method produces reconstructions with fewer artifacts.

comparison and the proposed methods. The temporal profiles of the proposed
method closely follows the fully sampled profile lines.
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(a) Fully sam-
pled

(b) Gridding,
SER = 10.81

(c) TV penalty,
SER = 17.05

(d) k-t SLR [22],
SER = 16.52

(e) Proposed
Method, SER =
18.27

(f) (g) (h) (i) (j)

Fig. 6 Reconstruction of first-pass myocardial perfusion sequence. (a) A few fully sampled
frames at contrast enhancement phases indicated by white vertical lines in (f). (b-e) Re-
constructed images using various methods. The proposed method obtains the best SER of
18.27. Some of the artifacts are also highlighted by using the arrows. (g-l) Temporal inten-
sity profiles corresponding to the white line in (a) of the various methods. The temporal
intensity profile of the proposed method closely follows the fully sampled profile lines.

4.4 Liver DCE-MRI

The liver DCE-MRI data, obtained from [13], contains contrast-enhancement
phases and respiratory motion. The data was acquired by 12-element body
matrix coil using the 3D stack-of-stars radial trajectory with golden angle ro-
tation. The reconstruction of only one slice is shown in this section. The data
contains 1100 radial profiles, which were continuously acquired and grouped
in to multiple respiratory motion and contrast enhancement states by using
the projection-based respiratory motion detection approach described in [13].
In total, there were 11 contrast-enhancement phases, each containing 4 respi-
ratory motion states with 25 radial profiles. XD-Grasp [13] then reconstructs
the dynamic images by applying the total variation regularization in both
the respiratory and the contrast-enhancement dimensions. Figure 7(a) shows
the result of one contrast-enhancement phase containing 4 respiratory motion
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(a) XD-Grasp Reconstruction[13]

(b) Proposed Algorithm Reconstruction

Fig. 7 Liver DCE-MRI. Reconstruction of one contrast-enhancement phase containing four
respiratory motion states. XD-Grasp [13] applies total variation regularization in both the
respiratory and contrast-enhancement dimensions. The proposed algorithm applies low rank
constraint in the feature space to reconstruct the images. The reconstruction quality of the
proposed method enhanced as highlighted by the arrows. XD-Grasp looses some details due
to over smoothing.

states. The proposed algorithm reconstructs the images by using 25 radial pro-
files per image and the low rank constraint in the feature space. The results
are shown in Figure 7(b). As the figure shows, the reconstruction quality of
the proposed method is enhanced. In some areas, highlighted by the arrows,
XD-Grasp actually looses some details due to over smoothing.

5 Conclusion

Kernel methods in statistical learning theory provide powerful techniques for
analyzing high-dimensional data. The basic idea behind kernel methods is to
map the data non-linearly to a higher dimensional feature space where linear
algorithms are applied. In this paper, we exploit the non-linear correlation
between dynamic MR images using kernel methods. Specifically, the dynamic
sequence is mapped to the feature space where low rank constraint is enforced.
The algorithm simultaneously learns the temporal basis and the spatial weights
of the non-linear feature space and does not require any training data. The al-
gorithm exploits the non-linear correlations without the computational burden
as the computational complexity is similar to the linear low rank-based algo-
rithms. The optimization is carried out using variable splitting and ADMM
and achieves convergence within few iterations. Evaluations are performed on
synthetic as well as in vivo datasets.

References

1. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery
using variable splitting and constrained optimization. IEEE Transactions
on Image Processing 19(9):2345–2356



16 Short

2. Arias P, Randall G, Sapiro G (2007) Connecting the out-of-sample and
pre-image problems in kernel methods. In: Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, IEEE, pp 1–8

3. Arif O, Vela P, Daley W (2010) Pre-image problem in manifold learning
and dimensional reduction methods. In: 2010 Ninth International Confer-
ence on Machine Learning and Applications, IEEE, pp 921–924

4. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural computation 15(6):1373–1396

5. Bengio Y, Paiement J, Vincent P, Delalleau O, Roux NL, Ouimet M (2004)
Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral
clustering. In: Advances in Neural Information Processing Systems, p 177

6. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine Learning 3(1):1–122

7. Buerger C, Clough RE, King AP, Schaeffter T, Prieto C (2012) Non-
rigid motion modeling of the liver from 3-d undersampled self-gated
golden-radial phase encoded mri. IEEE transactions on medical imaging
31(3):805–815

8. Chen X, Usman M, Baumgartner CF, Balfour DR, Marsden PK, Reader
AJ, Prieto C, King AP (2017) High-resolution self-gated dynamic abdom-
inal mri using manifold alignment. IEEE transactions on medical imaging
36(4):960–971

9. Donoho DL (2006) Compressed sensing. IEEE Transactions on informa-
tion theory 52(4):1289–1306

10. Eckstein J, Bertsekas DP (1992) On the douglasrachford splitting method
and the proximal point algorithm for maximal monotone operators. Math-
ematical Programming 55(1):293–318

11. Elad M, Milanfar P, Rubinstein R (2007) Analysis versus synthesis in
signal priors. Inverse problems 23(3):947

12. Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sod-
ickson DK, Otazo R (2014) Golden-angle radial sparse parallel mri: Com-
bination of compressed sensing, parallel imaging, and golden-angle radial
sampling for fast and flexible dynamic volumetric mri. Magnetic resonance
in medicine 72(3):707–717

13. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R
(2016) Xd-grasp: Golden-angle radial mri with reconstruction of extra
motion-state dimensions using compressed sensing. Magnetic resonance
in medicine 75(2):775–788

14. Glover GH, Pauly JM (1992) Projection reconstruction techniques for
reduction of motion effects in mri. Magnetic resonance in medicine
28(2):275–289

15. Haldar JP, Liang ZP (2010) Spatiotemporal imaging with partially sep-
arable functions: A matrix recovery approach. In: Biomedical Imaging:
From Nano to Macro, 2010 IEEE International Symposium on, IEEE, pp
716–719



title 17

16. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T (2012) Tho-
racic respiratory motion estimation from mri using a statistical model and
a 2-d image navigator. Medical image analysis 16(1):252–264

17. Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging.
Physics in medicine and biology 52(7):R15

18. Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP (2004)
Self-gated cardiac cine mri. Magnetic Resonance in Medicine 51(1):93–102

19. Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG,
Abramson VG, Atuegwu N, Farley J, Mayer IA, Kelley MC, et al. (2014)
Dce-mri analysis methods for predicting the response of breast cancer to
neoadjuvant chemotherapy: Pilot study findings. Magnetic resonance in
medicine 71(4):1592–1602

20. Liang ZP (2007) Spatiotemporal imagingwith partially separable func-
tions. In: Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th
IEEE International Symposium on, IEEE, pp 988–991

21. Lin W, Guo J, Rosen MA, Song HK (2008) Respiratory motion-
compensated radial dynamic contrast-enhanced (dce)-mri of chest and
abdominal lesions. Magnetic resonance in medicine 60(5):1135–1146

22. Lingala SG, Hu Y, DiBella E, Jacob M (2011) Accelerated dynamic mri
exploiting sparsity and low-rank structure: kt slr. IEEE transactions on
medical imaging 30(5):1042–1054

23. Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y
(2010) Respiratory and cardiac self-gated free-breathing cardiac cine imag-
ing with multiecho 3d hybrid radial ssfp acquisition. Magnetic resonance
in medicine 63(5):1230–1237

24. Lustig M, Santos JM, Donoho DL, Pauly JM (2006) kt sparse: High frame
rate dynamic mri exploiting spatio-temporal sparsity. In: Proceedings of
the 13th Annual Meeting of ISMRM, Seattle, vol 2420

25. Lustig M, Donoho D, Pauly JM (2007) Sparse mri: The application of
compressed sensing for rapid mr imaging. Magnetic resonance in medicine
58(6):1182–1195

26. Majumdar A, Ward RK (2011) An algorithm for sparse mri reconstruction
by schatten p-norm minimization. Magnetic resonance imaging 29(3):408–
417

27. Nakarmi U, Wang Y, Lyu J, Ying L (2015) Dynamic magnetic resonance
imaging using compressed sensing with self-learned nonlinear dictionary
(nl-d). In: 2015 IEEE 12th International Symposium on Biomedical Imag-
ing (ISBI), IEEE, pp 331–334

28. Nakarmi U, Zhou Y, Lyu J, Slavakis K, Ying L (2016) Accelerating dy-
namic magnetic resonance imaging by nonlinear sparse coding. In: 2016
IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE,
pp 510–513

29. Nakarmi U, Wang Y, Lyu J, Liang D, Ying L (2017) A kernel-based low-
rank (klr) model for low-dimensional manifold recovery in highly accel-
erated dynamic mri. IEEE transactions on medical imaging 36(11):2297–
2307



18 Short

30. Nawaz MZ, Arif O (2016) Robust kernel embedding of conditional and
posterior distributions with applications. In: 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), IEEE, pp
39–44

31. Nocedal J, Wright SJ (2006) Sequential quadratic programming. Springer
32. Otazo R, Kim D, Axel L, Sodickson DK (2010) Combination of compressed

sensing and parallel imaging for highly accelerated first-pass cardiac per-
fusion mri. Magnetic Resonance in Medicine 64(3):767–776

33. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY (2009) k-t pca:
Temporally constrained k-t blast reconstruction using principal compo-
nent analysis. Magnetic resonance in medicine 62(3):706–716

34. Peters DC, Lederman RJ, Dick AJ, Raman VK, Guttman MA, Derbyshire
JA, McVeigh ER (2003) Undersampled projection reconstruction for active
catheter imaging with adaptable temporal resolution and catheter-only
views. Magnetic resonance in medicine 49(2):216–222

35. Poddar S, Jacob M (2016) Dynamic mri using smoothness regularization
on manifolds (storm). IEEE transactions on medical imaging 35(4):1106–
1115

36. Ramani S, Fessler JA (2011) Parallel mr image reconstruction using
augmented lagrangian methods. IEEE Transactions on Medical Imaging
30(3):694–706

37. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally
linear embedding. science 290(5500):2323–2326

38. Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, Peters
DC (2011) Respiratory bellows revisited for motion compensation: prelim-
inary experience for cardiovascular mr. Magnetic resonance in medicine
65(4):1097–1102

39. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation 10(5):1299–1319
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